
Neural Networks !
Robert Stengel!

Robotics and Intelligent Systems, MAE 345,
Princeton University, 2017

•! Associative/recurrent networks
–! Hopfield network
–! Adaptive resonance theory

network
–! Elman/Jordan networks

•! Unsupervised training
–! k-means clustering

•! Semi-supervised training
–! Self-organizing map

•! Cerebellar model articulation
controller (CMAC)

•! Deep learning
•! Restricted Boltzmann machine
•! Convolutional network
•! Neural Turing Machines

Copyright 2017 by Robert Stengel. All rights reserved. For educational use only.
http://www.princeton.edu/~stengel/MAE345.html

1

Associative/Recurrent
Networks!

2

Associative-Memory Neural Networks
•! Goals

–! Identify symbols from noisy data, given
exemplars of possible features

–! Retrieve full feature from incomplete samples
•! “To be ______”
•! “Snap, crackle, ____”

–! Build a database from related contextual
information, e.g., populate features of one
categorical set using features in another

3

Recurrent
Networks

!! Recursion to identify an unknown object
!! Network is given a single, fixed input, and it

iterates to a solution
!! Convergence and stability of the network are

critical issues (discrete-time dynamic system)
!! Single network may have many stable states

!! Classified outputs of the map
!! Pattern recognition with noisy data

4

Hopfield Network

!! Bipolar (–1,1) inputs
and outputs
!! dim(y) = n x 1

!! Supervised training
with perfect exemplar
outputs

!! Noisy measurement
of an exemplar as
input to be identified

!! Network operation
z s = ys + ns

ŷ0 = z s
ŷk+1 = s rk() = s Wŷk()

ŷik+1 =
1,

Unchanged
!1,

"

#
$

%
$

,

rik > 0

rik = 0

rik < 0

, i = 1 to n!! Iterate to convergence

5

Training a
Hopfield Network

!! No iterations to define weights
!! Large number of weights
!! Limited number of exemplars (< 0.15 n)
!! Similar exemplars pose a problem

!! Network training
!! Given M exemplars,
!! Each exemplar is a character

represented by n pixels
!! Batch calculation of weighting matrix

W = ysys
T ! In()

s=1

M

"

=
y1
2 !1 y1y2 ...

y1y2 y2
2 !1 ...

...

#

$

%
%
%
%

&

'

(
(
(
(

s=1

M

"
s

n =120; M = 8
#weights = n2 =14,400

6

ys n !1(), s = 1,M

Adaptive Resonance Theory Network!
(Grossberg, Carpenter, 1976)

!! Self-organizing/stabilizing
network for finding clusters
in binary input (ART-1)

!! Broadly based on cerebellar
model
!! Long-Term Memory
!! Short-Term Memory
!! Stability and plasticity
!! Unsupervised and

supervised learning
!! “Bottom-up” input
!! “Top-down” priming
!! Pre-cursor to “deep

learning”

Features

Categories

7

Further Developments:
!! Continuous inputs (ART-2)
!! Fuzzy Logic (Fuzzy ART)
!! Dual-Associative Networks for Pattern Recognition (Lapart, Sandia, 2017)

ART-1 Network
Architecture Binary Neurons

represent Pattern
Pixels

Recursive Training
Example: adding new

templates

8

k-Means Clustering
•! Least-squares clustering of n

observation sets into k regions

9

min
µµi
J = x j ! µµ i 2

j=1

n

"
i=1

k

"
•! i.e., find centroids of

each region
•! Once centroids are

known, boundaries of
regions found from
Voronoi diagram

Self-Organizing Map!
(Kohonen, 1981)

!! Competitive, unsupervised learning in 1st layer
!! Premise: input signal patterns that are close produce

outputs that are close
!! Ordered inputs produce spatial distribution, i.e., a map
!! Cells of the map are likened to the cell structure of the

cerebral cortex
!! x: (n x 1) input vector characterizes

features (attributes) of a signal
!! m: (n x 1) weight vector of a cell that

represents an output class
10

Competition in Self-Organizing Map

!! Competition is based on minimizing distance
from x to m

Cost = distance = x !mi

minCost =min
m i

x !m

!! m encodes the output classes
!! Supervision: Semantic Net decodes the

output to identify classes

m1 =
0
1
3

!

"

$

%

&
&
&
'Class A; m2 =

1
0
1

!

"

$

%

&
&
&
'Class B

11

Goal of the Self-
Organizing Map

!! Given:
!! I output classes
!! Input training set, xj, j = 1 to J

!! Find: Cell weights, mi, i = 1 to I that best
cluster the data (i.e.,
with minimum norm)

!! Initialize the cell
weights, mi, randomly in the
space of x

12

Training the Self-
Organizing Map

!! Define a
neighborhood set
within a radius of Nc around each cell, mi
!! Choose Nc to overlap

with neighboring
cells

!! Find the best cell-
weight match, mbest, (i.e., the closest mi) to the 1st training
sample, x1

13

Cell Weight Updates

!! Update cell weights for
all cells in the
neighborhood set, Nc, of
mbest
!! !!k = adaptation gain or

learning rate
!! Repeat for

!! x2 to xJ
!! m1 to mI

!! Converse of particle
swarm optimization

mi k +1() =
mi k() + !k x1 "mi k()[],

mi k(),

$
%

mi & Nc

mi ' Nc

14

Convergence of Cell Weights
Repeat entire process with decreasing Nc radius until convergence occurs

mi k +1() =
mi k() + !k x1 "mi k()[],

mi k(),

$
%

mi & Nc

mi ' Nc

15

Semantic Map
!! Association of mbest with categorical information
!! Contextual information used to generate map of symbols
!! Dimensionality and # of nearest neighbors affects final map

2 nearest neighbors,
linear association

Evolution of points on a line that identifies
locations of mi

(Uniform random field of data points not shown)

16

•! Example: linear association of cell weights
•! Points for cell-weight update chosen randomly

Choice of Neighborhood
Architecture

•! Example: Map is assumed to represent a grid
of associated points

•! Number of cell weights specified
•! Random starting locations for training

4 nearest neighbors,
polygonal association

Evolution of grid points that identify locations
of mi

(Uniform random field of data points not shown)

17

Minimum Spanning Tree
Example: Hexagonal map association identification
32 points with 5 attributes that may take six values

(0, 1, 2, 3, 4, 5)

Hexagonal lattice of grid points
that identify locations of mi

Minimum spanning tree:
smallest total edge length

18

Semantic Identification
Example of semantic identification

Each item for training has symbolic expression and context
Categories: noun, verb, adverb

19
Ritter, Kohonen, 1989

Cerebellar Model !
Articulation Controller (CMAC)

•! Another precursor to deep
learning

•! Inspired by models of
human cerebellum

•! CMAC: Two-stage mapping
of a vector input to a scalar
output

•! First mapping: Input space
to association space
–! s is fixed
–! a is binary

•! Second mapping:
Association space to output
space
–! g contains learned weights

s : x! a
Input! Selector vector

g :a! y
Selector vector!Output

20Albus, 1975

Example of Single-Input CMAC
Association Space

•! C = Generalization parameter = # of
overlapping regions

s : x! a
Input! Selector vector

a = 0 0 0 1 1 1 0 0!
"

#
$
T

C = 3

21

NA = N +C !1= dim a()

•! x is in (xmin, xmax)
•! Selector vector, a, is binary and has

N elements
•! Input quantization = (xmax –"xmin) / N
•! Receptive regions of association

space map x to a
–! Analogous to neurons that fire in

response to stimulus
•! NA = Number of receptive regions

CMAC Output and Training
•! In higher dimensions, association space is

dim(x), a plane, cube, or hypercube
•! Potentially large memory requirements
•! Granularity (quantization) of output
•! Variable generalization and granularity

ASSOCIATION MEMORY, c = 3

INPUT SPACE, n = 2 Layer 1 Layer 2 Layer 3

input 2

in
p

u
t

1

quant. width
of input 2

2-dimensional association space
Rectangular receptive regions

22

CMAC Output and
Training

•! CMAC output, y, (i.e., control command) from
activated cells of c Associative Memory layers

ASSOCIATION MEMORY, c = 3

INPUT SPACE, n = 2 Layer 1 Layer 2 Layer 3

input 2

in
pu

t 1

quant. width
of input 2

yCMAC = wTa = wi,activated
i= j

j+C!1

" j= index of first
activated region

wjnew
= wjold

+
!
c

ydesired " wiold
i=1

c

#$
%&

'
()

•! Least-squares training of CMAC weights, w
–! Analogous to synapses between neurons

! is the learning rate and wj is an activated cell weight
•! Localized generalization and training 23

CMAC Control of a Fuel-
Cell Pre-Processor!

(Iwan and Stengel)

BATTERIES

POWER
 CONDITIONING

AND MOTOR
CONTROL

GEARMOTOR/
GEN.

FUEL
PROCESSOR

FUEL
STORAGE

FUEL CELL
STACKShift

2H O
Air

PrOx

Reformer or Partial
Oxidation Reactor

Fuel cell produces electricity for electric motor

24

Pre-processor produces hydrogen for the fuel
cell and carbon monoxide, which “poisons” the

fuel cell catalyst

CMAC/PID Control System
for Preferential Oxidizer

desired H2
conversion

airCMAC

airPID

airTOTAL

training

+
-

+

+! ! PROXPID

CMAC

H2 conv.
error

HYBRID CONTROL SYSTEM

(ANN)

(Conventional)

PROX reformate flow rate

PROX inlet [CO]
Inlet coolant temperature

gains=f(flow rate)

Inlet
reformate

Outlet
reformate

H2 conv. =
f(airTotal, [H2]in, [H 2]out,

flow rate, sensor dynamics)

H2 Conversion Calc.

actual H2 conversion
[H2]out

[H2]in

ASSOCIATION MEMORY, c = 3

INPUT SPACE, n = 2 Layer 1 Layer 2 Layer 3

input 2

in
p

u
t

1

quant. width
of input 2

25

Summary of 3-D CMAC
Characteristics

•! Inputs and Number of Divisions for receptor
cubes:
–! PrOx inlet reformate flow rate (95)
–! PrOx inlet cooling temperature (80)
–! PrOx inlet CO concentration (100)

•! Output: PrOx air injection rate
•! Associative Layers, C: 24
•! Number of Associative Memory Cells/Weights

and Layer Offsets: 1,276 and [1,5,7]
•! Learning Rate, : ~0.01
•! Sampling Interval: 100 ms

ASSOCIATION MEMORY, c = 3

INPUT SPACE, n = 2 Layer 1 Layer 2 Layer 3

input 2

in
pu

t 1

quant. width
of input 2

26

Flow Rate and Hydrogen Conversion
of CMAC/PID Controller

•! H2 conversion command (across PrOx only): 1.5%
•! Novel data, with (---) and without pre-training (––)
•! Federal Urban Driving Cycle (= FUDS)

27

Comparison of PrOx Controllers
on Federal Urban Driving Cycle

 ! mean H2 error
 ! maximum H2 error
 ! mean CO out
 ! max. CO out
 ! % % ppm ppm %
•! Fixed-Air 0.68 0.87 6.3 28 57.2
•! Table Look-up 0.13 1.43 6.5 26 57.8
•! PID 0.05 0.51 7.7 30 58.1
•! CMAC/PID 0.02 0.16 7.3 26 58.1
 ! net H2 output

28

Deep Learning with Restricted
Boltzmann Machine

!! Multiiple layers of RBMs
!! Semi-supervised learning

!! Clustering (visible) units
!! Sigmoid (hidden) units

!! Pre-train each layer separately and contextually (unsupervised)
!! Fine-tune with backpropagation (supervised)
!! Restrict connections between layers
!! Goal is to overcome “vanishing or exploding gradient problem” in

multi-layer back-propagation

Hinton et al, 2006 29

" "

Sparse Deep Network
•! Partitioned input space
•! Expanding network connections

30
•! Fully connected final layer

Red Blue Green IntensityFiltered Input

Analyzed Image

Convolutional Neural Network

31

•! Repeated sequence of
operations
–! Convolution (cross-

correlation)
–! Rectification neurons (ReLu)
–! Fully connected networks

•! Decomposition of image
–! Sliding window of receptive

fields
–! Pooling (dimension

reduction)
–! Simply connected networks

Autoencoding and Pooling
•! Autoencoding: Same number of inputs and outputs
•! Compression and decompression layers identify important attributes

32

•! Max pooling: selection of important attributes
•! Dimension reduction of features
•! Enhanced invariance in characterization of a feature in

different perspectives

Convolution
•! Cross-correlation of outputs from previous layers
•! Apply to partitioned receptive fields

33

“Heat Map” Image Convolution

CS = D
TD zk xk , yk() = ck xkyk+1[]

i=0

K

!

Rectified Linear Unit (ReLu)
•! Simple alternative to hardlim,

sigmoid nodes
•! Faster, more accurate classification

in some applications

34

"

y = max 0, y()

35

1st Encoder
Unsupervised

2nd Encoder
Unsupervised

Preliminary NN
training

Supervised

Output
matched to

input (1)

Output
matched to

input (2)

Output (2)
trained for

classification

DeepNet
trained to

classes

Convolution Neural Network
(ConvNet)

More on Recurrent Neural Networks
•! Feedback added to a feed-forward neural network

(discrete-time dynamic system)
•! One-step memory introduced to network

36

u1 k() = s1 W1x k() +U1u1 k !1() + b1"# $%
u2 k() = s2 W2u1 k() + b2"# $%

u1 k() = s1 W1x k() +U1u2 k !1() + b1"# $%
u2 k() = s2 W2u1 k() + b2"# $%

Elman Network Jordan Network

Long Short-Term Memory
•! Memory held until new value overwrites

37

u f k() = sg Wfx k() +U fuh k !1() + b f"# $%
ui k() = sg Wix k() +Uiuh k !1() + bi"# $%
uo k() = sg Wox k() +Uouh k !1() + bo"# $%
uc k() = u f k().*uc k !1() + ui k().*sc Wcx k() +Ucuh k !1() + bc"# $%
uh k() = uo k().*sh uc k()"# $%

•! Cell, input gate,
output gate,
forget gate

Klaus, 2015

Neural Turing Machines

•! Trainable read/write access to
memory

•! Controller/program implemented
by neural networks

38

Graves, 2014

•! Reinforcement-Learning NTM
•! uses either feed-forward or

LSTM neurons
•! Improves on LSTM neurons

Zaremba, 2015

Sigmoid networks can be “Turing complete”,
Siegelmann & Sontag, 1991, 1995

Next Time:!
Communication, Information,

and Machine Learning!

39

Supplemental
Material

40

Hopfield Network

Alternative plot of 4-node
network

ExemplarNovel Image

“Energy Landscape”

41

Linear Vector
Quantization

!! Incorporation of supervised learning in
Semantic Net

!! Classification of groups of outputs
!! Type 1

!! Addition of codebook vectors, mc, with known
meaning

mc k +1() =
mc k() + !k x k "mc k()[],
mc k() "!k x k "mc k()[],

$
%

& %
if classified correctly
if classified incorrectly

42

Linear Vector
Quantization

!! Type 2
!! Inhibition of nearest neighbor whose

class is known to be different, e.g.,
!! x belongs to class of mj but is closer to mi

mi k +1() =mi k() !"k x k !mi k()[]
m j k +1() =m j k() + "k x k !m j k()[]

43

Adaptive Critic Proportional-
Integral Neural Network Controller

Adaptation of Control Network

NNC

 Aircraft Model
•! Transition Matrices
•! State Prediction

Utility Function
Derivatives

NNA

xa(t)

a(t)

Optimality
Condition

NNA Target

Target Generation
44

Ferrari, Stengel, 2005

Adaptive Critic Proportional-
Integral Neural Network Controller

Adaptation of Critic Network

NNC
(old)

Utility Function
Derivatives

NNA

NNC Target

Target Generation

 Aircraft Model
•! Transition Matrices
•! State Prediction

NNC

Target C ost
Gradient

xa(t)
a(t)

45

