Spacecraft Mechanisms
Space System Design, MAE 342, Princeton University
Robert Stengel

- One-shot Devices
- Deployable Structures
- Continuous and Intermittently Operating Devices
- Components
- Materials
- Tribology
- Testing and Verification

Mechanism Functions

- Any device that is required to move, rotate, slide or separate
- Characterized by displacements vs. small displacements of structures
- Scale: quite small (1/4 inch or less) to very large (100+ ft)
- Often a mechanism functions as structural member prior to, during, or after deployment

Munder, 2008
When Do Mechanisms Function?

AT LAUNCH
• Electrical and fluid disconnects

DURING ASCENT
• Fairing jettison
• Spacecraft and sub-satellite separation
• Ion thruster gimbals

AFTER ACHIEVING ORBIT
• Doors and covers that open or close
• Solar array, boom and antenna deployments and unfurlments

THROUGHOUT MISSION
• Solar array sun tracking
• Pointing antennas and instruments
• Active doors and shields
• Gyrosopes and reaction wheels
• Fast steering mirrors, optical delay lines

PRIOR TO RE-ENTRY
• Dampers for re-entry and landing forces

Mechanism Design Guidelines & Selection

- Build in redundancy
- Provide high force/torque margin
- Design to preclude improper assembly or installation
- Allow for visual inspection
- Thermal considerations (materials, clearance, preload)
- Vacuum considerations (outgassing, cold welding, heat dissipation, lube)
- Vibration considerations (potting, positive locking, preload change, wear)
- Cycle life, including ground testing
- Design for ease of analysis and test

Munder, 2008
Mechanism Parts

- Bearings
- Lubrication
- Force/Torque
 - Application
 - Multipliers
 - Dampers & Load
 - Absorbers
- Release Devices
- Power & Signal Transfer
- Telemetry Devices
- Extension Devices

Munder, 2008

Separation Mechanisms

Marmon clamp

![Marmon clamp diagram](image)

(a) Mechanism closed

(b) Mechanism opened
Release Devices

PYROTECHNIC (EXPLOSIVE)
- Cable and Bolt cutters
- Pinpullers and pinpushers

OTHER
- Motor-driven latch
- Non-explosive initiators
 - Pinpullers and pinpushers (non-pyro)
 - Paraffin
 - Shape Memory Alloy

Munder, 2008

Pyrotechnic Cable and Bolt Cutters

Power Cartridge propels Cutter through the target and into the Anvil
- Cutter Assembly with Power Cartridge

Advantages: fast actuation, high load capability, low weight, simple design

Disadvantages: high shock, safety

Munder, 2008
Shear-Tie Release Mechanism

- **Key Features:**
 - Utilized in sets of 3 minimum
 - Preloaded steel rods and cables prevent gapping of cup-cone interface during ascent
 - Relative motion between spacecraft and reflector is prevented by cup-cone shear tie seats which react in-plane loads
 - Redundant pyrotechnic actuated cutters are used to sever restraint rods for deployment
 - Kick-off washers/springs at each cup-cone interface ensure separation

- **Advantages:** resettable low weight, uses heater circuit
- **Disadvantages:** low force output and capability, slow actuation, overtemp self actuation

Munder, 2008
Frangibolt
Non-pyrotechnic separation device (for valving)
Use of shape-memory alloy

Extension Devices

- LAZY TONGS
- EXTENDIBLE REEL
- COILABLE MAST
- TELESCOPIC
- INFLATABLE

Munder, 2008
Hinges

- Redundant spring driven
- Heated viscous damper for rate control
- Preloaded ball bearings or journal bearings
- Hard stops and latches on a large radius for improved deployed repeatability

Deployment Hinges
Extendible Tube Mast

Typical cross sections for deployable tubular booms:

(a) Lenticular welded double element
(b) Overtapping single element
(c) Overlapping double element
(d) Interlocking double element

Deployable Camera Mast
Umbrella Antenna
Galileo Spacecraft

Solar Array Drive Assembly

Usage on S/C:
• 1 location per solar array wing

Key Features:
• Provides precision stepping rotation for sun tracking in forward and reverse directions.
• Provides power transfer across rotating interface between the solar array and spacecraft
• Tracking rate 1 rev/day
• Consisting of:
 – Stepper Motor with redundant windings
 – Harmonic Drive Assembly
 – Fiber Brush Slip Ring Assembly
 – Redundant Potentiometers provide telemetry

Munder, 2008
Solar Array Drive

Giotto De-Spin Mechanism

Dual-spin spacecraft
Reaction Wheel Assembly

Usage on S/C:
• Qty (4) per Spacecraft, internally mounted

Key Features:
• Function:
 – Apply reaction torque for three-axis attitude control
 – Bi-directional angular momentum storage
 – Operates at x1000 rpm
• Consist of
 – Drive electronics, brushless motor, and a inertia rotor enclosed within the housing.

X-Band Antenna Pointing Mechanism
Antenna Gimbal

- **Key Features:**
 - Contains two nearly identical, orthogonally mounted drive mechanisms
 - Each drive consists of a stepper motor with redundant windings that is coupled to a drive transmission
 - Redundant course and fine potentiometers for angle telemetry
 - Heaters and thermal tape on housings

Force/Torque Application

STORED ENERGY
- Compression spring
- Tension spring (not usually used due to its failure mode)
- Torsion spring
- Constant-force spring (Ne’ gator)
- Lenticular strut (Carpenter Tape)
- Gas pressure – Gas Springs

ELECTRICAL ENERGY
- Motors
- Solenoids

Munder, 2008
Dampers and Load Absorbers

\[F = ma; \text{ without control, loads would be excessive} \]

DAMPERS
- Rotary and Linear
 - Viscous fluid
 - Induced electrical current (Eddy current)
LOAD ABSORBERS
- Elastomer Bumpers
- Friction washers – Brake Shoes
- Crushable Honeycomb

DC Brush Motor

- DC brushed motors
 - Simple electronics: two wires going to motor
 - Low cost
 - Can operate open loop (which is good and bad!)
 - Rapid wear of the brushes (especially under vacuum)
 - Need purging during ambient testing with special brushes
 - Current spikes may occur under vacuum
 - Requires EMI shielding
 - Concern about restart after storage
 - Concern about brushes during vibration
 - Shorting risks due to brush wear debris
 - Used on one-shot deployables

Munder, 2008
Stepper Motor

Stepper motors (DC brushless)

- Weight
- Few wearing parts
- Simple construction, simple electronics
- Can operate open loop (which is good and bad!)
- Each step is a structural excitation - May excite modes of other equipment and structure
- May have stability problems that depend on friction, damping, and frequency
- Good unpowered detent torque
- Used on Lockheed Gimbals and Solar Array Drives

Munder, 2008

DC Brushless Motor

- DC brushless torquer motors
 - Motion control, torque ripple, life are all advantages
 - Low vibration
 - Relatively complex electronics
 - Commutator reliability
 - Low unpowered detent torque
 - Intolerant to stall condition
 - Used on Lockheed Reaction Wheel Assemblies

Munder, 2008
Force/Torque Multipliers

Harmonic Drive
- Flexspline
- Wave Generator
- Circular Spline

Planetary Gears
- Sun Gear
- Ring Gear
- Planet Gears

Advantages:
- low backlash, high stiffness
- torque capability, different gear ratios based on operation

Disadvantages:
- torque efficiency, torque ripple, fatigue life
- backlash, wear

Power & Signal Transfer Mechanisms

Slip Rings

Advantages:
- full rotation, low friction

Disadvantages:
- failure mode, lubrication issues for long life, signal noise

Munder, 2008
Bearing Choices

Bearings (in some form) are used in almost all mechanisms to provide for smooth relative motion

- **Journal:** Shaft in round or square hole
 - Advantages: simple
 - Disadvantages: susceptible to small changes in lubrication
- **Flex pivot:** Beam in bending
 - Advantages: low friction, no wear, environment insensitive
 - Disadvantages: ± 30° rotation, center shift, low radial load capability
- **Rolling element:** Ball, Roller, Linear
 - Advantages: low friction, combined radial and thrust capability
 - Disadvantages: more packaging space radially, expensive

![Diagram of bearing types]

Munder, 2008

Bearing Choices

- **Magnetic:** Magnetic levitation
 - Advantages: non-contacting, controllable stiffness
 - Disadvantages: complex control, poor axial stiffness, high power req’d
- **Typical Problems:**
 - Torque / force required
 - Performance at temperature and loads
 - Instability
 - Lubrication
 - Strength / fatigue life
 - Stiffness / deadband

![Diagram of magnetic levitation]

Munder, 2008
Lubrication

- **Solid films** how applied:
 - bonded (thick), impinged (thin), sputtered (control thin)
 - MoS₂
 - Graphite
 - Tungsten Disulfide

- **Composites & Transfer film**
 - PTFE (Teflon, glass reinforced)
 - Polyimide (Vespel)
 - Polyacetal (Delrin)
 - Polyimide-imide (Torlon)

- **Soft Metals** (ion-plated, ion sputtered)
 - Gold
 - Silver
 - Lead

Lubrication

- **Oils/Greases**
 - Mineral oil (KG-80)
 - Silicones (F-50)
 - Perfluoropolyalkylether (PFPE) (Bray, Krytox, Fomblin)
 - Trialkylated cyclopentane (TAC) (Pennzane)
 - Poly-α-olefin (PAO) (Nye 179A)

Munder, 2008
Sensors for Telemetry

• Potentiometer
 – small size, weight, easy electronics
 – can be unreliable for large number of cycles
 – single-turn potentiometer
 • multi-turn potentiometer not used often
 • carbon pot (actually graphite in a plastic matrix)
 essentially infinite resolution, low inductance
 – thermal stability, stair-step linearity (less precise)

• Resolver
 – Rotary transformers that provide voltage output proportional to rotation angle
 – No sliding or rubbing parts and low voltage mean high reliability
 – Electronics to drive and interpret resolver can be expensive

• Encoder
 – small size, weight (sometimes)
 – low power requirements (but more than a potentiometer)
 – High accuracy / cost

Test of Deployment Mechanisms

• BALLOONS
 – reflector deployments
• OVERHEAD TRACK
 – solar arrays
• CABLE AND SPRING
 – jettison, booms
• CONICAL PENDULUM
 – booms
• ROCKING BEAM
 – separation
• BALANCE BEAM
 – separation, deployments
• WATER FLOATS
 – masts
• AIR BEARING
 – large deployments
• SERVO-CONTROLLED SUSPENSION
 – unusual motions
Progress and Dragon Docking and Berthing with ISS

Docking and Berthing Mechanisms

Gemini-Agena Docking
Apollo Probe and Drogue Docking Mechanism

Apollo-Soyuz Docking Mechanism
Future NASA Common Berthing Mechanism

Next Time: Space Robotics