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Ozden I, Lee HM, Sullivan MR, Wang SS-H. Identification and
clustering of event patterns from in vivo multiphoton optical record-
ings of neuronal ensembles. J Neurophysiol 100: 495–503, 2008. First
published May 21, 2008; doi:10.1152/jn.01310.2007. In vivo mul-
tiphoton fluorescence microscopy allows imaging of cellular struc-
tures in brain tissue to depths of hundreds of micrometers and, when
combined with the use of activity-dependent indicator dyes, opens the
possibility of observing intact, functioning neural circuitry. We have
developed tools for analyzing in vivo multiphoton data sets to identify
responding structures and events in single cells as well as patterns of
activity within the neural ensemble. Data were analyzed from popu-
lations of cerebellar Purkinje cell dendrites, which generate calcium-
based complex action potentials. For image segmentation, active
dendrites were identified using a correlation-based method to group
covarying pixels. Firing events were extracted from dendritic fluores-
cence signals with a 95% detection rate and an 8% false-positive rate.
Because an event that begins in one movie frame is sometimes not
detected until the next frame, detection delays were compensated
using a likelihood-based correction procedure. To identify groups of
dendrites that tended to fire synchronously, a k-means-based proce-
dure was developed to analyze pairwise correlations across the pop-
ulation. Because repeated runs of k-means often generated dissimilar
clusterings, the runs were combined to determine a consensus cluster
number and composition. This procedure, termed meta-k-means, gave
clusterings as good as individual runs of k-means, was independent of
random initial seeding, and allowed the exclusion of outliers. Our
methods should be generally useful for analyzing multicellular activ-
ity recordings in a variety of brain structures.

I N T R O D U C T I O N

An important step in understanding dynamic principles of
brain circuit function is the ability to monitor many neurons at
once. Such monitoring has been made possible by in vivo
multiphoton microscopy, which when combined with the ap-
plication of membrane-crossing precursors of calcium indica-
tors (Tsien et al. 1982) to intact brain tissue (Helmchen and
Waters 2002; Stosiek et al. 2003), makes it possible to record
from many neighboring neural processes within a field of view
(Ohki et al. 2005; Sullivan et al. 2005).

Calcium imaging data have superior spatial resolution than
electrophysiological recordings: a single neural structure can
span many submicron pixels, while electrodes typically record
from multiple units at once. However, calcium imaging data
are gathered at lower bandwidth (0.01–1 kHz per location) than
electrophysiology data (�10 kHz). Consequently, several new
challenges in data analysis arise. First, individual structures of

interest, whether single neurons or neuronal processes, must be
identified by image segmentation or by their activity-dependent
fluorescence changes over time. Second, the lower time reso-
lution of frame scanning makes determination of event timing
less certain. Third, patterns of activity across the whole ensem-
ble need to be inferred with as little as a few hundred temporal
samples per structure because light-induced damage and pho-
tobleaching place upper limits on the amount of obtainable
useful data.

Here we present methods for analyzing movies obtained
through calcium imaging from large groups of neurons. Our
target for analysis is complex spike activity in cerebellar
Purkinje cells (PCs) in which intercellular synchrony is prom-
inent (Lang et al. 1999). We have developed semiautomated
software tools to identify individual active structures, estimate
the timing of individual events, and find clusters of structures
that are synchronously active. To determine the level of syn-
chrony between neurons more reliably, we present a correction
method for event times detected from movies in which the
relative timing of events in multiple structures can be incor-
rectly assigned when the structures are scanned at different
moments. Finally we present a clustering method for detecting
synchronous subgroups that uses pairwise correlations between
dendritic event times and k-means, an algorithm widely used in
gene expression analysis. By combining many results of k-
means, we can robustly identify cluster membership and the
likely number of clusters within a data set. Until now this
clustering problem has not been adequately addressed in
multineuronal in vivo recordings.

We demonstrate our methods on recordings from tens of
dendrites of PCs, the sole output neurons of the cerebellar
cortex. In PCs, dendritic calcium transients are triggered by the
activity of climbing fiber (CF) axons (Ross and Werman 1987),
which originate from the inferior olive. The CF projection is
spatially organized so that each CF innervates many PCs in a
thin parasagitally oriented plane, and neighboring inferior olive
neurons innervate PCs that are neighboring in the mediolateral
direction (Ruigrok and Voogd 2000; Sugihara et al. 2001).
Functional structure in the mediolateral direction has not been
well investigated because multielectrode methods only sample
at intervals of several hundred micrometers. Our analysis uses
imaging data taken from all PCs at once to identify synchrony
on a fine scale of �100 micrometers.
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M E T H O D S

Animal preparation

Experimental procedures were approved by the Princeton Univer-
sity Institutional Animal Care and Use Committee. Mice (P24–P42)
were deeply anesthetized with intraperitoneally injected ketamine HCl
(80 mg/kg body wt) and xylazine (12 mg/kg body wt). Deep anes-
thesia was maintained throughout the experiment as confirmed by the
lack of a pinch foot-withdrawal reflex and a lack of whisking, and
body temperature was maintained at 37°C. A small craniotomy of
diameter 2 mm was made over crus IIa. Purkinje neurons and other
structures were loaded with calcium indicator Oregon Green bis-(o-
aminophenoxy)-N,N,N’,N’-tetraacetic acid (BAPTA)-1/AM (Invitro-
gen, Carlsbad, CA) as described in Sullivan et al. (2005).

Electrophysiology

Extracellular single-unit recordings from PCs were made using
glass micropipettes pulled to 6–10 M� with a P-2000 puller (Sutter
Instrument, Novato, CA) and filled with artificial cerebrospinal fluid
containing (in mM) 135 NaCl, 5.4 KCl, 5 NaHEPES, 1 MgCl2, and 2
CaCl2 (pH 7.3 with HCl). Signals were acquired using a NeuroData
IR-283A amplifier (Cygnus Technology, Delaware Water Gap, PA),
amplified 10–100 times, band-pass filtered at 0.3–10 kHz with a
Brownlee Model 440 amplifier (Brownlee Precision, San Jose, CA),
and saved to a personal computer equipped with a data-acquisition
board (PCI-MIO-16E-4 from National Instruments, Austin, TX) and
custom MATLAB software.

Multiphoton laser scanning microscopy

In vivo calcium imaging was performed using a custom-built
multiphoton microscope running ScanImage software (B. Sabatini and
K. Svoboda). The tissue was illuminated with a pulsed Mai Tai
(Spectra-Physics, Mountain View, CA) Ti:sapphire laser (830–840
nm, 80 MHz repetition rate, 100–150 fs pulse width). Excitation light
was focused onto tissue using a �40, 0.8 NA water-immersion
IR-Achroplan objective (Carl Zeiss, Thornwood, NY). Emitted light
was reflected by a 720-nm long-pass dichroic mirror (750dcxru,
Chroma Technology, Rockingham, VT), filtered with green BG39
Schott glass and infrared-blocking filters (Calflex X 380227034, Linos
Photonics, Milford, MA), and detected using a photomultiplier tube
(H7422P-40, Hamamatsu Photonics, Hamamatsu City, Japan). The
movies were collected as 64 � 64 (128 ms/frame) or 128 � 128 (256
ms/frame) pixel frames or 2 ms/line scans.

Data analysis

Data analysis was performed with software written in MATLAB
version 7.1 (MathWorks). All code is available at http://synapse.
princeton.edu/programs. The correlation between two dendritic
signals x(t) and y(t) was calculated as the Pearson correlation

r �

�
i

x�t� � y�t� � �x� � �y� � �	t/T�

�
�x2� � �x�2 � �	t/T�� � 
�y2� � �y�2 � �	t/T��

where T is the total recording time and 	t is the sampling time.

R E S U L T S

Multiphoton recording of complex spikes in PC ensembles

Multiphoton imaging data were obtained from the molecular
layer of the cerebellar cortex by bulk-loading the tissue with
the calcium indicator Oregon Green BAPTA-1/AM (Fig. 1A).
Bulk loading of this dye stains many cellular structures in

neuropil, including PCs, interneurons, and glia (Sullivan et al.
2005). After taking up the dye, the cellular structures showed
fluorescence intensity changes, which were caused by calcium
concentration changes. Fields of view were located at 90–120
�m above the PC layer, where the observed calcium signals
were mainly from PC dendrites. PC dendrites are finely
branched and fill a flat, fan-like, parasagittally oriented space
�200 �m wide and 6–10 �m thick (Fig. 1A), appearing in
transverse section as tube-like structures separated by 4–8 �m
(Fig. 1B) (Palay and Chan-Palay 1974). The orientation of the
scan pattern was adjusted to align dendrites in the direction of
fast scanning, thus establishing a precise within-frame time at
which each dendrite was scanned.

Signal-based image segmentation of dendrites

In full-field scans (64 � 64 pixels at 128 ms/frame or 128 �
128 pixels at 256 ms/frame, field of view 135 or 270 �m wide),
between 18 and 45 PC dendrites were visible at once (Fig. 1B;
Supplementary Movie S11). PC dendrites generated large
(�10% 	F/F) calcium transients between 0.2 and 1 times per
second as expected given the fact that CF firing evokes a
calcium-based complex action potential (Eccles et al. 1966;
Llinás and Sugimori 1980).

To identify each dendrite, average fluorescence intensity
was not a sufficient criterion because the cell type specificity of
bulk loading was low, leading to poor contrast between neigh-
boring structures. This fact was apparent in our raw data sets
(see Supplementary Movie S1), in which individual PC den-
drites did not have sharp borders (Fig. 1B, left). Therefore to
identify dendrites, we exploited the properties of complex
spike-evoked calcium transients, which span the dendrite, rise
in �10 ms, and fall with a half-maximal decay time of 0.17 

0.05 s, and an exponential decay time constant of 0.28 
 0.06
(SD) s (29 dendrites in 4 experiments), consistent with previ-
ous reports in vivo (Göbel and Helmchen 2007; Sullivan et al.
2005). These slow decay times make it possible to detect
individual events even for a frame acquisition time of 256 ms;
in the worst-case scenario, an action potential that occurs
immediately after a dendrite is scanned will leave a signal in
the next frame that is 30% of the peak 	F/F amplitude. In
addition to this, the low rate of calcium signals (0.48 
 0.15
Hz) makes it possible to record at low frame rates (4–8 Hz).

Raw movies were high-pass filtered by Fourier-transforming
each pixel’s trace, removing low-frequency components below
0.1–0.3 Hz, and taking the real part of the inverse Fourier
transform. In some cases, drift in average brightness, due
largely to photobleaching, was removed by calculating a linear
fit for each pixel’s fluorescence time course and then subtract-
ing it. The resulting filtered movies (e.g., Supplementary
Movie S2) showed conspicuous transients against a relatively
dark background. A correlation-based identification algorithm
was then used to recognize individual dendrites. First the
filtered movie was examined to find candidate dendrites as
judged by the co-occurrence of signals in the shape and
orientation of PC dendrites and by the criterion that a candidate
structure fire by itself (for example, see Fig. 1B, right) and all
at once. To find the pixels belonging to this dendrite, a
region was selected slightly larger than the bright pixels

1 The online version of this article contains supplemental data.
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(Fig. 1C, left). In this region, a pixel was included in the
final region of interest if it was correlated with at least
Nthresh other pixels within the region with a correlation value
of at least rthresh.

Figure 1C demonstrates the procedure on one dendrite. The
left panel shows the initial region selected as a red contour. For
each pixel within this region, the correlation coefficient with
each other pixel was calculated. The middle panel shows
correlation maps for the 4 pixels indicated by cyan arrows, and
the right panel shows a color-coded map of the number of
correlated pixels, which was thresholded to determine final
membership (right panel, blue pixels). Figure 1D shows all
dendrites identified from the movie. In cases where a dendrite
never generated a signal by itself, the other dendrites were
identified first, and then a region was selected around the
remaining dendrite and the correlation-based algorithm was
applied as usual. Typical threshold values were rthresh ranging
from 0.2 to 0.3 depending on noise and activity levels, and
Nthresh ranging from 4 to 10 pixels, 5–15% of the initial
selection. Pixel selection improved the signal quality (Fig. 1E)
by reducing contributions from other dendrites (arrow 1) while
simultaneously increasing amplitudes relative to noise (arrow
2). The signal-to-noise ratio improved (14 dendrites in 6
experiments, P � 0.02 by paired t-test, from 3.42 
 0.23 to
3.64 
 0.29, means 
 SE). In addition, pixel selection led to
a moderate, near-significant increase in the true positive rate

from 93 to 95% (P � 0.1) and a decrease in the false positive
rate from 10 to 8% (P � 0.1).

Event identification

After the identification of dendrites, each dendrite’s fluores-
cence trace was converted to units of 	F/F. The raw fluores-
cence intensity F for a dendrite was defined as the fluorescence
intensity averaged over all pixels for the whole movie. 	F was
calculated for each frame by subtracting F from the average
pixel intensity for that frame. Because the calculation of F in
this way includes frames in which dendrites were firing, this
procedure creates an underestimate of 	F/F of �1–2%. How-
ever, the signal-to-noise ratio is not altered in comparison with
a more elaborate procedure. Events were found by a template-
and-threshold method in which a four-sample-long template
was generated by normalizing and averaging the highest 10
peaks in a trace. The template was used as a matched filter by
shifting it point by point along the trace and taking a dot
product with the signal’s change above its minimum value
within the template duration.

Calcium transient events were confirmed as reflecting com-
plex spikes by simultaneous extracellular recordings from PC
cell bodies (Fig. 1F). Recordings also showed sodium-based
simple spikes, which could be distinguished by their waveform
and high firing rates (20–110 Hz). The success rate of the event
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FIG. 1. In vivo multiphoton microscopy, identification of dendrites, and event detection. A, top: the crus II region of the cerebellum, where loading was done.
Middle: the orientation and size of Purkinje cell dendrites. Dendritic arbors are planar, parasagittally aligned, and nonoverlapping with one another. Bottom: the
multiphoton microscope. B, left: a typical single movie frame. Right: frames from filtered and mean-subtracted movies showing activity in 1 or more dendrites
at once. C: the dendrite selection procedure for the dendrite in B, showing initial selection of a dendrite (left), example correlation maps for 4 selected pixels
(middle), the number of pixels correlated with a particular pixel with rthresh � 0.25 (top right), and the final dendrite after thresholding the number of correlated
pixels with Nthresh � 8 (bottom right). D: all selected dendrites, color-coded. The dendrite from C is shown in white. E: improvement of signal quality by the
dendrite selection procedure. F: event detection. Top trace and raster: dendritic fluorescence recording. Thresholding of unfiltered fluorescence gives detected
events corresponding to complex spikes (black bars), a false positive (red bar), and a missed event (blue bar). Middle trace and raster: matched filtering eliminates
false and missed events. Bottom: a simultaneous electrical recording from the cell body showing both complex spikes (stars and vertical dotted lines) and simple
spikes. G: the peak histogram of the trace after the application of the template. The noise component is approximately Gaussian with a median near 0% 	F/F.
The arrow indicates the threshold position.
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selection algorithm was tested by simultaneous extracellular
recording from the same PC. Figure 1F shows raw (top) and
templated (middle) fluorescence traces from a dendrite and
electrical recording (bottom) from near its soma with complex
spikes indicated by stars.

The example in Fig. 1F shows a false positive event (red
bar) not associated with any complex spike as well as a missed
complex spike (blue bar). In this example, template filtering
removed both errors. To characterize event detection rates, we
recorded 817 complex spikes from six cells in five animals.
Thresholding of raw traces allowed 92% of complex spikes to
be detected with a false-positive rate of 11% of all classified
events. After template filtering the true-positive rate increased
to 95% (P � 0.01, n � 6, paired 2-tailed t-test) and the
false-positive rate dropped to 8% (P � 0.02, paired 2-tailed
t-test).

The template-and-threshold method was used for all subse-
quent recordings. Events were defined when the filtered signal
exceeded a threshold value determined by hand after exami-
nation of the trace and its peak-amplitude histogram (Fig. 1G).
In our data, the standard-deviation fluctuation in dendritic
fluorescence was 1.6 
 0.4% 	F/F (mean 
 SD, 14 dendrites).
Amplitude thresholds for events were determined by eye after
training users on data sets with accompanying electrophysio-
logical recordings of complex spikes. The resulting 	F/F for
events classified in this way was 7.0 
 2.8% (817 events) in
movies with 256-ms frame time, approximately one-third the
size of the peak 	F/F values observed in line scans (19.8 

6.9%, 29 dendrites in 4 experiments), as expected.

Likelihood-based correction for event times

Because each calcium transient ended in a long tail lasting
several tenths of a second, temporal undersampling by micro-
scope frame scanning (128–256 ms/frame) led to the possibil-
ity that transients would not be detected until the next scan
after the spike had occurred (Fig. 2). For a dendrite aligned in
the fast-scan direction, a complex spike during scanning of this
frame could occur after the beam had already finished scanning
the dendrite, in which case the signal would not be picked up
until the next frame. Thus in dendrites closer to the end of the
scan (e.g., dendrite 1, Fig. 2B, left), detection is less likely to
occur within-frame.

The frame-lag effect can affect the detection of synchronous
spike events. When two dendrites spike at the same time, if the
laser scan position is between the two dendrites the detected
signal peaks will occur in consecutive frames (Fig. 2A). This
position-dependent error can be corrected with a likelihood-
based approach. If an event is detected in frame i, the a
posteriori likelihood that the true event time was during the
scan of frame i is pi � x/L, where x is the time from the
beginning of the frame for the scan beam to reach the dendrite
and L is the time taken to scan the whole frame; the likelihood
that the event occurred in the previous frame is pi-1 � 1 � x/L.
These likelihoods suggest a statistical correction of event times
in which a detected peak in sample i, which would lead to an
uncorrected value of 1 in the event trace, is represented by x/L
and the (I � 1)th time point is set to 1 � x/L (Fig. 2B). This
correction reduces artifactual, apparent distance-dependent de-
creases of correlations when dendrites fire together but are far
from one another in the field of view.

Identification of groups of synchronously firing dendrites

The size and dimensionality of the data set produced by a
population recording demand an efficient and automated tech-
nique for determining the characteristics of the data set. Be-
cause dendrites often fired simultaneously in our data sets, we
were interested in grouping them according to this synchrony.
However, because the patterns were widespread and varied
from event to event, classification by eye was not possible.

We analyzed likelihood-corrected event traces using
k-means, a clustering technique widely used in gene expression
analysis (d’Haeseleer 2005; Le Roch et al. 2003; Tavazoie
et al. 1999) to identify clusters within large data sets. The
k-means clustering algorithm is an iterative, unsupervised
learning algorithm that uses a spatial interpretation to uncover
cluster structure in high-dimensional data (Hartigan and Wong
1979). The algorithm interprets the data set in a high-dimen-
sional space and iterates to find objects that are near each other.
In our case, a movie with M dendrites and N time points was
represented as M points in an N-dimensional space, where each
point represents the activity of a single dendrite over the entire
movie, and the coordinate of the point in each dimension
ranges from 0 to 1, representing the activity of the dendrite at
one of the N time points. In the M � N matrix, each row
represents one point, the firing pattern of a single dendrite. For
example, the activity of the first dendrite is represented by

x�1 � �x11, x12, x13, . . . , x1N�
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FIG. 2. Likelihood correction of event times. A: in standard scan patterns of
fluorescence microscopes, imaged structures are scanned in succession during
each frame, leading to undersampling of a smoothly varying true signal. The
resulting detected peaks can be offset from the frame scan during which the
true signal peak occurred. B: event times can be corrected by replacing an
all-or-none event with 2 values representing the retrospective likelihood that
the event peak occurred in the same frame, x/L, or in the previous frame, 1 �
x/L, where x is the time of scanning from the start of the frame and L is the
duration of 1 whole frame.
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The distance between dendrites was defined as d � 1 � r
where r is the Pearson correlation (see METHODS). Dendrites that
have similar activity during the movie have a higher correlation
and thus will be closer together in space.

In k-means, for a predetermined number of clusters k, the
algorithm first randomly initializes the positions of the k
centroids, c�1, . . . , c�k (Fig. 3A). Each dendrite is then assigned
to the centroid nearest to it, and the positions of the centroids
are recomputed using the resulting assigned cluster member-
ship. The algorithm then starts a new cycle of assigning
dendrites to centroids, starting with the updated centroid posi-
tions. The cycle is repeated until the cluster assignments no
longer change.

Determining the number and membership of clusters
using meta-k-means

The k-means algorithm and its variations have been popular
in gene expression studies, where k may be close to the number
of functional categories (Bagirov et al. 2003; Le Roch et al.
2003; Tavazoie et al. 1999). However, unlike gene expression
studies, our recordings provided no prior knowledge about the
number of clusters.

A plot of the matrix of dendrite-dendrite correlations (Fig.
3C) revealed structure suggesting that dendrites were orga-
nized into groups that tended to fire together. Our initial
approach to determining the number of clusters was to vary k
from 3 to 8 (Fig. 3D). For each value of k, 1,000 runs of
k-means were performed. We quantified the goodness of clus-
tering (Maulik and Bandyopadhyay 2002) using Dunn’s index
(DI) (Fig. 3B), DI � Dmin/dmax where Dmin is the smallest
distance between two points in different clusters and dmax is the
diameter of the widest cluster (Fig. 3B). Like other metrics of
clustering goodness (Jain and Dubes 1988), Dunn’s index is
larger when clusters are tighter and further apart from one

another. Dunn’s index emphasizes the relationship between
adjacent clusters and was appropriate because PC–PC correla-
tions drop with increasing distance (Lang et al. 1999).

Maximization of Dunn’s index for each value of k (DIk,max)
yielded a single “best” clustering, usually reaching a local
maximum between k � 2 and k � 6. However, deciding on an
appropriate number of clusters k* was difficult because the
local maximum was often broad (Fig. 3D). Also, even for a
given value of k*, values of DI at or near DIk*,max were often
associated with quite dissimilar cluster assignments, indicative
of multiple locally optimal clusterings. For a single data set,
k-means can give different cluster assignments because the
outcome is influenced by the initial randomly chosen centroid
positions. Although it is also possible for the user to initiate
centroid positions manually, this is usually avoided because of
the risk of bias and the difficulty of conceptualizing the
high-dimensional data space.

Instead we took the approach of aggregating the results of
many runs of the k-means algorithm to determine membership
more robustly and to estimate the number of clusters. It was
desirable for the method to avoid forcing outlier dendrites to be
clustered, to allow a dendrite to belong to more than one cluster
and to give results that were independent of the randomly
initialized cluster centers. The resulting approach, termed
meta-k-means, is robust and versatile and produces consistent
results when applied to our calcium imaging data sets.

An illustration of the meta-k-means method is shown in Fig. 4.
Here we used fluorescence traces obtained from 40 dendrites
(Fig. 4, top row) imaged in vivo. The detected events are
shown as dots above each trace. The first step was to run
k-means 1,000 times on the corrected event traces using k � 3
and random initialization of the centroid positions on each run,
giving several different clusterings (Fig. 4, 3rd row). For each
pair of dendrites i and j, the number of times dendrites i and j
were clustered together, counts (i, j), was determined (Fig. 4,
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FIG. 3. The k-means clustering algo-
rithm. A: an example showing the determi-
nation of 3 clusters in 2-dimensional space
using k-means. The cluster centroids (�)
and data points (F) are colored to indicate
their cluster assignments. Initially, the posi-
tions of the centroids are placed randomly
and data points are assigned to the nearest
centroid, which is recalculated. The cycle is
repeated until the cluster assignments no
longer change. B: clustering goodness as
defined by Dunn’s index Dmin/dmax, where
Dmin is the smallest distance between 2
points in different clusters and dmax is the
widest cluster diameter in the dataset.
C: color-coded correlation plot for dendritic
activity. The axes labels represent dendrites.
D: plot of the largest value of Dunn’s index
found for many individual runs at a given
value of k for dendrites used to create C.
This example shows that the local maxi-
mum had shallow dependence on k or dis-
agreed with a pattern that was visible in
the pairwise correlation matrix. *, the re-
sult of meta-k-means.
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bottom row). This co-occurrence matrix always had a structure
similar to that of the correlation heatmap, which shows the
pairwise correlations between all pairs of dendrites in the data
set (Fig. 4, 2nd row). Working clusters were then defined as the
maximum set of dendrites such that counts was greater than
some threshold value, in our case 800 of 1,000, for every
pair of dendrites within the cluster. This procedure usually
found six to eight working clusters in a PC data set (Fig. 4,
bottom row).

The next step was an agglomerative one in which highly
correlated clusters were combined to create larger clusters that
improved the overall cluster structure. To combine clusters, we
found the two most well-correlated clusters and compared the
values of Dunn’s index before and after the merge. If the merge
increased Dunn’s index, the two clusters were combined to
form a larger cluster. This was repeated until combining the
two most-well-correlated clusters no longer increased Dunn’s
index. After this, less correlated pairs of clusters were tested in
the same way. For an example, in Fig. 4, merging two clusters
increased Dunn’s index from 0.639 to 0.706 and resulted in
four final clusters. In some data sets, meta-k-means was able to
find a clustering structure that achieved a higher Dunn’s index
than the most successful single run of k-means. In these cases,
the improvement was due to the exclusion of outliers that were
not well correlated with any other dendrite.

To test the performance of meta-k-means, we created mock
data sets with predetermined clustering (Fig. 5A, top 2 rows).
The mock data sets were generated by first creating a matrix of
conditional probabilities, then placing spikes according to
these likelihoods. For every pair of dendrites, the probability
matrix contained the likelihood that one dendrite would spike
simultaneously given that the other dendrite was firing. For
each dendrite, a certain number of spikes was placed for each
dendrite, and for each spike, a simultaneous partner spike was
placed according to the probability matrix. Clustering was
defined by making within-cluster probabilities higher than the
between cluster probabilities. Within-cluster probabilities were
uniform, sampled from a normal distribution, or distance de-
pendent. For data sets with three to six clusters, meta-k-means
was reliably able to find the correct clustering, including cases
with outliers, in which the outliers were separated into a
separate cluster (Fig. 5A, middle row).

We also tested the effect of varying the parameters of
meta-k-means. Using different values of k, we found that k �
3 was most reliably able to recover the correct clustering
(93.5% of 200 mock data sets with 3–6 clusters; Fig. 5A).
Using k � 4 gave variable results when the same mock data set
was analyzed repeatedly (Fig. 5A, top 2 rows), suggesting that
although meta-k-means can lead to more than k final clusters,
an excessively high choice of k may force the artifactual
finding of boundaries that cannot be removed reproducibly by
combining results. For k � 4, 5, and 6, respectively, the correct
result was found for only 68, 45.5, and 25% of mock data sets
(200 mock data sets with 3–6 clusters). Although using k � 2
usually found the correct clusters for mock data sets, in real

data sets with visible cluster borders, the found clusters did not
match the apparent structure in four of five cases (Fig. 5A,
bottom row). In these cases, using k � 3 gave the expected
clustering. Thus a value for k of 3 is most reliable for finding
clusters in both mock and real data sets.

Although agglomerating �1,000 trials of k-means gave the
same results, using �1,000 trials sometimes gave different
clusterings on multiple runs of meta-k-means. The minimum
number of trials required will vary depending on the consis-
tency of a single run of k-means for that data set. For our mock
and real data sets, 1,000 trials in the meta-clustering method
was sufficient to generate reproducible results; in all cases,
running �1,000 trials was unnecessary.

We tested whether meta-k-means could still detect clustering
when pairwise correlations were artificially weakened. We
shuffled events from a real data set that contained three
well-defined clusters (Fig. 5, top row). From all within-cluster
pairs of events, in some fraction of pairs one event was
randomly moved to the same time point in a dendrite in a
different cluster. This procedure made the distributions of
intra- and inter-cluster correlation coefficients more similar to
one another (Fig. 5, histograms in center column). The original
data set shown here had different intra- and inter-cluster
correlations [intra-cluster pairwise correlations 0.23 
 0.09,
inter-cluster pairwise correlations of 0.07 
 0.05, means 

SD, a difference of 1.6 combined SDs (cSD) where cSD was
defined as �SDintra

2 � SDinter
2 ]. The clustering structure was

still detected by meta-k-means after randomizing 10% of
events (Fig. 5, middle row), a case in which intra-cluster
pairwise correlations 0.15 
 0.08 and inter-cluster correlations
0.07 
 0.05, a difference of 1.0 cSD. However, when 20% of
the events were randomized (Fig. 5, bottom row), cluster
structure began to be degraded, coinciding with the breakdown
of the difference between intra-cluster pairwise correlations,
0.12 
 0.07, and inter-cluster correlations, 0.08 
 0.05, a
difference of 0.5 cSD). Thus meta-k-means begins to fail in
tandem with reductions in the inter-cluster differences within a
data set.

D I S C U S S I O N

A growing body of in vivo multiphoton optical recordings
has created a need for tools to identify active cellular structures
and find patterns of activity among them. In the current paper,
we have described methods for identifying structures based on
their activity, inferring the times of events, and finding clusters
of structures that are active together. Some of the analytical
tools are specifically useful for cerebellar PC populations, the
firing patterns of which reflect synchrony originating in the
inferior olive. Other tools are applicable to a wider variety of
ensemble imaging data.

Our design of clustering methods was driven by the structure
of the data. A key step was the selection of a distance metric
for similarity between event trains. A metric based on exact
synchrony reflects the fact that strong synchrony in PC com-

FIG. 4. Meta-k-means. The steps of meta-k-means, illustrated on a cerebellar dataset. A selection of traces from 40 individual dendrites is shown in the top
row. The dots indicate detected events. k-means is run 1,000 times on the corrected events matrix using k � 3 and random initialization of centroid positions,
yielding several different clustering results (3rd row). The co-occurrence matrix (bottom row), determined by the number of times each pair of dendrites is
clustered together, is similar to the fluorescence correlation matrix (2nd row), and is thresholded to give working clusters (bottom row). In this matrix, dendrite
15 was excluded from all clusters as an outlier. Cluster pairs are then merged until combining clusters no longer increases Dunn’s index (DI). In the correlation
matrix, dendrites were sorted according to their mediolateral position.
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plex spike firing is driven by electrical coupling between
neurons in the inferior olive, where climbing fibers originate.
In the case of more complex temporal relationships, more
sophisticated metrics are needed that take into account time-
shift alignment (Victor 2005; Victor et al. 2007) or that
otherwise relax the requirement for exact synchrony (Lindsey
and Gerstein 2006). A second major choice was that of quan-
tification of goodness of clustering (Maulik and Bandyo-
padhyay 2002) using Dunn’s index, which emphasizes indi-
vidual cluster tightness and the distance between adjacent
clusters. As signaling in the olivocerebellar system becomes
further understood, the appropriateness of these metrics may
need to be re-examined.

Meta-k-means should be useful in cases where it is desirable
to identify clusters of related neurons and could be applied to
both optical recordings and multielectrode data. It is mathe-
matically similar to an approach taken to finding gene expres-
sion patterns (Le Roch et al. 2003) and is similar to previous
approaches (Dudoit and Fridlyand 2003) in which the results of
a less-reliable method are aggregated to generate a robust and
reproducible outcome. Meta-k-means gives consistent results
and requires less prior information compared with other parti-
tioning approaches that have been applied to electrophysiolog-
ical data such as the gravity method (Gerstein and Aertsen
1985; Lindsey and Gerstein 2006), hierarchical clustering
(Eggermont 2006), and multidimensional scaling (Fukuda et al.
2001). Those methods do not explicitly address the issue of
independently determining an appropriate number of clusters
but instead require the number of clusters to be known before-
hand. We have also shown that the parameters used in meta-
k-means are reliable and do not require adjustment for individ-

ual mock or calcium imaging data sets, reducing bias in the
results. Meta-k-means can be done with small data sets: reli-
able clustering was possible with event matrices 500 samples
in duration and containing �30 events per dendrite.

Complete analysis of a movie, from dendrite selection to
final clusters, takes �3–4 h. Most of this time is spent in
selecting dendrites, which takes a trained user �2–3 h. After
dendrite selection, the event time extraction for all individual
dendrites takes �30 min. The clustering algorithm runs quite
fast on computers with a 1-GHz Intel Pentium 4 processor
(Intel, Santa Clara, CA) and takes a few seconds to find
working clusters. The inspection and merging process to arrive
at the final clustering takes a few minutes.

Several aspects of our analysis should be useful in the
analysis of other neural imaging data. Likelihood-based cor-
rection of event times is important whenever the data-collec-
tion method operates at a slower rate than the physiological
time scale of events. The method recovers information that
would otherwise be ambiguous and is helpful for any case in
which a brief event evokes a long-lasting signal. The need for
likelihood-based correction can also be reduced by faster data
gathering, such as by linescans, or by scanning only from
regions of interest (Göbel and Helmchen 2007).

Our choice to orient dendrites parallel to the fast-scan
direction represents a case analogous to that encountered in
many other brain structures, where the imaged structures are
typically cell bodies. Another means for potentially recovering
more precise event times would be to orient the dendrites
perpendicularly or obliquely to the fast-scan direction. Better
disambiguation of event times will require a high signal-to-
noise ratio and zooming-in of dendrites to span the field of
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view, conditions that may be facilitated by improved labeling
using genetically encodable probes.

Our temporal correlation-based approach to image segmen-
tation was guided by the need to resolve densely located
structures in tissue labeled with low contrast. Typically, cellu-
lar units in multiphoton and other imaging data have been
identified either from their high fluorescence contrast (Dom-
beck et al. 2007; Kerr et al. 2007) or by using cell-specific
markers (Yaksi and Friedrich 2006). In these cases, the struc-
tures of interest, usually cell bodies, are sparsely located within
the field of view, making it possible to select the borders of the
region of interest roughly by hand. However, closely spaced
structures such as PC dendrites cover the field of view (Fig.
1D) and do not have clear borders separating them. Our
correlation-based approach maximizes the internal pixel cor-
relations within the selected region and excludes the less
correlated pixels, thereby increasing the likelihood that the
final selected pixels belong to the same cellular structure.

Signal synchrony can also be useful for other approaches
such as principal component analysis (PCA) (Jolliffe 2002),
which can be used to discard higher-order uncorrelated time
courses and thereby reduce noise (Wang et al. 2000). However,
PCA alone is not sufficient to distinguish individual units
because synchronously active units will not have independent
time courses. A more satisfactory separation of signals has
recently been accomplished using independent component
analysis (ICA) to distinguish active cellular structures in mul-
tiphoton data (Mukamel et al. 2007). In cases where the image
is less stable, such as awake animal recording, correction for
tissue movement may also be warranted (Dombeck et al.
2007).

The approaches described here arose as a means of dealing
with the specific qualities and limitations of currently gener-
ated data sets. In the future, advances in signal quality such as
cell type-specific expression of functional indicators (Hasan
et al. 2004) and the development of faster-responding indica-
tors will reduce the need for these particular methods but also
create new opportunities and problems in data analysis.
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