Neural Networks

Robert Stengel Robotics and Intelligent Systems, MAE 345, Princeton University, 2017

- Associative/recurrent networks
 - Hopfield network
 - Adaptive resonance theory network
 - Elman/Jordan networks
- Unsupervised training
 - k-means clustering
- Semi-supervised training
 - Self-organizing map
- Cerebellar model articulation controller (CMAC)
- Deep learning
 - Restricted Boltzmann machine
 - Convolutional network
 - Neural Turing Machines

Copyright 2017 by Robert Stengel. All rights reserved. For educational use only.

1

Associative/Recurrent Networks

Associative-Memory Neural Networks

- Goals
 - Identify symbols from noisy data, given exemplars of possible features
 - Retrieve full feature from incomplete samples
 - "To be _____"
 - "Snap, crackle, ____"

 Build a database from related contextual information, e.g., populate features of one categorical set using features in another

3

Recurrent Networks

- Recursion to identify an unknown object
 - Network is given a single, fixed input, and it iterates to a solution
- Convergence and stability of the network are critical issues (discrete-time dynamic system)
- Single network may have many stable states
 - Classified outputs of the map
 - Pattern recognition with noisy data

Bipolar (-1,1) inputs and outputs

- $dim(y) = n \times 1$
- Supervised training with perfect exemplar outputs
- Noisy measurement of an exemplar as input to be identified
- Network operation

$$\hat{\mathbf{y}}_0 = \mathbf{z}_s$$

Iterate to convergence

Hopfield Network

$$\hat{\mathbf{y}}_{k+1} = \mathbf{s}(\mathbf{r}_k) = \mathbf{s}(\mathbf{W}\hat{\mathbf{y}}_k)$$

$$1, \qquad r_{i_k} > 0$$

$$Unchanged , \qquad r_{i_k} = 0 , i = 1 \text{ to } n$$

$$-1, \qquad r_{i_k} < 0$$

5

Training a Hopfield Network

- Network training
 - Given *M* exemplars, $|\mathbf{y}_s(n\times 1)|$, s=1,M
 - Each exemplar is a character represented by n pixels
 - Batch calculation of weighting matrix

$$\mathbf{W} = \sum_{s=1}^{M} (\mathbf{y}_{s} \mathbf{y}_{s}^{T} - \mathbf{I}_{n})$$

$$= \sum_{s=1}^{M} \begin{bmatrix} y_{1}^{2} - 1 & y_{1} y_{2} & \dots \\ y_{1} y_{2} & y_{2}^{2} - 1 & \dots \\ \dots & \dots & \dots \end{bmatrix}_{s}$$

- No iterations to define weights
- Large number of weights
- Limited number of exemplars (< 0.15 n)
- Similar exemplars pose a problem

$$n = 120; M = 8$$

weights = $n^2 = 14,400$

Adaptive Resonance Theory Network

(Grossberg, Carpenter, 1976)

- Self-organizing/stabilizing network for finding clusters in binary input (ART-1)
- Broadly based on cerebellar model
 - Long-Term Memory
 - Short-Term Memory
 - Stability and plasticity
 - Unsupervised and supervised learning
 - "Bottom-up" input
 - "Top-down" priming
 - Pre-cursor to "deep learning"

7

ART-1 Network

Dual-Associative Networks for Pattern Recognition (Lapart, Sandia, 2017)

k-Means Clustering

 Least-squares clustering of n observation sets into k regions

$$\min_{\mu_i} J = \sum_{i=1}^k \sum_{j=1}^n ||\mathbf{x}_j - \mu_i||_2$$

- i.e., find centroids of each region
- Once centroids are known, boundaries of regions found from Voronoi diagram

9

Self-Organizing Map

(Kohonen, 1981)

- Competitive, unsupervised learning in 1st layer
- Premise: input signal patterns that are close produce outputs that are close
- Ordered inputs produce spatial distribution, i.e., a map
- Cells of the map are likened to the cell structure of the cerebral cortex
 - x: (n x 1) input vector characterizes features (attributes) of a signal
 - m: (n x 1) weight vector of a cell that represents an output class

Competition in Self-Organizing Map

 Competition is based on minimizing distance from x to m

$$Cost = distance = \|\mathbf{x} - \mathbf{m}_i\|$$
$$\min Cost = \min_{\mathbf{m}_i} \|\mathbf{x} - \mathbf{m}\|$$

- m encodes the output classes
- Supervision: Semantic Net decodes the output to identify classes

$$\mathbf{m}_{1} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix} \rightarrow Class A; \quad \mathbf{m}_{2} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \rightarrow Class B$$

Competitive Layer Semantic Class of x

Goal of the Self-Organizing Map

- Given:
 - I output classes
 - Input training set, x_j, j
 1 to J
- Find: Cell weights, m_i,
 i = 1 to I that best cluster the data (i.e., with minimum norm)
- Initialize the cell weights, m_i, randomly in the space of x

11

Training the Self-Organizing Map

- Define a neighborhood set within a radius of N_c around each cell, m_i
 - Choose N_c to overlap with neighboring cells
- Find the best cell-weight match, m_{best}, (i.e., the closest m_i) to the 1st training sample, x₁

13

Cell Weight Updates

$$\mathbf{m}_{i}(k+1) = \begin{cases} \mathbf{m}_{i}(k) + \alpha_{k} [\mathbf{x}_{1} - \mathbf{m}_{i}(k)], \mathbf{m}_{i} \in N_{c} \\ \mathbf{m}_{i}(k), & \mathbf{m}_{i} \notin N_{c} \end{cases}$$

- Update cell weights for all cells in the neighborhood set, N_c, of m_{best}
 - α_k = adaptation gain or learning rate
- Repeat for
 - x₂ to x_J
 - m₁ to m₁
- Converse of particle swarm optimization

Convergence of Cell Weights

Repeat entire process with decreasing N_c radius until convergence occurs

Semantic Map

- Association of m_{best} with categorical information
- Contextual information used to generate map of symbols
- Dimensionality and # of nearest neighbors affects final map
 - <u>Example</u>: linear association of cell weights
 - Points for cell-weight update chosen randomly

Choice of Neighborhood Architecture

- <u>Example</u>: Map is assumed to represent a grid of associated points
- Number of cell weights specified
- Random starting locations for training

Minimum Spanning Tree

Example: Hexagonal map association identification 32 points with 5 attributes that may take six values (0, 1, 2, 3, 4, 5)

Semantic Identification

Example of semantic identification Each item for training has symbolic expression and context Categories: noun, verb, adverb

(etc.)

(c)

Outline of vocabulary used in this experiment. (a) List of used words (nouns, verbs, and adverbs), (b) sentence patterns, and (c) some examples of generated three-wordsentences.

Ritter, Kohonen, 1989

"Semantic map" obtained on a network of 10 × 15 cells after 2000 presentations of word-context-pairs derived from 10 000 random sentences of the kind shown in Fig. 10(c). Nouns, verbs, and adverbs are segregated into different domains. Within each domain a further grouping according to aspects of meaning is discernible.

19

Cerebellar Model Articulation Controller (CMAC)

- **Another precursor to deep** learning
- Inspired by models of human cerebellum
- **CMAC: Two-stage mapping** of a vector input to a scalar output
- First mapping: Input space to association space
 - s is fixed
 - a is binary
- Second mapping: Association space to output
 - g contains learned weights

Albus, 1975

 $s: x \to \mathbf{a}$ Input \rightarrow Selector vector

 $g: \mathbf{a} \to \mathbf{y}$ Selector vector $\rightarrow Output$

Example of Single-Input CMAC Association Space

$$s: x \to \mathbf{a}$$

$$Input \to Selector\ vector$$

- x is in (x_{min}, x_{max})
- Selector vector, a, is binary and has N elements
- Input quantization = $(x_{max} x_{min}) / N$
- Receptive regions of association space map x to a
 - Analogous to neurons that "fire" in response to stimulus
- N_A = Number of receptive regions

$$N_A = N + C - 1 = \dim(\mathbf{a})$$

 C = Generalization parameter = # of overlapping regions

21

CMAC Output and Training

- In higher dimensions, association space is dim(x), a plane, cube, or hypercube
- Potentially large memory requirements
- Granularity (quantization) of output
- Variable generalization and granularity

2-dimensional association space Rectangular receptive regions

CMAC Output and Training

CMAC output, y, (i.e., control command) from activated cells of c Associative Memory layers

$$y_{CMAC} = \mathbf{w}^{T} \mathbf{a} = \sum_{i=j}^{j+C-1} w_{i_{\textit{ractivated}}}$$
 j= index of first activated region

- Least-squares training of CMAC weights, w
 - Analogous to synapses between neurons

$$w_{j_{new}} = w_{j_{old}} + \frac{\beta}{c} \left(y_{desired} - \sum_{i=1}^{c} w_{i_{old}} \right)$$

 β is the learning rate and w_i is an activated cell weight

Localized generalization and training

CMAC Control of a Fuel-Cell Pre-Processor

(Iwan and Stengel)

Fuel cell produces electricity for electric motor

Pre-processor produces hydrogen for the fuel cell and carbon monoxide, which "poisons" the fuel cell catalyst

CMAC/PID Control System for Preferential Oxidizer

25

Summary of 3-D CMAC Characteristics

- Inputs and Number of Divisions for receptor cubes:
 - PrOx inlet reformate flow rate (95)
 - PrOx inlet cooling temperature (80)
 - PrOx inlet CO concentration (100)
- Output: PrOx air injection rate
- Associative Layers, C: 24
- Number of Associative Memory Cells/Weights and Layer Offsets: 1,276 and [1,5,7]
- Learning Rate, : ~0.01
- Sampling Interval: 100 ms

Flow Rate and Hydrogen Conversion of CMAC/PID Controller

- H₂ conversion command (across PrOx only): 1.5%
- Novel data, with (---) and without pre-training (—)
- Federal Urban Driving Cycle (= FUDS)

27

Comparison of PrOx Controllers on Federal Urban Driving Cycle

Deep Learning with Restricted Boltzmann Machine

- Multiiple layers of RBMs
- Semi-supervised learning
 - Clustering (visible) units
 - Sigmoid (hidden) units
- Pre-train each layer separately and contextually (unsupervised)
- Fine-tune with backpropagation (*supervised*)
- Restrict connections between layers
- Goal is to overcome "vanishing or exploding gradient problem" in multi-layer back-propagation

Hinton et al, 2006

29

Sparse Deep Network

- Partitioned input space
- Expanding network connections

Fully connected final layer

Convolutional Neural Network

- Decomposition of image
 - Sliding window of receptive fields
 - Pooling (dimension reduction)
 - Simply connected networks
- Repeated sequence of operations
 - Convolution (crosscorrelation)
 - Rectification neurons (ReLu)
 - Fully connected networks 31

Autoencoding and Pooling

- · Autoencoding: Same number of inputs and outputs
- · Compression and decompression layers identify important attributes

- · Max pooling: selection of important attributes
- · Dimension reduction of features
- Enhanced invariance in characterization of a feature in different perspectives

Convolution

- Cross-correlation of outputs from previous layers
- · Apply to partitioned receptive fields

33

Rectified Linear Unit (ReLu)

- Simple alternative to hardlim, sigmoid nodes y = max(0,y)
- Faster, more accurate classification in some applications

Convolution Neural Network (ConvNet)

More on Recurrent Neural Networks

- Feedback added to a feed-forward neural network (discrete-time dynamic system)
- · One-step memory introduced to network

$$\begin{array}{c|c} \textbf{Elman Network} & \textbf{Jordan Network} \\ \hline \mathbf{u}_1(k) = \mathbf{s}_1 \Big[\mathbf{W}_1 \mathbf{x}(k) + \mathbf{U}_1 \mathbf{u}_1(k-1) + \mathbf{b}_1 \Big] \\ \mathbf{u}_2(k) = \mathbf{s}_2 \Big[\mathbf{W}_2 \mathbf{u}_1(k) + \mathbf{b}_2 \Big] \\ \hline \mathbf{u}_2(k) = \mathbf{s}_2 \Big[\mathbf{W}_2 \mathbf{u}_1(k) + \mathbf{b}_2 \Big] \\ \hline \\ \begin{array}{c|c} \textbf{Input Layer} & \textbf{Hidden Layer} & \textbf{Output Layer} \\ \mathbf{x} = \mathbf{u}_0 & \mathbf{W}_1 & \mathbf{s}_2(\mathbf{r}_2) & \mathbf{u}_2 = \mathbf{\hat{y}} \\ \hline \end{array}$$

Long Short-Term Memory

- Memory held until new value overwrites
- Cell, input gate, output gate, forget gate

$$\begin{aligned} &\mathbf{u}_{f}(k) = \mathbf{s}_{g} \left[\mathbf{W}_{f} \mathbf{x}(k) + \mathbf{U}_{f} \mathbf{u}_{h}(k-1) + \mathbf{b}_{f} \right] \\ &\mathbf{u}_{i}(k) = \mathbf{s}_{g} \left[\mathbf{W}_{i} \mathbf{x}(k) + \mathbf{U}_{i} \mathbf{u}_{h}(k-1) + \mathbf{b}_{i} \right] \\ &\mathbf{u}_{o}(k) = \mathbf{s}_{g} \left[\mathbf{W}_{o} \mathbf{x}(k) + \mathbf{U}_{o} \mathbf{u}_{h}(k-1) + \mathbf{b}_{o} \right] \\ &\mathbf{u}_{c}(k) = \mathbf{u}_{f}(k) \cdot \mathbf{u}_{c}(k-1) + \mathbf{u}_{i}(k) \cdot \mathbf{s}_{c} \left[\mathbf{W}_{c} \mathbf{x}(k) + \mathbf{U}_{c} \mathbf{u}_{h}(k-1) + \mathbf{b}_{c} \right] \\ &\mathbf{u}_{h}(k) = \mathbf{u}_{o}(k) \cdot \mathbf{s}_{h} \left[\mathbf{u}_{c}(k) \right] \end{aligned}$$

Klaus, 2015

37

Neural Turing Machines

Sigmoid networks can be "Turing complete", Siegelmann & Sontag, 1991, 1995

- Trainable read/write access to memory
- Controller/program implemented by neural networks

- Reinforcement-Learning NTM
- uses either feed-forward or LSTM neurons
- Improves on LSTM neurons

Zaremba, 2015

Next Time: Communication, Information, and Machine Learning

39

SUPPLEMENTAL MATERIAL

Linear Vector Quantization

- Incorporation of supervised learning in Semantic Net
- Classification of groups of outputs
- Type 1
 - Addition of codebook vectors, m_c, with known meaning

$$\mathbf{m}_{c}(k+1) = \begin{cases} \mathbf{m}_{c}(k) + \alpha_{k} [\mathbf{x}_{k} - \mathbf{m}_{c}(k)], & \text{if classified correctly} \\ \mathbf{m}_{c}(k) - \alpha_{k} [\mathbf{x}_{k} - \mathbf{m}_{c}(k)], & \text{if classified incorrectly} \end{cases}$$

Linear Vector Quantization

- Type 2
 - Inhibition of nearest neighbor whose class is known to be different, e.g.,
 - x belongs to class of m_i but is closer to m_i

$$\mathbf{m}_{i}(k+1) = \mathbf{m}_{i}(k) - \alpha_{k} [\mathbf{x}_{k} - \mathbf{m}_{i}(k)]$$
$$\mathbf{m}_{j}(k+1) = \mathbf{m}_{j}(k) + \alpha_{k} [\mathbf{x}_{k} - \mathbf{m}_{j}(k)]$$

43

Adaptive Critic Proportional-Integral Neural Network Controller

Adaptation of Control Network

44

Adaptive Critic Proportional-Integral Neural Network Controller

Adaptation of Critic Network

45