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Gidon A, Segev I. Spike-timing—dependent synaptic plasticity and
synaptic democracy in dendrites. J Neurophysiol 101: 3226-3234,
2009. First published April 8, 2009; doi:10.1152/jn.91349.2008. We
explored in a computational study the effect of dendrites on excitatory
synapses undergoing spike-timing—dependent plasticity (STDP), us-
ing both cylindrical dendritic models and reconstructed dendritic
trees. We show that even if the initial strength, g,... of distal
synapses is augmented in a location independent manner, the efficacy
of distal synapses diminishes following STDP and proximal synapses
would eventually dominate. Indeed, proximal synapses always win
over distal synapses following linear STDP rule, independent of the
initial synaptic strength distribution in the dendritic tree. This effect is
more pronounced as the dendritic cable length increases but it does
not depend on the dendritic branching structure. Adding a small
multiplicative component to the linear STDP rule, whereby already
strong synapses tend to be less potentiated than depressed (and vice
versa for weak synapses) did partially “save” distal synapses from
“dying out.” Another successful strategy for balancing the efficacy of
distal and proximal synapses following STDP is to increase the upper
bound for the synaptic conductance (g,,,,) With distance from the
soma. We conclude by discussing an experiment for assessing which
of these possible strategies might actually operate in dendrites.

INTRODUCTION

Donald O. Hebb (1949) introduced his famous postulate for
the mechanism that may underlie activity-dependent synaptic
plasticity 60 years ago. In the last 10 years, experimental
studies have begun to unravel the operation of such a mecha-
nism and it has been shown that, in many neuron types, the
precise timing of the pre-versus the postsynaptic spikes play a
critical role in determining the efficacy of the synaptic connec-
tion between neurons [spike-timing—dependent plasticity
(STDP)] (Bell et al. 1997; Bi and Poo 1998; Debanne et al.
1998; Markram et al. 1997; Zhang et al. 1998; reviews by Dan
and Poo 2006 and Abbott and Nelson 2000). This specific type
of synaptic plasticity operates within a time window of tens of
milliseconds, and its direction and magnitude are critically
determined by the temporal order of the pre- versus the
postsynaptic spike. If a synapse is active before the postsyn-
aptic neuron fired a spike (pre before post), the efficacy of this
synapse is enhanced; the synapse is weakened for the reverse
temporal order (post before pre). Outside of the critical tem-
poral window for STDP, the efficacy of the synapse remains
unchanged.

These experimental studies were followed by theoretical
efforts to understand the biophysical foundation of STDP
(Shouval et al. 2002), as well as its possible functional conse-
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quences (Giitig et al. 2003; Kempter et al. 2001; Kistler and
van Hemmen 2000; Roberts 2000; Roberts and Bell 2000;
Rubin 2001; Rubin et al. 2001; Song and Abbott 2001; Song
et al. 2000; van Rossum et al. 2000; Williams et al. 2003 and
see a whole issue of Biological Cybernetics in December 2002
dedicated to STDP). Among the possible functional roles
attributed to STDP are the emergence of functional maps
during development (Song and Abbott 2001), enhancement of
correlated inputs (Giitig et al. 2003; Meffin et al. 2006; van
Rossum et al. 2000), enhancement of input temporal precision
(Kistler and van Hemmen 2000), and the generation of a
negative sensory image (Roberts and Bell 2000).

One interesting question regarding STDP is its role in selectively
“configuring” the synaptic efficacy at different dendritic loca-
tions. Because neurons are inhomogeneous in their morphol-
ogy and membrane properties, synaptic contacts at different
locations on the dendrite would be influenced by different
specific dendritic attributes such as calcium concentrations or
the back propagating action potential (BPAP), and this may
affect synaptic efficacy in dendrites differentially (Iannella and
Tanaka 2006; Rao and Sejnowski 2001; Saudargiene et al.
2005a,b; Urakubo et al. 2004; and see also Rabinowitch and
Segev 2006). Indeed, several recent experimental studies have
beautifully shown the regional specificity of STDP in dendrites
(Froemke et al. 2005; Letzkus et al. 2006; Sjostrom and
Héusser 2006). This interaction between STDP and dendrites is
the focus of this computational study. We first show that there
is an inherent problem when applying the linear STDP rule in
dendrites with excitatory synapses. We show that this rule is
“anti-democratic” in nature so that applying it to dendritic
synapses would result in the complete degradation of the
efficacy of distal excitatory synapses and would maximally
elevate the efficacy of proximal synapses (Rumsey and Abbott
2004, 2006). In this case, a simple upscaling of the peak
conductance of distal synapses does not solve this problem. In
our study, we systematically explore the dendritic attributes
such as length and branching and their relation to this problem.
Finally, we discuss a possible robust mechanism that enable
the co-existence of proximal and distal synapses undergoing
STDP and propose an experimental prediction to whether it
actually operates in dendrites.

METHODS

Compartmental models

In most of the simulations, the neuron model consisted of a passive
cylindrical cable connected to an isopotantial soma. Unless otherwise
stated, the cylinder was one space constant (A) long with 50 compart-
ments per A. In Fig. 3, we simulated a set of idealized dendritic trees
(from Oth to 3rd order of branching) that are equivalent to a single
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cylindrical cable (Rall 1959). In Fig. 4, we implemented the STDP
rule to models of reconstructed neurons; L4 spiny stellate cell (Ascoli
2006; Vetter et al. 2001) L2/3 pyramidal cell (Ascoli 2006; Vetter
et al. 2001), and L5 pyramid (Douglas et al. 1991). The specific
membrane capacitance of all models used was C,, = 1 uF/cm?; the
axial resistance R, = 100 Qcm, and the passive membrane resistance
R, = 20,000 Qcm® (the membrane time constant, 7, is 20 ms).
Resting potential was set at —70 mV. The soma was identical in all of
the models (area 5 X 107> cm?—including the idealized and recon-
structed neurons). Dendritic spines were not included in the models.

Firing mechanism

In addition to g,.,« = 1/R,,, the modeled soma also included fast
inactivating sodium currents, /,, and potassium delayed rectifier /4,
currents, with the following specific maximal conductances and cor-
responding reversal potentials: gy, = 0.03 S/cm?; g, = 0.015 S/cm?;
Ex = —80mV; Ey, = 90 mV. The rate functions for the sodium and
potassium channels where taken from Traub et al. (1991), with a slight
modification for the potassium channels whereby the activation time
constant, 7,, was reduced by a factor of 2.

Synaptic input

Transient excitatory synaptic conductance change was modeled by
a single decaying exponent (ExpSyn in NEURON) with a time
constant of 5 ms and a reversal potential of 0 mV. The activation time
of the synapse was drawn from a random Poisson process with
identical mean interval for all synapses.

The weight (strength) of the ith synapses, w;, is defined as w; =
8peak.il §max.i» Where g,... ; is the peak conductance of the ith synapse,
which ranges between 0 and g, ; (the notation i is mostly omitted).
Zmax Was uniformly set to 0.3 nS in all figures except in Figs. 6. Note
that w must be treated with caution when comparing synapses that
have different g, values, because in this case, synapses with
identical w would have different peak conductances.

Each compartment in the cylinder consisted of 16 conductance-
based excitatory synapses, yielding a total of 800 synapses per A. In
Fig. 3B, a total of 960 synapses were distributed with a fixed density
per unit area, so that the number of synapses in any given electrotonic
distance from the soma is identical regardless of the branching order.
In Fig. 3C, synapses where distributed at a density of 600 per A.
Consequently, a zeroth-order (cylinder) tree contained 600 synapses,
whereas the dendrite of a third-order tree contained 2,250 synapses.

For all reconstructed trees (Fig. 4), the synaptic density was
uniformly set to 0.02/um?. This yielded a total of 283, 378, and 1,060
synapses for the L4, L2/3, and L5 cells, respectively.

Modeling different STDP rules

When using an additive (or linear) STDP rule, synaptic plasticity is
updated according to the temporal difference between the pre- and the
post-synaptic spikes

Aw, = A exp( —(tpos = tpre)/T) if fog = fire ()

AW* = A*exp( _(tpost - tpre)/T) if tposl < tpre (2)

where Aw., is an increment/decrement in w in each update.

The amplitude of the synaptic modification is determined by the
value of A, for potentiation and by A_ for depression. A, and A _
were set to 0.01 and —0.0105, respectively, and 7 = 20 ms as in Song
et al. (2000).

Unless otherwise mentioned, the additive STDP rule was used. We
also used another variation of the STDP rule—the multiplicative
STDP rule (Giitig et al. 2003). In the multiplicative case, a term that
involves the dependence of STDP on the value of synaptic weights
was added to Egs. 1 and 2 above

3227

+ = (1 - W)M X A+exp( 7(tpost )/T) lf lpost - tp (3)

pre

Aw_ = whX A eXP( _([posl - tpre)/T) if Zposl < tpre (4)
In this case, the degree of potentiation of already strong synapses is
smaller than the degree of their depression and vice versa for weak
synapses. The power w determines the degree of dependence of the
plasticity on the current synaptic weights; w ranges between 0 (addi-
tive) and 1 (fully multiplicative).

In this study, we implemented the STDP rule in the “all to all”
interaction, whereby all the possible combinations of pairing between
the pre- and the postsynaptic spikes are linearly summed. For a given
postsynaptic spike, all the synapses that fire before the spike are potentiated
(to a degree which depends on their time difference, 7,0y — ), Whereas
all the synapses firing after the spike are depressed (see also Bi and
Wang 2002; Froemke and Dan 2002; Froemke et al. 2006; Sjostrom
et al. 2001).

In Figs. 1 and 6, synapses having equal efficacies as measured at the
soma were obtained by initially implementing an anti-STDP rule as in
Rumsey and Abbott (2004). In this case, whenever a synapse is
activated, its weight is increased by a constant value (here we used
Kiumsey = 0.0048), whereas if the synapse generates a spike, it is
weakened according to the anti-STDP rule.

Activity-dependent length constant of dendrites

In Fig. 6, we used a measure for the activity-dependent A. Because
the effective membrane conductance also depends on the synaptic
conductances that impinges on the dendrite, A changes with time and
modification of synaptic weights during STDP. A_; is therefore
measured in steady state

1 1|t
Aegr = *JJ Alx, r)dedx %)
0

where #* is a time interval, / is the physical length of the dendritic
cylinder, and A(x,7) is

Ax, 1) = i>< SN 6)
4R, G,(x, 1)

where d is the cylinder’s diameter and G, (specific membrane
conductance) comprises of the leak conductance in parallel with the
synaptic conductances that vary with time and location in the dendrite.
To compute A from the simulations, we used the discreet form of
Eq. 5

1

K
At = E DAy %)

K==

where K is the number of compartments, and J is the number of
discrete time steps. Combining Egs. 6 and 7, we get

d/(4 i $ L ®

Aesg = =
¢ k=1 j=1 \ij

Here, G,; is the total membrane conductance in compartment k in time
step j. This expression was evaluated every time step until the value
of A converged.

B measure for the balance of the spatial distribution
of synaptic weights

We propose a new measure, 3, to describe the degree of balance in
the spatial distribution of the synaptic weights
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where X, is the electrotonic distance of the ith synapse, w; is the
weight of this synapse, L is the cable length of the cylindrical dendrite,
W is the mean synaptic weight, and N the total number of synapses.
Thus B is the location of the center of mass of the synaptic weights.
When the synaptic weights are homogeneously distributed over the
cylinder, then B = 0.5 (the center of mass is at the center of the
cylinder). When the synaptic weights tend to be concentrated at one end of
the cylinder, then 3 will approach either O (if all weights are concen-
trated near the proximal/soma end) or 1 (if all weights are concen-
trated near the distal end).

In all figures, 3 is plotted against W at steady state. To explore the
dependence of 8 on W, we varied the final value of W by changing the
input firing rate. As Song et al. (2000) showed, when the input rate is
low, more synapses become strong, causing W to increase. In contrast,
when the input rate is high, W typically tends to become small. In both
cases (low or high input rate) where synapses are pushed to their
extreme values (1 or O, respectively), weight distribution is more
balanced than for intermediate input rates. This gives us a character-
istic convex [ function as it appears in all the plots.

In Figs. 2D and 6C, B is plotted only for low values of W (<0.5)
in some of the cases. The reason is that, for these cases, reaching a
steady state with low input rates takes a very long time. We therefore
set the lowest input rate to be 4 Hz (rightmost symbol in all cases), and
the simulation ran until steady state is reached in all cases.

In Fig. 3C (branched dendrite), synapses are uniformly distributed
per unit of length, hence their number increases with each additional
branching point. Consequently, the weights distribution is not bal-
anced to begin with because there are more synapses and hence more
weights distally. To overcome this, we normalize the synaptic weight
by number of synapses with the same distance.

Computing

All the simulations were performed under NEURON environment
(Hines and Carnevale 1997) version 5.8 (or newer) with HOC and
MOD programming languages. The computing resources included
32-bit Intel and 64-bit AMD computers. A backward Euler integration
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method (NEURON default) was used with a fixed integration time
step of 0.1 ms. A typical run time of a simulation with 800 synapses
until synaptic strength reaches steady-state values under STDP ranges
between 4 hours for isopotential neurons and 4-5 days for the
reconstructed neuron models. Simulation time was always =5 X 10*
s. Steady state was determined after a reasonable amount of time
where the synaptic distribution did not change significantly.

RESULTS
Problem with STDP and dendpritic synapses

Figure 1 depicts the imbalanced distribution of the value of
w at steady state that arises because of STDP (Goldberg et al.
2002; Roth and London 2004). Initially, identical synapses
(w = 0.5, horizontal line in Fig. 1C) were distributed over a
passive cylindrical dendrite. However, at steady state, distal
synapses “died out” (weights were reduced to ~0), whereas
proximal synapses tended to become maximally strong (Fig.
1A). The result is a bimodal distribution of the synaptic weights
at steady state (Fig. 1B). This is the consequence of the passive
dendritic filtering whereby the efficacy of synapses at the soma
corresponds to their distance from the soma (Rall 1967). For
initially identical synapses, the somatic excitatory postsynaptic
potential (EPSP) that originates from a proximal synapse has
larger amplitude than the one originating from a distal synapse.
The competition caused by STDP drives strong (proximal)
synapses to become even stronger, whereas weaker (distal)
synapses eventually die out. Hence, in the passive case, the
distribution of synaptic weights is bimodal (Fig. 1B) and the
identity of the synapses that tend to win the competition is
known in advance; the proximal synapses will always “beat”
the distal synapses.

At steady state, the winning of the proximal synapses over
the distal synapses takes place even in the extreme case
whereby initially w = 0 for all proximal synapses and w = 1
for all distal synapses (Fig. 1C, gray lines).

Indeed, during the implementation of the STDP rule, even a
weightless synapse may occasionally strengthen by coincident

FIG. 1. “The problem” with spike-timing—dependent plas-
1 ticity (STDP) in dendrites. Following STDP, the strength of
distal synapses diminishes, whereas that of proximal synapses
is enhanced. A: w as a function of electrotonic distance from the
soma at steady state following STDP. The gray line depicts the
average w (computed at 0.1 A bins). Strong synapses (w > 0.5)
1 almost vanish for X >0.5. B: dendritic distribution of w values
at steady state is bimodal. Inser: STDP in an isopotential
compartment with the same membrane capacitance and conduc-
tance as in the dendritic model. C: 3 initial conditions for w
were examined: w was set initially to 0.5 for all synapses (solid
black line); w was arranged such that all synapses had the same
efficacy at the soma (gray dots, see METHODS); w = 0 for
synapses at 0 =X < 0.5and w = 1 for 0.5 = X =1 (gray lines).
The steady-state weight distribution is identical for these dif-
ferent initial conditions and is shown in A. D: somatic excitatory
postsynaptic potential (EPSP) amplitudes as a function of dis-
tance from the soma in steady state.
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activity with the output. This way, proximal synapses may gain
enough weight and regain their higher efficacy. After sufficient
time, proximal synapses will win the competition over the
distal synapses, albeit their initial ineffectiveness.

For comparison, we applied the linear STDP rule to an
isopotential compartment with passive properties that are iden-
tical to the properties of the cylindrical cable. In this case, all
the synapses have equal chances to be either weak or strong
(Fig. 1B, inset) and the bimodal nature of the distribution also
emerges (see Song et al. 2000). The somatic EPSP amplitudes
following STDP at steady state against the distance of the
synapses from the soma is depicted in Fig. 1D. The reduced
weight of the distal synapses results from the filtering effect of
the dendritic cable and the weakening of these synapses caused
by STDP.

Location-independent scaling of synaptic weights does not
“save” distal synapses

In an attempt to restore the balance in w, which is lost after
STDP, we up-scaled the initial synaptic weights along the
dendritic cylinder such that their efficacies were initially equal
at (and thus independent of their distance from) the soma (Fig.
1C, gray dots, see METHODS). When the synaptic efficacies are
equalized, an EPSP from distal synapses has the same proba-
bility as that of a proximal synapses to trigger a spike at the
soma. In this case, on the face of it, STDP will not favor the
proximal synapses over the distal synapses. However, imbal-
ance in steady state persisted. Indeed, given that the cell is able
to fire initially, the final distribution of synaptic weights was
essentially independent of their initial distribution, similar to
what was found in the isopotential case (Song et al. 2000).
Thus up-scaling the synaptic conductance (their w value) of
distal synapses will not rescue these synapses from dying out
following STDP.

Dependence of B on the dendritic cable length
and branching order

To capture the relation between the dendritic cable length
and STDP, we varied the cable length, L, while keeping all
other specific electrical parameters constant. Whereas in the
short dendrite (L = 0.4; Fig. 2A), there are still some strong
distal synapses following STDP, in the longer dendrite (L =
1.8; Fig. 2C), there are none. This increase in the weakening of
distal synapses with L can be seen by comparing the steepness
of the average w value in Fig. 2, A—C (heavy dashed line). This
effect is summarized using 3 in Fig. 2D, for the three L values
and for a range of mean synaptic weights, W, in each case (see
METHODS). As L increases, the corresponding curve for 3 lies
successively below one another, indicating that the degree on
nonuniformity (or imbalance) in synaptic weight increases with
increasing L.

To show that these results are caused by the increase in the
dendritic cable length rather than by the increase in the number
of synapses when L increases, we further examined the fol-
lowing two conditions (data not shown): /) the number of
synapses remains constant while the dendritic length is varied,
and 2) the number of synapses is varied while keeping the
length of the dendrite constant. 8 was reduced for condition
1) but remained identical for all cases in condition 2).
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FIG. 2. The balance of the synaptic weight distribution is reduced for
electrotonically longer dendrites. A—C: synapses were uniformly distributed
over the cylindrical dendrite with L = 0.4 (A), L = 0.8 (B), and L = 1.6 (O).
Synaptic weights at steady state are plotted against distance from the soma;
heavy dashed line depicts the average synaptic weight, computed per 0.1 A
bins. Note the steeper decline of the average weight as L increases. Input rate
is 13, 8, and 5 Hz for A, B, and C, respectively. D: B as a function of the mean
synaptic weight, W. Each dot results from a different simulation, with a distinct
input firing rate (4-60 Hz) resulting in different mean synaptic weight
following STDP (see METHODS). As L increases, the curves reside one below
the other (and in particular the minimum value of (3 decreases, arrows),
implying that “the problem” becomes more severe when L increases.

We next examined in Fig. 3 the effect of the order of
dendritic branching on the distribution of w at steady state
following STDP. To isolate the effect of the branching on
STDP, we used a set of idealized dendritic trees with an
increasing order of branching, from zeroth-order (a cylinder) to
third-order branching; all trees are equivalent to a single
cylinder with L = 1 (see METHODS). In Fig. 3A, trees of zeroth
and third order are shown in their physical scale and relative
branch diameters (without the cell body). We first examined
the case in which synaptic density per unit area was fixed, and
synapses were distributed over the whole modeled trees. As
expected from Rall (1959) because all trees are equivalent to
the single cylinder, 3 is identical in all cases (Fig. 3B).

We further examined the case in which the synaptic density
per unit A was fixed. In this case, the density of synapses per
unit area was greater for the higher order branching, and thus
synaptic saturation was enhanced at these distal sites. This led
to a decrease in the effectiveness of distal synapses compared
with a corresponding model with uniform synaptic density per
unit area. Figure 3C shows a small decrease in the minimal
value of 3 (arrow) when the branching order increases. Be-
cause the higher density in the distal thinner branches results in
marked synaptic saturation (loss of synaptic charge), the rela-
tively small effect on B was surprising. Additional simulations
with increased synaptic density at the distal dendritic regions
(Elston and DeFelipe 2002; Marin-Padilla 1967) led to similar
results of essentially small decreases in 3 (data not shown).
This is explained by the reduced synaptic conductance (the
weakening of synapses) at distal sites at steady state following
STDP; consequently, synaptic saturation was less marked than
that for the initial conditions. The proximal synapses eventu-
ally dominate the spike generation at the soma in both the
unbranched tree and the branched tree.
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FIG. 3.

STDP in branching dendrites. Idealized dendritic trees with a varying order of branching were modeled, all are electrically equivalent to a single

cylinder with L = 1. A: Oth order (leff) and 3rd order (right) branching. In all cases the trunk diameter is 4 wm; the 3rd-order branch diameter is 1 wm. B: 3
for Oth- to 3rd-order branching as a function of the average synaptic weigh value, W. Density of the synapses is uniform per unit area (0.054/um?). C: as in B
but the density of the synapses is uniform per unit A (600 synapses/A). Only a slight decrease in the minimal 3 (black arrow) is observed in trees with higher

branching orders.

STDP in reconstructed dendritic trees

We showed that increase in dendritic cable length rather than
the degree of branching tends to weaken distal synapses. In
Fig. 4, we examine these findings in reconstructed dendritic
trees where STDP has been experimentally shown; L4 spiny
stellate cell (Egger et al. 1999), L5 pyramid (Markram et al.
1997; Sjostrom et al. 2001), and L.2/3 pyramid (Feldman 2000;
Froemke and Dan 2002). Because we are interested here in the
effect of dendritic morphology per se on the outcome of STDP,
we assumed that these dendrites have identical passive prop-
erties (see METHODS) and the same density of synapses per unit
area (0.02/um?). To compare between the models’ distribution
of the weights, we selected results from simulations where the
mean synaptic weight (W) at steady state was equal in all of
the model neurons. In Fig. 4, the value of w at steady state for
the corresponding neurons is shown as a function of the
electrotonic distance of the synapses from the soma.

Although the “problem” exists in all the reconstructed den-
drites, it is more severe in electrotonically long dendrites.
Figure 4D summarizes how strong synapses (w > (.5) are
divided between the proximal (X/L > 0.5) and distal (X/L <
0.5) regions for the modeled neurons. L5 dendrites that extends
up to ~2 A have <5% of the strong synapses in the distal
region, whereas the electrically compact L4 spiny stellate cell
(~0.4 A long) is more balanced, so that ~40% of its strong
synapses are in the distal region. The L2/3 pyramid (~0.6 A
long) is somewhere in between with ~25% of its strong
synapses in the distal region.

Rescuing distal synapses with a multiplicative STDP
learning rule

In Fig. 5, multiplicative STDP (see METHODS) was applied in
the cylindrical neuron model, and the distribution of synaptic
weights in steady state was examined for various values of u,
starting from p = 0 (additive rule) and up to w = 1 (fully
multiplicative). The competition between synapses is signifi-
cantly reduced when w is increased (Giitig et al. 2003). This is
followed by the “compression” of the synaptic weights to a
midrange values (w = 0.5). As can be seen in Fig. 5A, for
strong multiplicative cases (u = 1), the weight of distal and
proximal synapses tends to be equal. However, in this extreme
case, all synaptic weights are “stuck” near the value of 0.5.

In Fig. 5B, with a very small u = 0.5* (close to fully additive
case), distal synapses were partially rescued from completely

J Neurophysiol « VOL 101 »

dying out (as was the case for the additive STDP; Fig. 2), and
the synaptic weights were distributed over an acceptable range
of values. Nevertheless, in this case, STDP is still biased in
favor of the proximal synapses. A summary for the distribution
of 3 values for different values of w is depicted in Fig. 5C. The
weights distribution becomes significantly more balanced
(closer to 0.5) when u approaches 1.

A combination of homeostatic synaptic plasticity and a
“mixed” STDP rule that was proposed by van Rossum et al.
(2000) results in a unimodal distribution of EPSP amplitudes
(unlike the bimodal distribution in the additive STDP case).
Although we did not reproduce their model, we expect that
using this model for STDP will also help in rescuing distal
synapses similarly to the multiplicative model as in Fig. 5.

We have shown in this section that a weak multiplicative
STDP rule may partially rescue the distal synapses from dying
out. A strong multiplicative STDP rule, however, while im-
proving the uniformity of synaptic strength over the dendritic
tree, results in “gluing” all synaptic weights near the midrange
value of 0.5. This is undesirable because, under this condition,
synapses are effectively not plastic anymore.

Rescuing distal synapses with a spatial gradient of g,,,.

We have shown that an initial location-independent distri-
bution of synaptic weights does not save distal synapses from
dying out following STDP (Fig. 1C, dotted line). We therefore
propose an alternative possibility whereby a certain form of
meta-plasticity, as suggested by Abraham and Bear (1996),
could be used for saving distal synapses from dying out
following STDP (see also Gidon and Segev 2005; Rumsey and
Abbott 2006). Namely, we scaled the maximal strength (g,,.)
that the synapse may potentially undergo instead of scaling the
actual initial strength, g,.., of the synaptic conductance. In
other words, we up-scaled g, as a function of distance from
the soma so that all synapses have identical efficacies at the
soma (synaptic democracy) while keeping w = 0.5 for all
synapses (see METHODS and Fig. 6A). Now, with such scaling of
Zmax> the distribution of w at steady state following STDP is
spatially much more balanced (Fig. 6A) compared with the
case of uniform g, distribution (Fig. 6B). The tendency
toward a more balanced weight distribution is also observed in
the multiplicative learning rule (data not shown).

How robust is the balance of synaptic weight distribution (syn-
aptic democracy) that resulted from scaling of g, under varying
input frequencies? In Fig. 6A, g,.... was scaled such that synaptic
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FIG. 4. STDP in modeled reconstructed neurons. The unbalanced weight
distribution at steady state following STDP is shown in L4 (A) cortical spiny
stellate cell, in L2/3 pyramid neuron (B), and in L5 pyramid neuron (C).
Presynaptic rate in each tree was chosen so that W was similar in all trees at
steady state (0.30, 0.29, and 0.29 for A, B, and C, respectively). The proximal
region with strong synapses (X/L < 0.5; w > 0.5) is marked by gray rectangle
and the distal region with strong synapses (X/L > 0.5; w > 0.5) is marked with
white rectangle. D: percentage of strong (w > 0.5) proximal or distal synapses
out of the total strong synapses averaged over multiple simulation runs (n =
30) of each of the neuron models A—C (background as in A—C). The percentage
of strong synapses in the proximal region is 95, 75, and 60% for L5, L2/3, and
L4 spiny stellate, respectively.

democracy is achieved with a mean input rate of 10 Hz. Changing
the input rate is expected to change the effective length constant,
Ao (see METHODS) and thus the cable distance of any given
synapse from the soma. This in turn may destroy the spatial
balance (democracy) of synaptic efficacy. To examine this, we
plotted in Fig. 6C the value (8 as a function of W (ranging the input
frequency from 4 to 51 Hz). The resulting flat curve (triangles)
shows that, although g,... was adjusted only for an input rate of 10
Hz, the spatial balance of synaptic efficacy is essentially sustained
for all input frequencies (the minimal value of 8 is ~0.45). In
contrast, 3 is reduces to 0.27 when g,,., is uniform (circles).

To better understand this unexpected result, we computed
the value of Ay as a function of W (and thus of the input
frequency). Before STDP was applied, A was reduced by a
factor of 2.6 when the input frequency ranged from 4 to 51 Hz.
Namely, the electrotonic length of the cable was increased by
2.6-fold (Fig. 6D, dark dots). This implies that the distance, in
A units, of any given synapse from the soma is stretched by
almost a factor of 3 as a consequence of the increase in input
frequency (from 4 to 51 Hz). However, when the initial input
rate is high, STDP causes a decrease in the mean synaptic
weight (and in the number of strong synapses, Song et al.
2000). The reduction in the total synaptic conductance coun-
terbalances the high input rates and, thus A,y remains rather
constant albeit the change in input frequency (Fig. 6D, O). The
consequence is that the spatial distribution of synaptic weights
following the scaling of g,,.. remains balanced (democratic)
even with a change in input frequency.

DISCUSSION

In this computational exploration of the functional conse-
quences of STDP in dendrites, we highlighted the existence of
an inherent problem in this mechanism. Namely, as the STDP
process proceeds, distal dendritic synapses will become pro-
gressively “dominated” by the proximal synapses. We assumed
in this work that the STDP rule is uniform over the whole
dendritic surface; yet recent results showed that the STDP rule
itself may vary in the same dendrite such that long-term
depression (LTD) is more prominent in distal regions, whereas
long-term potentiation (LTP) is more prominent in proximal
regions (Froemke et al. 2005; Letzkus et al. 2006; Sjostrom and
Hiusser 20006). In the light of these findings, the problem with
STDP that we discussed in this work seems to be even more
acute because rather than compensate for their decreased effi-
cacy, the location-dependent modifications in the STDP rule
itself seem to act against distal synapses.

We systematically studied the dendritic determinants of this
“problem” with STDP in dendrites; namely, the dendritic cable
length, branching order, and spatial distribution of synapses on
the dendritic tree. The electrotonic length of the dendrite has
the most prominent effect; distal synapses on long dendrites
become completely ineffective following STDP. This holds
regardless of both changing the synaptic distributions and of
the dendritic branching pattern.

We next systematically examined several ways to balance
the distribution of synaptic weights in the dendritic tree. We
explored the possibility that the STDP rule is not purely
additive, but rather includes a multiplicative component (de-
noted by w; see Fig. 5 and Egs. 3 and 4; see Giitig et al. 2003).
We showed that increasing the value of w could rescue distal
synapses. However, the multiplicative STDP rule balances the
weights distribution (8 = 0.5) by bracketing the range of
synaptic strength to a mid-range value (of 0.5), thus restricting
the dynamical range of synaptic efficacy.

We showed that imposing initial “location independence” of
the somatic EPSPs cannot rescue distal synapses from dying
out following STDP. Indeed, when g,,., is spatially uniform,
distal synapses are a priori disadvantageous compared with
proximal synapses because they are less effective at the soma
even when they become maximally strengthened and gain the
value of g, Even if initially g, is zero at proximal sites,
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FIG. 5. Rescuing distal synapses with a multiplicative STDP rule. A: synaptic weight as a function of distance from soma for the strong multiplicative case
(n = 1). Weights of distal and proximal synapses are “stuck” around w = 0.5 with a small advantage of proximal synapses (averaged weight per 0.1 A is depicted
by the dashed line). B: weak multiplicative case (u = 0.5%). Larger variance in w coincides with an increase in the difference between proximal and distal
synapses, yet distal synapses do not completely die out. C: 8 a function of W with various values of w (marked next to graphs). As w is reduced (more linear
STDP rule), the uniformity of synaptic weight over the dendritic tree is reduced (3 decreases). Marked with arrows are 3 values depicted in A and B. A cylindrical

dendritic model with L = 1 is used.

proximal synapses eventually win over distal synapses (Fig. 1).
Thus it is the “ceiling” effect (the value of g,,,,) that matters
for this “proximal versus distal competition” at steady state,
rather than the value of g, per se at any given location.

In contrast, we showed that if g, is distributed spatially so
that the somatic EPSP is “location independent” (Gidon and
Segev 2005; Rumsey and Abbott 2006), the spatial distribution
of synaptic weights following STDP is uniform at steady state
(Fig. 6C). Surprisingly, we found that the uniform weights
distribution caused by g,,..« scaling is very robust to changes in
input rate and/or number of synapses impinging on the den-
drites (Fig. 6D); this makes g,,,, scaling a favorable mecha-
nism for maintaining democracy among the dendritic synapses.
Furthermore, combining this mechanism with the multiplica-
tive STDP yielded the most balanced dendritic weights distri-
bution (data not shown). Indeed, the experimental findings of
an increase in AMPA current (Andrasfalvy and Magee 2001;
Magee and Cook 2000), of more perforated synapses (Nichol-
son et al. 2006; Nimchinsky et al. 2002) and of larger spine
head size (Megias et al. 2001; Konur et al. 2003) in distal
dendrites could support the possibility that g, is indeed
up-scaled with distance.

Experimental validation of g,,,,. scaling

The saturation of LTP was studied in the context of meta-
plasticity (Abraham and Bear 1996) primarily to assess their
post-LTP responsiveness. In our model, saturation of LTP is,
by definition, the point at which g, is equal to g, (i.e., w =
1). We suggest to experimentally measure the distribution of
synaptic conductances (or of local amplitude of the synaptic
current) over the dendritic surface after saturation of the
synaptic conductances following STDP protocol and thus to
uncover the value of g, .. at each dendritic location. Cells that
exhibit a somato-dendritic gradient of g, (as in CAl neu-
rons; see Andrasfalvy and Magee 2001) both before and after
STDP saturation would support the hypothesis that g .. is
indeed scaled up with distance. This hypothesis will be rejected
if the synaptic conductance change following STDP saturation
is similar for all synapses independent of their distance from
the soma.

Other possible mechanisms for “saving” distal synapses

A variety of homeostatic synaptic plasticity (HSP) mecha-
nisms (Lissin et al. 1998; O’Brien et al. 1998; Turrigiano et al.
1998) may coexist in dendrites together with STDP and could
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contribute to synaptic democracy (Earnshaw and Bressloff
2008). Because the time constant of HSP is typically much
longer (hours) than that of STDP, if both mechanisms operate
on the same biophysical parameter (e.g., the density of APMA
receptors), we found that HSP does not counterbalance STDP
(simulation results not shown). However, if HSP modulates
synaptic efficacy through a different biophysical parameter
(e.g., gmax) than does STDP, HSP could contribute to dendritic
democracy.

Dendrites are known have active (nonlinear) voltage-dependent
conductances. N-methyl-p-aspartate (NMDA) spikes (Schiller
et al. 2000), dendritic calcium and sodium spikes (Araya et al.
2007; Kampa et al. 2007; Yuste et al. 1994), and other active
currents like the [, (Magee 1999; Robinson and Siegelbaum
2003) are engaged in the process of synaptic integration (Ma-
gee 2000) and computation (London and Hiusser 2005) in
dendrites. A special case for dendritic nonlinearity is the case
of action potential generation in the spine head membrane
(Araya et al. 2007). In an initial set of simulations that approx-
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FIG. 6. Saving distal synapses from dying out via up-scaling of g, with
distance from soma. A: distribution of w (triangles) at steady state is balanced
(averaged weight per 0.1 A is depicted by the black dashed line) following
up-scaling of g,,... (gray line) for input rate of 10 Hz. B: weight distribution for
the case where g, is spatially uniform (=0.3 nS). C: summary of 3 value for
the case where g,,., is up-scaled (triangles) and uniform (circles). Note that,
although synaptic efficacy was equalized for 10 Hz, the weights distribution
was balanced (B near 0.5, triangles) for all W values (input rates 4-51 Hz).
Arrows indicate 8 values for the cases depicted in A and B. D: the effective
space constant, A, is preserved by STDP. Before STDP, A, is increased by
2.6-fold with increased input rate from 4 to 51 Hz (dots). However, at steady
state following STDP, A is essentially independent of the input frequency
(open circles).
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imate this case whereby excitable current boosts spiny syn-
apses, we found that, if the threshold for nonlinearly boosting
distal synaptic efficacy is low (namely, small w value may
reach this threshold), indeed distal synapses may win over
proximal synapses following STDP (data not shown). A com-
plete study on the effect of dendritic nonlinearity interacting
with STDP is underway.

These mechanisms are able to effectively augment the effi-
cacies of synapses, in particularly that of the distal synapses
(Bernander et al. 1994; De Schutter and Bower 1994) so that
the efficacy of synapses is not dominated only by passive
properties of the dendritic cable. In fact, calcium spikes were
shown to have an important role in determining the efficacy of
the STDP induction process (Kampa et al. 2006). Perhaps these
dendritic mechanisms could shift the balance of the synaptic
weights to distal dendritic regions? Indeed, this study should be
viewed as providing the fundamental solutions for the “prob-
lem” with STDP in dendrites in the passive case. It provides
the basis—or skeleton—on which more complex nonlinear
dendritic currents should be added and their affects on STDP in
dendrites better understood (Rumsey and Abbott 2006; Sjos-
trom et al. 2008).
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During production errors occurred in some of the equations and in text. Some of the errors, to
Egs. 5, 7, 8 and 9, occurred only in the online version of the article. All errors have been corrected
in the online version of the article. The print errors are corrected here.

Equations I and 2 are stated correctly as:
AW+ = A+ exp(_(tpost - tpre)/T) if tpoxt = tpre (1)
AW* =A_ exp(_(tpoxt - [pre)/T) if tpasr < tpre (2)

The text immediately following Eq. 7 should read: where K is the number of compartments, and
J is the number of discrete time steps.

The second sentence in the section “Other possible mechanisms for ‘saving’ distal synapses” is
missing the first set of parentheses. It should read: Because the time constant of HSP is typically
much longer (hours) than that of STDP, if both mechanisms operate on the same biophysical
parameter (e.g., the density of APMA receptors), we found that HSP does not counterbalance
STDP (simulation results not shown).
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