Robust Virtual Implementation

Dirk Bergemann and Stephen Morris

January 2009
An Older Title

Strategic Distinguishability with an application to Robust Virtual Implementation
Interdependent Preferences

- preferences are frequently assumed to be interdependent for informational or psychological reasons
- what are the observable implications of interdependent preferences?
- “revealed preference” is well-developed theory to understand individual choice with independent preferences
- an approach to “strategic revealed preference” is suggested to understand interdependent preferences
Strategic Distinguishability

- each agent’s preference depends on the “payoff types” of all agents
- two types of an agent are “strategically indistinguishable” if in every game there exists some common action which each type might rationally choose given some beliefs and higher-order beliefs
- two types of an agent are “strategically distinguishable” if there exists a game such that those types must rationally choose different actions whatever their beliefs and higher-order beliefs
- we characterize strategic distinguishability for general environments:
 - basic idea: types are strategically distinguishable if there is not too much interdependence of preferences
Robust Virtual Implementation

- social choice function maps payoff type profiles to outcomes
- "robust implementation": there exists a mechanism such that every equilibrium delivers the socially desired outcome whatever players’ beliefs and higher order beliefs about others’ types
- "robust virtual implementation": there exists a mechanism such that every equilibrium delivers the socially desired outcome with probability at least $1 - \varepsilon$ whatever players’ beliefs and higher order beliefs about others’ types
- necessary conditions:
 1. ex post incentive compatibility
 2. robust measurability: strategically indistinguishable always receive same allocation
- sufficiency: extending an argument of Abreu-Matsushima 1992
Auction Example

- l agents with quasilinear utility
- agent i has type $\theta_i \in \Theta_i = [0, 1]$
- agent i’s valuation of a single object is $\nu_i(\theta) = \theta_i + \gamma \sum_{j \neq i} \theta_j$
Auction Example

- l agents with quasilinear utility
- agent i has type $\theta_i \in \Theta_i = [0, 1]$
- agent i's valuation of a single object is $v_i(\theta) = \theta_i + \gamma \sum_{j \neq i} \theta_j$
- suppose
 1. $\gamma \geq \frac{1}{l-1}$
 2. every low θ_i valuation agent was convinced that other agents were high θ_j agents, and vice versa
 3. in particular, each payoff type θ_i is convinced that his opponents are types $\theta_j = \frac{1}{2} + \frac{1}{\gamma(l-1)} \left(\frac{1}{2} - \theta_i \right)$
Auction Example

- agent i's valuation of a single object is $v_i(\theta) = \theta_i + \gamma \sum_{j \neq i} \theta_j$
- each payoff type θ_i is convinced that his opponents are types $\theta_j = \frac{1}{2} + \frac{1}{\gamma (I-1)} (\frac{1}{2} - \theta_i)$
- so

$$v_i(\theta) = \theta_i + \gamma \sum_{j \neq i} \theta_j$$
$$= \theta_i + \gamma \sum_{j \neq i} \left(\frac{1}{2} + \frac{1}{\gamma (I-1)} \left(\frac{1}{2} - \theta_i \right) \right)$$
$$= \frac{1}{2} \left(1 + \gamma (I - 1) \right)$$
Auction Example

- l agents with quasilinear utility
- agent i has type $\theta_i \in \Theta_i = [0, 1]$
- agent i's valuation of a single object is $v_i(\theta) = \theta_i + \gamma \sum_{j \neq i} \theta_j$
- suppose
 1. $\gamma \geq \frac{1}{l-1}$
 2. every low θ_i valuation agent was convinced that other agents were high θ_j agents, and vice versa
 3. in particular, each payoff θ_i is convinced that his opponents are types $\theta_j = \frac{1}{2} + \frac{1}{\gamma(l-1)} \left(\frac{1}{2} - \theta_i \right)$
- then common knowledge that everyone’s valuation of the object is $\frac{1}{2} \left(1 + \gamma(l-1) \right)$
Auction Example

- So if $\gamma \geq \frac{1}{l-1}$, all pairs of types are strategically indistinguishable.
- It will turn out that if $\gamma < \frac{1}{l-1}$, all distinct pairs of types are strategically distinguishable.
Robust Virtual Implementation Results in Auction Example

- if $\gamma < \frac{1}{t-1}$, robust virtual implementation of the efficient outcome can be achieved (in the example, using a simple direct mechanism)
- if $\gamma \geq \frac{1}{t-1}$, inefficient multiple equilibria in ALL mechanisms
Robust Virtual Implementation Results in General Environments

Necessary and Sufficient Conditions:

1. Ex Post Incentive Compatibility
 - in example, $\gamma \leq 1$

2. "Robust Measurability" or Not Too Much Interdependence
 - in example, $\gamma < \frac{1}{I-1}$
Section 3:
ENVIRONMENT AND SOLUTION CONCEPTS
Environment

- l agents
- lottery outcome space $Y = \Delta(X)$, X finite
- finite ”payoff” types Θ_i
- vNM utilities: $u_i : Y \times \Theta \to \mathbb{R}$
Mechanism

A mechanism \mathcal{M} is a collection $((M_i)_{i=1}^I, g)$

- each M_i is a finite message set
- outcome function $g : M \rightarrow Y$
Rationalizable Messages

- initialize at \(S_i^{M,0}(\theta_i) = M_i \), inductive step:
- \(S_i^{M,k+1}(\theta_i) = \)
 \[
 \exists \mu_i \in \Delta (\Theta_{-i} \times M_{-i}) \quad \text{s.t.:} \\
 \begin{align*}
 (1) \ & \mu_i (\theta_{-i}, m_{-i}) > 0 \Rightarrow m_{-i} \in S_i^{M,k}(\theta_i) \\
 (2) \ & m_i \in \arg \max_{m'_i} \sum_{\theta_{-i}, m_{-i}} \mu_i (\theta_{-i}, m_{-i}) u_i (g(m'_i, m_{-i}), \theta)
 \end{align*}
 \]
- limit set
 \[
 S_i^M(\theta_i) = \bigcap_{k \geq 0} S_i^{M,k}(\theta_i).
 \]
- \(S_i^M(\theta_i) \) are rationalizable actions of type \(\theta_i \) in mechanism \(M \)
Epistemic Foundations: Framework

- Type Space $\mathcal{T} = \left(T_i, \hat{\pi}_i, \hat{\theta}_i \right)_{i=1}^I$

 1. T_i countable types of agent i
 2. $\hat{\pi}_i : T_i \rightarrow \Delta (T_{-i})$ (belief type component)
 3. $\hat{\theta}_i : T_i \rightarrow \Theta_i$ (payoff type component)

- incomplete information game $(\mathcal{T}, \mathcal{M})$

 - i’s strategy: $\sigma_i : T_i \rightarrow \Delta (M_i)$
 - strategy profile σ is an equilibrium if $\sigma_i (m_i | t_i) > 0$ implies m_i is in

$$\arg \max_{m'_i \in \mathcal{T}_{-i,m_{-i}}} \sum_{t_{-i},m_{-i}} \hat{\pi}_i [t_i] (t_{-i}) \left(\prod_{j \neq i} \sigma_j (m_j | t_j) \right) u_i \left(g (m'_i, m_{-i}), \hat{\theta} (t) \right)$$
Epistemic Foundations: Result

PROPOSITION. \(m_i \in S_i^M (\theta_i) \) if and only if there exist

1. a type space \(T \),
2. an equilibrium \(\sigma \) of \((T, M)\) and
3. a type \(t_i \in T_i \), such that
 3.1 \(\sigma_i (m_i|t_i) > 0 \) and
 3.2 \(\hat{\theta}_i (t_i) = \theta_i \).

Section 4:
STRATEGIC DISTINGUISHABILITY
DEFINITION. Types θ_i and θ'_i are strategically indistinguishable if

$$S^\mathcal{M} (\theta_i) \cap S^\mathcal{M} (\theta'_i) \neq \emptyset$$

for every \mathcal{M}.
Preference Relation

DEFINITION. R_{θ_i, λ_i} is a preference relation of agent i with payoff type θ_i and conjecture $\lambda_i \in \Delta (\Theta_{-i})$ about types of others:

$$y R_{\theta_i, \lambda_i} y' \iff \sum_{\theta_{-i} \in \Theta_{-i}} \lambda_i (\theta_{-i}) u_i (y, \theta) \geq \sum_{\theta_{-i} \in \Theta_{-i}} \lambda_i (\theta_{-i}) u_i (y', \theta)$$

- write $\Psi_i \subseteq \Theta_j$ for subset and $\Psi_{-i} = \{ \Psi_j \}_{j \neq i}$ for profile of subsets
- possible preference profiles if i assigns probability 1 to his opponents’ types to be $\theta_{-i} \in \Psi_{-i}$:

$$R_i (\theta_i, \Psi_{-i}) = \{ R \in \mathcal{R} | R = R_{\theta_i, \lambda_i} \text{ for some } \lambda_i \in \Delta (\Psi_{-i}) \}$$
Defining Separability

- with:
 \[\mathcal{R}_i (\theta_i, \Psi_{-i}) = \{ R \in \mathcal{R} \mid R = R_{\theta_i, \lambda_i} \text{ for some } \lambda_i \in \Delta (\Psi_{-i}) \} \]

DEFINITION. Type set profile \(\Psi_{-i} \) separates \(\Psi_i \) if

\[
\bigcap_{\theta_i \in \Psi_i} \mathcal{R}_i (\theta_i, \Psi_{-i}) = \emptyset.
\]

- \(\Psi_{-i} \) separates \(\Psi_i \) if whatever realized preference of \(i \), we can rule out at least one possible type of \(i \).
Iterative Definition of Separability

- iteratively delete type sets of i that are separated by some type set profile Ψ_i

\[\Xi_i^0 = 2^{\Theta_i} \]
\[\Xi_i^{k+1} = \left\{ \Psi_i \in 2^{\Theta_i} \left| \Psi_i \text{ doesn’t separate } \Psi_i \text{ for some } \Psi_{-i} \in \Xi_{-i}^k \right. \right\} \]

and limit type set profile is

\[\Xi_i^* = \bigcap_{k \geq 0} \Xi_i^k \]
DEFINITION. Types θ_i and θ'_i are pairwise inseparable if

$$\{\theta_i, \theta'_i\} \in \mathbb{E}^*_i,$$

and we write $\theta_i \sim \theta'_i$.

- note \sim is reflexive, symmetric, but not necessarily transitive
Back to the Auction Example

- l bidders
- bidder i has type $\theta_i \in \Theta_i = [0, 1]$
- bidder i’s valuation is $v_i(\theta, m_i) = \theta_i + \gamma \sum_{j
eq i} \theta_j - m_i$
- set of possible preferences $= \text{set of possible valuations}$

$$V_i(\theta_i, \Psi_{-i}) = \left[\theta_i + \gamma \sum_{j \neq i} \min \Psi_j, \quad \theta_i + \gamma \sum_{j \neq i} \max \Psi_j \right]$$
Separability in the Auction Example I

- now Ψ_{-i} separates Ψ_i if and only if

$$\bigcap_{\theta_i \in \Psi_i} V_i (\theta_i, \Psi_{-i}) = \emptyset$$

- suppose $\theta_i, \theta'_i \in \Psi_i$ and $\theta_i < \theta'_i$;

- there exist $\lambda_i, \lambda'_i \in \Delta (\Psi_{-i})$ such that $R_{\theta_i, \lambda_i} = R_{\theta'_i, \lambda'_i}$ iff

$$\theta_i + \gamma \sum_{j \neq i} \max \Psi_j \geq \theta'_i + \gamma \sum_{j \neq i} \min \Psi_j$$
Separability in the Auction Example II

- Ψ_i is separable given $\Psi_{\neg i}$ if and only if

\[
\max \Psi_i - \min \Psi_i > \gamma \left(\sum_{j \neq i} \max \Psi_j - \min \Psi_j \right)
\]

- thus

\[
\Xi^1_i = \{ \Psi_i \mid \max \Psi_i - \min \Psi_i \leq [\gamma (l - 1)] \}
\]

and iteratively:

\[
\Xi^k_i = \{ \Psi_i \mid \max \Psi_i - \min \Psi_i \leq [\gamma (l - 1)]^k \}
\]
Pairwise Inseparability in the Auction Example

- If $\gamma \geq \frac{1}{i-1}$, all θ_i, θ'_i are pairwise inseparable.
- If $\gamma < \frac{1}{i-1}$, $\theta_i \neq \theta'_i \Rightarrow \theta_i$ and θ'_i are pairwise separable.
- Pairwise separability requires “not too much interdependence.”
Fixed Point Characterization

Consider a collection of sets $\Xi = (\Xi_i)_{i=1}^I$, each $\Xi_i \subseteq 2^\Theta_i$.

DEFINITION. A collection Ξ is mutually inseparable if, for each i and $\Psi_i \in \Xi_i$, there exists $\Psi_-i \in \Xi_-i$ such that Ψ_-i does not separate Ψ_i.

LEMMA. Types θ_i and θ'_i are pairwise inseparable if and only if there exists mutually inseparable Ξ such that $\{\theta_i, \theta'_i\} \subseteq \Psi_i$ for some $\Psi_i \in \Xi_i$.
Strategic Distinguishability

DEFINITION. Types θ_i and θ'_i are strategically indistinguishable if

$$S^\mathcal{M}(\theta_i) \cap S^\mathcal{M}(\theta'_i) \neq \emptyset$$

for every \mathcal{M}.

THEOREM 1. Types θ_i and θ'_i are strategically indistinguishable if and only if they are pairwise inseparable.
Sufficiency of Pairwise Separability I

PROPOSITION 1: If θ_i and θ'_i are indistinguishable, then

$$S_i^M (\theta_i) \cap S_i^M (\theta'_i) \neq \emptyset$$

in any mechanism M.

Suppose Ξ is mutually inseparable

Fix any finite mechanism.
Sufficiency of Pairwise Separability II

By induction on k, for each k, i and $\Psi_i \in \Xi_i$, there exists a common action $m_i^k (\Psi_i)$ such that $m_i^k (\Psi_i) \in S_i^k (\theta_i)$ for each $\theta_i \in \Psi_i$

1. True by definition for $k = 0$.

2. Suppose true for $k - 1$

 - fix any i and $\Psi_i \in \Xi_i$
 - since Ξ is mutually inseparable, $\exists \Psi_{-i} \in \Xi_{-i}$, R_i and, for each $\theta_i \in \Psi_i$, $\lambda_{i}^{\theta_i} \in \Delta (\Psi_{-i})$ such that $R_{\theta_i, \lambda_{i}^{\theta_i}} = R_i$
 - $m_i^{k} (\Psi_i)$ be any element of the argmax under R_i of $g \left(m_{i}, m_{-i}^{k-1} (\Psi_{-i}) \right)$
 - by construction, $m_i^{k} (\Psi_i) \in S_i^{\mathcal{I},k} (\theta_i)$ for all $\theta_i \in \Psi_i$.
Necessity of Pairwise Separability

PROPOSITION 2: There exists a mechanism \mathcal{M}^* such that if $\theta_i \sim \theta'_i$, then

$$S_i^{\mathcal{M}^*}(\theta_i) \cap S_i^{\mathcal{M}^*}(\theta'_i) = \emptyset.$$

PROOF: By construction of “maximally revealing mechanism”.
Construction of Maximally Revealing Mechanism I

uniform lottery \(\tilde{y} : \tilde{y}(x) \triangleq 1/|X| \)

KEY LEMMA:
Type set profile \(\Psi_i \) separates \(\Psi \) iff there exists \(\tilde{y} : \Psi_i \rightarrow Y \) such that

\[
\sum_{\theta_i \in \Psi_i} (\tilde{y}(\theta_i) - \bar{y}) = 0
\]

and, for each \(\theta_i \in \Psi_i \) and \(\lambda_i \in \Delta(\Psi_i) \),

\[
\tilde{y}(\theta_i) P_{\theta_i, \lambda_i} \bar{y}.
\]
Construction of Maximally Revealing Mechanism II

LEMMA (Morris 1994, Samet 1998): Let $V_1, ..., V_L$ be closed, convex, subsets of the N-dimensional simplex Δ^N. These sets have an empty intersection if and only if there exist $z_1, ..., z_L \in \mathbb{R}^N$ such that

$$\sum_{l=1}^{L} z_l = 0$$

and

$$\nu \cdot z_l > 0$$

for each $l = 1, ..., L$ and $\nu \in V_i$.

Key lemma follows from this duality lemma, letting $\Theta_i = \{1, ..., L\}$ and V_i be the set of possible utility weights of type $\theta_i = l$ with any $\lambda_i \in \Delta(\Psi_{-i})$.
Construction of Maximally Revealing Mechanism III

- let $B^Y(\theta_i, \lambda_i)$ be the agents most preferred lotteries in the set Y given type θ_i and belief λ_i:

$$B^Y_i(\theta_i, \lambda_i) = \{y \in Y \mid y R_{\theta_i, \lambda_i} y' \text{ for all } y' \in Y\}$$

TEST SET LEMMA. There exists a finite set $Y^* \subseteq Y$ such that

1. for each i, θ_i and $\lambda_i \in \Delta(\Theta_{-i})$, $B^Y_i(\theta_i, \lambda_i) \neq Y^*$
2. for each i, Ψ_i and Ψ_{-i}, if Ψ_{-i} separates Ψ_i, then for each $\theta_i \in \Psi_i$ and $\lambda_i \in \Delta(\Psi_{-i})$, there exists $\theta'_i \in \Psi_i$ such that

$$B^Y_i(\theta_i, \lambda_i) \cap B^Y_i(\theta'_i, \Psi_{-i}) = \emptyset.$$
Mechanism in Words

- each player makes K simultaneous announcements:
 1. an element of test set Y^*
 2. a profile of first round announcements of other players he thinks possible, plus an element of Y^*
 3. a profile of second round announcements of other players he thinks possible, plus an element of Y^*
 4.

- all chosen outcomes selected with positive probability, with much higher weight on "earlier" announcements
Mechanism in Formulae

mechanism $\mathcal{M}^{K,\varepsilon} = \left(\left(M^K_i \right)_{i=1}^I, g^{K,\varepsilon} \right)$ parameterized by

1. $\varepsilon > 0$
2. integer K

- i's message set is M^K_i where
 - $M^0_i = \{ \overline{m}^0_i \}$
 - $M^{k+1}_i = M^k_i \times M^{k-1}_{-i} \times Y^*$
- typical element $m^k_i = \{ \overline{m}^0_i, r^1_i, y^1_i, \ldots, r^k_i, y^k_i \}$
- allocation rule:

$$g^{K,\varepsilon}(m) = \overline{y} + \frac{1 - \varepsilon^K}{1 - \varepsilon} \frac{1}{I} \sum_{k=1}^K \varepsilon^{k-1} \sum_{i=1}^I \mathbb{I} \left(r^k_i, m^{k-1}_{-i} \right) \left(y^k_i - \overline{y} \right)$$

where

$$\mathbb{I} \left(r^k_i, m^{k-1}_{-i} \right) = \begin{cases} 1, & \text{if } r^k_i = m^{k-1}_{-i} \\ 0, & \text{otherwise} \end{cases}$$
Conclusion of Proof of Proposition 2

1. Let

\[
\overline{\Theta}_i^k \left(m_i^k \right) = \overline{\Theta}_i^k \left(\left(m_i^{k-1}, r_i^k, y_i^k \right) \right) = \left\{ \theta_i \mid \theta_i \in \overline{\Theta}_i^{k-1} \left(m_i^{k-1} \right), \overline{\Theta}_i^{k-1} \left(r_i^k \right) \neq \emptyset, y_i^k \in B_i \left(\theta_i, \overline{\Theta}_i^{k-1} \left(r_i^k \right) \right) \right\}
\]

2. There exists \(\bar{\epsilon} > 0 \) such that

\[
\left\{ \theta_i \in \Theta_i \left| m_i^k \in S_i^{M_i^k, \epsilon} \left(\theta_i \right) \right\} \subseteq \overline{\Theta}_i^k \left(m_i^k \right)
\]

for all \(\epsilon \leq \bar{\epsilon} \) and \(m_i^k \in M_i^k \).

3. There exists \(\bar{\epsilon} > 0 \) and \(K \) such that

\[
\left\{ \theta_i \in \Theta_i \left| m_i^K \in S_i^{M_i^K, \epsilon} \left(\theta_i \right) \right\} \in \Xi_i^*
\]

for all \(\epsilon \leq \bar{\epsilon} \) and \(m_i^K \in M_i^K \).
Section 5:
ROBUST VIRTUAL IMPLEMENTATION
Definitions Reminder

- "implementation": requires ALL equilibria deliver the right outcome, a.k.a. full implementation
- "robust": same mechanism works independent of agents’ beliefs and higher order beliefs about the environment
- "virtual": enough if correct outcome arises with probability $1 - \varepsilon$
DEFINITION: A social choice function $f : \Theta \rightarrow Y$. Write $\|y - y'\|$ for the Euclidean distance between a pair of lotteries y and y', i.e.,

$$
\|y - y'\| = \sqrt{\sum_{x \in X} (y(x) - y'(x))^2}.
$$

DEFINITION: Social choice function f is robustly ε-implementable if there exists a mechanism M such that

$$
m \in S^M(\theta) \Rightarrow \|g(m) - f(\theta)\| \leq \varepsilon.
$$

DEFINITION: Social choice function f is robustly virtually implementable if, for every $\varepsilon > 0$, f is robustly ε-implementable.
RESULT:

DEFINITION: Social choice function f satisfies ex post incentive compatibility if, for all i, θ_i, θ_{-i} and θ'_i:

$$u_i(f(\theta_i, \theta_{-i}), (\theta_i, \theta_{-i})) \geq u_i(f(\theta'_i, \theta_{-i}), (\theta_i, \theta_{-i})) .$$

DEFINITION: Social choice function f satisfies robust measurability if $\theta_i \sim \theta'_i \Rightarrow f(\theta_i, \theta_{-i}) = f(\theta'_i, \theta_{-i})$, $\forall \theta_{-i}$.

THEOREM 2. Social choice function f is robustly virtually implementable if and only if f satisfies ex post incentive compatibility and robust measurability.
Intermediate Notions of Robustness

- Artemov-Kunimoto-Serrano (2008)
- given finite payoff types $\theta_i \in \Theta_i$
- every type puts probability $(1 - \delta)$ on uniform beliefs over opponents’ types, but could put remaining δ anywhere
- robust virtual implementation if $\gamma \delta < \frac{1}{I-1}$
Second Price Auction

- private values $\gamma = 0$ so $v_i = \theta_i$
- second price sealed bid auction
 - object goes to highest bidder
 - winner pays second highest bid
- truth-telling is a dominant strategy, but there are inefficient equilibria
Approximate Second Price Auction

- with probability $1 - \varepsilon$,
 - allocate object to highest bidder
 - winner pays second highest bid
- for each i, with probability $\frac{\varepsilon b_i}{I}$
 - i gets object
 - pays $\frac{1}{2} b_i$
- truth-telling is a strictly dominant strategy so we can guarantee Robust Virtual Implementation
Modified Second Price Auction

- $\gamma > 0$, $v_i = \theta_i + \gamma \sum_{j \neq i} \theta_j$
- generalized second price sealed bid auction
 - object goes to highest bidder
 - winner pays $\max_j b_j + \gamma \sum_{j \neq i} b_j$
- if $\gamma \leq 1$, truth-telling is an "ex post" equilibrium but there are inefficient ex post equilibria ("ex post incentive compatibility")
Modified Second Price Auction

- with probability $1 - \varepsilon$,
 - allocate object to highest bidder i
 - winner pays $\max_{j \neq i} b_j + \gamma \sum_{j \neq i} b_j$

- for each i with probability $\frac{\varepsilon b_i}{i}$,
 - i gets object
 - pays $\frac{1}{2} b_i + \gamma \sum_{j \neq i} b_j$

truth telling is a strict ex post equilibrium
Abreu-Matsushima (1992) Incomplete Information

- Standard "Bayesian" incomplete information setting, i.e., common knowledge of common prior on type space
- Necessary conditions for virtual implementation
 - Bayesian incentive compatibility
 - Abreu-Matsushima measurability: types are iteratively distinguishable
 - reduces to "value distinction" in private values case
Adding Robustness

- with robustness, full implementation equivalent to belief free version of iterated deletion of strictly dominated strategies
- generalizing Abreu-Matsushima, necessary conditions become:

1. Ex post incentive compatibility (instead of Bayesian IC)
 - Bergemann-Morris "Robust Mechanism Design"

2. robust measurability as belief free version of AM measurability
Intermediate Notions of Robustness

Artemov-Kunimoto-Serrano (2008) consider type space with

- given finite payoff types $\theta_i \in \Theta_i$;
- given finite first-order beliefs $q_i (\theta_i | \theta_{-i})$

and general type space T_i is assumed to be consistent with payoff types and first-order beliefs

- in the presence of a type diversity condition, incentive compatibility and AM measurability is necessary and sufficient for robust virtual implementation
- some tension between rich type space and type diversity
Exact Implementation I

following Maskin methods, necessary and sufficient conditions for exact robust implementation - using ANY mechanism:
(Bergemann-Morris "Robust Implementation in General Mechanisms" (2008))

1. ex post incentive compatibility
2. "robust monotonicity": not too much interdependence
in large class of economically interesting ”monotonic aggregator” environments:
(Bergemann-Morris ”Robust Implementation in Direct Mechanisms” (2007))

1. robust monotonicity = robust measurability
2. natural generalization of $\gamma < \frac{1}{t-1}$ condition
3. if robust virtual implementation is possible, it arises in modified direct mechanism
Conclusion

- strategic distinguishability: information revelation through choice in some game
- strategic distinguishability \equiv not too much interdependence
- information revelation in maximally revealing mechanism
- virtual implementation via maximally revealing mechanism
- robust virtual implementation leads to sharp possibility but also impossibility results
Back to the Interdependent Auction Example

- I agents with quasilinear utility
- agent i has type $\theta_i \in \Theta_i = [0, 1]$
- agent i's valuation of a single object is $v_i(\theta) = \theta_i + \gamma \sum_{j \neq i} \theta_j$
- efficient allocation:
 1. object to individual with highest valuation
 2. winner pays $\max_{j \neq i} b_j + \gamma \sum_{j \neq i} b_j$
Abreu-Matsushima (1992)

- Fix finite $\overline{\Theta}_i \subseteq \Theta_i = [0, 1]$
- Impose common prior $\pi \in \Delta (\overline{\Theta})$, where $\overline{\Theta} = \overline{\Theta}_1 \times \ldots \times \overline{\Theta}_I$
- Let $v_i(\theta_i) = \theta_i + \gamma \sum_j \sum_{j \neq i} \pi (\theta_j | \theta_i) \theta_j$
- With either independent priors or generic priors, we get type diversity

$$\theta_i, \theta'_i \in \overline{\Theta}_i, \theta_i \neq \theta'_i \Rightarrow v_i (\theta_i) \neq v'_i (\theta'_i)$$

- Thus all types can be distinguished on the basis of preferences over ”constant” or ”unconditional” lotteries
- Abreu-Matsushima measurability is trivially satisfied.
Artemov, Kunimoto and Serrano (2008)

- Fix finite ”payoff type” $\overline{\Theta}_i \subseteq \Theta_i = [0, 1]$
- A type space
 - agent i’s (epistemic) ”types” T_i
 - $\hat{\theta}_i : T_i \rightarrow \overline{\Theta}_i$
 - $\hat{\pi}_i : T_i \rightarrow \Delta (T_{-i})$
- First order belief restriction: fix finite ”pseudo-types” $PT_i \subseteq \overline{\Theta}_i \times \Delta (\overline{\Theta}_{-i})$
Type space consistent with first order belief restriction if

\[\hat{\theta}_i(t_i) = \theta_i \]
and

\[\sum_{\{t_{-i}|\hat{\theta}_{-i}(t_{-i})=\theta_{-i}\}} \hat{\pi}_i(t_{-i}|t_i) = q_i(\theta_{-i}) \text{ for all } \theta_{-i} \]

\[\Rightarrow (\theta_i, q_i) \in PT_i \]

Can we find a mechanism that equilibrium fully implements an outcome within \(\varepsilon \) of the efficient on every type space consistent with the first order beliefs restriction?
Relation to Bergemann and Morris (2008)

- We provide a solution to the case with no restrictions on beliefs

<table>
<thead>
<tr>
<th></th>
<th>Equilibrium</th>
<th>Δ-Rat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Restrictions of FOB</td>
<td>\cdot</td>
<td>BM</td>
</tr>
<tr>
<td>Restrictions on FOB</td>
<td>AKS</td>
<td>\cdot</td>
</tr>
</tbody>
</table>

- Fact that we have no restrictions on beliefs allows compact representation of the relevant measurability condition: in particular expressed in terms of preferences over constant lotteries, not lotteries contingent on other agents’ types
First Order Beliefs Restriction in Auction Example

- $t_i \equiv (\theta_i, q_i)$
- $v_i(\theta_i, q_i) = \theta_i + \gamma \sum_{j \neq i} \sum \theta_j q_i (\theta_j|\theta_i)$
- Pseudo-Type Diversity (AKS): $(\theta_i, q_i), (\theta'_i, q'_i) \in PT_i, (\theta_i, q_i) \neq (\theta'_i, q'_i) \Rightarrow v_i(\theta_i, q_i) \neq v_i(\theta'_i, q'_i)$
- Generically satisfied for finite PT_i?
- Weaker Pseudo-Type Diversity (BM): $(\theta_i, q_i), (\theta'_i, q'_i) \in PT_i, \theta_i \neq \theta'_i \Rightarrow v_i(\theta_i, q_i) \neq v_i(\theta'_i, q'_i)$
- Pseudo-Type Diversity is sufficient for virtual robust implementation
- Weaker pseudo-type diversity also sufficient
Continuum Payoff Types / First Order Belief Restrictions

- $\Theta_i = [0, 1]$
- Pseudo-Types $PT_i = \Theta_i \times Q_i$, where $Q_i \subseteq \Delta\left([0, 1]^{l-1}\right)$
- Suppose $\gamma \in \left(0, \frac{1}{l-1}\right]$. Pseudo Type Diversity only if each Q_i is a singleton.
- Suppose Q_i puts mass $1 - \delta$ on uniform distribution, δ elsewhere.

$$Q_i^\delta = \left\{ q_i \in [0, 1]^{l-1} \mid q_i(E) \geq (1 - \delta) \text{Leb}(E) \right\}$$

- Pseudo-Types $PT_i = \Theta_i \times Q_i^\delta$
CLAIM: If $\gamma \delta > \frac{1}{I-1}$, then virtual robust implementation is impossible.

- The valuation of the object for agent with payoff type 0 could be
 $0 + (1 - \delta) \gamma (I - 1) \frac{1}{2} + \delta \gamma (I - 1) (1)$

- The valuation of the object for agent with payoff type 1 could be
 $1 + (1 - \delta) \gamma (I - 1) \frac{1}{2} + \delta \gamma (I - 1) (0)$

- The former exceeds the latter.
Discrete Approximation

- \(\Theta_i = [0, \frac{1}{K}, \frac{2}{K}, \ldots, 1] \)
- Suppose \(Q_i \) puts mass \(1 - \delta \) on uniform distribution, \(\delta \) elsewhere

\[
\overline{Q}_i^\delta = \left\{ q_i \in \Theta_{-i} \, \middle| \, q_i(\theta_{-i}) \geq \frac{1 - \delta}{(K+1)^{i-1}} \right\}
\]

- Pseudo-Types \(T_i = \Theta_i \times \overline{Q}_i^\delta \)

CLAIM: If \(\gamma \delta > \frac{1}{i-1} \), then virtual robust implementation is impossible.

- The valuation of the object for agent with payoff type 0 could be
 \[
 0 + (1 - \delta) \gamma (i - 1) \frac{1}{2} + \delta \gamma (i - 1) (1)
 \]
- The valuation of the object for agent with payoff type 1 could be
 \[
 1 + (1 - \delta) \gamma (i - 1) \frac{1}{2} + \delta \gamma (i - 1) (0)
 \]
- The former exceeds the latter.