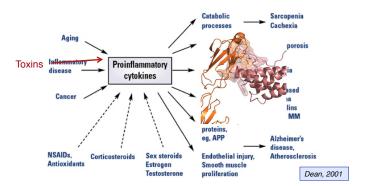
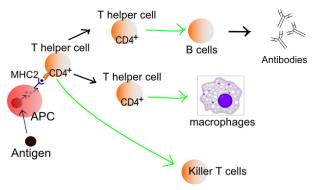

Dynamics of a Cytokine Storm

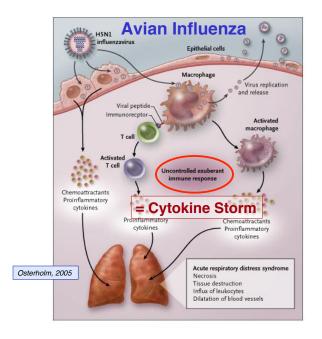
Robert Stengel*
MAE, Princeton University
2012

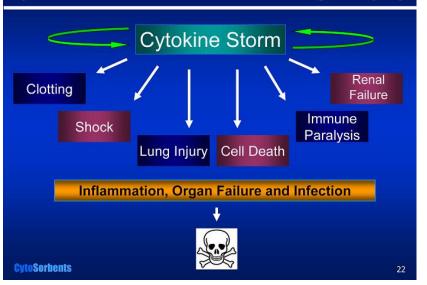

- Cytokine Signaling and Inflammation
- TGN1412 Phase I Clinical Trial
- Modeling the Response of Individual Cytokines
- Integrated Model of Cytokine Response
- Applications of the Dynamic Model
 - Inhibition of Individual Cytokines
 - Effects of TGN1412 Infusion Duration
 - Effects of Model Uncertainty

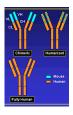
* with Hao Yiu, CBE, and Andrea Graham, EEB, Princeton University


PLOS ONE, Oct 1, 2012, http://www.plosone.org/

Cytokines


- Signaling peptides, proteins, or glycoproteins
- Secreted by immune-system cells, epithelial and endothelial cells, smooth muscle
- In turn, cells are regulated by cytokines
- Pro- or anti-inflammatory response to pathogens, "non-self" molecules, tumors, and toxins


Basic Adaptive Immune Response to Infection


... but what do these arrows represent?

Cytokine Storm Causes Direct Organ Injury

TGN1412 Clinical Trial November 13, 2006

- Phase 1 study of <u>humanized</u> monoclonal antibody engineered as anti-CD28 super-agonist that did not require co-stimulation
- Intended applications of the drug
 - Restore T-cell populations destroyed by cancer chemotherapy
 - Regulate T cells in autoimmune disease (e.g., rheumatoid arthritis)

Cytokine Storms (Hypercytokinemia) are Central to Many Lethal Infections

- Systemic Inflammatory Response Syndrome (SIRS)
- Spanish Flu of 1918 (~500M, 10% mortality, WW)
- Severe Acute Respiratory Syndrome (SARS, 10% mortality, WW)
- Seasonal influenza (40,000 deaths/yr, US)
- Systemic sepsis (750,000/yr, 25-50% mortality, US)
- Dengue virus (50-100M/yr, 25,000-50,000 deaths/yr, WW)
- Hantavirus (30% mortality)

"Most studies have focused on direct measurements of a few cytokines and chemokines in the peripheral blood compartment and *have failed to interrogate the whole of the immune cascade* in the context of the infecting pathogen..... while the peripheral blood may not provide an accurate picture of the cytokine profiles in a tissue, in the lungs, the *location of the initial infection does not seem to be a determinant of the severity of local and systemic cytokine storms.... all can lead to indistinguishable clinical syndromes of acute lung injury (ALI) with respiratory failure, sepsis, and a cytokine storm." Tisoncik et al, "Into the Eye of the Cytokine Storm", MicroMolBioRev, 2012.*

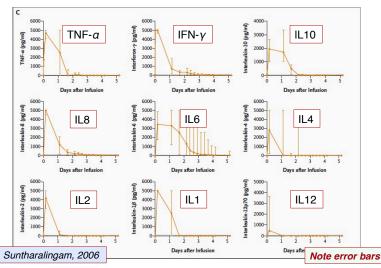
Beginning of the Trial

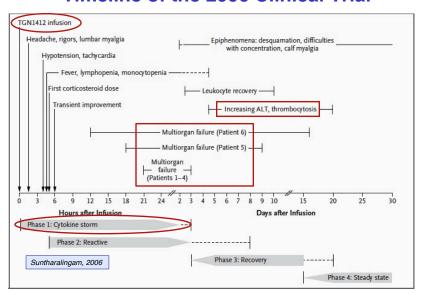
- 8 healthy male subjects, 19 to 34 yr
 - 6 received TGN1412
 - 2 received placebo (saline)
- Infusions lasted 3 to 6 min
 - 0.1 mg/kg body weight
 - 2 mg/min
- Clinical measurements began before the infusion and captured the start
- Clinical trial did not intend to study Cytokine Storms
- Tragic but unprecedented opportunity to track cytokine storms in disease-free patients

TGN1412 Clinical Trial, 3/13/2006

Diarrhea

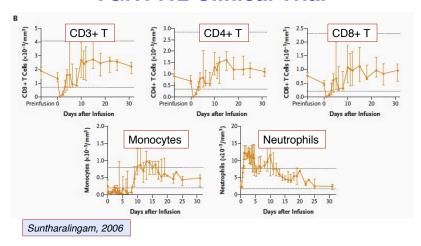
- Within an hour of infusion, subjects experienced
 - Headaches
 - Muscle pain

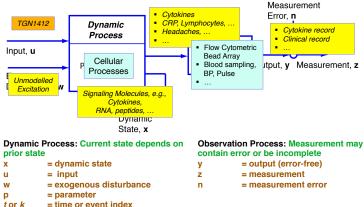

 - Nausea
- Severe depletion of lymphocytes and monocytes from 4th hour to 4th day
- Multi-organ failure
 - Infiltrates in the lung
 - Intravascular coagulation
 - Renal failure
 - Lung injury
- Gross swelling of head and
- Peripheral ischemia requiring surgery (one case)


Decreased blood pressure

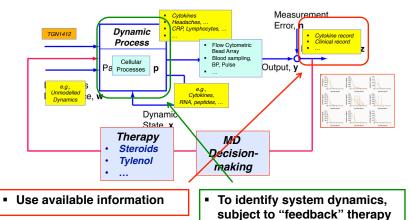
Decreased heart rate

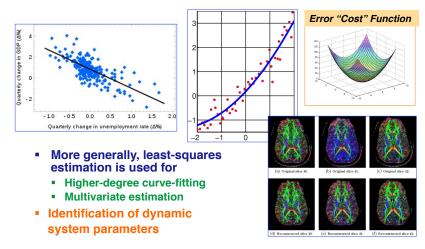
Median Cytokine Concentrations in the TGN1412 Clinical Trial


Timeline of the 2006 Clinical Trial


Measurements

- Normal cytokine ranges: 3.7-48 pg/mL
- Cytometric Bead Array Measurements
 - 5-20% assay accuracy compared to ELISA (Elshal, McCoy, 2007)
 - ELISA is 15-30% accurate (Kristiansen et al, 2002)
 - Signal saturation at 5,000 pg/mL (Suntharalingam, 2006)
- Median estimates for 6 TGN1412 patients at each measurement over 5 days
 - Inter-quartile error bars often span measurement range
- Digitized at 6-hr intervals for our study


Median Lymphocyte and Monocyte Concentrations in the TGN1412 Clinical Trial


What Do We Know?

Dynamic System with Feedback Control

Least-Square-Error Estimates of System Parameters

2nd-Order Model for Response of an Individual Cytokine

- 2nd-order <u>linear, time-invariant</u> ordinary differential equation
 - 1st –order model inadequate for representation of dynamics
- Two solution variables
 - Cytokine concentration, x₁(t)
 - Rate of change of cytokine concentration, x₂(t)
- "Acceleration", dx₂/dt, is proportional to concentration and rate of change through a and b

$$\frac{dx_1(t)}{dt} = \dot{x}_1(t) = x_2(t)$$

$$\frac{dx_2(t)}{dt} = \dot{x}_2(t) = -ax_1(t) - bx_2(t)$$

- Concentration is referenced to basal level
- Initial rate of change is induced by TGN1412 (i.e., ~instantaneous infusion)

$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ x_{2_0} \end{bmatrix}$$

Characteristic Equation and Eigenvalues of the Second-Order Model

$$\Delta(s) \triangleq |s\mathbf{I} - \mathbf{A}| = \begin{vmatrix} s & -1 \\ a & (s+b) \end{vmatrix} = s^2 + bs + a$$
$$= (s - \lambda_1)(s - \lambda_2) = s^2 - (\lambda_1 + \lambda_2)s + \lambda_1\lambda_2 = 0$$

Consequently

$$\begin{bmatrix}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
-\lambda_{1}\lambda_{2} & (\lambda_{1} + \lambda_{2})
\end{bmatrix} \begin{bmatrix}
x_{1}(t) \\
x_{2}(t)
\end{bmatrix}$$

$$\begin{bmatrix}
x_{1}(0) \\
x_{2}(0)
\end{bmatrix} \text{ given}$$

2nd-Order Model for Response of Individual Cytokine

- Parameters to be identified from experimental data are a, b, and x₂(0)
- Combining equations

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a & -b \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ x_{2_0} \end{bmatrix}$$
or

Propagate State from One Sampling Instant to the Next in Discrete Steps

Incremental integration via state transition matrix

$$\mathbf{x}(t_{k+1}) = e^{\mathbf{A}\Delta t}\mathbf{x}(t_k) = \mathbf{\Phi}(\Delta t)\mathbf{x}(t_k), \quad \mathbf{x}(0) \text{ given}$$

Elements of F are directly related to the elements of A

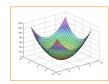
$$\Phi(\Delta t)$$
 = Inverse Laplace Transform $\left[(sI - A)^{-1} \right]$

Discrete-Time Model of 2nd-Order System

Based on eigenvalues of continuous-time system

$$\begin{bmatrix} x_1(t_{k+1}) \\ x_2(t_{k+1}) \end{bmatrix} = \begin{bmatrix} \frac{\left(\lambda_1 e^{\lambda_2 \Delta t} - \lambda_2 e^{\lambda_1 \Delta t}\right)}{\left(\lambda_1 - \lambda_2\right)} & \frac{\left(e^{\lambda_1 \Delta t} - e^{\lambda_2 \Delta t}\right)}{\left(\lambda_1 - \lambda_2\right)} \\ \frac{\lambda_1 \lambda_2 \left(e^{\lambda_2 \Delta t} - e^{\lambda_1 \Delta t}\right)}{\left(\lambda_1 - \lambda_2\right)} & \frac{\left(\lambda_1 e^{\lambda_1 \Delta t} - \lambda_2 e^{\lambda_2 \Delta t}\right)}{\left(\lambda_1 - \lambda_2\right)} \end{bmatrix} \begin{bmatrix} x_1(t_k) \\ x_2(t_k) \end{bmatrix}$$

where

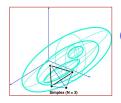

$$a = -\lambda_1 \lambda_2$$

$$b = \lambda_1 + \lambda_2$$

$$\Delta t = 6 \text{ hr}$$

$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix}$$
 given

Error Cost Function for Parameter Identification

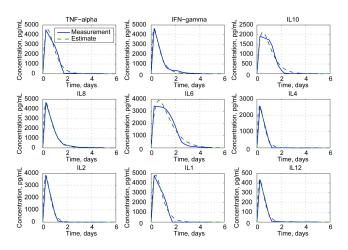


 Squared error of difference between measurements and model's estimates of cytokine concentration

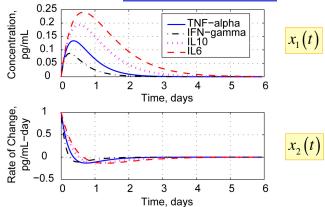
$$J = \sum_{k=0}^{20} \varepsilon (t_k)^2 = \sum_{k=0}^{20} [z(t_k) - x_1(t_k)]^2$$

 $z(t_{\nu})$: Measurement data set

 $x_1(t_k)$: Concentration estimate propagated by discrete - time model


Gradient-Free Search for Parameter Identification

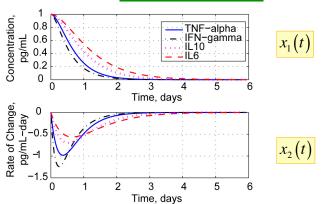
• Error minimized by choice of a, b, and $x_2(0)$


$$\min_{a,b,x_2(t_0)} J = \min_{a,b,x_2(t_0)} \sum_{k=0}^{20} \left[z(t_k) - x_1(t_k) \right]^2$$

using Nelder-Mead (Downhill Simplex) algorithm [MATLAB's *fminsearch*]

Comparison of Median Cytokine Histories and 2nd-Order Responses

2nd-Order Models of Response to Unit Initial Rates of Change



Same response shapes as experimental data

Eigenvalues (λ_1, λ_2) , Time Constants (τ_1, τ_2) , Periods (P), Damping Ratios (ζ) , and Initial Rates of Separate 2nd-Order Models

					٨		1	\bigcap	
Component	$\lambda_1, \mathbf{d}^{-1}$	$\lambda_2, \mathbf{d}^{-1}$	τ_1 , d	$ au_2$, d		<i>P</i> , d	ζ, -	$x_2(0), p_3$	/mL-d
TNF-α	-2.63	-2.63	0.38	0.38	П	2.39	1	32821	
IFN-γ	-7.21	-2.05	0.14	0.49		1.63	1.2	55328	
IL10	-2.08	-2.08	0.48	0.48	П	3.02	1	12047	
IL8	-6.71	-1.84	0.15	0.54		1.79	1.22	50804	
IL6	-1.55	-1.55	0.65	0.65	П	4.05	1	16437	
IL4	-4.17	-4.17	0.24	0.24	П	1.51	1	29489	
IL2	-4.08	-4.08	0.25	0.25	П	1.54	1	42780	
IL1	-2.71	-2.71	0.37	0.37		2.32	1	35535	
IL12	-4.13	-4.13	0.24	0.24		1.52	1	4947	
					U				

2nd-Order Models of Response to Unit Initial Concentrations

- Novel wave forms unlike experimental data
- New insights about relative cytokine response

Combine Nine Models into a Single Uncoupled 18th-Order Model

Verify that results are same as those for low-order models

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) & x_2(t) & x_3(t) & x_4(t) & \cdots & x_{17}(t) & x_{18}(t) \end{bmatrix}^T$$

$$= \left[TNF_{\alpha(t)} \quad \frac{d \left[TNF_{\alpha(t)} \right]}{dt} \quad IFN_{\gamma(t)} \quad \frac{d \left[IFN_{\gamma(t)} \right]}{dt} \quad \dots \quad \right]^{T}$$

	$0 \\ a_{2,1}$	1 a _{2,2}	0 0	0 0		0 0	0	
A =	0	0	$0 \\ a_{4,1}$	$a_{4,1}$	 	0	0	$ riangle \mathbf{A}_{UC}$
						<u></u>		
	0	0	0	0	• • • •	0	1	
	0	0	0	0		$a_{18,17}$	$a_{18,18}$	

Discrete-Time 18th-Order Model

Propagation equation and initial conditions

$$\mathbf{x}(t_{k+1}) = \mathbf{\Phi}(\Delta t)\mathbf{x}(t_k), \quad k = 0,20$$

$$\mathbf{x}(0) = \begin{bmatrix} 0 & x_2(0) & 0 & x_4(0) & \cdots & 0 & x_{16}(0) & 0 & x_{18}(0) \end{bmatrix}^T$$

State transition matrix

$$\mathbf{\Phi}(\Delta t) = e^{\mathbf{A}\Delta t} = \begin{bmatrix} \phi_{1,1} & \phi_{1,2} & \cdots & \mathbf{0} \\ \phi_{2,1} & \phi_{2,2} & \cdots & \mathbf{0} \\ \cdots & \cdots & \cdots & \cdots \\ \mathbf{0} & \mathbf{0} & \cdots & \phi_{18,18} \end{bmatrix}$$

 Uncoupled 18th-order response is identical to that of 9 separate 2nd -order models

18th-Order Stability Matrix with Concentration Coupling

- 90 unknown coefficients
 - 18 coefficients in diagonal blocks
 - 72 coefficients in off-diagonal blocks

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ a_{2,1} & a_{2,2} & a_{2,3} & 0 & \cdots & a_{2,17} & 0 \\ \hline 0 & 0 & 0 & 1 & \cdots & 0 & 0 \\ a_{4,1} & 0 & a_{4,3} & a_{4,4} & \cdots & a_{4,17} & 0 \\ \hline \vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \ddots & \ddots \\ \hline 0 & 0 & 0 & 0 & \cdots & 0 & 1 \\ a_{18,1} & 0 & a_{18,3} & 0 & \cdots & a_{18,18} \end{bmatrix} \triangleq \mathbf{A}_{C}$$

Reasonable to assume that off-diagonal blocks are small

Parameter Estimates for 18th-Order Uncoupled Model

- Minimize weighted error cost function with respect to 27 parameters (18 coefficients + 9 initial rates of change)
- Diagonal weighting matrix, Q, normalizes the errors by each cytokine's typical values

$$J = \sum_{k=0}^{20} \mathbf{\varepsilon}^{T} (t_{k}) \mathbf{Q} \mathbf{\varepsilon} (t_{k}) = \sum_{k=0}^{20} [\mathbf{z}(t_{k}) - \mathbf{x}_{c}(t_{k})]^{T} \mathbf{Q} [\mathbf{z}(t_{k}) - \mathbf{x}_{c}(t_{k})]$$

where

$$q_{ii} = \frac{1}{\sum_{k=0}^{20} z_i^2(t_k)}, \quad i = 1,9$$

$$\mathbf{x}_c = \begin{bmatrix} x_1 & x_3 & \dots & x_{17} \end{bmatrix}^T \quad (9 \times 1)$$

- 18th—order Downhill-Simplex algorithm
- Same parameter estimates as individual 2ndorder models to at least 3 significant digits

Parameter Estimates for Coupled 18th-Order Model

Downhill-Simplex minimization of

$$J = \sum_{k=0}^{20} \left[\mathbf{z} \left(t_k \right) - \mathbf{x}_c \left(t_k \right) \right]^T \mathbf{Q} \left[\mathbf{z} \left(t_k \right) - \mathbf{x}_c \left(t_k \right) \right]$$

with respect to 90 parameters (assuming same initial conditions as before) produces unreasonable results

 Regularize error cost function to keep off-diagonal parameters, p_O small

$$J = \sum_{k=0}^{k_f} \left[\mathbf{z} \left(t_k \right) - \mathbf{x}_c \left(t_k \right) \right]^T \mathbf{Q} \left[\mathbf{z} \left(t_k \right) - \mathbf{x}_c \left(t_k \right) \right] + r_C \mathbf{p}_C^T \mathbf{p}_C$$

Error cost is reduced by 20%, implying that coupling effects are significant

Parameter Estimates for Coupled 18th-Order Model

 Regularize error cost function to keep "total damping" (i.e., the trace of A) the same as uncoupled results

$$J = \sum_{k=0}^{k_f} \left[\mathbf{z}(t_k) - \mathbf{x}_c(t_k) \right]^T \mathbf{Q} \left[\mathbf{z}(t_k) - \mathbf{x}_c(t_k) \right] + r_C \mathbf{p}_C^T \mathbf{p}_C + r_T \left[\mathrm{Tr}(\mathbf{A}_{UC}) - \mathrm{Tr}(\mathbf{A}_C) \right]^2$$

$$Tr(\mathbf{A}_C) = \sum_{i=1}^9 a_{2i,2i} = sum(-5.2, -8.6, -4.4, -8.0, -3.3, -8.1 - 8.0, -5.5, -8.8,)$$

Error cost is reduced by an additional 1%

Concentration Coefficients of the Coupled 18th-Order Model

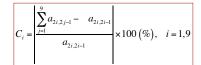
Odd columns and even rows of A

	TNF	IFN	IL10	IL8	IL6	IL4	IL2	IL1	IL12
TNF"	-6.413	0.345	-0.383	-0.186	-0.632	-0.680	-0.206	0.672	-0.818
IFN"	-0.554	-18.641	0.078	1.576	1.542	0.128	0.184	0.696	-0.903
IL10"	-0.487	0.846	-3.320	0.145	-0.727	-0.111	-0.030	-0.017	0.617
IL8"	0.992	-0.207	1.566	-13.571	0.058	-0.823	-0.316	0.046	-3.356
IL6"	0.412	-1.688	-0.303	0.042	-2.784	0.640	0.769	0.955	0.065
IL4"	-1.129	-1.072	-0.278	0.271	0.101	-16.305	0.776	0.778	-0.237
IL2"	-0.503	-0.775	0.422	0.506	-0.242	-0.022	-15.226	-0.181	-0.957
IL1"	0.053	-0.090	-0.376	0.891	-0.575	0.227	0.289	-7.571	0.604
IL12"	-0.877	-0.075	0.275	-0.228	0.320	0.343	1.554	-0.271	-19.448

- All cytokines are self-regulatory (negative coefficients)
 - Caveat: intensive therapy contributed to results
- Self-regulation sensitivity is stronger than intercytokine sensitivity in all but one case
- 1:1 Coupling > 5-10% in many instances, 60% in one case (IFN -> IL6)

<u>Coupled</u> Eigenvalues (Response Modes) and Three Most Significant Response (Eigenvector) Components

- 11 response modes
 - 7 are oscillatory
 - 4 are real


				$\overline{}$			
	Mode	λ , d ⁻¹	<i>P</i> , d	ζ, -	EV #1	EV #2	EV #3
	1	-0.84	-	-	IL10	IL6	IL8
	2	$-1.4 \pm j0.75$	3.93	0.89	IL6	TNF	IL10
+	3	-1.88	-	-	IL8	TNF	IL1
+	4	$-2.27 \pm j0.61$	2.66	0.97	IL1	IL8	IFN
	5	$-3.28 \pm j0.60$	1.89	0.98	IL1	IL10	IFN/IL4
+	6	$-3.22 \pm j0.98$	1.86	0.96	IL1	IL4	TNF
	7	-3.75	-	-	IL10	IL12	TNF
	8	$-4.02 \pm j0.20$	1.56	0.99	IL4	IL12	IL2
	9	$-4.41 \pm j0.71$	1.40	0.99	IL4	IL12	IFN/IL8
	10	$-5.29 \pm j0.82$	1.17	0.99	IL8	IFN	IL12
	11	-5.82	-	(-	IL8	IFN	IL12

+: Pro-inflammatory; others are mixed

Cytokine Sensitivity to Coupling

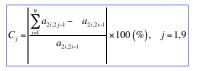
Row-wise comparison of coupling coefficients to self coefficient

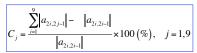
Net Coupling Effect

Percent
5%
1%
2%
1%
12%
0%
1%
2%
1%

Gross Coupling Effect

$$C_{i} = \frac{\sum_{j=1}^{9} |a_{2i,2j-1}| - |a_{2i,2i-1}|}{|a_{2i,2i-1}|} \times 100 (\%), \quad i = 1,9$$

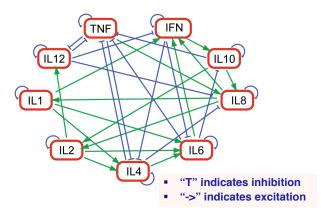

Receiver	Percent
TNF	61%
IFN	30%
IL10	90%
IL8	54%
IL6	175%
IL4	28%
IL2	24%
IL1	41%
II 12	20%


Cytokines That Drive Coupling

<u>Column-wise comparison</u> of coupling coefficients to self coefficient

Net Coupling Effect

Gross Coupling Effect

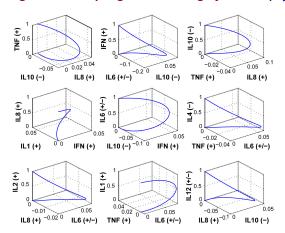

Effecter	Percent
Effecter	Percent
TNF	5%
IFN	1%
IL10	9%
IL8	2%
IL6	2%
IL4	0%
IL2	1%
IL1	5%
IL12	1%

Effecter	Percent
TNF	78%
IFN	27%
IL10	111%
IL8	28%
IL6	151%
IL4	18%
IL2	27%
IL1	48%
IL12	39%


Implications for control (i.e., treatment)

Most Significant Cytokine Interactions

(from concentration coupling matrix)



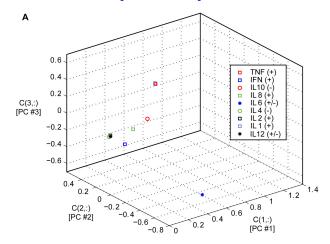
Coupled Response to Unit Initial Cytokine Concentrations

Motifs of Response to Unit Initial Cytokine Concentrations over 5 Days

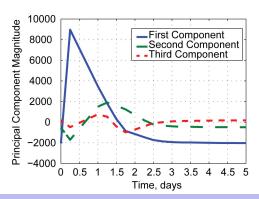
- Unit initial condition on individual cytokines (z axis)
- Most significant coupling on remaining cytokines (x-y axes)

Principal Components Identify Similarities in Wave Forms of Cytokine Responses

Covariance Matrix of Measurements

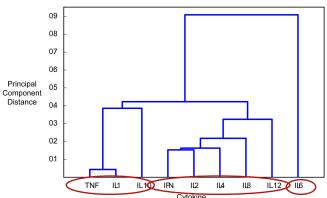

$$\mathbf{Z} = \mathbf{z}(t_k)\mathbf{z}^T(t_k)$$

 Singular-Value Decomposition of Z produces the Principal Components

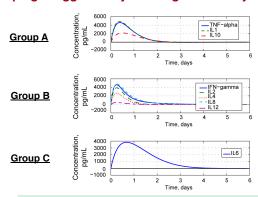

$$\mathbf{y}(t_k) = \mathbf{C}\mathbf{z}(t_k), \quad k = 0, k_f$$

Principal components identify <u>similarity</u> but not <u>causality</u>

Coefficients of the 1st Three Principal Components

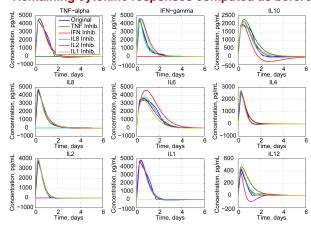

Shapes of Three Most Significant Principal Components

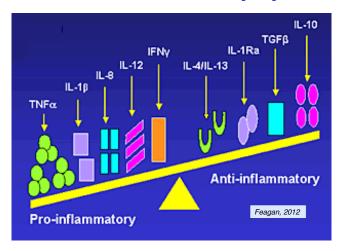
99% explanation of measured wave shapes in 1st 3 components


Dendrogram Identifies Three Cytokine Clusters By Distance

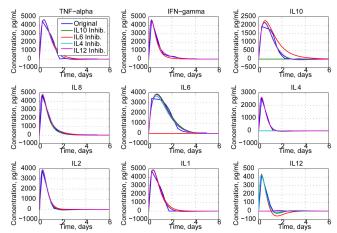
 Principal Component Analysis identifies similarity in wave forms without regard to causality

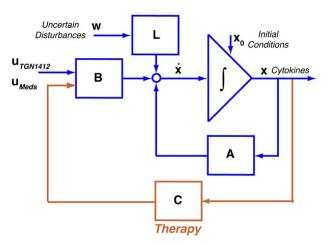
Modeled Responses for Three Cytokine Clusters

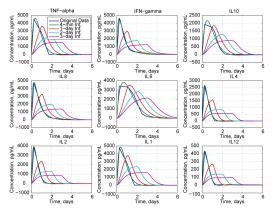

Groupings suggested by dendrogram identify similar responses


Consistent with trends suggested by Tisoncik et al, 2012

Effects of Inhibiting Pro- Inflammatory Cytokines


- Respective rows of A set to zero
- Remaining cytokine responses computed as before


Pro- and Anti-Inflammatory Cytokines


Effects of Inhibiting Anti- and Mixed Inflammatory Cytokines

Overview of Linear Dynamic Model with External Forcing

Estimated Effects of TGN1412 Infusion Duration

- 8 mg dose of TGN1412 would be unsafe at any dosage rate
- Possible safe dose of TGN1412: < 8/300 mg, t_{dose} > 1 day
- However, linear model prediction may be inaccurate

Linear Dynamic Model with External Forcing

Model with TGN1412 effect subsumed in initial condition

$$\dot{\mathbf{x}}(t) = \mathbf{A}_{estimated} \mathbf{x}(t) \triangleq (\mathbf{A} + \mathbf{B}_2 \mathbf{C}) \mathbf{x}(t), \quad \mathbf{x}(0) \text{ estimated}$$

Model with TGN1412 effect as constant input for short period

$$\dot{\mathbf{x}}(t) = \mathbf{A}_{estimated} \mathbf{x}(t) + \mathbf{B}_1 \mathbf{u}_{TGN1412}(t), \quad \mathbf{x}(0) = \mathbf{0}$$

$$\mathbf{B}_1 = (2880 \lceil mg / d \rceil / 8 \lceil mg \rceil) \mathbf{x}(0) = 360 \mathbf{x}(0)$$

B₂ & **C** indeterminate without additional information

Evaluation of Uncertainty on Cytokine Response

Mean Value Vector

$$\overline{\mathbf{x}}(t) \triangleq E[\mathbf{x}(t)] = \int_{-\infty}^{\infty} \mathbf{x} \operatorname{pr}(\mathbf{x}) d\mathbf{x}$$

Covariance Matrix

$$\mathbf{P}(t) \triangleq E\left\{ \left[\mathbf{x}(t) - \overline{\mathbf{x}}(t) \right] \left[\mathbf{x}(t) - \overline{\mathbf{x}}(t) \right]^{T} \right\}$$
$$= \int_{-\infty}^{\infty} \left[\mathbf{x} - \overline{\mathbf{x}} \right] \left[\mathbf{x} - \overline{\mathbf{x}} \right]^{T} \operatorname{pr}(\mathbf{x}) d\mathbf{x}$$

Square roots of diagonal elements are cytokine standard deviations

Evolution of the Mean State Vector

Continuous-Time Model

$$E[\dot{\mathbf{x}}(t)] = E[\mathbf{A}\overline{\mathbf{x}}(t)] = \mathbf{A}E[\mathbf{x}(t)]$$

$$\triangleq \dot{\overline{\mathbf{x}}}(t) = \mathbf{A}\overline{\mathbf{x}}(t) \quad E[\mathbf{x}(t)] = \overline{\mathbf{x}}(0) \text{ given}$$

Discrete-Time Model

$$|\overline{\mathbf{x}}(t_{k+1}) = e^{\mathbf{A}\Delta t}\overline{\mathbf{x}}(t_k) = \mathbf{\Phi}(\Delta t)\overline{\mathbf{x}}(t_k)$$

Propagation of the State Covariance Matrix with Uncertain Disturbance

- For this evaluation, neglect initial uncertainty
- Focus on exogenous effects

$$\mathbf{P}(t_{k+1}) = \mathbf{\Phi}(\Delta t)\mathbf{P}(t_k)\mathbf{\Phi}^T(\Delta t) + \underline{\mathbf{W}(t_k)}$$

where

$$\mathbf{W}(t_k) = \mathbf{L}(t_k)\mathbf{W}_D\mathbf{L}^T(t_k)\Delta t$$

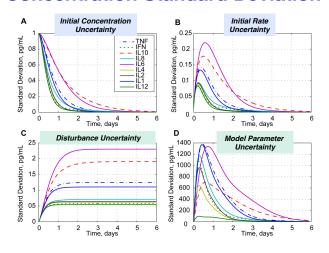
 \mathbf{W}_D : Covariance matrix of exogenous disturbance

 $\mathbf{L}(t_k)$: Disturbance-effect matrix for continuous model

 $\Delta t = 0.01$ days for calculation

Propagation of the State Covariance Matrix from Initial Condition

$$P(0)$$
 given


$$E\left\{\left[\mathbf{x}(t_{k+1}) - \overline{\mathbf{x}}(t_{k+1})\right]\left[\mathbf{x}(t_{k+1}) - \overline{\mathbf{x}}(t_{k+1})\right]^{T}\right\}$$

$$= \mathbf{\Phi}(\Delta t) E\left\{\left[\mathbf{x}(t_{k}) - \overline{\mathbf{x}}(t_{k})\right]\left[\mathbf{x}(t_{k}) - \overline{\mathbf{x}}(t_{k})\right]^{T}\right\} \mathbf{\Phi}^{T}(\Delta t)$$

$$\triangleq \mathbf{P}(t_{k+1}) = \mathbf{\Phi}(\Delta t) \mathbf{P}(t_k) \mathbf{\Phi}^T(\Delta t)$$

- Evolution of uncertainty covariance is linear
- Diagonal elements are square roots of standard deviations

Effects of Uncertainty on Cytokine Concentration Standard Deviation

Cellular-Cytokine Associations

(from the literature)

		(Hom the interature)									
Mixed	Group A			Group B					Grou	рС	
	TNF-α	IL1	IL10	IFN-γ	IL2	IL4	IL8	IL12	IL6		
nnate System											
Monocyte	S	S	S	R	R		R		S, R		
Macrophage	S, R	S, R	S, R	R		R	S, R	S	S		
Dendritic Cell	S, R	S	S, R	S, R	S	R	S	S			
Mast Cell	S	S, R	S	S	S	S	S, R		S		
Neutrophil	S, R	S, R	R			S	S, R	S	S, R		
Eosinophil	S	S, R	S	S		S, R		S	S		
Basophil	S	S, R		R		S			S		
NK .	S, R	S, R	S, R	S	S, R	S, R		R			
Adaptive System											
В	R	S, R	S, R	S, R	R	S, R		S, R	S, R		
Th1	S, R	S, R	S, R	S, R	S, R	S, R		S, R	S, R		
Th2	S, R	S, R	S, R	S, R	S, R	S, R		S, R	S, R		
CTL	S, R	S, R	S, R	S, R	S, R	S		S, R	S, R		
<u>Other</u>											
Fibroblast	S, R	S, R		R			S		S		
Epithelial Cell	S	S	S	R			S, R		S, R		
Endothelial Cell	S, R	S, R		R			S, R		S, R		
Smooth Muscle	S, R	S, R		R		S	S		S, R		
Adipose Tissue	S, R	S							S, R		

Cell types that secrete the cytokine are denoted by S; those that are regulated by the cytokine are indicated by R.

Discussion

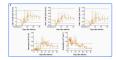
Data-Driven vs. Theory-Driven Modeling

- Parsimony, at all costs; however, model reduction is not useful
- Linear vs. nonlinear models
- Limitations of linear models
 - Local approximation
 - Products (e.g., mass action) or limiting (e.g., Michaelis-Menten, Hill effects) not represented, except in piecewise fashion
- No reason to incorporate nonlinear effects without cause
- Freedoms of linear models
 - Broad array of analytical methods
 - Definition of modal characteristics
 - Simplicity of addressing high-order models
 - Can be expanded for approximation of nonlinearity
- Analytical difficulties associated with nonlinear models
 - Multiple equilibria
 - Amplitude-dependent response
 - Substitute for higher-order unmodeled dynamics
 - Implicit need for model reduction

Discussion

TGN1412 Clinical Trial

- Cytokine storm was an unintended overreaction of immune systems in response to challenge
- Comments on trial:
 - Small number of subjects
 - Limited number of measurements
 - Large variability in individual responses
 - Unanticipated "experiment"
 - Distinct effects of therapy are inseparable from natural response without additional information


Discussion

Analytical Results

- Cytokine coupling effects are well-portrayed by the linear model
- Cytokine Group B had fastest response, peaking 6 hr after infusion
 - During this time T-cell, monocyte, and platelet concentrations crashed (sacrificial response to activation?)
 - Group B returned to normal after 2 days, as did concentrations of these cells
- Neutrophil profile similar to IL6 profile, which was the slowest of the three groups

Discussion

- IL2, IL8, and IL10 had the greatest inductive effect on other cytokines
- IFNy and IL12 had the greatest inhibiting effect
- Three clusters of similar cytokine response revealed by Principal Component Analysis
- IL1, IL6, IL10, and TNFa had greatest variability in response to uncertainty
- Pro-inflammatory IL8 most likely secreted by innate immune cells and non-immune system tissue
- Opportunity remains to extend present study to measured T cells, monocytes, and platelets

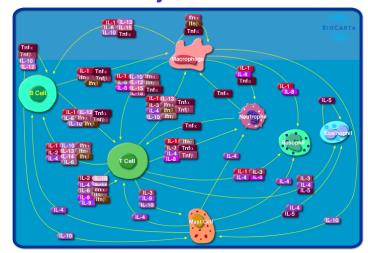
Opinion

- Available clinical results are sparse and fail to reveal important dynamic coupling
 - Variability in 1st appearance of patients
 - Uncertainty in starting point
- Clinical trials focus on treatment of abnormal conditions
 - Safety
 - Efficacy
 - Dosage schedule and level
 - Often restricted to salvage of terminally ill patients
- To better understand cytokine storms, there is a need to better understand normal cytokine dynamics in humans
 - New clinical challenge studies
 - Distinctly different goals from typical pharmacological studies
 - Further studies of human cytokine dynamics using "safe" drugs, e.g., those used for post-infusion therapy

Conclusions

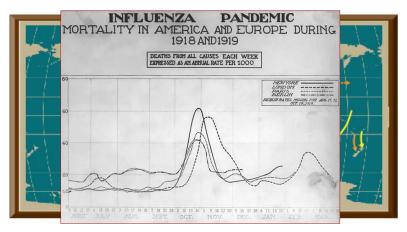
- Dynamic modeling of temporal data provides new insights into cytokine response
- Early, synchronized measurements are important
 - Know the start time for stimulus and immune response
 - Make closely spaced measurements during the first 48 hr of response
- Practical value in linear modeling
- 2nd-order system as the <u>basic building block for modeling</u> concentration
- For the given total dose, TGN1412 is unsafe at any plausible dosage rate
 - Safe total dose given over one day no greater than ~ 1/300 of the clinical trial dose
 - Prediction based on linear model is uncertain
- Adaptive immune response had dominant effect on the cytokine storm

Acknowledgments


- Hao H. Yiu, currently Staff Engineer, Integra Life Sciences
- Andrea L. Graham, Assistant Professor, Ecology and Evolutionary Biology, Princeton University

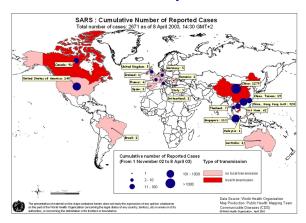
Supplemental Material

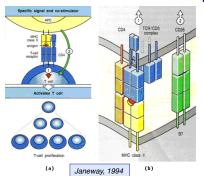
Cellular Secretion of and Regulation by Cytokines



Immune Cell-Cytokine Associations

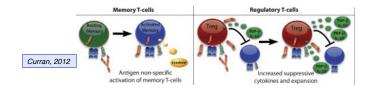
Signaling pathways derived from diverse experiments

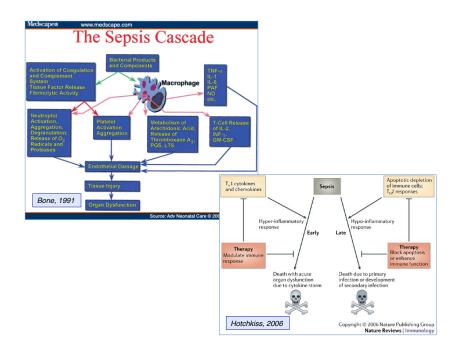

Spanish Flu Pandemic of 1918



- 500 million cases worldwide
- 50 to 130 million died

Severe Acute Respiratory Syndrome (SARS) Epidemic of 2003


- 8,422 cases worldwide
- 10.9% mortality



T-Cell Activation

- Typically requires
 - Antigen MHC complex
 - Co-stimulatory signal to CD28 receptor
- TGN1412 would not require costimulatory signal
- Extensive pre-human testing of TGN1412

Post-Infusion Medications

- Corticosteroids (anti-inflammation)
- Chlorpheniramine (antihistamine)
- Acetaminophen (analgesic for headache)
- Ondansetron (anti- nausea and vomiting)
- Metaraminol (prevention of hypotension)
- Methylprednisolone (anti-inflammation)
- Anti-IL2 receptor antagonist antibody

Eigenvectors for 2nd-Order Model

Eigenvectors portray participation of each state element in each response mode

$$(\lambda_i \mathbf{I} - \mathbf{A}) \mathbf{e}_i = 0, \quad i = 1, n$$

Eigenvectors

$$\begin{vmatrix} \mathbf{e}_1 = \alpha \begin{bmatrix} 1 \\ \lambda_1 \end{bmatrix}; \quad \mathbf{e}_2 = \alpha \begin{bmatrix} 1 \\ \lambda_2 \end{bmatrix}$$