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Associative/Recurrent 
Networks!
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Associative-Memory Neural Networks
•! Goals

–! Identify symbols from noisy data, given 
exemplars of possible features

–! Retrieve full feature from incomplete samples
•! “To be ______”
•! “Snap, crackle, ____”

–! Build a database from related contextual 
information, e.g., populate features of one 
categorical set using features in another
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Recurrent 
Networks

!! Recursion to identify an unknown object
!! Network is given a single, fixed input, and it 

iterates to a solution
!! Convergence and stability of the network are 

critical issues (discrete-time dynamic system)
!! Single network may have many stable states

!! Classified outputs of the map
!! Pattern recognition with noisy data
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Hopfield Network

!! Bipolar (–1,1) inputs 
and outputs
!! dim(y) = n x 1

!! Supervised training 
with perfect exemplar 
outputs

!! Noisy measurement 
of an exemplar as 
input to be identified

!! Network operation
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Training a 
Hopfield Network

!! No iterations to define weights
!! Large number of weights
!! Limited number of exemplars (< 0.15 n)
!! Similar exemplars pose a problem

!! Network training
!! Given M exemplars, 
!! Each exemplar is a character 

represented by n pixels
!! Batch calculation of weighting matrix
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Adaptive Resonance Theory Network!
(Grossberg, Carpenter, 1976)

!! Self-organizing/stabilizing 
network for finding clusters 
in binary input (ART-1)

!! Broadly based on cerebellar 
model
!! Long-Term Memory
!! Short-Term Memory
!! Stability and plasticity
!! Unsupervised and 

supervised learning
!! “Bottom-up” input
!! “Top-down” priming
!! Pre-cursor to “deep 

learning”

Features

Categories
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Further Developments:
!! Continuous inputs (ART-2)
!! Fuzzy Logic (Fuzzy ART)
!! Dual-Associative Networks for Pattern Recognition (Lapart, Sandia, 2017) 

ART-1 Network
Architecture Binary Neurons 

represent Pattern 
Pixels

Recursive Training 
Example: adding new 

templates
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k-Means Clustering
•! Least-squares clustering of n 

observation sets into k regions
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min
µµi
J = x j ! µµ i 2

j=1

n

"
i=1

k

"
•! i.e., find centroids of 

each region
•! Once centroids are 

known, boundaries of 
regions found from 
Voronoi diagram

Self-Organizing Map!
(Kohonen, 1981)

!! Competitive, unsupervised learning in 1st layer
!! Premise: input signal patterns that are close produce 

outputs that are close
!! Ordered inputs produce spatial distribution, i.e., a map
!! Cells of the map are likened to the cell structure of the 

cerebral cortex
!! x: (n x 1) input vector characterizes 

features (attributes) of a signal
!! m: (n x 1) weight vector of a cell that 

represents an output class
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Competition in Self-Organizing Map

!! Competition is based on minimizing distance 
from x to m

 

Cost = distance = x !mi

minCost =min
m i

x !m

!! m encodes the output classes
!! Supervision: Semantic Net decodes the 

output to identify classes
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Goal of the Self-
Organizing Map

!! Given:
!! I output classes
!! Input training set, xj, j = 1 to J

!! Find: Cell weights, mi, i = 1 to I that best 
cluster the data (i.e., 
with minimum norm)

!! Initialize the cell 
weights, mi, randomly in the 
space of x
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Training the Self-
Organizing Map

!! Define a 
neighborhood set 
within a radius of Nc around each cell, mi
!! Choose Nc to overlap 

with neighboring 
cells

!! Find the best cell-
weight match, mbest, (i.e., the closest mi) to the 1st training 
sample, x1
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Cell Weight Updates

!! Update cell weights for 
all cells in the 
neighborhood set, Nc, of 
mbest
!! !!k = adaptation gain or 

learning rate
!! Repeat for 

!! x2 to xJ
!! m1 to mI

!! Converse of particle 
swarm optimization

 

mi k +1( ) =
mi k( ) + !k x1 "mi k( )[ ],

mi k( ),
# 
$ 
% 

mi & Nc

mi ' Nc
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Convergence of Cell Weights
Repeat entire process with decreasing Nc radius until convergence occurs

 

mi k +1( ) =
mi k( ) + !k x1 "mi k( )[ ],

mi k( ),
# 
$ 
% 

mi & Nc

mi ' Nc
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Semantic Map
!! Association of mbest with categorical information
!! Contextual information used to generate map of symbols
!! Dimensionality and # of nearest neighbors affects final map

2 nearest neighbors, 
linear association

Evolution of points on a line that identifies 
locations of mi 

(Uniform random field of data points not shown)
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•! Example: linear association of cell weights
•! Points for cell-weight update chosen randomly



Choice of Neighborhood 
Architecture

•! Example: Map is assumed to represent a grid 
of associated points

•! Number of cell weights specified
•! Random starting locations for training

4 nearest neighbors, 
polygonal association

Evolution of grid points that identify locations 
of mi

(Uniform random field of data points not shown)
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Minimum Spanning Tree
Example: Hexagonal map association identification
32 points with 5 attributes that may take six values 

(0, 1, 2, 3, 4, 5)

Hexagonal lattice of grid points 
that identify locations of mi

Minimum spanning tree: 
smallest total edge length
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Semantic Identification
Example of semantic identification

Each item for training has symbolic expression and context
Categories: noun, verb, adverb
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Ritter, Kohonen, 1989

Cerebellar Model !
Articulation Controller (CMAC)

•! Another precursor to deep 
learning

•! Inspired by models of 
human cerebellum

•! CMAC: Two-stage mapping 
of a vector input to a scalar 
output

•! First mapping: Input space 
to association space
–! s is fixed
–! a is binary

•! Second mapping: 
Association space to output 
space
–! g contains learned weights

s : x! a
Input! Selector vector

g :a! y
Selector vector!Output

20Albus, 1975



Example of Single-Input CMAC 
Association Space 

•! C = Generalization parameter = # of 
overlapping regions

s : x! a
Input! Selector vector

a = 0 0 0 1 1 1 0 0!
"

#
$
T

C = 3
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NA = N +C !1= dim a( )

•! x is in (xmin, xmax)
•! Selector vector, a, is binary and has 

N elements
•! Input quantization = (xmax –"xmin) / N
•! Receptive regions of association 

space map x to a
–! Analogous to neurons that fire  in 

response to stimulus
•! NA = Number of receptive regions

CMAC Output and Training
•! In higher dimensions, association space is 

dim(x), a plane, cube, or hypercube
•! Potentially large memory requirements
•! Granularity (quantization) of output
•! Variable generalization and granularity

ASSOCIATION MEMORY, c = 3

INPUT SPACE, n = 2 Layer 1 Layer 2 Layer 3

input 2

in
p

u
t 

1

quant. width
of input 2

2-dimensional association space
Rectangular receptive regions
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CMAC Output and 
Training

•! CMAC output, y, (i.e., control command) from 
activated cells of c Associative Memory layers

ASSOCIATION MEMORY, c = 3

INPUT SPACE, n = 2 Layer 1 Layer 2 Layer 3

input 2

in
pu

t 1

quant. width
of input 2

yCMAC = wTa = wi,activated
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•! Least-squares training of CMAC weights, w
–! Analogous to synapses between neurons

! is the learning rate and wj is an activated cell weight
•! Localized generalization and training 23

CMAC Control of a Fuel-
Cell Pre-Processor!

(Iwan and Stengel)

BATTERIES

POWER
 CONDITIONING

AND MOTOR
CONTROL

GEARMOTOR/
GEN.

FUEL
PROCESSOR

FUEL
STORAGE

FUEL CELL
STACKShift

2H O
Air

PrOx

Reformer or Partial 
Oxidation Reactor

Fuel cell produces electricity for electric motor
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Pre-processor produces hydrogen for the fuel 
cell and carbon monoxide, which “poisons” the 

fuel cell catalyst



CMAC/PID Control System 
for Preferential Oxidizer

desired H2 
conversion

airCMAC

airPID

airTOTAL

training

+
-

+

+! ! PROXPID

CMAC

H2 conv. 
error

HYBRID CONTROL SYSTEM

(ANN)

(Conventional)

PROX reformate flow rate

PROX inlet [CO] 
Inlet coolant temperature

gains=f(flow rate)

Inlet 
reformate

Outlet 
reformate

H2 conv. = 
f(airTotal, [H2]in, [H 2]out,

flow rate, sensor dynamics)

H2 Conversion Calc.

actual H2 conversion
[H2]out

[H2]in

ASSOCIATION MEMORY, c = 3

INPUT SPACE, n = 2 Layer 1 Layer 2 Layer 3

input 2

in
p

u
t 

1

quant. width
of input 2
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Summary of 3-D CMAC 
Characteristics

•! Inputs and Number of Divisions for receptor 
cubes:
–! PrOx inlet reformate flow rate (95)
–! PrOx inlet cooling temperature (80)
–! PrOx inlet CO concentration (100)

•! Output: PrOx air injection rate
•! Associative Layers, C: 24
•! Number of Associative Memory Cells/Weights 

and Layer Offsets: 1,276 and [1,5,7]
•! Learning Rate,    : ~0.01
•! Sampling Interval: 100 ms

ASSOCIATION MEMORY, c = 3

INPUT SPACE, n = 2 Layer 1 Layer 2 Layer 3

input 2

in
pu

t 1

quant. width
of input 2
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Flow Rate and Hydrogen Conversion 
of CMAC/PID Controller

•! H2 conversion command (across PrOx only): 1.5%
•! Novel data, with (---) and without pre-training (––)
•! Federal Urban Driving Cycle (= FUDS)
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Comparison of PrOx Controllers 
on Federal Urban Driving Cycle

 !  mean H2 error
 !  maximum H2 error
 !  mean CO out
 !  max. CO out
 !     % % ppm ppm %
•! Fixed-Air 0.68 0.87 6.3 28 57.2
•! Table Look-up 0.13 1.43 6.5 26 57.8
•! PID 0.05 0.51 7.7 30 58.1
•! CMAC/PID 0.02 0.16 7.3 26 58.1
 !  net H2 output
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Deep Learning with Restricted 
Boltzmann Machine

!! Multiiple layers of RBMs
!! Semi-supervised learning

!! Clustering (visible) units
!! Sigmoid (hidden) units

!! Pre-train each layer separately and contextually (unsupervised)
!! Fine-tune with backpropagation (supervised)
!! Restrict connections between layers
!! Goal is to overcome “vanishing or exploding gradient problem” in 

multi-layer back-propagation

Hinton et al, 2006 29
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Sparse Deep Network
•! Partitioned input space
•! Expanding network connections

30
•! Fully connected final layer

Red Blue Green IntensityFiltered Input

Analyzed Image



Convolutional Neural Network

31

•! Repeated sequence of 
operations
–! Convolution (cross-

correlation)
–! Rectification neurons (ReLu)
–! Fully connected networks

•! Decomposition of image
–! Sliding window of receptive 

fields
–! Pooling (dimension 

reduction)
–! Simply connected networks

Autoencoding and Pooling
•! Autoencoding: Same number of inputs and outputs
•! Compression and decompression layers identify important attributes
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•! Max pooling: selection of important attributes
•! Dimension reduction of features
•! Enhanced invariance in characterization of a feature in 

different perspectives



Convolution
•! Cross-correlation of outputs from previous layers
•! Apply to partitioned receptive fields
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“Heat Map” Image Convolution

CS = D
TD zk xk , yk( ) = ck xkyk+1[ ]

i=0

K

!

Rectified Linear Unit (ReLu)
•! Simple alternative to hardlim, 

sigmoid nodes
•! Faster, more accurate classification 

in some applications
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"

y = max 0, y( )
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1st Encoder
Unsupervised

2nd Encoder
Unsupervised

Preliminary NN 
training

Supervised

Output 
matched to 

input (1)

Output 
matched to 

input (2)

Output (2) 
trained for 

classification

DeepNet 
trained to 

classes

Convolution Neural Network 
(ConvNet)

More on Recurrent Neural Networks
•! Feedback added to a feed-forward neural network 

(discrete-time dynamic system)
•! One-step memory introduced to network
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u1 k( ) = s1 W1x k( ) +U1u1 k !1( ) + b1"# $%
u2 k( ) = s2 W2u1 k( ) + b2"# $%

u1 k( ) = s1 W1x k( ) +U1u2 k !1( ) + b1"# $%
u2 k( ) = s2 W2u1 k( ) + b2"# $%

Elman Network Jordan Network



Long Short-Term Memory
•! Memory held until new value overwrites
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u f k( ) = sg Wfx k( ) +U fuh k !1( ) + b f"# $%
ui k( ) = sg Wix k( ) +Uiuh k !1( ) + bi"# $%
uo k( ) = sg Wox k( ) +Uouh k !1( ) + bo"# $%
uc k( ) = u f k( ).*uc k !1( ) + ui k( ).*sc Wcx k( ) +Ucuh k !1( ) + bc"# $%
uh k( ) = uo k( ).*sh uc k( )"# $%

•! Cell, input gate, 
output gate, 
forget gate

Klaus, 2015

Neural Turing Machines

•! Trainable read/write access to 
memory

•! Controller/program implemented 
by neural networks
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Graves, 2014

•! Reinforcement-Learning NTM
•! uses either feed-forward or 

LSTM neurons
•! Improves on LSTM neurons

Zaremba, 2015

Sigmoid networks can be “Turing complete”, 
Siegelmann & Sontag, 1991, 1995



Next Time:!
Communication, Information, 

and Machine Learning!
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Supplemental 
Material
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Hopfield Network

Alternative plot of 4-node 
network

ExemplarNovel Image

“Energy Landscape”
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Linear Vector 
Quantization

!! Incorporation of supervised learning in 
Semantic Net

!! Classification of groups of outputs
!! Type 1

!! Addition of codebook vectors, mc, with known 
meaning

 

mc k +1( ) =
mc k( ) + !k x k "mc k( )[ ],
mc k( ) "!k x k "mc k( )[ ],

# 
$ 
% 

& % 
if classified correctly
if classified incorrectly
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Linear Vector 
Quantization

!! Type 2
!! Inhibition of nearest neighbor whose 

class is known to be different, e.g.,
!! x belongs to class of mj but is closer to mi

 

mi k +1( ) =mi k( ) !"k x k !mi k( )[ ]
m j k +1( ) =m j k( ) + "k x k !m j k( )[ ]
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Adaptive Critic Proportional-
Integral Neural Network Controller 

Adaptation of Control Network 

NNC 

  Aircraft Model 
•! Transition Matrices 
•! State Prediction 

Utility Function 
Derivatives 

NNA 

xa(t) 

a(t) 

Optimality 
Condition 

NNA Target 

Target Generation 
44

Ferrari, Stengel, 2005



Adaptive Critic Proportional-
Integral Neural Network Controller 

Adaptation of Critic Network 

NNC
(old)

 

Utility Function 
Derivatives 

NNA 

NNC Target 

Target Generation 

  Aircraft Model 
•! Transition Matrices 
•! State Prediction 

NNC 

Target C ost  
Gradient 

xa(t) 
a(t) 
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