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SUMMARY

Recent advances in fluorescence imaging permit
studies of Ca2+ dynamics in large numbers of cells,
in anesthetized and awake behaving animals. How-
ever, unlike for electrophysiological signals, stan-
dardized algorithms for assigning optically recorded
signals to individual cells have not yet emerged.
Here, we describe an automated sorting procedure
that combines independent component analysis
and image segmentation for extracting cells’ loca-
tions and their dynamics with minimal human super-
vision. In validation studies using simulated data,
automated sorting significantly improved estimation
of cellular signals compared to conventional analysis
based on image regions of interest. We used auto-
mated procedures to analyze data recorded by two-
photon Ca2+ imaging in the cerebellar vermis of
awake behaving mice. Our analysis yielded simulta-
neous Ca2+ activity traces for up to >100 Purkinje
cells and Bergmann glia from single recordings.
Using this approach, we found microzones of Pur-
kinje cells that were stable across behavioral states
and in which synchronous Ca2+ spiking rose signifi-
cantly during locomotion.

INTRODUCTION

Techniques for loading Ca2+ indicators into many cells have

enabled recent imaging studies of the dynamics of hundreds of

neurons and astrocytes (Gobel et al., 2007; Greenberg et al.,

2008; Mrsic-Flogel et al., 2007; Nimmerjahn et al., 2009; Ohki

et al., 2005; Orger et al., 2008; Stosiek et al., 2003). However,

computational techniques for extracting cellular signals from

Ca2+ imaging data lag behind and are mainly region of interest

(ROI) analyses. These are typically manual (Dombeck et al.,

2007; Gobel et al., 2007; Kerr et al., 2005; Niell and Smith,

2005) or semiautomated (Ozden et al., 2008) means of identifying

cells and cannot be easily scaled to handle the largest data sets

without undue human labor. Moreover, ROI analyses have

largely been based on heuristic definitions of the morphology
of specific cell types (Gobel et al., 2007; Ohki et al., 2005; Ozden

et al., 2008) rather than general principles for decomposing

a data set into constituent signal sources. Thus, current analyses

are prone to crosstalk in the signals extracted from adjacent cells

and surrounding neuropil. The present mismatch between the

capabilities for Ca2+ imaging and those for analyzing the data

restricts the capacity to attain biological insights.

This situation partly resembles that of the early 1990s, when

multielectrode techniques were blossoming but standardized

spike-sorting algorithms had yet to arise. Today, automated

spike sorting is widely used to assign spikes to individual cells

(Fee et al., 1996; Lewicki, 1998) and has enabled key advances

in understanding neural coding (Batista et al., 2007; Csicsvari

et al., 1998; Meister, 1996). An automated procedure for extract-

ing cellular Ca2+ signals would be a similar enabler of scientific

progress. However, the challenges in devising such a procedure

are distinct from those in spike sorting.

Spike-sorting routines tend to rely on two basic ideas. First,

the temporal waveforms for spikes from different cells are often

sufficiently dissimilar to provide a basis for spike classification.

Second, the activity of individual cells is often recorded on

multiple electrodes, aiding assignment of spikes based on their

relative amplitudes on different recording channels. Neither ap-

proach works well for imaging data. First, Ca2+ activity wave-

forms are strongly dictated by intracellular Ca2+ buffering and

the dye’s binding kinetics (Helmchen et al., 1996), which do

not provide strong signatures of individual cells’ identities.

Second, single-image pixels can contain a complex mixture of

signals from neuropil, neurons, astrocytes, and noise. It is

nontrivial to disentangle these signals without suffering crosstalk

and to find the shapes and locations of each cell. A guiding prin-

ciple is needed to help extract cells’ locations and activities.

We formulated such a principle by considering the manner in

which intracellular [Ca2+] transiently rises above background

levels during cellular events such as action potentials. Brief

periods of elevated [Ca2+] are typically sparsely interspersed

among many more background-dominated time frames.

Sparseness also holds in the spatial domain if each cell occupies

only a small subset of pixels. Thus, Ca2+ signals’ sparseness

should be a general attribute that is quantifiable by simple

measures, such as the skewness of amplitude distributions.

This reasoning led us to an algorithm that estimates cells’ loca-

tions and activities by parsing data into a combination of statis-

tically independent signals, each with a high sparseness. The
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algorithm requires no preconceptions of cells’ appearances and

little user supervision, and it relies on an independent component

analysis (ICA) (Bell and Sejnowski, 1995; Brown et al., 2001;

Reidl et al., 2007) (Figure 1). ICA has been used previously for

analyses of electroencephalography (EEG) (Makeig et al.,

1997), magnetoencephalography (MEG) (Guimaraes et al.,

2007), and functional magnetic resonance imaging (fMRI) (Beck-

mann and Smith, 2004; McKeown et al., 1998) data, but a chal-

lenge has concerned the physiological interpretation of the

identified sources, which can be mixtures of signals from

different recording channels or brain areas. We reasoned that

for ICA analyses of Ca2+ imaging data, such interpretative issues

should be much reduced, since cells’ properties can be corrob-

orated by other experimental means, including in the same

Figure 1. Analytical Stages of Automated Cell Sorting

(A) The goal of cell sorting is to extract cellular signals from imaging data

(left) by estimating spatial filters (middle) and activity traces (right) for each

cell. The example depicts typical fluorescence transients in the cerebellar

cortex as observed in optical cross-section. Transients in Purkinje cell den-

drites arise across elongated areas seen as stripes in the movie data. Tran-

sients in Bergmann glial fibers tend to be more localized, appearing ellip-

soidal.

(B) Automated cell sorting has four stages that address specific analysis

challenges.
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animals examined by imaging. In studies of human brain activity,

corroborative data were much harder to obtain in living subjects.

We validated our method using simulated movies mimicking

Ca2+ imaging data acquired in cerebellar cortex. Our sorting

procedure provided superior signal estimates and lower suscep-

tibility to crosstalk than reconstructions done by ROI analysis.

We also tested our analysis on data recorded by two-photon

microscopy in the cerebellar cortex of awake behaving mice,

from which we extracted Ca2+ signals of up to >100 total Purkinje

cells and Bergmann glia.

To illustrate our method’s utility, we applied it to study the

spatiotemporal organization of Purkinje cells’ Ca2+ spiking ac-

tivity in behaving mice. We found that synchronously active cells

cluster into neighborhoods �7–18 cells across in the mediolat-

eral dimension. We identify these as cerebellar microzones,

small patches of Purkinje cells receiving similar climbing fiber

input (Andersson and Oscarsson, 1978). Our data revealed that

microzones of awake animals have sharply delineated mediolat-

eral boundaries, to a precision of about a single cell.

We addressed the longstanding question of whether micro-

zones have stable anatomical boundaries (Andersson and

Oscarsson, 1978) or are dynamic entities whose cellular constit-

uents vary across behavioral states (Lang et al., 1999; Welsh

et al., 1995). We found that during mouse locomotion micro-

zones’ spatial organization was unchanged from that in awake

but resting animals, consistent with the idea that microzones

are stationary anatomical units. These findings reveal basic

features of cerebellar dynamics and highlight the impact of auto-

mated procedures for analyzing imaging data.

RESULTS

Principles for Extracting Cellular Signals
The purpose of cell sorting is to identify spatial filters and corre-

sponding time traces that represent the locations and dynamics

of individual cells (Figure 1A). Our procedure does this in four

stages (Figure 1B and Supplemental Software Toolbox).

Physiological signals are buried in high-dimensional data that

might contain, e.g., Nx �105 pixels and Nt �104 time frames. A

first stage of analysis should reduce this dimensionality, since

specifying cells’ spatial filters and activities would otherwise

require a large set of parameters. In principle, these parameters

could be found, but tuning many parameters can hamper signal

extraction (Hastie et al., 2001). For dimensional reduction, we

used an established method, principal component analysis

(PCA) (Table S1), to find and discard dimensions that mainly en-

coded noise (Mitra and Pesaran, 1999). Other means of dimen-

sional reduction might also be suitable (Discussion).

PCA identifies a linear transformation of the data yielding basis

vectors, the principal components, which are rank ordered by

the variance of signals along each basis vector. Truncation of

the highest-ranked components with the smallest variances

often does not interfere with an approximate reconstruction of

the data. On the contrary, if ongoing background noise has

smaller variance than transient but strong signals, then removing

higher-order components from the data can eliminate substan-

tial noise. In our studies of cerebellum, after identifying the noise

floor and truncating principal components representing noise
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Figure 2. Independent Component Analysis Identifies Sparse, Intra-

cellular Ca2+ Signals

(A) Example spatial filters of individual principal (top) and independent (bottom)

components identified in two-photon Ca2+ imaging data from cerebellar cortex

of a live mouse. The independent component more accurately captures the

form of a single Purkinje cell’s dendritic tree (orange region).

(B) Signal time traces for the principal (blue) and independent (red) compo-

nents in (A). The latter trace yields a superior representation of the Purkinje

cell’s Ca2+ spiking activity.

(C) Distributions of pixel intensity values in spatial filters for the principal (blue)

and independent (red) components in (A) (left). Distributions of the two compo-

nents’ time courses, across all movie frames (right). Gaussian distributions

(black) shown for comparison, revealing the independent component’s

skewness.

(D) Joint distribution of time course values for two example principal (blue) and

independent (red) components in data from mouse cerebellar cortex.

Extended tails in the latter distribution reflect times at which Ca2+-dependent

signals transiently increased.
(Figure S1) (Mitra and Pesaran, 1999), we achieved a reduced

dimensionality, K, much less than Nx or Nt. However, PCA alone

cannot isolate Ca2+ signals from individual cells.

PCA by itself is ill suited for cell sorting since it relies on differ-

ences in variance to identify data components; in practice, time

variations in different cells’ fluorescence signals tend to be of

similar amplitude. Thus, each principal component generally has

a mix of signals from multiple cells. Instead, one seeks a set of

signal sources reflecting individual cells. The expectation is

that such sources should be localized, with a sparse or skewed

spatial distribution of pixel weights for each cell, such that most

pixels have almost no weight but a few are strongly weighted at

the cell’s location. Skewness, a distribution’s third moment

normalized by the cube of the standard deviation, provides a

means of characterizing sparseness and searching for statistical

signatures of individual cells. Similarly, if the intervals between

cells’ brief rises in [Ca2+] are greater than their durations, the

distributions of signals’ amplitudes will also be sparse and

skewed (Discussion).

These expectations motivated our application of ICA following

PCA. ICA is suited to extracting cellular signals since it seeks

pairs of spatial filters and time traces that are sparse and statis-

tically independent of one another. In practice, we found that

cells can exhibit significant signal correlations and ICA will still

work well, even for cell pairs with moderately high correlation

coefficients. We used a version of the FastICA algorithm that

maximizes the sparseness of extracted signals (Hyvarinen and

Oja, 2000), which we expressed by a combination of spatial

and temporal skewness (Supplemental Experimental Proce-

dures).

ICA Yields Ca2+ Signals that Are Statistically Sparse
We examined the sparseness of Ca2+ signals recorded by two-

photon microscopy in the cerebellar vermis of awake, head-

restrained mice (Figure 2). We used multi-cell bolus loading of

the Ca2+ indicator Oregon Green 488 BAPTA-1-AM to label

neurons and astrocytes in the cerebellar molecular layer (Nim-

merjahn et al., 2009; Ozden et al., 2008) (Supplemental Experi-

mental Procedures). The mice stood on an exercise ball and

could walk or run at liberty during imaging (Dombeck et al.,

2007; Nimmerjahn et al., 2009). This permitted recording of the

dendritic Ca2+ spikes associated with complex (Na+ and Ca2+)

action potentials in Purkinje cells (Flusberg et al., 2008; Ozden

et al., 2008). We also observed Ca2+ activation in Bergmann glial

fibers (Nimmerjahn et al., 2009). Application of PCA to the data

yielded principal components that were generally not spatially

localized and failed to isolate cells’ activities (Figures 2A and

2B, top row). Distributions of signal values along the principal-

component vectors were highly symmetric and approximately

Gaussian (Figure 2C, right) and did not separate Ca2+ transients

(E) Temporal versus spatial skewness for 50 principal (closed blue squares)

and 50 independent (open symbols) components in data from the mouse cere-

bellar cortex. Using a k-means cluster analysis (k = 2) of skewness values, the

independent components were divided into those representing cells (open red

triangles) or other, noncellular independent components (open black circles),

such as motion artifacts. These assignments made automatically match those

done manually by visual inspection.
Neuron 63, 747–760, September 24, 2009 ª2009 Elsevier Inc. 749
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from background noise. ICA transformed these components into

new basis vectors with more distinctive properties.

A majority of independent components had spatial filters far

more localized than those of principal components and could

reasonably represent individual cells (Figures 2A and 2B, bottom

row). Spatial filters found by ICA had skewed distributions (4.4 ±

2.7, mean skewness ± SD, n = 300 independent components in 5

mice, versus �0.009 ± 0.26 for 504 principal components), with

the weights of small subsets of pixels up to 19 standard devia-

tions greater than background pixels (Figure 2C, left). Many

filters resembled a stripe in the rostral-caudal direction, with

the long axis perpendicular to the folium of the cerebellar cortex

(Figure 2A). This is the expected optical cross-section through

the dendritic tree of a single Purkinje cell, since these cells

have nearly planar dendritic trees lying perpendicular to the field

of view (Flusberg et al., 2008; Ozden et al., 2008). The stripes’

widths (7.0 ± 2.3 mm, mean ± SD; n = 199 dendrites in 5 mice)

and lengths (90 ± 40 mm) as estimated by twice the standard

deviations of Gaussian fits were consistent with values derived

anatomically (Llinas et al., 2004; Palay and Chan-Palay, 1974)

or in prior in vivo Ca2+ imaging studies of Purkinje cells (Flusberg

et al., 2008; Ozden et al., 2008).

In the temporal domain, Ca2+ activity traces of the independent

components also had sparse statistics. Signal distributions were

asymmetric and non-Gaussian, with sparse sets of time frames

during which fluorescence signals rose by up to eight standard

deviations (Figure 2C, right). For the striped independent compo-

nents representing Purkinje cell dendritic trees, the time traces

yielded Ca2+ spike rates and waveforms similar to those from

prior manual or semiautomated analyses of cerebellar Ca2+

imaging data (Flusberg et al., 2008; Ozden et al., 2008).

After verifying the sparseness of signals found by ICA, we

examined their independence by plotting joint distributions of

signals from pairs of components, each representing one Pur-

kinje cell. The data of Figure 2D (bottom) is typical of 276 pairs

we studied. In most time frames, signals were close to back-

ground levels. Each cell was active during a subset of time

frames, but the subsets for the two cells were distinct, unlike

with pairs of principal components (Figure 2D, top). Only a small

number of time frames had high signal amplitudes in both cells,

consistent with the cells’ activities being statistically indepen-

dent. We did encounter some cell pairs whose activity was suffi-

ciently correlated that the pair was extracted as a single inde-

pendent component. We handled these instances in the third

stage of our analysis (see below).

Interestingly, the skewness often provided a means for distin-

guishing components representing individual cells from those

representing artifacts, such as due to brain motion. Nearly all

independent components in experimental data had higher

spatial skewness than principal components (Figure 2E). Among

the independent components, those we recognized by eye to be

Purkinje cell or Bergmann glial signals, based on our prior studies

of these cells (Flusberg et al., 2008; Nimmerjahn et al., 2009),

generally had higher temporal skewness than those representing

noise or artifacts (Figure 2E). After sorting independent compo-

nents by their temporal skewness, it was usually quick and

straightforward to segregate and reject artifactual components

by inspection. Alternatively, signal components could often be
750 Neuron 63, 747–760, September 24, 2009 ª2009 Elsevier Inc.
isolated via automated clustering of signals according to their

skewness (Figures 2E and S1). To be conservative, we regularly

examined spatial filters and time traces visually before accepting

them as cellular signals. When we inspected components with

high skewness, we found several types of signals in our cere-

bellar recordings.

Prominent signals extracted by ICA were those from one,

sometimes two, and occasionally three or more of the striped

regions that we interpreted to be cross-sections of the corre-

sponding number of Purkinje cell dendritic trees (Figures 2A, 4,

and 5). Signals from these stripes exhibited brief increases in

fluorescence (<50 ms rise), followed by an approximately expo-

nential decay with time constant 124 ± 63 ms (mean ± SD, n =

150 cells in 5 mice). In awake mice, these events occurred at

a spontaneous rate of 0.76 ± 0.15 Hz (n = 199 cells in 5 mice)

when the mice were not moving on the exercise ball. These rates

were determined by performing a temporal deconvolution on the

time traces to account for the Ca2+ indicator’s kinetics, followed

by a threshold operation for spike detection (Figure 1B) (Yaksi

and Friedrich, 2006). The rates are consistent with those from

physiological recordings of complex spiking (Lang et al., 1999;

Servais et al., 2004) and Ca2+ imaging studies of Purkinje cells

(Flusberg et al., 2008; Gobel and Helmchen, 2007b; Ozden

et al., 2008). Through simultaneous optical and single-unit elec-

trophysiological recordings, we verified that Ca2+ spikes found

by our procedure corresponded to complex spikes (Figures 5C

and S2). ICA also regularly yielded signals with slower dynamics

consistent with Ca2+ activation in fibers of Bergmann glia (Nim-

merjahn et al., 2009), the sole type of astrocyte in the cerebellar

molecular layer (Figure 5). Independent components with skew-

ness values lower than those for Bergmann glia or Purkinje cells

generally resembled artifacts in having diffuse spatial weighting,

strong correlations with brain movement, and kinetics too fast to

be consistent with those of the Ca2+ indicator (Figure S6). We

excluded such components from further analyses (Figure 2E).

Combining Spatial and Temporal Information
Can Improve Cell Sorting
After obtaining these results, we sought to fine tune ICA’s ability

to isolate cells. Most prior usages of ICA in brain imaging have

maximized spatial sparseness (Reidl et al., 2007), but it is

reasonable to consider also temporal sparseness. We did this

using spatiotemporal ICA, which optimizes a linear combination

of spatial and temporal skewness (Stone et al., 2002). One

parameter, m, set the relative weight of the two. We sought m

values that improved estimation accuracies (Figure S3). To

explore, we created artificial movies that mimicked our record-

ings from the cerebellum and contained signals from Purkinje

cells and Bergmann glia. We included photon shot noise, the

main noise source in two-photon microscopy, and background

structures such as blood vessels to resemble those in the exper-

iments. We defined the fidelity of extracted signals, F, as the

correlation coefficient between each cell’s actual dynamics

and its reconstructed signal, with F = 100% implying a perfect

reconstruction.

Distributions of F as a function of m depended on multiple

parameters, including the field of view size and thus the number

of cells, the numbers of pixels and time frames, cells’ mean spike
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Figure 3. Automated Cell Sorting Outper-

forms Region of Interest Analysis

(A) Three spatially overlapping sources of cellular

signals in an artificial data set mimicking Ca2+

imaging data from cerebellar cortex. Background

grayscale image shows simulated field of view

containing dark blood vessels and brightly labeled

interneuron somata. Signals from two Purkinje cell

dendritic trees (blue, green) and a set of Bergmann

glial fibers (red) show independent time courses

and distinct temporal dynamics. Ca2+ spikes in

the Purkinje cell dendrites (gray tick marks) cause

the fast fluorescence transients.

(B) Spatial filters (left) and signals (right colored

traces) identified by ROI analysis. The spike-trig-

gered average fluorescence change for each cell

is smoothed and thresholded to define the corre-

sponding spatial filter. True spike times (gray ticks)

match some, but not all, of the spikes estimated

from the ROI signals (blue and green ticks).

(C) Spatial filters, signals, and spike times esti-

mated by spatiotemporal ICA (m = 0.5). The high-

fidelity signal estimate allows correct identification

of all dendritic Ca2+ spikes.

(D) Diagram on logarithmic axes of how median

signal fidelity depends on signal/noise ratio and

field of view size. Shaded regions show parameter

ranges in which the true signals are estimated with

>75% median fidelity by ROI and ICA (blue), by

ICA but not ROI (red), or by neither method (white).

An estimator derived by linear regression achieved

>75% fidelity in the gray region in cross-validation

with distinct testing and training data sets. Black

circles mark parameter values used in (E); black

triangles mark values used in (F).

(E and F) Median fidelity (solid symbols) and cross-

talk (open symbols) of signals extracted by ICA

(red), ROI (blue), and linear regression analysis (black), as a function of the signal/noise ratio (E) and the field of view (F). Shaded areas indicate ±1 SD across

ten simulation batches. Field of view is fixed at 0.09 mm2 for (E); signal/noise ratio is 0.31 for (F).
rate relative to the frame rate, and the amplitudes of cells’ signals

above background. In nearly all situations representative of our

experiments, spatial ICA (m = 0) was superior to temporal ICA

(m = 1), leading to higher median fidelities and components easily

recognizable as Purkinje cells. Temporal ICA often failed to yield

components recognizable as cells. Spatiotemporal ICA with

m < 0.5 nearly always led to the highest fidelities, although the

gains over a purely spatial ICA were only weakly sensitive to m

and modest, with �1%–10% improvements in median fidelity

and �0%–15% improvements in fidelities for individual cells

(Figure S3). An exception was that, if the frame rate was much

higher than the spike rates, the time traces became very sparse,

and a temporal weighted ICA (m z1) yielded the highest fidelities.

Tuning m yielded the most benefit in challenging cases with

substantial mixing of cells’ signals in individual pixels. With real

data, we found by exploration that spatiotemporal ICA (m z
0.1–0.2) extracted the most components resembling Purkinje

cells, so we habitually used this approach.

Comparison of Independent Component and Region
of Interest Analyses
To compare ICA and ROI analyses, we used a form of ROI anal-

ysis that is the best a human analyst could do if she correctly
identified sets of example movie frames during which each cell

is active. The most challenging situations in our simulations

and experiments involved cells with overlapping pixel sets

(Figures 3A and 5A) or pixels with signals from cells and neuropil

(Figure S4). In such cases, ROI analysis had difficulty removing

crosstalk (Figures 3B and S4). With spatiotemporal ICA, cross-

talk was much reduced, since independent components had

negatively weighted surround regions in the spatial filters that

subtracted signals from overlapping cells (Figures 3C and S4).

We studied how signal amplitudes and the field of view area

affected signal extraction (Figure 3D). For each pixel, photon

counts obeyed Poisson statistics, with the mean intensity set

by a signal-to-noise ratio parameter expressing signals’ dynamic

range compared to background fluorescence levels (Supple-

mental Data). In simulations with a fixed field of view (0.09 mm2;

�100 cells), ICA used increases in signal-to-noise ratio to

improve reconstruction fidelities and reduce crosstalk between

cells (Figure 3E). ICA’s performance approached an optimum

for signal-to-noise ratios >0.3, at which the median fidelity ap-

proached 95% and >80% of extracted signals had F > 75%.

This fidelity was close to the theoretical limit set by a linear

regression analysis, which defines the best achievable by

any linear combination of principal components (Figure 3D and
Neuron 63, 747–760, September 24, 2009 ª2009 Elsevier Inc. 751
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Figure 4. Image Segmentation Improves Extraction of Signals from Correlated Cells

(A) Example of a spatial filter found by ICA in an experimental data set recorded in an awake, head-restrained mouse. This component has two well-separated

groups of pixels. These groups likely represent the dendritic trees of two distinct Purkinje cells that receive input from the same olivo-cerebellar climbing fiber.

(B) The first stage of segmentation smooths the spatial filter by convolving with a Gaussian blurring function and applying a threshold to the result to create a binary

mask that marks the regions contributing strongly to the signal. Each contiguous image segment is assigned to its own filter (red and blue regions).

(C) New spatial filters are created from the independent component by setting all pixel weights to zero, except for those in one of the image segments. These

pixels are assigned the same weight they had in the original ICA spatial filter.

(D) By applying the segmented spatial filters to the movie data, the ICA time course (black) is broken into distinct contributions from each cell (red and blue).

Segmentation reveals that the activities of the two cells are strongly correlated, as expected for cells found together by ICA. In this case, the spike trains

from the two image segments are identical except for one spike.
Supplemental Data). By comparison, ROI analysis did not im-

prove much with increases in signal-to-noise ratio and failed to

separate overlapping cells (Figure 3E). Alternatively, when we

distributed a fixed number of pixels across variable field of

view areas, ICA achieved high fidelities and low crosstalk across

a broad range of field sizes, whereas ROI analysis steadily de-

graded as increased overlap between cells led to greater cross-

talk (Figure 3F). With the largest fields of view, both methods

failed, yielding fidelities scarcely better than the crosstalk values.

Overall, ICA was superior to ROI analysis and much closer to

performance limits set by linear regression (Figure 3D).

Image Segmentation for Separating Correlated Signals
An advantage of imaging is its ability to sample dense networks

of cells, since the dynamical correlations between neighboring

cells are often of prime interest. A key question is whether ICA,

which relies on statistical independence to identify cells, is

limited in its ability to separate cells with correlated signals?

In simulations with varying degrees of pairwise Purkinje cell

synchrony, we found that ICA could readily distinguish cells

whose spike trains had correlation coefficients, r, as high as

0.8 at the spike (%1 Hz) and frame (10 Hz) rates simulated.

The correlated cells were far from independent, but sorting per-

formed well, yielding high-fidelity estimates comparable to those

attained without correlations (r = 0). This was because activity

traces of individual cells were still more skew than those from

cell mixtures, consistent with prior reports that ICA is often

robust to deviations from the underlying model assumptions

(Hyvarinen, 1999). Still, when r > 0.8, ICA often extracted signals

from strongly correlated cells in a single independent com-

ponent.

Our sorting procedure thus augments ICA with an image

segmentation step to disentangle signals from highly correlated
752 Neuron 63, 747–760, September 24, 2009 ª2009 Elsevier Inc.
cells that are spatially separated (Figures 1B and 4). Following

ICA, we smoothed each component’s spatial filter and applied

a binary threshold to find local regions with strong signal contri-

butions. If a filter contained more than one such region, we

created new filters, each of which contained only one of the

image segments. These steps separated distinct cells with

strongly correlated activity (Figure 4). After testing our proce-

dures on simulated data, we studied data from the cerebellar

cortex of live mice.

Sorting Cerebellar Ca2+ Signals from Live Mice
To illustrate cell sorting in an experimental context, we studied

data from the molecular layer of cerebellar lobules V and VI of

anesthetized and awake head-fixed mice. Using spatiotemporal

ICA with m = 0.1–0.2 followed by image segmentation, we ex-

tracted filters with shapes of Purkinje cell dendrites that showed

spontaneous (Figures 5A and 5B) and evoked Ca2+ spiking

activity (Figures 6 and S5).

There were also filters with more isotropic profiles and slower

dynamics representing Ca2+ activation of Bergmann glial fibers

(Figures 5A and 5B) (Nimmerjahn et al., 2009). Since Bergmann

glial fibers entwine Purkinje cell dendrites (Grosche et al.,

1999), many pixels contained the activity of both cell types.

Thus, it is challenging to separate Purkinje cell and Bergmann

glial signals cleanly by ROI analysis. Yet, by automated sorting

we disentangled Purkinje cell Ca2+ spikes (Figure 5B, top four

traces) from Bergmann glial Ca2+ transients (Figure 5B, bottom

four traces) without noticeable crosstalk. Spontaneous glial

signals found by cell sorting covered ellipsoidal areas and had

event rates much lower than neuronal Ca2+ spike rates in both

awake and anesthetized mice. The time course of glial Ca2+

activation conformed closely (r = 0.9 ± 0.1, mean ± SD; n = 96

events in 11 mice) to a double-exponential function with similar
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Figure 5. Automated Cell Sorting Identifies Neuronal and Glial Ca2+ Dynamics from Large-Scale Two-Photon Imaging Data

(A) Contours of four spatial filters corresponding to Purkinje cell dendrites identified by automated cell sorting, as well as four independent components charac-

teristic of Bergmann glial cells’ activity. Contours are superimposed on an image of the background fluorescence. The spatial filters partially overlap, with many

pixels sharing signals from both neurons and glia.

(B) Neuronal (top) and glial (bottom) signals corresponding to the spatial filters of (A) show that ICA suppresses crosstalk between the signals of nearby, inter-

mingled cells.

(C) Single-unit electrical recording from a Purkinje cell (black traces) and the corresponding signal extracted by cell sorting (red traces) from simultaneously re-

corded Ca2+ imaging data. Dashed lines mark the interval in the top two traces over which the data is replotted in the bottom two traces. Red tick marks indicate

the times of estimated Ca2+ spikes, each identified as the occurrence of a positive-going threshold crossing in the activity traces, following a temporal decon-

volution to correct for the dye’s Ca2+ binding kinetics.

(D) Contours of 102 spatial filters corresponding to Purkinje cell dendrites, as identified by automated cell sorting. Data were recorded in the superficial molecular

layer of an alert, restrained mouse.

(E) Example time courses of 16 of the independent-component signals identified in the outlined region in (D) containing cells 22–43. Tick marks represent the times

of Ca2+ spikes, estimated as in (C).
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time constants for the rise (1.5 ± 0.7 s) and decay (1.8 ± 1.2 s).

These kinetics resembled those of Ca2+ ‘‘bursts’’ seen previously

in Bergmann glia in cerebellar slices (Beierlein and Regehr, 2006;

Piet and Jahr, 2007), anesthetized (Hoogland et al., 2009) and

awake mice (Nimmerjahn et al., 2009).

After extracting Purkinje cells’ activities, we estimated the

cells’ Ca2+ spike trains in binary format using a deconvolution

and threshold approach (Yaksi and Friedrich, 2006) (Figure 1B).

To quantify spike-detection accuracies, we combined two-

photon microscopy with simultaneous extracellular single-unit

electrical recordings of Purkinje cell activity in anesthetized

mice (Figure 5C). On the assumption that the electrophysiolog-

ical traces yielded perfect records of complex spiking, we tested

Figure 6. Ca2+ Spiking in Purkinje Cells of the Cerebellar Vermis

Depends on Behavioral State

(A) Average Ca2+ spike rate (red; median ± SD) in 42 Purkinje cell dendrites

identified by cell sorting from one mouse under different physiological condi-

tions. Left, isoflurane-anesthetized. Center, alert but resting. Right shaded

period, actively moving. Black trace shows the mouse’s running speed on

the ball.

(B) Ca2+ spike rasters for each of the cells in the data set of (A). Under anes-

thesia only a subset of Purkinje cells found in the analysis of the complete

data set shows Ca2+ spiking.

(C) Cumulative distribution of the spike rates across isoflurane-anesthetized

(dashed), alert but resting (solid), and actively moving (dotted) conditions.

(D) Comparison showing each cell’s spike rate during movement (solid

squares) or during isoflurane anesthesia (open circles) on the ordinate, plotted

versus resting spike rate on the abscissa. The diagonal line delineates equal

spike rates under both conditions. As in (C), spike rates are generally higher

in awake than in anesthetized animals and rise further during locomotion.
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our ability to extract complex spikes from the optical data. (This

assumption is in general false, as imperfect electrical traces

could lead to misestimates of the accuracy of optical spike

detection.) We used receiver operating characteristic (ROC)

analysis, which compares probabilities of correct and incorrect

spike identification (Figure S2) (Fawcett, 2006).

These probabilities depend on the spike-detection threshold,

and the ROC curve summarizes the tradeoff between sensitivity

and accuracy in a two-dimensional plot (Figure S2). The area

under this curve equals the probability that an ideal classification

algorithm would correctly discriminate a randomly selected time

frame with a spike from one without a spike (Fawcett, 2006),

a measure not dependent on the spike threshold. In our data,

areas under the ROC curves were 0.84 ± 0.06 (mean ± SD; n =

7 cells) for image segments and 0.92 ± 0.05 for raw ICA signals.

This implies�85%–90% discrimination accuracy. False positive

and false negative spike-detection rates (Figure S2) were com-

parable to those in recent imaging studies (Ozden et al., 2008;

Sasaki et al., 2008) and tetrode recordings (Harris et al., 2000).

Following these validation studies in anesthetized mice, we

studied awake mice and extracted up to �100 Purkinje cells

from fields up to �500 mm wide (Figures 5D and 5E). Our algo-

rithm extracted spike trains from cells tiling the entire field of

view, many of which were closely adjacent and extremely diffi-

cult to separate by manual methods. Automated cell sorting

also separated data components that seemed to represent

movement artifacts (Figure S6), similarly to ICA’s isolation of

movement artifacts in fMRI studies (Beckmann and Smith,

2004; McKeown et al., 1998). This meant that our estimates of

cellular activity were relatively uncorrupted by animal motion,

showing that ICA can complement image-registration tech-

niques for removal of motion artifacts. As a test of ICA’s robust-

ness, we compared cells identified across an entire data set to

those identified when only periods of the mouse running were

used for analysis. The latter analysis identified �50% (range,

20%–74%; 5 mice) of the cells from the full data set, but these

cells appeared to be correctly identified since they were found

in both cases. This test is extreme, for it assumes that an entire

experiment involves continuous running, and illustrates ICA’s

ability to find cells despite the presence of motion artifacts.

Locomotor Behavior Increases Purkinje Cells’ Complex
Spike Rates
A longstanding goal has been to determine how activity in the

olivo-cerebellar circuit is modulated during motor behavior. By

combining automated cell sorting and two-photon imaging in

behaving mice, we examined relationships between Purkinje

cell complex spiking and locomotion.

Using automated sorting, we extracted Ca2+ signals from Pur-

kinje cells in cerebellar lobules V and VI in head-restrained mice

allowed to run voluntarily on an exercise ball. Mean rates of

complex spiking varied between periods of anesthesia, alert

rest, and active locomotion for each mouse (Figure 6). For indi-

vidual cells studied in all three conditions, spike rates rose

from 0.48 ± 0.27 Hz (mean ± SD, n = 199 cells in 5 mice) under

isoflurane anesthesia, to 0.76 ± 0.15 in alert but resting mice,

to 1.0 ± 0.18 Hz in awake mice during active locomotion (Figures

6C and 6D) (p < 0.001 for all pairwise comparisons; Wilcoxon
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Figure 7. Cerebellar Microzones Exhibit

Changes in Correlated Activity but Stable

Anatomical Organization across Different

Behavioral States

(A) Matrices of correlation coefficients of the spike

trains recorded from each pair of cells in a popula-

tion of 41 Purkinje cell dendritic trees. Cells are ar-

ranged by location in the mediolateral dimension.

Correlation matrices are computed separately for

three conditions. Red and blue outlines indicate

local microzones identified by a clustering analysis

of the correlation coefficients obtained during

locomotion.

(B) Correlation coefficients for cell pairs within the

two microzones (blue, red) marked in (A) and in

different (black) microzones as a function of the

cells’ mediolateral separation for each behavioral

state.

(C) Outlines of Purkinje cell dendrites identified

by automated cell sorting superimposed on the

average fluorescence image in five example mice

from our set of >50 experiments. Colors show the

microzones identified by cluster analysis respect

the mediolateral ordering of cells and have sharp

boundaries. The example of (A) and (B) is at far

right.

(D) Schematics of microzone structure for the

same five mice as in (C), comparing periods of

active locomotion (top) to when the animal was

awake but resting (bottom). The diagrams are

based on results of automated cell sorting and

cluster analysis as in (C) and reveal a stable anat-

omical organization of microzones across both

behavioral states.
signed rank test). Thus, gross rates of complex spiking de-

pended on behavioral state, consistent with recent optical

studies (Flusberg et al., 2008). Prior electrophysiological studies

of locomotion in decerebrated cats have been ambiguous on this

point (Andersson and Armstrong, 1987).

In mice studied in both awake and isoflurane-anesthetized

conditions, we occasionally saw adjoining groups of Purkinje

cell dendritic trees that were identified in the full data set but

had little or no complex spiking (rate < 0.01 Hz) during anes-

thesia. For example, in Figure 6B, dendritic trees labeled 1–8

and 35–42 by mediolateral position were largely silent under

anesthesia. This was not so for all cells, as shown by dendrites

9–34 that spiked at 0.38 ± 0.15 Hz (n = 25 dendrites). After cessa-

tion of anesthesia, all Purkinje cells (1–42) in view resumed

Ca2+ spiking (Figure 6B). This example highlights the combined

utility of automated sorting and Ca2+ imaging by revealing

phenomena in dense cellular networks inaccessible to electrical

recordings.

Cerebellar Microzones Remain Anatomically Stable
across Behavioral States
Our studies of the vermis in behaving mice allowed us to reex-

amine the organization of parasagittal bands of correlated Pur-

kinje cells noted previously by Ca2+ imaging in anesthetized

animals (Ozden et al., 2008) and electrophysiological means

(Andersson and Oscarsson, 1978; Lang et al., 1999). We exam-

ined whether microzones have stable anatomical boundaries
(Andersson and Oscarsson, 1978) or represent flexible ensem-

bles that vary across behavioral states (Welsh et al., 1995).

By studying pairwise correlation coefficients for Ca2+-related

fluorescence signals, or for the corresponding spike trains, we

repeatedly observed enhanced correlations for multiple, closely

situated pairs of Purkinje cell dendrites as compared to more

distally separated pairs (Figures 7A and 7B). We looked for the

anatomical boundaries of such microzones of highly correlated

cells by clustering Ca2+ spike trains using pairwise correlation

coefficients (Figures 7C and 7D) (Ozden et al., 2008). In alert

but resting mice, cluster analysis partitioned cells into micro-

zones with higher correlations for intrazone pairs (r = 0.10 ±

0.08, mean ± SD; n = 1418 pairs in 5 mice) than interzone pairs

(0.02 ± 0.03, n = 2474; p < 0.001 Wilcoxon rank sum test). Strik-

ingly, the boundaries between microzones were sharply delin-

eated, with the spatial transition between microzones generally

occurring in one cell width rather than in a gradual manner

over multiple Purkinje cell dendritic trees.

Like spike rates, pairwise correlations between Ca2+ spike

trains varied between anesthetized, alert but resting, and actively

moving states. The correlations we saw among cells in each

microzone grew stronger during active movement (p < 0.001 Wil-

coxon signed rank test) for intrazone cell pairs (r = 0.20 ± 0.09),

and to a statistically significant but far lesser extent for interzone

pairs (r = 0.03 ± 0.05), as compared to alert rest. When consid-

ered together with the rises in spike rates across the field of

view, this distinction in synchrony between intra- and interzone
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cell pairs shows there are different degrees of correlated input to

intrazone versus interzone pairs and that the rise in synchrony is

likely not just due to increased spike rates in independent cells.

Likewise, it would be hard to argue that the rise in measured

spike rates during locomotion was due to motion artifacts, since

motion artifacts would not lead to precisely defined microzones

of high pairwise synchrony.

Compared to rest or locomotion, isoflurane anesthesia

reduced correlations dramatically (r = 0.03 ± 0.06 intrazone;

r = 0.001 ± 0.02 interzone). In each microzone, nearly all dendrite

pairs were significantly correlated (p < 0.01, likelihood ratio

test) in resting (86% of pairs) and actively moving mice (95%),

but only 26% of intrazone pairs were significantly correlated

under anesthesia. By comparison, less than a third of dendrite

pairs from different microzones were significantly correlated in

mice at rest (29%), during movement (33%) and under isoflurane

anesthesia (7%). Taken together, these results show that both

Ca2+ spike rates and pairwise synchrony within microzones

increased during active movement as compared to alert rest or

anesthesia.

The organization of correlated Purkinje cell complex spiking

was earlier proposed to be dynamically modulated during motor

behavior (Welsh et al., 1995). We tested the temporal stability of

microzones in two ways. First, we divided each experiment into

60 s epochs and performed cluster analysis separately for each

epoch. We found that each Purkinje cell was assigned to the

same microzone during 96% ± 6% of epochs (n = 44 epochs).

Second, we tested whether microzones changed their organiza-

tion across different behaviors. By comparing microzones found

during locomotion and during alert rest, we found that 98.5% ±

0.8% (mean ± 68% confidence interval; n = 199 cells in 5

mice) of cells fell in the same microzone in the two conditions

(Figure 7D). Our results did not reveal a modulation of microzone

boundaries.

DISCUSSION

Large-scale Ca2+ imaging studies pose analysis challenges of

three main categories: identification of cells’ locations, extrac-

tion of Ca2+ signals, and detection of neuronal spikes. Only the

third problem has received much attention, and several methods

exist for detecting spikes in fluorescence traces using temporal

deconvolution (Yaksi and Friedrich, 2006), template matching

(Greenberg et al., 2008; Kerr et al., 2005), particle filters (Vogel-

stein et al., 2009), or machine learning (Sasaki et al., 2008).

However, these algorithms rely on the assumption that the first

two challenges have already been addressed, yielding a paired

spatial filter and time trace for each cell. To attain these pairs,

we developed automated procedures based on general princi-

ples that permit a decomposition of data into constituent inde-

pendent signals.

Growing Need for Automated Cell Sorting
Ca2+ imaging data has commonly been analyzed by manual

identification of cell bodies based on their morphologies in static

fluorescence images (Dombeck et al., 2007; Gobel et al., 2007;

Greenberg et al., 2008). Some studies have used semiauto-

mated methods that rely on morphological filters to find cellular
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boundaries (Ohki et al., 2005). After finding structures with the

sizes and shapes expected of cell bodies, these procedures

define ROIs over which the fluorescence is averaged to extract

each cell’s dynamics. With the most commonly used AM-ester

conjugated Ca2+ indicators, this approach generally fails to iden-

tify neuronal dendrites or fine glial processes, since these do not

stand out with high contrast and cannot be readily delineated by

morphological filtering. In areas such as neocortex, in which the

neuropil displays Ca2+ activity (Kerr et al., 2005) that inherently

contaminates somatic Ca2+ signals (Gobel and Helmchen,

2007a; Kerr and Denk, 2008), ROI and morphological analyses

can have difficulty excluding neuropil signals from the cellular

activity traces (Figure S4). For studies of cells’ receptive fields

or sensory tuning curves, crosstalk from neuropil has the poten-

tial to mask sharply tuned responses, since neuropil can exhibit

untuned or broadly tuned signals (Ohki et al., 2005). Given these

challenges, sorting approaches based on signal statistics are

warranted.

A recent study extracted Ca2+ signals from Purkinje cell den-

drites by a method using temporal cross-correlations to find

sets of pixels contributing to each cell’s signal (Ozden et al.,

2008). A user selects an area slightly larger than each dendrite

and computes the cross-correlations among all pixels in this

region. The final ROI contains all pixels highly correlated with

many others in the selected area. This method used signal statis-

tics to localize cells but required 2–3 hr of manual work for each

data set. As the number of cells in Ca2+ imaging studies extends

into the hundreds (Gobel et al., 2007; Ohki et al., 2005) or

beyond, human selection of pixels will become increasingly

prohibitive. Our procedure takes only a few minutes of user

supervision to input the number of principal components and

screen the results. We habitually scanned the independent

components by eye, but for most data sets the selection of inde-

pendent components representing cells could be automated by

cluster analyses (Figures S1 and S6), especially with anesthe-

tized mice, which had lower levels of brain displacement than

behaving mice. To be cautious, users should compare the

results of automated cell sorting to other data, such as from elec-

trophysiological (Figure 5) or anatomical analyses (Nimmerjahn

et al., 2009). We also recommend an initial, systematic testing

of a range of m values, to optimize the ability of spatiotemporal

ICA to find cells.

Our use of ICA builds on its prior usage for analysis of optical

data of other types, such as for extraction of voltage signals

acquired in sea slugs by a photodiode array (Brown et al.,

2001). Two studies have used PCA followed by ICA to find func-

tional domains and hemodynamic signatures in optical imaging

data (Reidl et al., 2007; Siegel et al., 2007). Signals came from

large regions, and so often only a few (e.g.,�6) principal compo-

nents were retained (Reidl et al., 2007). ICA has been used

several times to analyze human brain activity (Beckmann and

Smith, 2004; Guimaraes et al., 2007; Makeig et al., 1997;

McKeown et al., 1998).

The approach here builds on and differs from previous optical

studies by combining spatial and temporal statistics and by

following ICA with image segmentation. We preceded ICA with

PCA, to reduce the dimensionality of the data and to help ICA

find global optima. PCA is not the only means of dimensional
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reduction, and other approaches, such as dividing the field of

view into subsets each of which is larger than individual cells,

might provide viable alternatives. Our overall procedure is

grounded in three suppositions: (1) cellular signals are mathe-

matically separable into products of paired spatial and temporal

components; (2) signals from different cells are statistically in-

dependent; (3) cells’ spatial filters and temporal signals have

skewed distributions. Interestingly, our procedure proved effec-

tive under conditions with modest deviations from these as-

sumptions.

Cell Sorting Separates Data into Spatial and Temporal
Components
The supposition that cellular signals are separable into spatial

filters and time courses is based on the observation that neuronal

Ca2+ signals in large-scale imaging data generally arise from

fixed locations and do not convey details at the shortest physio-

logical timescales regarding intracellular propagation of [Ca2+]

changes. For example, for Purkinje cell Ca2+ spikes, any delay

between Ca2+ activation in different cell parts is generally briefer

than one image frame (50–100 ms), permitting a separation of

space and time in describing these events. Astrocytic Ca2+

waves that propagate far more slowly than neuronal Ca2+ spikes

violate the assumption of separability (Fiacco and McCarthy,

2006). Still, our procedure extracted a useful approximation of

Ca2+ waves that expanded over a fraction of the field of view

(Figures 5A and 5B). This suggests that ICA remains a useful

tool for analyzing weakly nonseparable signals. For forms of glial

Ca2+ activation that propagate across long distances (Nimmer-

jahn et al., 2009), other analyses seem more suitable.

Spatiotemporal separability may also be violated due to move-

ment artifacts. Still, ICA can often separate components repre-

senting motion artifacts from physiological signals (Figure S6).

This agrees with analyses of fMRI data showing that ICA can

remove moderate levels of subject motion (McKeown et al.,

1998; Reidl et al., 2007). ICA cannot rescue data badly corrupted

by motion. When motion artifacts were present at an interme-

diate level, the skewness of components representing motion

were sometimes comparable to those representing cells, but

motion components could still be identified based on their

having kinetics inconsistent with those of the Ca2+ indicator

(Figure S6).

Automated Cell Sorting Is Robust to Correlations
in Cells’ Activities
For cell pairs with modest correlations (r < 0.8), ICA was able to

identify the individual cells. Since no approach to cell sorting can

separate completely synchronized cells without considering

geometric information, we used image segmentation following

ICA. The result is a robust, hybrid procedure that handled strong

levels of correlation (r � 0.9) in simulations and separated highly

correlated dendrites in our cerebellar data that clearly belonged

to different Purkinje cells based on their anatomical separation

(Figure 4). High levels of complex spike synchrony are known

to arise for distinct Purkinje cells with inputs from the same

climbing fiber (Sugihara, 2005). Overall, our method’s ability to

find individual cells in cases of weak or strong synchrony is

a key aspect of the procedure’s utility.
Cell Sorting Based on Statistical Skewness
An assumption of spatial skewness is valid when individual cells

occupy only a small fraction of the pixels in the field of view. In

our studies of Purkinje cells, an assumption of skew temporal

statistics was also satisfied, since the mean time between

Ca2+ spikes was greater than the individual spikes’ durations.

However, sparse activation in time is not the only means of

achieving a skewed distribution of signal amplitudes. Cells with

high rates of activity that are strongly modulated in time, such

as during bursts, could also have skewed distributions of fluores-

cence amplitudes. Thus, our approach should be well suited to

neurons that exhibit irregular spiking, such as high-frequency

bursts interrupted by periods of quiescence (Dombeck et al.,

2007; Greenberg et al., 2008; Margrie et al., 2002; Orger et al.,

2008). Both PCA and ICA ignore cells with very low activity levels,

so our method fails to identify cells that are totally inactive in the

data. This could lead to underestimation of cell densities and

overestimation of mean activity levels in areas where many cells

are largely silent (Greenberg et al., 2008). Small fields of view

aided the identification of cells with low activity levels (Fig-

ure S4), so with such cells it might be beneficial to reduce the

dimensionality of the raw data by subdividing the field of view,

rather than by PCA.

High rates of tonic, regular Ca2+ activation will also lead to

signal distributions that are not skew, potentially leading ICA to

ignore such cells. In our recordings, we had difficulty extracting

cerebellar interneurons (Sullivan et al., 2005), since these cells

have high spontaneous spike rates compared to the image

acquisition rate and do not show bursty Ca2+ dynamics. A purely

spatial ICA combined with image segmentation might be better

suited to extract these cells. Alternatively, a morphological anal-

ysis might work at the risk of increasing crosstalk.

Cerebellar Microzones as Stable Anatomical Entities
Automated cell sorting allowed us to reexamine a debate on the

organization of Purkinje cells’ complex spiking activity. One view

holds there are flexible assemblies in the cerebellar cortex that

alter their composition of Purkinje cells with synchronous com-

plex spikes according to changing behavioral requirements (Lli-

nas, 1991). Microelectrode array recordings of complex spiking

in behaving rats suggested that different groups of Purkinje cells

were synchronously activated at different phases of movement

(Welsh et al., 1995). An opposing view holds that cerebellar

microzones provide a stable architecture for controlling different

parts of the body and are defined by the anatomical organization

of the climbing fibers that drive the complex spikes (Apps and

Garwicz, 2005). Mapping studies have shown that strips of

neighboring Purkinje cells receive climbing fiber inputs with

similar cutaneous receptive fields (Andersson and Oscarsson,

1978; Jorntell et al., 2000) and that these maps are reproducible

across subjects (Ekerot et al., 1991). These data did not adjudi-

cate whether adjacent microzones are precisely demarcated

from one another or transition smoothly.

By imaging the Ca2+ spikes that represent the Ca2+ compo-

nent of Purkinje cells’ complex (Na+ and Ca2+) spikes (Figure 5)

(Flusberg et al., 2008; Ozden et al., 2008), we found that micro-

zones’ boundaries are sharply delineated in awake animals,

to about the width of one Purkinje cell (Figure 7). Precise
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microzones were also seen by Ca2+ imaging in anesthetized

rodents (Ozden et al., 2008). Our results complement prior

studies in awake animals using electrode arrays, which showed

that complex spiking synchrony exists in bands extending milli-

meter-sized distances in the rostral-caudal dimension (Lang

et al., 1999; Welsh et al., 1995). The 250 mm spacing between

electrodes used in those studies precluded fine resolution of

microzone structure in the mediolateral direction.

By extracting Ca2+ spike trains from large populations of Pur-

kinje cells during locomotion and alert rest, we studied the sta-

bility of microzones. Microzone boundaries and cellular compo-

sitions were stable across the two behavioral states examined.

During locomotion, Ca2+ spike rates rose and levels of synchro-

nous activation increased within microzones but much less so

between microzones. Thus, microzones not only retained stable

boundaries across different behaviors but also increased in

prominence during motor behavior. The discrepancy in syn-

chrony between pairs of cells within and across microzones,

as well as the sharpness of microzones’ boundaries, indicates

that our results are not due to noise, which would not lead to

precisely defined regions of high pairwise synchrony. Our results

are consistent with data gathered by high-speed imaging of Pur-

kinje cell Ca2+ spikes in freely behaving mice, which revealed

increases in spike rates and pairwise synchrony during locomo-

tion at the level of population statistics (Flusberg et al., 2008).

Our findings support the view that microzones are stable

anatomical entities, for we obtained no evidence of their reorga-

nization during motor behavior. Still, we only explored a single

motor behavior and others will need to be examined. The

evidence for dynamical reconfiguration of Purkinje cell assem-

blies (Fukuda et al., 2001; Welsh et al., 1995) should not be dis-

counted, since the reported assemblies of cells were from larger

brain areas than those studied here. An attractive possibility

reconciling the two viewpoints is that correlated assemblies of

different microzones, each stably defined, dynamically reconfig-

ure in different behaviors.

Our data showed that both pairwise correlations and spike

rates were higher in awake than anesthetized animals. These

results contrast with recent studies of neocortex. In rat visual

cortex, correlations between layer 2/3 neurons fell during

periods of activity as compared to rest (Greenberg et al., 2008).

Further, ketamine/xylazine anesthesia reduced spike rates but

increased correlations in neocortical neurons (Greenberg et al.,

2008), which contrasts with our data on Purkinje cell correlations

under isoflurane anesthesia. Ketatmine/xylazine-anesthetized

rats also exhibited significant correlations in Purkinje cell Ca2+

spiking (Ozden et al., 2008), suggesting that different anesthetics

might have distinct effects on Purkinje cells’ synchrony.

Technological Outlook
Refinement of automated sorting techniques should further

increase the utility of optical imaging for studying dense cellular

networks and allow cell sorting to assume a comparably impor-

tant role as in electrophysiology. By introducing an automated

method based on broadly applicable principles, we have created

a framework for moving beyond heuristic and semiautomated

approaches. Future refinements might incorporate a priori

knowledge of various types or sparseness measures other than
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skewness. Other generalizations might add information about

sensory stimuli or animal behavior to derive functional character-

izations of cellular activity in an automated way.

EXPERIMENTAL PROCEDURES

Automated Cell Sorting Procedures

We analyzed Ca2+ imaging data using ImageJ plug-ins and custom MATLAB

routines. Movies were corrected for lateral movement artifacts using TurboReg

(Thevenaz et al., 1998). We then applied our cell sorting protocol comprising (1)

PCA for dimensional reduction, (2) spatiotemporal ICA for extraction of Ca2+

signals, (3) image segmentation to separate highly correlated cells, and, in

the case of neuronal signals, (4) temporal deconvolution and spike detection

to extract spike times. See Supplemental Toolbox.

Artificial Data

We simulated Ca2+ imaging data by combining artificial spike trains and glial

transients with spatial filters designed to reflect the size, shape, and density

of Bergmann glia and Purkinje cell dendritic trees, as viewed in optical sections

in the mouse cerebellar molecular layer. Each simulation had 1000 time frames

at 10 Hz. We added a static image to the dynamic Ca2+ signals to represent

background fluorescence from dye-labeled interneurons, as well as unlabeled

regions representing blood vessels. The dynamic and background signals

defined a noiseless data set. We then introduced Poisson-distributed photon

shot noise. See Supplemental Data.

Animal Procedures

Animal procedures were approved by the Stanford Administrative Panel on

Laboratory Animal Care. We used male C57Bl/6 wild-type mice (5.5–15 weeks

old). Each experiment had two surgeries. Several days before recordings,

a custom metal head plate was attached to the skull with dental acrylic. This

allowed habituation of the mice to head restraint while walking on the exercise

ball and stable imaging under anesthetized or awake conditions. On the

recording day, a craniotomy was opened over the cerebellar vermis or

neocortex. Two-photon imaging in head-restrained mice was performed as

in Nimmerjahn et al. (2009) (Supplemental Experimental Procedures).

Two-Photon Imaging

We loaded cortical tissue with the fluorescent Ca2+ indicator Oregon Green

488 BAPTA-1-AM (OGB-1-AM; Molecular Probes) as described (Nimmerjahn

et al., 2009). We used a custom two-photon microscope equipped with an

ultra-short pulsed Ti:sapphire laser tuned to 800 nm. See Supplemental

Data for details.

Analysis of Cerebellar Microzones

We analyzed spiking correlations among all Purkinje cells during anesthetized,

awake but resting, and actively moving conditions. We used the Pearson

correlation coefficient to compare the binary Ca2+ spike trains for each pair

of cells. We grouped cells with similar spike trains using k-means clustering

(MacKay, 2003).

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, six

figures, a table, and a MATLAB toolbox and can be found with this article on-

line at http://www.cell.com/neuron/supplemental/S0896-6273(09)00619-9.
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