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Associative/Recurrent
Networks




Associative-Memory Neural Networks

- Goals
— Identify symbols from noisy data, given
exemplars of possible features
— Retrieve full feature from incomplete samples
* “To be ”
« “Snap, crackle, _
— Build a database from related contextual
information, e.g., populate features of one
categorical set using features in another

Recurrent
Networks

= Recursion to identify an unknown object

» Network is given a single, fixed input, and it
iterates to a solution
= Convergence and stability of the network are
critical issues (discrete-time dynamic system)

= Single network may have many stable states
= Classified outputs of the map
= Pattern recognition with noisy data



Hopfield Network

= Bipolar (-1,1) inputs
and outputs
» dim(y)=nx1
= Supervised training
with perfect exemplar
outputs

= Noisy measurement

of an exemplar as
input to be identified Z, =Yy, +Nn

= Network operation

Vi =s(r,)=s(Wy,)
Yo =2, 1, rn >0

= |terate to convergence Y., =1 Unchanged , 1, =0 ,i=lton
-1, r, <0

Training a
Hopfield Network

= Network training
= Given Mexemplars,|Y; (n X 1), s=1,M

= Each exemplar is a character
represented by n pixels

= Batch calculation of weighting matrix

M
W= Z(ysysT - In)
s=1

2

M Wi -1 N2
=2 Y12 )’22 -1

s=1

s

= No iterations to define weights

= Large number of weights n=120; M=8

. L|_m|_ted number of exemplars (< 0.15 n) Wweights =n* = 14,400
= Similar exemplars pose a problem .



Adaptive Resonance Theory Network
(Grossberg, Carpenter, 1976)

= Self-organizing/stabilizing
network for finding clusters
in binary input (ART-1)
= Broadly based on cerebellar Categories
model
= Long-Term Memory
= Short-Term Memory
= Stability and plasticity
= Unsupervised and
supervised learning
= “Bottom-up” input
= “Top-down” priming
= Pre-cursor to “deep

learning”
7
ART-1 Network
Recursive Training
Architecture Binary Neurons Example: adding new
represent Pattern templates
Pixels

The ART1 neural network

Further Developments:
= Continuous inputs (ART-2)

» Fuzzy Logic (Fuzzy ART)
= Dual-Associative Networks for Pattern Recognition (Lapart, Sandia, 2017)




k-Means Clustering

- Least-squares clustering of n
observation sets into k regions

k n
H}}nJ:ZZHXF”Jz -
i i=1 j=1 R e\,

- i.e., find centroids of
each region

« Once centroids are

known, boundaries Of :1 Iteration #0
regions found from er 0z 03 04 05 0 07 08
Voronoi diagram

Self-Organizing Map

(Kohonen, 1981)

Competitive, unsupervised learning in 1st layer

Premise: input signal patterns that are close produce
outputs that are close

Ordered inputs produce spatial distribution, i.e.,
Cells of the map are likened to the cell structure of the

= x: (nx1)input vector characterizes
features (attributes) of a signal

= m: (nx 1) weight vector of a cell that
represents an
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Competition in Self-Organizing Map

= Competition is based on minimizing distance
from xtom

Cost = distance = ||x - ml.||

minCost = r{1“1n||x —m|

= m the output classes

= Supervision: Semantic Net the
output to identify classes

0 1
m, =|1|—Class A; m,=|0|—Class B
3 1 11

Goal of the Self-
Organizing Map

= Given:
= [output classes
= Input training set, x; j
=1toJ
= Find: Cell weights, m,
i=1to Ithat best
cluster the data (i.e.,
with minimum norm)

= |nitialize the cell
weights, m,,
randomly in the
space of x
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Training the Self-
Organizing Map

= Define a
neighborhood set
within a radius of N,
around each cell, m;

= Choose N_to overlap
with neighboring
cells

* Find the

m
(i.e., the closest ﬁgnf)t
to the 15t training
sample, x,
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Cell Weight Updates

m,(k)+ o, [x, —m,(k)|m, € N,
m,(k), m, ¢ N,

m,(k +1) :{

= Update cell weights for
all cells in the
neighborhood set, N, of

mbest
* oy = adaptation gain or
learning rate
= Repeat for
* x,tox,
= Converse of particle
swarm optimization
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Convergence of Cell Weights

Repeat entire process with decreasing N,
radius until convergence occurs
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Semantic Map

Association of m,_, with categorical information
Contextual information used to generate map of symbols
Dimensionality and # of nearest neighbors affects final map

« Example: linear association of cell weights
+ Points for cell-weight update chosen randomly

Evolution of points on a line that identifies
locations of m;
(Uniform random field of data points not shown)

/ﬁ\ A A
2 nearest neighbors, /S\ A
linear association - : /1/\ D




Choice of Neighborhood
Architecture

« Example: Map is assumed to represent a grid

of associated points

* Number of cell weights specified
+ Random starting locations for training

4 nearest neighbors,
polygonal association

Evolution of grid points that identify locations

of m;

(Uniform random field of data points not shown)

Minimum Spanning Tree

Example: Hexagonal map association identification

32 points with 5 attributes that may take six values
(0,1,2,3,4,5)

Minimum spanning tree:
smallest total edge length

Hexagonal lattice of grid points
that identify locations of m;

Minimal spanning tree corresponding to Table

BCDE=*QR*YZ
A% %%k pk kX &
XFE ANO %W %1
T EEM KRk k2
HKL®TU®*3%*
XX Ak KLY %
* ) kS kXY XEH

Self-organized map of the data matrix of Table
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Semantic ldentification

Example of semantic identification
Each item for training has symbolic expression and context
Categories: noun, verb, adverb

Ritter, Kohonen, 1989

19

Cerebellar Model
Articulation Controller (CMAC)

+ Another precursor to deep Meerome-c
learning [ ] -,
+ Inspired by models of weuT coMNAND o

.
CENTERS / \ RETIVE

human cerebellum /

+ CMAC: Two-stage mapping coueyre

of a vector input to a scalar 57 Fomion

output

- First mapping: Input space | o s N

to association space

— sis fixed _—

— ais binary S'x—a

+ Second mapping:

Association space to output Input — Selector vector
space

— g contains learned weights

COMPUTED
““““ JOINT

ACTUATOR
SIGNAL p,

AR

g:a—y
Selector vector — Output

Albus, 1975
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Example of Single-lnput CMAC
Association Space

S:x—a

Input — Selector vector

xisin (Xmim xmax)

Selector vector, a, is binary and has

N elements

Input quantization = (x,,,_, —

Xmin) /'N

Receptive regions of association

space map xto a

— Analogous to neurons that “fire” in

response to stimulus

N, = Number of receptive regions

N,=N+C-1=dim(a)

C = Generalization parameter = # of

overlapping regions

a=[00011100T
Cc=3
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CMAC Output and Training

- In higher dimensions, association space is
dim(x), a plane, cube, or hypercube

- Potentially large memory requirements
- Granularity (quantization) of output
- Variable generalization and granularity

2-dimensional association space
Rectangular receptive regions

ASSOCIATION MEMORY, ¢ =3
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CMAC Output and
Training

« CMAC output, y, (i.e., control command) from
activated cells of ¢ Associative Memory layers

j+C-1

T Jj= index of first

Yemac =W 2= 2 Wi weivara activated region
i=j

+ Least-squares training of CMAC weights, w
— Analogous to synapses between neurons

B c
wjnew = Wjold + ;(ydesired o Zwiol(l )

i=1

B is the learning rate and w; is an activated cell weight

+ Localized generalization and training ’

CMAC Control of a Fuel-
Cell Pre-Processor

(lwan and Stengel)
Fuel cell produces electricity for electric motor

FUEL
PROCESSOR

POWER
CONDITIONING
AND MOTOR
CONTROL

FUEL CELL
STACK

Shift

Reformer or Partial FUEL
STORAGE BATTERIES

Oxidation Reactor

-

Pre-processor produces hydrogen for the fuel
cell and carbon monoxide, which “poisons” the

fuel cell catalyst #



CMAC/PID Control System
for Preferential Oxidizer

- - - HYBRID CONTROL SYSTEM _
1
\ .
PROX reformate flow rate fraining !
1
Inlet coolant temperature C \
PROX inlet [CO _ \
i (ANN) alfcpac \
i :
desired Hy H, conv.! + 1
i ! PID air, '
conversion error PID
- . o Dutlet
\ gains=f(flow rate) — air PROX fu € t
+ ) + TOTIAL Y rgrormate
_ v | (Conventional) \ |

IIZ C()] Vels'[()n Calc I Inlet
i Hz]in reformate
actual I |2 conversion H2 conv. =

flairyogay [Holin, [HoJout, 4H2]out

flow rate, sensor dynamics)
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Summary of 3-D CMAC
Characteristics

Inputs and Number of Divisions for receptor
cubes:

— PrOx inlet reformate flow rate (95)

— PrOx inlet cooling temperature (80)

— PrOx inlet CO concentration (100)

Output: PrOx air injection rate
Associative Layers, C: 24

Number of Associative Memory Cells/Weights
and Layer Offsets: 1,276 and [1,5,7]

Learning Rate, :~0.01

Sampling Interval: 100 ms .




Flow Rate and Hydrogen Conversion
of CMAC/PID Controller

+ H, conversion command (across PrOx only): 1.5%
* Novel data, with (---) and without pre-training (—)
+ Federal Urban Driving Cycle (= FUDS)

27

Comparison of PrOx Controllers
on Federal Urban Driving Cycle

mean H, error
maximum H, error
mean CO out

max. CO out
% % ppm ppm %
«  Fixed-Air 0.68 0.87 6.3 28 57.2
« Table Look-up 0.13 1.43 6.5 26 57.8
- PID 0.05 0.51 7.7 30 58.1
« CMAC/PID 0.02 0.16 7.3 26 58.1

net H, output
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Deep Learning with Restricted

Boltzmann Machine

Multiiple layers of RBMs
Semi-supervised learning
= Clustering (visible) units
= Sigmoid (hidden) units
Pre-train each layer separately and contextually (unsupervised)
Fine-tune with backpropagation (supervised)
Restrict connections between layers

Goal is to overcome “vanishing or exploding gradient problem” in
multi-layer back-propagation

Hinton et al, 2006 2

Sparse Deep Network
- Partitioned input space
- Expanding network connections

Filtered Input Red Blue Green Intensity

Analyzed Image

- Fully connected final layer

30



Convolutional Neural Network

- Decomposition of image -+ Repeated sequence of
— Sliding window of receptive ~ operations

fields — Convolution (cross-
— Pooling (dimension correlation)

reduction) — Rectification neurons (ReLu)
— Simply connected networks  _ Fully connected networks 3!

Autoencoding and Pooling

Autoencoding: Same number of inputs and outputs
Compression and decompression layers identify important attributes

Max pooling: selection of important attributes
Dimension reduction of features

Enhanced invariance in characterization of a feature in
different perspectives

32




Convolution

+ Cross-correlation of outputs from previous layers
+ Apply to partitioned receptive fields

“Heat Map” Image Convolution
_nT K
CS =D'D Ty (xk’yk)zzck[xkykﬂ]
i=0

33

Rectified Linear Unit (ReLu)
- Simple alternative to hardlim,
Singid nodes y=max(0,y)

- Faster, more accurate classification
in some applications

34



Convolution Neural Network

(ConvNet)
Output
t
U::sf necr?/cilseéd maiched to
P input (1)
Output
d
uinsf ’Z?/gird matched to
P input (2)
Preliminary NN Output (2)
training trained for
Supervised classification
DeepNet
trained to
classes
35

More on Recurrent Neural Networks

+ Feedback added to a feed-forward neural network
(discrete-time dynamic system)

« One-step memory introduced to network

Elman Network

Jordan Network

u,(k)=s,[Wx(k)+Uu, (k-1)+b, ]
u, (k) =S, I:qul (k)+ bz]

u,(k)=s,[Wx(k)+Uu,(k-1)+b, ]
u, (k) =5, I:qul (k)+b2]
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Long Short-Term Memory
« Memory held until new value overwrites
 Cell, input gate,

output gate,
forget gate

Wx(k)+U,u,(k—=1)+b, |
Wx(k)+Uu, (k=1)+b, ]

(K)=s,[

(k)=s,[
u,(k)=s,[Wx(k)+Uu,(k-1)+b, ]

(k)= (

(k)=wu,(

)
k).*s, [ug(k)]

37
Klaus, 2015

Neural Turing Machines

Sigmoid networks can be “Turing complete”,
Siegelmann & Sontag, 1991, 1995

* Trainable read/write access to . Reinforcement-Learning NTM

memory _ « uses either feed-forward or
Controller/program implemented LSTM neurons

by neural networks - Improves on LSTM neurons

tooutput mem address input pos
t? incremen ement

or no! C t incremen!
sofr
[ ] [oames | [© O] [@©0] [0GO]
x0.1

Graves, 2014 Zaremba, 2015
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Next Time:
Communication, Information,
and Machine Learning
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SUPPLEMENTAL
MATERIAL
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HOpﬁeld Network Novelimage

Alternative plot of 4-node
network

“Energy Landscape”

Linear Vector
Quantization

= Incorporation of supervised learning in

Semantic

Net

= Classification of groups of outputs

= Type 1

= Addition of codebook vectors, m_, with known

meaning

mc(k+1)={

m, (k)+ o, [x, —m, (k)],
m,_ (k) - o [x, —m,(k)],

if classified correctly

if classified incorrectly
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Exemplar
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Linear Vector
Quantization

= Type 2

= Inhibition of nearest neighbor whose
class is known to be different, e.g.,
= x belongs to class of m; but is closer to m;

m,(k +1)
m (k+1)

J

=m.

=m,(k)-o, [Xk _mi(k)]

j (k) T o [Xk N mj(k)]

Adaptive Critic Proportional-

Integral Neural Network Controller
Adaptation of Control Network

P e e e e e e e

Aircraft Model

[
[
1

X,(7) — N I » Transition Matrices
a(?) NN, : « State Prediction

———|
I
[
[
I 1
: Utility Function
: Derivatives
[

NN, Target Optimality .

: Condition ¢
I
[
[
[

Ferrari, Stengel, 2005

Target Generation
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Adaptive Critic Proportional-

Integral Neural Network Controller
Adaptation of Critic Network

Gradient

. Aircraft Model
X, () : * Transition Matrices
a(?) I NN, » State Prediction
I
I
I
I
K : Utility Function
I Derivatives
NN, ,
I
: NN Cld)
I
I
NN, Target ; TargetC ost
1
I
I

Target Generation



