An overview of failure-tolerant control is
presented, beginning with robust control,
progressing through parallel and analytical
redundancy, and ending with rule-based
systems and artificial neural networks. By
design or implementation, failure-tolerant
control systems are "intelligent" systems. All
failure-tolerant systems require some degree
of robustness to protect against catastrophic
failure; failure tolerance often can be
improved by adaptivity in decision-making
and control, as well as by redundancy in
measurement and actuation. Reliability,
maintainability, and survivability can be
enhanced by failure tolerance, although each
objective poses different goals for control
system design. Artificial intelligence concepts
are helpful for integrating and codifying
failure-tolerant control systems, not as
alternatives but as adjuncts to conventional
design methods.

Introduction

Many devices depend on automatic control
for satisfactory operation, and while assuring
stability and performance with all compo-
nents functioning properly remains the
primary design goal, there is increasing need
for controlled systems to continue operating
acceptably following failures in either the
system to be controlled (the plant) or in the
control system itself. For the purposes of this
paper, the plant is defined as a dynamic
system containing components that impart
distinctive physical properties like mass,
inertia, elasticity, forces, and moments. The
plant’s motion (position and velocity) must
be controlled for satisfactory operation. The
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control system is an assemblage of additional
components — motion sensors, force and
moment actuators, and computers — that
provide this service. A controlled system is
a plant plus its control system.

A distinction should be made between
system failures, which occur when compo-
nents break or misbehave, and system faults,
which include improper design as well. Our
attention is directed at the former, as
improper design is a separate issue.

Failure-tolerant control systems can be
characterized as robust, reconfigurable, or
some combination of the two. A well-
designed feedback controller typically
reduces the plant’s output sensitivity to
measurement errors and disturbance inputs;
if the plant is lightly damped or unstable, it
provides closed-loop stability as well. It is
designed assuming some nominal physical
structure for the plant, expressed by a
mathematical model and a set of parameters.
A controlled system that retains satisfactory
performance in the presence of variations
from this model without changes in the
control system’s structure or parameters is
said to be robust. The degree of failure that
can be accommodated by a fixed control
structure is more restricted than that of a
variable control structure. If the control
system’s structure or parameters can be
altered in response to system failure, it is
said to be reconfigurable.

In the latter case, the control system
detects, identifies, and isolates failures, and
it modifies control laws to maintain accept-
able performance. A system that is failure-
tolerant through reconfiguration is both
adaptive and redundant. It is adaptive in its
ability to adjust to off-nominal behavior, as
occurs from loss or degradation of sensors,
actuators, and power supplies, damage to
signal and power transmission channels, or
unexpected alteration of the plant’s character-
istics. It is redundant in its ability to
overcome lost capabilities with remaining
resources. Redundancy can be provided by
similar parallel channels for measurement
and control, or it may result from flexible
logic that synthesizes missing measurements
or control forces using operable sensors and
actuators, effectively invoking dissimilar
parallel channels. A reconfigurable control
system must be robust enough to preclude
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controlled system failure while adaptation is
taking place.

While there is much debate as to what
constitutes true "machine intelligence," it can
be argued that adaptivity and redundancy are
attributes of intelligence and, in the same
light, that feedback control makes use of
information in an intelligent fashion. The
issue is not that adaptive, feedback control-
lers pass the Turing test [1] or possess
"consciousness" [2]. It is that they exhibit the
"ability involved in calculating, reasoning,
perceiving relationships and analogies,
learning quickly, storing and retrieving
information,...classifying, generalizing, and
adjusting to new situations” [3], at least in a
symbolic or quantitative sense. To the extent
that symbols and instructions reflect knowl-
edge and decisions, a failure-tolerant,
feedback control system can be called
intelligent, and that context is adopted here.

Controlled Systems

Attention is focused on the control of
continuous-time dynamic systems (or plants)
whose motions can be represented by
integrals of nonlinear ordinary differential
equations,

x(r) = flx(1), u(r), w(t),p] 1)

where x(?) is the n-dimensional state, u(f) is
the m-dimensional control, w(f) is an s-
dimensional disturbance, and p is an /-vector
of parameters. The state is observed through
the measurement r-vector

z(t) = h{x(t),u(t),w(t),n(1),p] (2

where n(t) is an r-dimensional measurement-
error vector. Along a nominal trajectory
specified by x,(1), u,(t), wy(t), and nryt) for ¢
in (t, f), perturbations of the state and
observation vectors are governed approxi-
mately by linear, time-varying equations,

Ax(t) = F()Ax (1) + G(t)Au(r)
+L(t)Aw(t) 3)

Az(t) = H ()Ax(t) + H (1)Au(t)
+H (t)Aw(t) +n(1) . @)
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F,G, L H, H, and H, are conformable
Jacobian matrices expressing sensitivities to
the perturbation variables. At discrete instants
of time, t,, t,,, and so on, the state and
measurement perturbations can be approxi-
mated by

Ax,

k+1

-® Ax, +T,Au,+ A Aw, (5

Az, - H, Ax, + H"kAuk

+H, Aw, +n, 6)

where the subscript "k" indicates evaluation
at t,. Here, @, I, and A have the same
dimensions as F, G, and L and are derived
from the system’s state transition properties
(e.g., [4]). These models provide a founda-
tion for the remaining discussion.

Control logic for the nonlinear plant (eq. 1
and 2) typically takes the form of a dynamic
compensator

Au, = -CE, )
i =¥.8,+0,Au,

+K [z, -h(Z,u,)] ®

&, AlA%y k™) ©

uk=u0‘+Auk (10)

fkéx0‘+A£k . (11)

This linear, time-varying structure exempli-
fies estimation and control functions for
discussion purposes, but more complex
structures — particularly nonlinear ones —
may be employed. It is equivalent to a
feedback control law (equation (7)) operating
on the intemnal state estimate A£ con-
tained in the (n + k)-dimensional &, (equa-
tion (8)). x, is a k-vector of compensation
components, such as integrals of state
elements. The control and estimation gains,
C, and K, are selected to provide satisfactory
nominal response and may vary in time. ¥,
and ©, normally represent nominal values of
@, and I'; plus integrating (i.e., accumnulat-
ing) or filtering operations associated with .
The desired state and corresponding control
for the nonlinear plant, X, and u, , enter as
in (10) and (11).

Fig. 1 represents an idealized controlled
system, with disturbance and noise inputs not
shown. While the figure identifies the
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Fig. 1. Idealization of a controlled system.

elements of nominal control system design,
it provides little insight about control system
components, all of which may fail. Tangible
components are needed for measurement and
actuation (Fig. 2), the control logic described
by (7)-(11) is executed in a computer, these
components are enabled by a power supply,
and the power supply also is subject to
failure. An ancillary issue is that sensors and
actuators — themselves physical systems —
have scale factors, biases, and dynamic
characteristics to be considered during failure
detection and identification. The simplest
means of doing this is to incorporate these
characteristics in the plant model (equations
(1) and (2)), with estimation and control
logic modified accordingly.

Objectives and Issues for Failure-
Tolerant Control

Failure tolerance may be called upon to
improve system reliability, maintainability,
and survivability. The requirements for
failure tolerance are different in these three
cases. Reliability deals with the ability to
complete a task satisfactorily and with the
period of time over which that ability is

retained. A control system that allows normal
completion of tasks after component failure
improves reliability. Maintainability concerns
the need for repair and the ease with which
repairs can be made, with no premium placed
on performance. Failure tolerance could
increase time between maintenance actions
and allow the use of simpler repair proce-
dures. Survivability relates to the likelihood
of conducting an operation safely (without
danger to human operators or the controlled
system), whether or not the task is complet-
ed. Degraded performance following failure
might be permitted, as long as the system can
be brought to an acceptable state of rest.
Improving the reliability of individual
components clearly helps in all three
categories; however, it does not follow that
what aids one objective aids another. For
example, replacing a single string of control
system components by three parallel strings
of identical components (plus selection or
averaging logic) may improve reliability, but
it also increases the likelihood of component
failures, degrading maintainability. Converse-
ly, redundancy within line-replaceable units
(LRUs) could improve maintainability if it
allows LRUs to be changed less often.
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Fig. 2. Components of a controlled system.
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Adding a separate string of less-capable
control components may improve survivabili-
ty without improving reliability while
decreasing maintainability.

The principal categories of failure are plant
alterations, actuator and sensor failures,
computer failure, and power supply/trans-
mission failure. Actuators, sensors, and other
analog components are subject to many
failure types, some of which may be subtle
but nonetheless damaging: parameter
variation, abrupt or random bias shift, abrupt
or random scale factor shift, change in
saturation limits, drift, open circuit, hardover
(or stuck), and noise. Digital computer
hardware failures have entirely different
characteristics, but it can be argued that they
are never subtle, as internal clock rates are
high and the loss of coherent output is
obvious [5]. Computer software does not fail
per se, but it is susceptible to programming
faults that may surface unexpectedly and that
may be hard to detect. Multiple failures can
occur, particularly as a consequence of
physical damage, and they may be intermit-
tent; hence, reconfiguration logic must do
more than just accommodate isolated failures.
While not strictly system failures, operator
blunders and power transients may produce
system states that require prompt response.

Many factors must be considered in
designing failure-tolerant controls, including:
allowable performance degradation in the
failed state, criticality and likelihood of the
failure, urgency of response to failure,
tradeoffs between correctness and speed of
response, normal range of system uncertainty,
disturbance environment, component
reliability vs. redundancy, maintenance goals
(mean-time-between failures, mean-time-to-
failure, mean-time-to-repair, maintenance-
hours/operation-hours, etc.), size and cost of
LRUs, system architecture, limits of manual
intervention, and life-cycle costs. Assessing
each of these factors requires detailed
knowledge of the plant and its control
objectives.

Robust Control

Controlled system robustness is the ability
to maintain satisfactory stability and perfor-
mance in the presence of parameter varia-
tions, which could be due to component
failures in either the plant or the control
system. All practical controlled systems must
possess some degree of robustness against
operational parameter variations. Maintaining
stability with component failures is a
particular challenge when the plant is open-
loop-unstable, as control-system failure may
mean that the system becomes partially
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"open-loop." Alternatively, a plant alteration
(e.g., the breaking of a stabilizing spring or
the loss of an aircraft’s stabilizing surface)
may force an ordinarily stable system to
become unstable. In either case, reconfigura-
tion may offer the only recourse for stable
control. It also is possible for an open-loop-
stable plant to be destabilized by a feedback
controller with failed control loops [6]. This
lack of robustness is most likely to occur in
high-gain controllers, where open- and
closed-loop dynamics are substantially
different; robustness recovery typically
requires lowering the control gains in
systematic fashion [4],[6],[7]. The inherent
stability margins of certain algebraic control
laws (e.g., the linear-quadratic (LQ) regulator
[4],[81-[10]) may become vanishingly small
when dynamic compensation (e.g., the
estimator in a linear-quadratic-Gaussian
(LQG) regulator) is added [11]. Restoring the
robustness to that of the LQ regulator
typically requires increasing estimator gains
using the loop-transfer-recovery method
[41,[12].

Subjective judgments have to be made in
assessing the need for robustness and in
establishing corresponding control system
design criteria, as there is an inevitable
tradeoff between robustness and nominal
system performance [13]. The designer must
know the normal operating ranges and
distributions of parameter variations, as well
as the specifications for system operability
with failed components, else the final design
may afford too little robustness for possible
parameter variations or too much robustness
for satisfactory nominal performance.
Robustness traditionally has been assessed
deterministically [14]; it is an inherent part
of the classical design of single-input/single-
output systems, and there are multi-input/
multi-output equivalents based on singular-
value analysis of various frequency-domain
matrices (e.g., [4],[10],[12],[15]). The most
critical difficulty in applying these techniques
is relating singular-value bounds on return-
difference and  inverse-return-difference
matrices to real parameter variations in the
controlled system.

There is increasing interest in statistical
alternatives that make full use of knowledge
about potential system variations and that
work directly with real parameter variations.
The probability of instability was introduced
in [16] and is further described in [17],[18].
This method determines the stochastic
robustness of a linear, time-invariant system

by the probability distributions of closed-loop

eigenvalues, given the statistics of the
variable parameters in the controlled system’s
dynamic model. The probability that none of

these eigenvalues have positive real parts is
the scalar measure of robustness, a figure of
merit to be minimized by control system
design. Extensions to the analysis of perfor-
mance robustness and of nonlinear, time-
varying systems are direct. This approach
provides logical connections to reliability
analysis of control systems, discussed below.

It is easy to pose unreachable or irrelevant
goals for control robustness. Problems that
must be addressed in robust control system
design include: retaining controllability and
observability following component failure,
achieving satisfactory off-design performance
(including steady-state and tracking response
as well as stability), minimizing compromises
to on-design performance, and relating
robustness criteria to real component failures.

Parallel Redundancy

In principle, tolerance to control system
failures can be improved if two or more
strings of sensors, actuators, and computers,
each separately capable of satisfactory
control, are implemented in parallel. A voting
scheme is used for redundancy management,
comparing control signals to detect and
overcome failures. With two identical
channels, a comparator can determine
whether or not control signals are identical;
hence, it can detect a failure but cannot
identify which string has failed. Using three
identical channels, the control signal with the
middle value can be selected (or voted),
assuring that a single failed channel never
controls the plant. A two-channel system is
considered fail-safe because the presence of
a failure can be determined, but it is left to
additional in-line (or "built-in test") logic to
select the unfailed channel for control. The
three-channel system is fail-operational, as
the task can be completed following a single
failure. Systems with four identical control
channels are called "fail-op/fail-op” because
they can tolerate two failures and still yield
nominal performance. In any voting system,
it remains for additional logic to declare
unselected channels failed. Given the
vectorial nature of control, this declaration
may be equivocal, as middie values of
control-vector elements can be drawn from
different strings.

Of course, the voting logic itself has some
probability of failure, and a single-point
failure of a voting component could be
catastrophic. Consequently, it may be
preferable to let each channel remain
independent through the application of
control force, letting force averaging mediate
failures. If control outputs are averaged,
small variations among the parallel channels
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tend to cancel, and the net output is smooth;
however, a runaway failure can bias the net
signal away from its desired value. Voting
and isolation of failed channels then can be
carried out as an auxiliary process whose
own failure would not disable the entire
system. Once a failed channel has been
disengaged, the total available control force
is rteduced, changing the performance
characteristics of the controlled system.

For perfect output voting of M identical
parallel channels each with N serial compo-
nents, the failure probability P, of the overall
control system is,

M

Py

=

1 _H efl‘t

j=1 i=1

q

[(A,+X_+R,) (- DAL -R™.

(12)
Sensor, computer, and actuator failure rates
are A,, A, and A, (assumed to be small and
uncorrelated), (¢ - £,) is the mission duration,
and R is the single-string reliability [19],[20].
(In the present context, "sensor” implies the
entire suite of sensors needed for control, and
"computer” and "actuator” are defined
similarly.) If the components can be cross-
strapped perfectly (i.e., if a failed component
from one string can be connected to an
unfailed string), the overall probability of
failure is reduced to

M N
P11 [1-TT (1 e
j-1 i-1

=AY xﬁ’xﬁ’)(tf- LA
(13)

Unfortunately, failures cannot be detected
perfectly, and cross-strapping itself is subject
to failure. The probability of detecting,
isolating, and recovering from a failure —
called coverage — is a more meaningful
measure than P,. For a three-channel control
system with output voting alone, the
coverage C [21], or net reliability, is

C=R3+3R2(1~R)P, +3(1—R)2RPr

(14)
where P _is the probability of recovering from
the first failure andP is the probability of
recovering from a second failure. These
probabilities are not necessarily the same, as
different processes may be used for failure
detection: voting for the first failure, in-line
detection for the second. Unless the recovery
probabilities are very nearly one, the
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maximum benefits of redundancy will not be
realized.

Problems encountered in implementing
parallel redundancy include: selection logic,
nuisance trips, generic failures, reliability of
voting/selection units, control force conten-
tion, cross-strapping, increased cost and
maintenance, number of operating channels
required for dispatch, and connectors. Fault-
detection logic must be sensitive to failures
yet insensitive to small operational errors,
including those due to non-colocation of
sensors or actuators. Nuisance trips (false
indications of failure) must be minimized to
assure that useful resources are kept on-line
and missions are not aborted prematurely.
Redundancy does not preclude identical
damage to parallel systems, especially when
they are located in close proximity. Cross-
strapping implies complex, "intelligent"
interconnections; however, if it is not
implemented, a single component failure
brings down an entire control string. Voting
can be done in all operating control comput-
ers, but arbitration is required when these
computers disagree. For the ideal parallel
system, the probability P, that some compo-
nent will fail is,

Po=M[(A +A +A)(1,-1)] (15

so the likelihood of component failure is
increased by redundancy. It is necessary to
establish rules for dispatching the controlled
system: if one control string is not operation-
al but the others are, should the process be
initiated? For a manufacturing system, the
answer might be "yes,” while for a transport
aircraft, it might be "no." A non-trivial aspect
of redundant control is the need for more
electrical connectors, the components most
likely to cause trouble!

One insidious problem associated with
parallel redundancy is the lack of controlla-
bility of internal state components [22].
Consider the dual-redundant controlled
system of Fig. 3, where the individual control
outputs are averaged by M, = M,, and F, =
F; G, = G,, and N, = N,. The dynamic
equations can be expressed as

xA FA GAMI GAMI *a
| =|G\N, F, 0 x|+
: GN, o F, x

2 1

(16)

.

1|

=
QAQe

The controllability matrix € of this system

0 2GM,G, 2(F,G,M,+G,MF)G,
G, FG, (2N,G M, + F})G,
G, F,G, (2N,G M, + F)G,

amn

Complete controllability requires that C be
of maximal rank; however, that is not
possible because the bottom two rows are
repeated. In other words, the compensator
state elements are not controllable. If the
corresponding modes are stable, then small
variations between the two controllers tend
to decay; however, if the modes are unstable
or neutrally stable (as in the case of integral
compensation), uncontrollable drift can occur,
leading to divergent control outputs, nuisance
trips, and possible isolation of otherwise
operable channels.

If there are sufficient cues to warn a human
operator of system failure and plausible
failure effects are slow enough to allow

A

™

FaA

Fig. 3. Model of a dual-redundant controller.
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manual intervention, many of the benefits of
parallel redundancy can be obtained by
operating with a single control string,
keeping an idle backup control string at the
ready. The backup system can be similar or
dissimilar to the primary system; however, if
it is less capable, ability to perform the task
will be degraded.

Parallel redundancy can protect against
control-system component failures, but it
does not address failures of plant compo-
nents. Analytical redundancy provides a
capability to improve tolerance to failures of
both types. It does this with fewer additional
components, flexible cross-strapping, and
increased computation; as a consequence,
there is greater reliance on the control
computer, producing an even greater need for
computer reliability.

Analytical Redundancy

The principal functions of analytical
redundancy are failure detection (through
built-in-test alarms or off-nominal operation),
failure identification (recognition of which
components are failed), and control-system
reconfiguration (adaptation to sensed or
estimated failures). Detection and identifica-
tion may be combined in built-in test
functions. Although in-line monitors provide
direct and rapid response to specific failures,
it is impossible to provide full coverage of
all failures by specialized instrumentation
(which itself is subject to failure). A practical
failure detection, identification, and reconfig-
uration (FDIR) solution can be found in the
control computer’s ability to compare
expected response to actual response,
inferring component failures from the
differences and changing either the structure
or the parameters of the control system as a
consequence.

Failure detection is exemplified by the
generalized likelihood ratio test [23], which
uses a Kalman-filter-like recursive equation
to sense discrepancies in system response.
The test compares the probability of the
estimator’s actual measurement residual [z —
h(*)] with its expected value, detecting a
jump that can be related to failure. It is very
sensitive to off-nominal performance and is
easy to implement; however, the test does not
produce a tight indication of the failed
element, and modeling errors can hamper
detection [24]. Specificity and robustness of
failure-detection logic — including the ability
to combine logic for parallel- and analytic-
redundancy management — can be improved
using a residual-based parity vector, whose
mean value is zero in the no-fail case [25].
Each failure type produces a distinct

signature (i.e., a unique pattern in the
elements of the parity vector) indicating the
failure. Because variations in a measurement
residual are tested, the method is more
sensitive to sensor failures than to actuator
failures.

Failure identification for actuators as well
as sensors may require a more specific test,
such as multiple-model hypothesis testing
[26]-[29]. Each failure hypothesis (including
that of no failure) is modeled in a separate
Kalman filter, and the most likely hypothesis
(based on probability estimates derived from
the filters’ residuals [4]) indicates the failure
state. This is a computationally intensive
technique, as not only the failed device must
be hypothesized but the type, magnitude, and
(if taken to the extreme) even the time of the
failure must be modeled as well.

measurement noise [30].

Reconfiguration attempts to retain nominal
stability and performance characteristics. At
a minimum, this requires that on-design
controllability and observability (e.g., [4]) be
preserved. There is a tradeoff between speed
of reconfiguration, computer storage require-
ments, and flexibility of reaction. Controller
structures and parameters for all conceivable
failed states can be generated off-line and
stored for eventual use; however, this
approach could require an enormous memory.
Conversely, on-line design requires minimal
storage and (in principle) can adjust to
unanticipated failures, but design algorithms
must be executed and their results accepted
soon enough to provide sufficient failure
tolerance. With failed sensors, reconstruction
of missing measurements may increase state-

Table 1
Failure Types and Related Control-Law
Parameters
Failure Parameter
Plant Alteration Y,0.K,C
Actuator Failure u,0,C
Sensor Failure z,h K
Bias Shift b or b,
Scale Factor Shift S,or S,
Saturation Limit Change KorC
Drift b, or b,
Open Circuit u,0,C, and/or z,h,K
Hardover/Stuck Open Circuit, plus b, and/or b,
Noise K

Consider a modified form of the generic
control structure:

Au, - -S C,[E,]1+b, (18)

§k+l = ‘.Pkgk +0,Au,
+K,[Sz,-h(£,u)+b]. 19

S, and §_ are scale-factor matrices on the
measurements and control, and b, and b, are
bias vectors. Within this framework, we can
identify the elements of the control system
that need to be modified following various
failures, as in Table L. If the plant is altered,
it may be necessary to change the internal
model (¥, ©), as well as the estimation and
control gains (K, C), and so on for the
remaining failure types. Precise failure
identification is an important antecedent of
control reconfiguration. Both "hard" (fast)
and "soft"” (slow) failures must be expected,
and logic must accommodate command
inputs (set-point transients), disturbances, and

estimate errors; with failed effectors, the
remaining actuators may have to operate with
larger displacements and rates [31]. If the
plant is open-loop-unstable, higher control
activity combined with existing control-
saturation limits may reduce the state space
within which closed-loop stability can be
assured [32],[33].

Artificial Intelligence

Control theory and artificial intelligence
both strive to hamess mathematics and logic
for practical problem solving, but control
theory finds its origins in dynamics and
electronics, while artificial intelligence
springs from biology, psychology, and
computer science. Failure-tolerant control
systems can benefit from blending these
perspectives. Two approaches have been
followed in the field of artificial intelligence.
Artificial neural networks are motivated by
input-output and learning properties of living
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neural networks, although in application the
network becomes an abstraction that may
bear little resemblance to its biological
namesake. Expert systems mimic the
intelligent functions of an expert or group of
experts. Initially, artificial neural networks
appeared impractical because computers of
the day were too slow and massive, and
methods for training neural networks (e.g.,
perceptrons and adalines) were thought to be
unworkable [34],[35]. In the intervening
years, the expert system approach proved to
be quite achievable; hence, it received major
emphasis in both theoretical development and
applications. New insights about learning and
improved electronics have restored interest in
neural networks.

Expert Systems

Expert systems are computer programs that
are meant to use heuristic relationships and
facts as human experts do. The tasks and
requirements of such systems (Table II [36])
are important for reconfigurable control
systems, but there is a need to go beyond the
usual limitations of static expert systems.
Interpretation, diagnosis, monitoring,
prediction, planning, and design must be
cyclical, dynamic processes that can reconfig-
ure the control system in "real time" (i.e.,
with negligible delay).

The expert system offers a useful formalism
for failure-tolerant control because it can

Table II
Functions of an Expert System

Task Requirements

Interpretation
Diagnosis
Monitoring
Prediction
Planning
Design

Correct, consistent, complete analysis of data
Fault finding

Recognition of alarm conditions

Reasoning about time, forecasting the future
Defining actions to achieve goals

Creating objects that satisfy requirements

consider diverse data sources and subproblem
abstractions. Failure indicators may be
continuous variables generated by measure-
ments or estimators, or they may be discrete
variables from in-line monitors or discrete-
event models. Indicators can be considered
the output of productions, routines with
unique input-output characteristics that
produce goal conditions from initial condi-
tions. Hence, the expert system can be
implemented as a production system or a
rule-based system consisting of a data base,
a rule base, and a rule interpreter (or
inference engine) [37]. A production system
generates actions predicated on the data base,
which contains measurements as well as
stored data or operator inputs. Furthermore,
the expert system can combine qualitative
and quantitative reasoning, heuristics, and
statistics [38].
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Fig. 4. Expert-system approach to analytical redundancy.
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A rule-based failure-tolerant control system
contains FDIR logic in expert-system format
(Fig. 4). The expert system is an adjunct to
the nominal control structure, which remains
the most efficient means of effecting precise
control. From the control perspective, the
expert system performs its decision-making
tasks in a concentric outer loop; from the
expert-system perspective, control activity is
a side effect that supports the decision-
making process.

An expert system performs deduction using
knowledge and beliefs expressed as parame-
ters and rules. Parameters have values that
either are external to the expert system or are
set by rules. An "IF-THEN" rule evaluates a
premise by testing values of one or more
parameters related by logical "ANDs" or
"ORs," as appropriate, and it specifies an
action that set values of one or more
parameters. The rule base contains all the
rules of the expert system, and the inference
engine performs its function by searching the
rule base. Given a set of premises (evidence
of the current state), the logical outcome of
these premises is found by a data-driven
search (forward chaining) through the rules.
Given a desired or unknown parameter value,
the premises needed to support the fixed or
free value are identified by a goal-directed
search (backward chaining) through the rules.
Querying (or firing) a rule when searching in
either direction may invoke procedures that
produce parameter values as side effects.

Both search directions are used in a rule-
based control system [39]. Backward
chaining drives the entire process by
demanding that a parameter such as CON-
TROL CYCLE COMPLETED have a value of
true. The inference engine works back
through the rules to identify other parameters
that allow this and, where necessary, triggers
side effects like estimation and control to set
these parameters to the needed values.
Backward chaining also is invoked to learn
the value of ABNORMAL BEHAVIOR
DETECTED, be it true or false. Conversely,
forward chaining indicates what actions can
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Fig. 5. Dependency graph of a hydraulic control system.

be taken as a consequence of the current
state. If SENSOR MEASUREMENTS
REASONABLE is true, and ALARM DE-
TECTED is false, then failure identification
and reconfiguration side effects can be
skipped on the current cycle.

Rules and parameters can be represented as
objects or frames using ordered lists that
identify names and attributes. Specific rules
and parameters are represented by lists in
which values are given to the names and
attributes. The attribute lists contain not only
values and logic, but additional information
for the inference engine. This information
can be used to compile parameter-rule-
association lists that speed execution [40].

Frames provide useful parameter structures
for related productions, such as analyzing the
origin of one or more failures in a complex,
connected system [41]. The dependency
graph of Fig. 5 showing relationships
between actuators and their power supplies
can be represented by a group of lists.
Frames possess an inheritance property; thus
a particular object can lay claim to the
properties of the object type. A two-step
process estimates the failure state. In /ocal
failure analysis, forward chaining assesses
the impact of known malfunctioning units,
and backward chaining finds possible causes
of the anomalies. In global failure analysis,
local failure models are combined, an
inclusion property prunes redundant models,
and a heuristic evaluation based on criticality,
reliability, extensiveness, implications, level
of backtracking, and severity produces a list
of most likely failure models.

20

Expert systems process lists, so it is not
surprising that LISP (LISt Processing) is the
computer language of choice for preliminary
development. However, LISP is not a fast,
efficient language and is ill-suited to real-
time applications. Moreover, a rule-based
control system uses numerical algorithms that
are most effectively coded in languages like
Pascal, C, or FORTRAN. Consequently,
knowledge-base translation from LISP to a
procedural language is a useful (if not
necessary) adjunct of rule-based control
system design. This not only speeds program
execution, it integrates control and decision-
making processes, revealing new possibilities
for incorporating diagnostic procedures in
failure detection and identification [42].

Rule-based control systems must make
decisions under uncertainty, and they can do
so either by invoking certainty-equivalent
logic, which is analogous to a well-known
concept of stochastic optimal control, or by
uncertainty management in the decision-
making process. In the LQG regulator,
uncertainties due to disturbances and
measurement error are processed in the
estimator, and the feedback control law
operates on the state estimate as if it were
the actual state [4]. The optimal control gains
for the stochastic and deterministic cases are
identical. Because the rule-based control
system described above makes its best
estimates of the failure state in the control
logic, the expert system controlling FDIR can
treat these results deterministically, realizing
little or no improvement from further
uncertainty processing. If inner-loop estima-

tion is decidedly sub-optimal, uncertainty
management can help, using probability
theory, Dempster-Shafer theory, possibility
theory (fuzzy logic), certainty factors, or the
theory of endorsements [43]. Bayesian belief
networks [44], which propagate event
probabilities up and down a causal tree, have
particular appeal for failure-tolerant control
and are being applied in a related program to
assist aircraft crews in avoiding hazards [45].

Teaching the expert system the rules and
parameters that generalize the decision-
making process from specific knowledge (the
process of induction) is another concern.
Here, we have followed two approaches at
Princeton. The first is called rule recruitment
[46], and it involves the manipulation of
"dormant rules” (or rule templates). Each
template possesses a fixed premise-action
structure and refers to parameters through
"pointers.” Rules are constructed and
incorporated in the rule base by defining
links and modifying parameter-rule-associa-
tion lists. Learning is based on repeated
simulations of the controlled system with
alternative  failure scenarios. Learned
parameter values then can be defined as
"fuzzy functions" [47] contained in rule
premises. The second approach [48] has two
parts: analysis of variance identifies the
factors that make statistically significant
contributions to the decision metric, and the
"ID3" algorithm [49] extracts rules from the
training set by inductive inference. The rules
take the form of decision trees that predict
the performance of alternative strategies.

Expert systems are incorporated in the
FDIR process to accommodate declarative
functions, leaving reflexive functions to the
estimation and control laws [46]. Declarative
action requires a deep understanding of cause
and possible effect. Reflexive action is
automatic, quickly relating stimulus to
response. Both are needed in intelligent
failure-tolerant control.

Artificial Neural Networks

Artificial neural networks consist of nodes
that simulate the neurons and weighting
factors that simulate the synapses of a living
nervous system. They are good candidates for
performing a variety of reflexive functions in
failure-tolerant control systems because they
are potentially very fast (in parallel hardware
implementation), they are intrinsically
nonlinear, they can address problems of high
dimension, and they can learn from experi-
ence. From the biological analogy, the
neurons are modeled as switching functions
that take just two discrete values; however,
"switching” is softened to "saturation" in
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common usage, not only to facilitate learning
of the synaptic weights but to admit the
modeling of continuous functions.

The neural networks receiving most current
attention are memory-less expressions that
approximate functions of the form

y = flx) (20)

where x and y are input and output vectors
and f{») is the (possibly unknown) relation-
ship between them. Neural networks can be
considered generalized spline functions that
identify efficient input-output mappings from
observations [50],[51]. Rather than approxi-
mating (20) by a series, an N-layer neural
network represents the function by recursive
operations,

xU() - s(lc)[w(k—l)x.(k~])] é s(lr)[n(k)]’
k=1to N
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where y = x® and x = x®, W*? is a matrix
of weighting factors determined by the
learning process, and s*[.] is an activation-
function vector whose elements normally are
identical, scalar, nonlinear functions Gi(n/)
appearing at each network node:

sPMW] = [6,(M)..o, M. (22)

One of the inputs to each layer may be a
unity threshold element that biases the
activation-function output.

The sigmoid is commonly used as the
artificial neuron. It is a saturating function
defined variously as o(m) = 1/(1 + ™) for
output in (0,1) or

om)y=(1-e™/(1+e™) =tankn

for output in (-1,1). Recent results indicate
that any continuous mapping can be approxi-
mated arbitrarily closely with sigmoidal
networks containing a single hidden layer (N
= 2) [52],[53]. It appears that certain
symmetric functions, such as the radial basis
function (6(n) = e™) or the derivative of
the sigmoid may have better convergence
properties for some functions. Backpropaga-
tion leaming algorithms for the elements of
W® typically involve a gradient search (e.g.,
[54]), although learning speed and accuracy
are improved using the extended Kalman
filter [55]. The Cerebellar Model Articulation
Controller (CMAC) is an alternative neural
network formulation with somewhat different
properties but similar promise for application
in control systems {56].

Equation (20) can represent many functions
of importance in dynamics and control. For
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example, defining x as [x(2),u(),w(s),pl,

equation (1) takes that form; together with’

the implied integration, neural networks can
model plant dynamics. A discrete-time model
of truck dynamics is demonstrated in {57],
and a means of using neural networks in
system identification is described in
[581,159]. With x = [x(r),u(?),w(t),n(1),p], the
measurement vector (2) also could be
represented. There is little advantage to
expressing a linear control law like (7) by a
neural network; however, if the control gain
matrix C is scheduled by operating point or
time, that relationship could be modeled by
a neural network. More generally, if a
nonlinear control function such as u =
u(X,X4.0of) 1 generated by optimization,
nonlinear inversion, or model matching, it
can be represented by a neural network (e.g.,
[571,[60]1,(61]). Consequently, neural
networks can be incorporated in most of the
control and FDIR techniques mentioned
above.

Neural networks can be applied to failure
detection and identification by mapping data
patterns (or feature vectors) associated with
failures onto detector/identification vectors
(e.g., [62]-[64]). To detect failure, the output
is a scalar, and the network is trained (for
example) with "1" corresponding to all
failure patterns and "0" corresponding to no
failure. To identify specific failures, the
output is a vector, with a training value of
"1" in the /" element corresponding to the i*
failure mode. For M failure modes, either M
neural networks with scalar outputs are
employed or a single neural network with M-
vector output is used; there are evident
tradeoffs related to efficiency, correlation,
and so on. The data patterns associated with
each failure may require feature extraction,
pre-processing that transforms the input time
series into a feature vector. In [59], this was
done by computing two dozen Fourier
coefficients of the input signal in a moving
temporal window. As an alternative, the
feature vector could be specified as a parity
vector [25], and the neural network could be
used for the decision-making logic in FDI.
When assessing the efficiency of neural-
network FDI logic, feature extraction must be
considered part of the total process.

Of course, not all of the suggested neural
nets can leam on-line, as a training set must
contain desired outputs as well as available
inputs. In the cited examples, [57] and
[601,[62],(63] use off-line learning, while
[58],(591,[61] allow on-line learning. Refer-
ence [65] trains a neural network using an
expert system that previously learned the
desired control strategy. Once an initially
trained system is on-line, the "off-line"

training process could be executed in parallel
with the on-line operation, allowing updates
to be made as appropriate. If the control
process that generates on-line training data
performs satisfactory control, the need for the
neural network must be questioned. The
ultimate goal should be to provide satisfacto-
ry failure tolerance with minimum hardware
and software.

Neural networks intended to detect failures
would learn little from monitoring normally
operating plants. In any case, the neural-
network learning rate is slow, probably too
slow to expect neural networks of apprecia-
ble dimension to adapt to system failures in
real time. Hence, the immediate application
of neural networks in failure-tolerant control
systems is to approximating nonlinear
functions used by the FDIR approaches
introduced earlier. On-line learning can serve
to fine-tune this logic over a period of time.

Conclusions

Intelligent failure-tolerant control can do
much to improve the operating characteristics
of systems. These improvements depend
upon a good knowledge of the plant, reliable
control elements, and sufficient observability
and controllability following failures.
Inherent robustness, the ability to accommo-
date failures without adaptation, is a highly
desirable attribute, but it may not be
sufficient to contain all system failures.
Because split-second decision and reconfigu-
ration may be required, a high degree of pre-
training should be assumed; even intelligent
systems cannot learn about new failure
modes and respond to them properly at the
same time (except by chance). Failure-
tolerant systems must be able to distinguish
between failures, disturbances, and modeling
errors, responding to each in the proper way.
Probability theory provides an underlying
theme that unifies failure-tolerant design,
from the probability of instability of robust
systems, through the probability of failure of
redundant systems, to the probability of
correct FDIR response in analytical redun-
dancy. Artificial intelligence is a useful
adjunct to parallel and analytical redundancy,
as expert systems and artificial neural
networks offer new alternatives for both
declarative and reflexive response to system
failures.
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