Spacecraft Sensors and Actuators

Space System Design, MAE 342, Princeton University Robert Stengel

- Attitude Measurements
- Attitude Actuators
- Translational Measurements
- Mechanical Devices

Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE345.html

1

Attitude Measurements

- Measurement of an angle or angular rate of the spacecraft with respect to a reference frame, e.g.,
 - Earth's magnetic field
 - Magnetometer
 - Direction to the sun
 - · Sun sensor
 - Earth's shape
 - · Earth horizon sensor
 - Inertial frame of the universe
 - · Star sensor
 - Gyroscopes
- Mission requirements dictate spacecraft sensor configuration

6

Potential Accuracies of Attitude Measurements

Potential accuracy
1 arc second
1 arc minute
6 arc minutes
1 arc minute
30 arc minutes
6 arc minutes

Note: This table gives only a guideline. The GPS estimate depends upon the 'baseline' used (see text).

Fortescue

7

7

Magnetometer

- · lonized gas magnetometer
- · Flux gate magnetometer
 - Alternating current passed through one coil
 - Permalloy core alternately magnitized by electromagnetic field
 - Corresponding magnetic field sensed by second coil
 - Distortion of oscillating field is a measure of one component of the Earth's magnetic field

- Three magnetometers required to determine direction of planet's magnetic field vector and magnitude of the field
- Two uses: <u>exploratory</u> measurements of unknown fields, and spacecraft <u>attitude measurement</u> for known fields

8

Body Orientation from Magnetometer

- Earth's magnetic field vector, b_i, function of spacecraft position, (x, y, z)
- Body orientation vector, b_B, related to b_I by
 - rotation matrix, H_B, from inertial to body frame and
 - calibration rotation matrix, S

$$\mathbf{b}_{B} = \mathbf{S}_{mag} \mathbf{b}_{mag}$$

$$\mathbf{b}_{I} = \mathbf{H}_{B}^{I} \left[\mathbf{b}_{B} (x, y, z) + \text{error} \right]$$

$$\mathbf{S}_{mag} \left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3} \right) = \text{calibration rotation matrix}$$

$$\mathbf{H}_{B}^{I} = \text{body to inertial rotation matrix}$$

- Estimation of yaw, ψ , pitch, θ , and roll, ϕ , angles requires additional information
 - Equation has 2 degrees of freedom, but there are 3 unknowns

C

Single-Axis Sun Sensor

$$\tan \alpha = d / h$$

 $\sin \alpha' = n \sin \alpha$ (Snell's law)
 $n = \text{index of refraction}$

- Transparent block of material, known refractive index, n, coated with opaque material
- · Slit etched in top, receptive areas on bottom
- Sun light passing through slit forms a line over photodetectors
- Distance from centerline determines angle, α
- With index of refraction, n, angle to sun, α , is determined
- · Photodetectors provide coarse or fine outputs

Dual-Axis Sun Sensors

Orthogonal sun sensors determine direction (two angles) to the sun

Two measurements, three unknowns

Three-axis attitude determination requires additional information 11

11

Dual-Axis Sun Sensors

Dual single-axis detection Four-quadrant detection

12

Static Earth Horizon Sensor

- · Infrared sensing
- Field of view larger than the entire earth's edge (limb)
- Determines local vertical: provides orientation with respect to the nadir

13

13

Scanning Earth Horizon Sensor

- · Spinning assembly identifies light and dark IR areas
- Width of light area identifies width angle, η

 $\Omega = \omega_{scanner} (t_{LOS} - t_{AOS})$: Width angle $t_{LOS/AOS}$: Time of loss/acquisition of signal

 $\cos \rho = \cos \gamma \cos \eta + \sin \gamma \sin \eta \cos (\Omega/2)$

ho : Earth angular radius

 γ : Half-cone angle

 η : Scanner nadir angle

14

14

Fortescue

Dual Earth Horizon Sensor Measures roll and pitch angles, more precise nadir angle

15

15

Star Tracker/Telescope

- Coarse and fine fields field of view
- Star location catalog helps identify target
- Instrument base must have low angular velocity

(x, y) location of star on focal plane determines

16

Typical Spacecraft Sensor Suites

- Most precise measurements (e.g., scientific satellites, lunar/deep space probes)
 - star trackers
- Moderate accuracy requirements
 - coarse digital sun sensors
 - horizon sensors
 - magnetometers
- · Spinning satellites
 - single-axis sun sensors
 - magnetometers
 - horizon sensors
- High-altitude (e.g., geosynchronous) satellites
 - optical sensors
 - gyroscopes

17

17

Mechanical Gyroscopes

Body-axis moment equation

Angular momentum:
$$\mathbf{h}_{B} = \mathbf{I}_{B} \mathbf{\omega}_{B}$$

$$\dot{\mathbf{\omega}}_{B} = \mathbf{I}_{B}^{-1} \left(M_{B} - \tilde{\mathbf{\omega}}_{B} \mathbf{I}_{B} \mathbf{\omega}_{B} \right)$$

- Assumptions
 - Constant nominal spin rate, ω_m about z axis
 - $-I_{xx} = I_{vv} << I_{zz}$
 - Small perturbations in ω_x and ω_y

18

Gyroscope Equations of Motion

Linearized equations of angular rate change

$$\begin{bmatrix} \Delta \dot{\omega}_{x} \\ \Delta \dot{\omega}_{y} \\ 0 \end{bmatrix} = \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix}^{-1} \begin{bmatrix} M_{x} \\ M_{y} \\ 0 \end{bmatrix} - \begin{pmatrix} 0 & -\omega_{z_{o}} & \Delta \omega_{y} \\ \omega_{z_{o}} & 0 & -\Delta \omega_{x} \\ -\Delta \omega_{y} & \Delta \omega_{x} & 0 \end{pmatrix} \begin{pmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{pmatrix} \begin{pmatrix} \Delta \omega_{x} \\ \Delta \omega_{y} \\ \omega_{z_{o}} \end{pmatrix}$$

$$\begin{bmatrix} \Delta \dot{\omega}_{x} \\ \Delta \dot{\omega}_{y} \\ 0 \end{bmatrix} = \begin{bmatrix} [M_{x} - \omega_{z_{o}} (I_{zz} - I_{yy}) \Delta \omega_{y}] / I_{xx} \\ [M_{y} - \omega_{z_{o}} (I_{xx} - I_{zz}) \Delta \omega_{x}] / I_{yy} \\ 0 \end{bmatrix}$$

or

$$\begin{bmatrix} \Delta \dot{\omega}_{x} \\ \Delta \dot{\omega}_{y} \end{bmatrix} = \begin{bmatrix} 0 & \omega_{z_{o}} (I_{yy} - I_{zz}) / I_{xx} \\ \omega_{z_{o}} (I_{zz} - I_{xx}) / I_{yy} & 0 \end{bmatrix} \begin{bmatrix} \Delta \omega_{x} \\ \Delta \omega_{y} \end{bmatrix} + \begin{bmatrix} M_{x} / I_{xx} \\ M_{y} / I_{yy} \end{bmatrix}$$

19

Gyroscope Natural Frequency

Laplace transform of dynamic equation

$$\begin{bmatrix} s & -\omega_{z_o} (I_{yy} - I_{zz})/I_{xx} \\ -\omega_{z_o} (I_{zz} - I_{xx})/I_{yy} & s \end{bmatrix} \begin{bmatrix} \Delta\omega_{y}(s) \\ \Delta\omega_{y}(s) \end{bmatrix} = \begin{bmatrix} M_{x}(s)/I_{xx} \\ M_{y}(s)/I_{yy} \end{bmatrix}$$

Characteristic equation
$$\Delta(s) = s^2 + \omega_{z_o}^2 \left(\frac{I_{zz}}{I_{xx}} - 1 \right)^2 = 0$$

Natural frequency, ω_n of small perturbations

$$\omega_n = \omega_{z_o} \left(\frac{I_{zz}}{I_{rx}} - 1 \right) \quad rad \, / \sec$$

Example

$$\omega_{z_o} = 36,000 \text{ rpm} = 3,770 \text{ rad/sec}$$

$$\text{Thin disk: } \frac{I_{zz}}{I_{xx}} = 2$$

$$\omega_n = 3,770 \text{ rad/sec} = 600 \text{ Hz}$$

Two-Degree of Freedom Gyroscope

- Free gyro mounted on gimbaled platform
- · Gyro "stores" reference direction in space
- Angle pickoffs on gimbal axes measure pitch and yaw angles
- Direction can be precessed by applying a torque

21

Single-Degree of Freedom Gyroscope

 Gyro axis, ζ, constrained to rotate with respect to the output axis, y, only

$$\begin{bmatrix} \Delta \dot{\theta} \\ \Delta \dot{\omega}_{y} \end{bmatrix} = \begin{bmatrix} \Delta \omega_{y} \\ (h_{rotor} \Delta \omega_{x} + M_{y_{control}}) / I_{yy} \end{bmatrix}$$

- "Synchro" measures axis rotation, and "torquer" keeps Δψ small
- Torque applied is a measure of the input about the x axis

$$M_{y_{control}} = k_{\theta} \Delta \theta + k_{\omega} \Delta \omega_{y} + k_{c} \Delta u_{c}$$

22

Rate and Integrating Gyroscopes

- Large angle feedback produces a rate gyro
 - Analogous to a mechanical spring restraint
- Large rate feedback produces an integrating gyro
 - Analogous to a mechanical damper restraint

$$\Delta \dot{\omega}_{y_{SS}} = 0 = \left(h_{rotor} \Delta \omega_{x_{SS}} + k_{\theta} \Delta \theta_{SS}\right) / I_{yy}$$
$$\Delta \theta_{SS} = -\frac{h_{rotor}}{k_{\theta}} \Delta \omega_{x_{SS}}$$

$$\Delta \dot{\omega}_{y_{SS}} = 0 = \left(h_{rotor} \Delta \omega_{x_{SS}} + k_{\omega} \Delta \omega_{y_{SS}}\right) / I_{yy}$$
$$\Delta \omega_{y_{SS}} = -\frac{h_{rotor}}{k_{\omega}} \Delta \omega_{x_{SS}}$$
$$\Delta \theta_{SS} = \Delta \phi_{SS}$$

23

23

Optical Gyroscopes

- Sagnac interferometer measures rotational rate, Ω
 - $\Omega = 0$, photons traveling in opposite directions complete the circuit in the same time
 - Ω ≠ 0, travel length and time are different
- On a circular path of radius R:

$$\begin{split} t_{CCW} &= \frac{2\pi R}{c} \bigg(1 - \frac{R\Omega}{c} \bigg); \quad t_{CW} = \frac{2\pi R}{c} \bigg(1 + \frac{R\Omega}{c} \bigg) \\ \Delta t &= t_{CW} - t_{CCW} = \frac{4\pi R^2}{c^2} \Omega = \frac{4A}{c^2} \Omega \end{split}$$

c:speed of light; R:radius; A:area

24

Ring Laser Gyro

- Laser in optical path creates photon resonance at wavelength,
- Frequency change in cavity is proportional to angular rate
- Three RLGs needed to measure three angular rates

$$\Delta f = \frac{4A}{\lambda P} \Omega$$

P: perimeter length

25

Fiber Optic Gyro

- Photon source and sensor external to fiber optics
- Length difference for opposite beams, ΔL

A: included areaN: number of turns

Phase difference proportional to angular rate

$$\Delta L = \frac{4AN}{c}\Omega$$

$$\Delta \varphi = \frac{8\pi AN}{\lambda c} \Omega$$

Spring Deflection Accelerometer

$$\Delta \ddot{x} = -k_s \Delta x / m$$

$$\Delta x = \frac{m}{k_s} \Delta \ddot{x}$$

- · Deflection is proportional to acceleration
- · Damping required to reduce oscillation

28

- 3 accelerometers
- 3 rate or rate-integrating gyroscopes
- Platform orientation "fixed" in space
- Vehicle rotates about the platform
- **Need for high precision** instruments
- Drift due to errors and constants of integration
- Platform re-oriented with external data (e.g., GPS)

Inertial Measurement Units

Gimbaled Physical Platform

31

Gimbal-less Physical Platform

- Air bearing floats platform in lieu of gimbals
- Peacekeeper IMU*
- · Reduced errors due to fluidic suspension
- Instruments subjected to low dynamic range, allowing high precision

*IEEE Control Systems Magazine, 2/08

32

Strapdown Inertial Measurement Units

- Rate gyros and accelerometers rotate with vehicle
- High dynamic range of instruments is required
- Inertial reference frame is computed rather than physical
- Use of direction cosine matrix and quaternions for attitude reference

33

33

MicroElectroMechanical (MEMS) Strapdown Inertial Measurement Units

- · Less accurate than precision physical platform
- High drift rates
- Acceptable short-term accuracy
- Can be integrated with magnetometer and pressure sensor, updated with GPS

34

Global Positioning System

- Six orbital planes with four satellites each
 - Altitude: 20,200 km (10,900 nm)
 - Inclination: 55 deg
 - Constellation planes separated by 60 deg
- Each satellite contains an atomic clock and broadcasts a 30-sec message at 50 bps
 - Ephemeris
 - ID
 - Clock data
 - Details of satellite signal at http://en.wikipedia.org/wiki/Gps
- http://www.youtube.com/watch?v=v_6yeGcpoyE

39

39

Position Fixing from 4 GPS Satellites

 Pseudorange estimated from speed of light and time required to receive signal

User clock inaccuracy produces error, $C_u = c\Delta t$

Position Fixing from Four GPS Satellites

$$R_{1} = \sqrt{(x_{1} - x_{u})^{2} + (y_{1} - y_{u})^{2} + (z_{1} - z_{u})^{2}} = R_{1_{p}} + C_{u}$$

$$R_{2} = \sqrt{(x_{2} - x_{u})^{2} + (y_{2} - y_{u})^{2} + (z_{2} - z_{u})^{2}} = R_{2_{p}} + C_{u}$$

$$R_{3} = \sqrt{(x_{3} - x_{u})^{2} + (y_{3} - y_{u})^{2} + (z_{3} - z_{u})^{2}} = R_{3_{p}} + C_{u}$$

$$R_{4} = \sqrt{(x_{4} - x_{u})^{2} + (y_{4} - y_{u})^{2} + (z_{4} - z_{u})^{2}} = R_{4_{p}} + C_{u}$$

- Four equations and four unknowns (x_u, y_u, z_u, C_u)
- · Accuracy improved using data from more than 4 satellites

41

41

Integrated Inertial Navigation/GPS System

42

Angular Attitude Actuators

Internal Devices

Momentum/reaction wheels
Control moment gyroscope
Nutation dampers

External Devices

Magnetic coils
Thrusters
Solar radiation pressure

43

43

Momentum/Reaction Wheels

Flywheels on motor shafts

Reaction wheel *rpm* is varied to trade angular momentum with spacecraft for control

Three orthogonal wheels vary all components of angular momentum Fourth wheel at oblique angle would provide redundancy

44

Momentum/ Reaction Wheels

 Momentum wheel operates at high rpm and provide spin stability (~dual-spin spacecraft) plus control torques

- Reaction wheel rpm is low, varied to trade angular momentum with the spacecraft for control
 - Three orthogonal wheels vary all components of angular momentum
 - Fourth wheel at oblique angle provides redundancy

45

45

Control Moment Gyroscope

Gyros operate at constant rpm

Small torque on input axis produces large torque on output axis, modifying spacecraft momentum

One or two degrees of freedom

46

Nutation Dampers

- Nutation dampers dissipate angular energy
 - Eddy current on a conducting pendulum in a magnetic field
 - Mass moving in a gas or viscous fluid

47

47

Magnetic Torquers

$$\mathbf{m} = N I A (\mathbf{i} \times \mathbf{B})$$

 Current flowing through a loop generates a magnetic torque through interaction with the Earth's magnetic field N: number of loops
I: current
A: included area of loops
i: unit vector along coil axis
B: local flux density

48

Reaction Control Thrusters

- Direct control of angular rate
- Unloading momentum wheels or control-moment gyros
- Reaction control thrusters are typically on-off devices using
 - Cold gas
 - Hypergolic propellantsCatalytic propellant

 - Ion/plasma rockets

- Specific impulse
- Propellant mass
- Expendability

Apollo Lunar Module RCS

Thrusters commanded in pairs for pure couple

49

49

Reaction Control Thrusters Monopropellant Hydrazine Cold Gas Thruster (used with inert gas) **Thruster** Hypergolic, Storable **Bipropellant Thruster** 50

Solar Radiation Pressure Control Panels

Solar radiation pressure
Vanes deflected differentially
Analogous to aerodynamic control surfaces
Long moment arm from center of mass

51

51

Sensors and Actuators for Spacecraft Mechanisms

52

- Current flowing through armature generates a magnetic field
- Permanent magnets torque the armature
- When armature is aligned with magnets, commutator reverses current and magnetic field
- Multiple poles added to allow motor to smooth output torque and to start from any position

57

Electric Actuator Brushless DC Motor

- Armature is fixed, and permanent magnets rotate
- **Electronic controller** commutates the electromagnetic force, providing a rotating field
- **Advantages**
 - Efficiency
 - Noise
 - Lifetime
 - Reduced EMI
 - Cooling
 - Water-resistant

58

Electric Actuator Stepper Motor

- Brushless, synchronous motor that moves in discrete steps
- Precise, quantized control without feedback
- Armature teeth offset to induce rotary motion

59

59

Hydraulic Actuator Torque Make responding to change in

Used principally for launch vehicle thrust vector and propellant control

Not widely used on spacecraft

60

Ball/Roller Screw Linear Actuator

Transforms rotary to linear motion

61

61

Next Time: Electrical Power Systems

62

Supplemental Material

63

63

Control-Moment Gyro Flywheel on a motor shaft RPM is fixed, axis is rotated to impart torque