Sensors and Actuators
Robert Stengel
Robotics and Intelligent Systems, MAE 345, Princeton University, 2013

- Biological Antecedents
- Critical Elements for System Observation and Control
- Control Effecters
- Output Sensors
- Navigation

Biologically Inspired Control
- Declarative Planning
- Procedural Formatting
- Reflexive Control
- Sensory input
- Motor output
Feedback Control Requires Sensors and Actuators

- Sensors and actuators have their own dynamic characteristics

- Desirable properties
 - High bandwidth ("faster" than system to be controlled)
 - Accuracy
 - Precision
 - Large dynamic range
 - Sufficient power for control
 - Reliability
 - Low cost

Peripheral Sensory and Motor Neurons

Synapse: chemical or electrical axon-dendrite connection
Sensory and Motor Signal Paths to the Brain

Reflexive response is processed in the spinal roots
Declarative and procedural response is processed in the brain

Skeletal Muscle

- Attached to the skeleton to produce motion of limbs, torso, neck, and head
- Agonist-antagonist muscle pairs produce opposing motion
- End-effector strength depends on lever arm and varies with joint angle
- Voluntary (declarative) commands from somatic central nervous system
Sensory Neuron Receptors

Neuron Receptors (corpuscles, disks, cells, muscle spindles) generate action potentials that are sensed by the neuron soma.

Cutaneous and Sub-Cutaneous Receptors

The Eye
Retinal Cross Section

- Retinal Ganglion Cells
- Amacrine and Horizontal Cells
- Rod and Cone Cells

Biological Inertial Measurement: The Inner Ear

- Measures linear and angular acceleration
- Integration with eye motion

1. Detection of rotation
2. Inhibition of extraocular muscles on one side.
3. Excitation of extraocular muscles on the other side
4. Compensating eye movement
Actuators

Rubbertuator

Pneumatic analog of muscle
Contraction under pressure

Agonist-antagonist action produces rotation

- Robot arm
Hydraulic Actuator

Electric Actuator
Brushed DC Motor

- Current flowing through armature generates a magnetic field
- Permanent magnets torque the armature
- When armature is aligned with magnets, commutator reverses current and magnetic field
- Multiple poles added to allow motor to smooth output torque and to start from any position
Electric Actuator
Brushless DC Motor

- Armature is fixed, and permanent magnets rotate
- Electronic controller commutates the electromagnetic force, providing a rotating field
- Advantages
 - Efficiency
 - Noise
 - Lifetime
 - Reduced EMI
 - Cooling

Electric Actuator
Stepper Motor

- Brushless, synchronous motor that moves in discrete steps
- Precise, quantized control without feedback
- Armature teeth offset to induce rotary motion
Actuation Linkages

- Gearing, leverage
- Gears
- Belts, Chains, Cables
- Bellcranks

Reaction Wheel, Control-Moment Gyro

- Flywheel on a motor shaft
- Reaction wheel rpm is varied to trade angular momentum with a spacecraft for control
 - Three orthogonal wheels vary all components of angular momentum
 - Fourth wheel at oblique angle provides redundancy
- Control moment gyro rpm is fixed, axis is rotated to impart torque

from Joe Munder, Lockheed
Sensors

Magnetometer

- **Flux gate “compass”**
 - Alternating current passed through one coil
 - Permalloy core alternately magnetized by electromagnetic field
 - Corresponding magnetic field sensed by second coil
 - Distortion of oscillating field is a measure of one component of the Earth’s magnetic field
- **Three magnetometers required to determine Earth’s magnetic field vector**
Sun Sensor

- Distance from centerline measured by sensed pattern, which determines angle, α
- With index of refraction, n, angle to sun, α', is determined
- Photodetectors may provide digital (coarse) or analog (fine) outputs

$$\tan \alpha = \frac{d}{h}$$

$$\sin \alpha' = n \sin \alpha \quad (\text{Snell's law})$$

$n = \text{index of refraction}$

Potentiometer, Synchro, and Tachometer
Angular Encoder

Linear Variable Differential Transformer
Tactile Sensors

Photoelectric Key

Capacitive Touchpad

Pressure-Sensitive Touchpad

Strain Gauge

\[\varepsilon = \frac{\Delta R}{R_o} \]

Gauge Factor
Force Sensors

\[\text{Force} = \text{Stiffness} \times \text{Displacement(\text{Strain})} \]

Pressure and Temperature Sensors

- Deflection of Diaphragm Between Chambers at Different Pressure

- Deflection of Bi-Metallic Element
 - Mercury switch - on/off
 - Variation in Resistance

- Thermistors
 - Variation in Resistance
Air Data Sensors

Radar and Sonar

Tracking (Pulse) Radar

Adaptive Cruise Control Radar

Active Electronically Steered Array Tracking Radar

(Doppler) Radar Gun

Handheld Sonar

Doppler Effect (wave source moving to the left)
Ultrasonic Rangefinder

Transmit/Receive Unit
- 5 chirps/s
 - 8 pulses @ 60kHz
 - 8 pulses @ 67kHz
 - 16 pulses @ 53kHz
 - 24 pulses @ 50kHz

Antenna Pattern

Chirp Spectrum

Transmitted

Received

SensComp ("Polaroid") Devices

Triangulation Rangefinders
Spring Deflection Accelerometer

\[\Delta \ddot{x} = -k_s \Delta x/m \]

\[\Delta x = \frac{m}{k_s} \Delta \ddot{x} \]

- Deflection is proportional to acceleration
- Damping required to reduce oscillation
Force Rebalance Accelerometer

\[\Delta \ddot{x} = f_x / m = \frac{\text{torque/moment arm}}{m} \Rightarrow \Delta x \approx 0 \]

- Torquer voltage required to re-center the proof mass becomes the measure of acceleration
- Example of closed-loop control

MicroElectroMechanical System (MEMS) Accelerometer

3-DOF MEMS Accelerometer
Mechanical Gyroscope

Body-axis moment equation

\[M_B = \dot{h}_B + \ddot{\omega}_B h_B = I_B \ddot{\omega}_B + \ddot{\omega}_B h_B \]

\[\ddot{\omega}_B = I_B^{-1} (M_B - \ddot{\omega}_B I_B \omega_B) \]

Constant nominal spin rate, \(n \), about \(z \) axis

\(I_{xx} = I_{yy} \ll I_{zz} \)

Small perturbations in \(\omega_x \) and \(\omega_y \)

Types of Mechanical Gyroscope

- **Two-degree-of-freedom gyro**
 - Free gyro mounted on a gimbaled platform
 - Gyro “stores” reference direction in space
 - Angle” pickoffs” (encoders) on gimbal axes measure pitch and yaw angles

- **Single-degree-of-freedom gyro**
 - Gyro axis constrained to rotate in its case with respect to the output axis, \(y \), only
 - “Synchro” measures axis rotation, and “torquer” keeps \(\theta \) small
 - Torque applied is a measure of the input about the \(x \) axis

- **Rate and integrating gyros**
 - Large angle feedback produces a rate gyro
 - Large rate feedback produces an integrating gyro
Optical “Gyroscope”

- **Sagnac interferometer** measures rotational rate, ω
 - $\omega = 0$, photons traveling in opposite directions complete the circuit in the same time
 - $\omega \neq 0$, travel length and time are different

- **On a circular path of radius R**:

\[
t_{CCW} = \frac{2\pi R}{c} \left(1 - \frac{R\omega}{c} \right) \quad ; \quad t_{CW} = \frac{2\pi R}{c} \left(1 + \frac{R\omega}{c} \right)
\]

\[
\Delta t = t_{CW} - t_{CCW} = \frac{4\pi R^2}{c^2} \omega = \frac{4A}{c^2} \omega
\]

c: speed of light

R: radius

A: area

Vibrating Piezoelectric Crystal Angular Rate Sensor

- “Tuning fork” principle
- 4 piezoelectric crystals
 - 2 active, oscillating out of phase with each other
 - 2 sensors, mounted perpendicular to the active crystals
- With zero rate along the long axis, sensors do not detect vibration
- Differential output of the sensors is proportional to angular rate
Halteres: Biological Angular Rate Sensors

Vestigal second pair of wings

Inertial Reference Unit

- 3 Accelerometers
- 3 Angle or Angular Rate Gyros
- Physical platform is servo-driven to maintain reference orientation
 - Instrument feedback
 - Schuler pendulum
 - Gyro-compassing
 - Star trackers
 - GPS
Strapdown Inertial Measurement Unit

- Rate gyros and accelerometers rotate with the vehicle
 - High dynamic range of instruments is required
 - Inertial reference frame is computed rather than physical
 - Use of direction cosine matrix and quaternions for attitude reference

MicroElectroMechanical (MEMS) Strapdown Inertial Measurement Unit

- 3 linear accelerometers, 3 angular rate sensors
 - High drift rates
 - Acceptable short-term accuracy
 - Inexpensive
 - Updated with GPS
Position Fixing for Navigation
(2-D Examples)

- **Lines of position**
 - Straight line
 - Circle
 - Hyperbola

Global Positioning System (GPS)

- Six orbital planes with four satellites each
 - Altitude: 20,200 km (10,900 nm)
 - Inclination: 55 deg
 - Constellation planes separated by 60 deg
- Each satellite contains an atomic clock and broadcasts a 30-sec message at 50 bps
 - Ephemeris
 - ID
 - Clock data
- http://www.youtube.com/watch?v=v_6yeGcpoyE
Position Fixing from Four GPS Satellites

- Pseudorange estimated from speed of light and time required to receive signal

\[\Delta t_i = \left(t_{\text{received}} - t_{\text{sent}} \right)_{\text{Satellite } i} \]

Satellite #1: \(R_{1p} = c\Delta t_1 \)
Satellite #2: \(R_{2p} = c\Delta t_2 \)
Satellite #3: \(R_{3p} = c\Delta t_3 \)
Satellite #4: \(R_{4p} = c\Delta t_4 \)

User clock inaccuracy produces error, \(C_u \)

\[C_u = c\Delta t_{\text{user clock error}} \]

Position Fixing from Four GPS Satellites

- Satellite transmits transmit time and position via ephemeris

\[
\begin{align*}
R_1 & = \sqrt{(x_1 - x_u)^2 + (y_1 - y_u)^2 + (z_1 - z_u)^2} = R_{1p} + C_u \\
R_2 & = \sqrt{(x_2 - x_u)^2 + (y_2 - y_u)^2 + (z_2 - z_u)^2} = R_{2p} + C_u \\
R_3 & = \sqrt{(x_3 - x_u)^2 + (y_3 - y_u)^2 + (z_3 - z_u)^2} = R_{3p} + C_u \\
R_4 & = \sqrt{(x_4 - x_u)^2 + (y_4 - y_u)^2 + (z_4 - z_u)^2} = R_{4p} + C_u
\end{align*}
\]

- Four equations and four unknowns \((x_u, y_u, z_u, C_u)\)
- Accuracy improved using data from more than 4 satellites
All in Your Pocket

iPhone 5

- 3-axis accelerometer
- 3-axis angular rate
- 2-axis magnetometer compass
- GPS position measurement
- 1 GHz processor
- 512 MB RAM
- 32 GB flash memory
- 2 cameras, including video

Parrot AR.Drone 2.0

- 1GHz 32 bit ARM Cortex A8 processor with 800MHz video DSP
- TMS320DMC64x
- Linux 2.6.32
- 1Gbit DDR2 RAM at 200MHz
- USB 2.0 high speed for extensions
- Wi-Fi b,g,n
- 3 axis gyroscope 2000°/second precision
- 3 axis accelerometer +50mg precision
- 3 axis magnetometer 6° precision
- Pressure sensor +/- 10 Pa precision
- Ultrasound sensors for ground altitude measurement
- 60 fps vertical QVGA ground speed measure

- HD Camera, 720p 30fps
- Wide angle lens : 92° diagonal
- H264 encoding base profile
- Low latency streaming
- Video storage on the fly with the remote device
- JPEG photo
- Video storage on the fly with Wi-Fi directly on your remote device or on a USB key
- 4 brushless inrunner motors. 14.5W 28,500 RPM
- Micro ball bearing
- Low noise Nylatron gears for 1/8.75 propeller reduction
- Tempered steel propeller shaft
- Self-lubricating bronze bearing
- Specific high propelled drag for great maneuverability
- 8 MIPS AVR CPU per motor controller
- 3 elements 1000 mAH LiPo rechargeable battery (Autonomy: 12 minutes)
- Emergency stop controlled by software
- Fully reprogrammable motor controller
- Water resistant motor’s electronic controller
Next Time:
Introduction to Optimization

Supplementary Material
Muscle and Motor (Efferent) Neurons

- Force is produced by contraction of individual muscle cells
- Motor neurons command muscles
- Each muscle cell is innervated by many overlapping neurons
- Motor neuron soma are in ventral root ganglia of the spine

Sensory (Afferent) Neurons

- Components of the peripheral nervous system that measure pressure, temperature, vibration, etc.
- Neuron Soma located in the dorsal root at the base of the spine
- The sensory neuron is pseudo-unipolar
 - Input from a single dendrite that is structurally similar to an axon
 - Output to a single axon to synapses in the spinal column
Motor Neuron Receptors

- Sensory fibres detect stretching of the muscle (both tonic and phasic information is sent to the CNS)

Synapses Excite or Inhibit Downstream Cellular Activity

- Post-synaptic cell can be a neuron, a muscle, or a gland
ADVANTAGES AND DISADVANTAGES OF HYDRAULIC ACTUATORS
(from McKerrow)

Hydraulic actuators

Advantages
- Large lift capacity
- High power to weight ratio
- Moderate speeds
- Oil is incompressible, hence once positioned joints can be locked to a stiff structure
- Very good servo control can be achieved
- Self lubricating and self cooling
- Operate in stalled condition with no damage
- Fast response
- Intrinsically safe in flammable and explosive atmospheres
- Smooth operation at low speeds

Disadvantages
- Hydraulic systems are expensive
- Maintenance problems with seals causing leakage
- Not suitable for high speed cycling
- Need for a return line
- Hard to miniaturize because high pressures and flow rates
- Need for remote power source which uses floor space
- Cannot back drive links against valves
Advantages and Disadvantages of Pneumatic Actuators
(from McKerrow)

Pneumatic actuators

Advantages
- Relatively inexpensive
- High speed
- Do not pollute work area with fluids
- Can be used in laboratory work
- No return line required
- Common energy source in industry
- Suits modular robot designs
- Actuator can stall without damage

Disadvantages
- Compressibility of air limits control and accuracy aspects
- Noise pollution from exhausts
- Leakage of air can be of concern
- Additional drying/filtering may be required
- Difficulties with control of speeds, take up of loads, and exhausting of lines

Advantages and Disadvantages of Electric Actuators (DC Motor and Stepper Motor)
(from McKerrow)

Electric actuators (DC motors and stepper motors)

Advantages
- Actuators are fast and accurate
- Possible to apply sophisticated control techniques to motion
- Relatively inexpensive
- Very fast development times for new models
- New rare earth motors have high torques, reduced weight, and fast response times

Disadvantages
- Inherently high speed with low torque, hence gear trains or other power transmission units are needed
- Gear backlash limits precision
- Electrical arcing may be a consideration in flammable atmospheres
- Problems of over heating in stalled condition
- Brakes are needed to lock them in position
Autonomous Control of Miniature Aircraft Using Optical Flow

Swinglet, Ecole Polytechnique, Lausanne

Optical Mouse Sensors and Lenses

Gyroscope Equations of Motion

Linearized equations of angular rate change

\[
\begin{bmatrix}
\Delta \hat{\omega}_x \\
\Delta \hat{\omega}_y \\
\Delta \hat{\omega}_z
\end{bmatrix} = \begin{bmatrix}
I_{xx} & 0 & 0 \\
0 & I_{yy} & 0 \\
0 & 0 & I_{zz}
\end{bmatrix}^{-1} \begin{bmatrix}
M_x \\
M_y \\
M_z
\end{bmatrix} \begin{bmatrix}
0 & -n & \Delta \omega_y \\
-n & 0 & -\Delta \omega_x \\
-\Delta \omega_y & -\Delta \omega_x & 0
\end{bmatrix} \begin{bmatrix}
I_{xx} & 0 & 0 \\
0 & I_{yy} & 0 \\
0 & 0 & I_{zz}
\end{bmatrix} \begin{bmatrix}
\Delta \omega_x \\
\Delta \omega_y \\
\Delta \omega_z
\end{bmatrix}
\]

\[
\begin{bmatrix}
\Delta \dot{\omega}_x \\
\Delta \dot{\omega}_y \\
\Delta \dot{\omega}_z
\end{bmatrix} = \begin{bmatrix}
M_x - n(I_{zz} - I_{yy})\Delta \omega_z \\
M_y - n(I_{xx} - I_{zz})\Delta \omega_z \\
M_z
\end{bmatrix}/I_{xx}
\]

\[
\begin{bmatrix}
\Delta \dot{\omega}_x \\
\Delta \dot{\omega}_y \\
\Delta \dot{\omega}_z
\end{bmatrix} = \begin{bmatrix}
0 & n(I_{yy} - I_{zz})/I_{xx} \\
n(I_{zz} - I_{xx})/I_{yy} & 0 \\
0 & M_x/I_{xx}
\end{bmatrix} \begin{bmatrix}
\Delta \omega_x \\
\Delta \omega_y \\
\Delta \omega_z
\end{bmatrix} + \begin{bmatrix}
M_x/I_{xx} \\
M_y/I_{yy}
\end{bmatrix}
\]
Gyroscope Natural Frequency

Laplace transform of dynamic equation

\[
\begin{bmatrix}
 s & -n\left(I_{yy} - I_{zz}\right)/I_{xx} \\
 -n\left(I_{zz} - I_{xx}\right)/I_{yy} & s
\end{bmatrix}
\begin{bmatrix}
 \Delta\omega_y(s) \\
 \Delta\omega_y(s)
\end{bmatrix}
=
\begin{bmatrix}
 M_x(s)/I_{xx} \\
 M_y(s)/I_{yy}
\end{bmatrix}
\]

- Characteristic equation
- Natural frequency, \(\omega_n \), of small perturbations

\[
\omega_n = n\left(\frac{I_{zz}}{I_{xx}} - 1\right) \text{ rad/sec}
\]

Example

\[
\Delta(s) = s^2 + n^2\left(\frac{I_{zz}}{I_{xx}} - 1\right)^2 = 0
\]

\(n = 36,000 \text{ rpm} = 3,770 \text{ rad/sec} \)

Thin disk: \(\frac{I_{zz}}{I_{xx}} = 2 \)

\(\omega_n = 3,770 \text{ rad/sec} = 600 \text{ Hz} \)

Two-Degree of Freedom Gyroscope

- Free gyro mounted on a gimbaled platform
- Gyro “stores” reference direction in space
- Angle” pickoffs” (encoders) on gimbal axes measure pitch and yaw angles
- Direction can be precessed by applying a torque
Single-Degree-of-Freedom Gyroscope

Gyro axis constrained to rotate in its case with respect to the output axis, y, only

$$
\begin{bmatrix}
\Delta \dot{\theta} \\
\Delta \dot{\omega}_y
\end{bmatrix} = \begin{bmatrix}
\Delta \omega_y \\
\left(h_{\text{rotor}} \Delta \omega_x + M_{\text{control}} \right) / I_{yy}
\end{bmatrix}
$$

“Synchro” measures axis rotation, and “torquer” keeps θ small

Torque applied is a measure of the input about the x axis

$$M_{\text{control}} = k_\theta \Delta \theta + k_\omega \Delta \omega_y + k_c \Delta u_c$$

Rate and Integrating Gyroscopes

- Large angle feedback produces a rate gyro
 - Analogous to a mechanical spring restraint

$$\Delta \dot{\omega}_{ySS} = 0 = \left(h_{\text{rotor}} \Delta \omega_{xSS} + k_\theta \Delta \theta_{SS} \right) / I_{yy}$$

$$\Delta \theta_{SS} = - \frac{h_{\text{rotor}}}{k_\theta} \Delta \omega_{xSS}$$

- Large rate feedback produces an integrating gyro
 - Analogous to a mechanical damper restraint

$$\Delta \dot{\omega}_{xSS} = 0 = \left(h_{\text{rotor}} \Delta \omega_{ySS} + k_\omega \Delta \omega_{xSS} \right) / I_{yy}$$

$$\Delta \omega_{xSS} = - \frac{h_{\text{rotor}}}{k_\omega} \Delta \omega_{ySS}$$

$$\Delta \theta_{SS} = \Delta \phi_{SS}$$
Ring Laser Gyro

- Laser in optical path creates photon resonance at wavelength λ
- Frequency change in cavity is proportional to angular rate
- Three RLGs needed to measure three angular rates

$$\Delta f = \frac{4A}{\lambda P} \omega$$
P: perimeter length

Fiber Optic Gyro

- Long length of fiber cable wrapped in a circle
- Photon source and sensor are external to the fiber optics
- Length difference for opposite beams is

$$\Delta L = \frac{4AN}{c} \omega$$
A: included area
N: number of turns

- Phase difference is proportional to angular rate

$$\Delta \phi = \frac{8\pi AN}{\lambda c} \omega$$