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We highlight the fact that hydrodynamic dispersion in
shallow microchannels is in most cases controlled by the
width of the cross section rather than by the much thinner
height of the channel. We identify the relevant time scales
that separate the various regimes involved. Using the
lubrication approximation, we provide simple formulas
that permit a quantitative evaluation of dispersion for most
shallow cross-sectional shapes in the “long-time” Taylor
regime, which is effectively diffusive. Because of its
relevance for microfluidic systems, we also provide results
for the short-time “ballistic regime” (for specific initial
conditions). The special cases of parabolic and quasi-
rectangular shapes are considered due to their frequent
use in microsystems.

Hydrodynamic dispersion refers to the inevitable spreading
along the flow direction of dissolved or suspended Brownian
particles in a flowing fluid, the ultimate origin of the spreading
being related to velocity variations in the direction transverse to
the mean flow. The effect is particularly significant in laminar flows
in channels for which there is generally a gradual change in
velocity from zero at the boundary to a maximum value in the
center. The dispersion significantly reduces the resolution of
analytic studies performed using pressure-driven flow in micro-
fluidic devices and analytical lab-on-a-chip systems (ref 1 and
references therein). Such analytic studies include, for example,
separating species or determining rates of chemical reactions.
Hydrodynamic dispersion also limits the number of samples that
can be transported sequentially in a given microchannel and
thereby limits the throughput of the device.

Although such (Taylor) dispersion is considered a well-
understood phenomenon, it nevertheless remains difficult to
quantify in practice for many microchannel configurations, which

depart notably from the circular capillary usually described in
textbooks. As a consequence, many analyses refer to situations
with only one transverse dimension (radius or height), a procedure
that we will show can lead to order of magnitude errors in the
estimation of dispersion. In principle, the basic procedure for
properly quantifying mass transport in laminar pressure-driven
flows is well established, and follows the seminal works of Taylor2

and Aris;3 see also Brenner and Edwards.4 Either of the two
approaches, though somewhat different in detail, allows one to
quantify the dispersion for arbitrary channel cross sections. In
one recent application, Dutta and Leighton5 discussed how to limit
dispersion in pressure-driven flows by tailoring the cross-sectional
shape of the microchannel. For simple shapes of the channel cross
section (e.g., two planes, a circle, and an ellipse), analytical results
for dispersion are available, while more complicated shapes
require numerical analysis (see also ref 6).

In this paper, we provide basic results for describing simply
and quantitatively the effect of hydrodynamic dispersion for
situations where the microfluidic channel has a slender, shallow
cross section with a typical height h0 much smaller than the width
w (see Figure 1, top). These situations are numerous in micro-
fluidic devices, partly as a consequence of the various microfab-
rication methods (see, for example, ref 7 and references therein).
Some common cross sections include quasi-rectangular and
trapezoidal shapes (e.g., via chemical etching of crystalline silica),
quasi-parabolic shapes (e.g., PDMS channels used in multilayer
devices), etc.

There are two main contributions in this paper. First, we
demonstrate and emphasize that, when h0 , w, in almost all cases
(i.e., we exclude quasi-rectangular cross sections) hydrodynamic
dispersion is controlled by the width w, the larger of the two
transverse dimensions, and not by the height h0 of the micro-
channel. This fact is in contrast with calculations of the hydro-
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dynamic resistance, which is always controlled by the smallest of
the two cross-sectional dimensions. Second, we provide simple
(user-friendly) formulas for the hydrodynamic dispersion for any
shape of the cross section, for the long-time Taylor dispersion
regime, and also for the short-time regime of hydrodynamic
stretching (focusing on specific initial conditions). Both time
regimes are important in the microfluidic context, and our
formulas also provide an estimate of the crossover time between
the two regimes. These formulas are obtained following Aris’s
method of moments adapted to shallow geometries along the lines
outlined at the end of his paper3 and combining them with a
lubrication description of the pressure-driven flow in these
geometries.

For the sake of clarity, the paper is organized with the main
results clearly identified and mathematical details relegated to the
appendix. In the following section, we introduce the nomenclature
used, comment on the physical ingredients of the problem, and
provide the reader with our main results. We provide explicit
formulas that exhibit the scaling dependence of the dispersion
coefficient on the geometric and flow parameters and the quantita-
tive dependence on the shape of the cross section. Following that,
we discuss our results, compute the effective dispersion coef-
ficients that quantify spreading for a variety of cross-sectional
shapes, discuss the case of quasi-rectangular shapes, and comment
on the implications of our results for microfluidic applications. In
the Appendix, we provide the main lines of the derivation, which
as mentioned above relies on Aris’s “method of moments”
formulation3 combined with a lubrication description of pressure-
driven flows in slender channels.

NOMENCLATURE AND MAIN RESULTS
Transport Model and Basic Definitions. Geometry. We

utilize Cartesian coordinates and consider a straight channel of
constant cross-sectional shape, with length L in the flow (z)
direction, constant width w in the x direction, and a cross section
described by its shape h(x) in the y direction (Figure 1, top). The
maximum value of h(x) is denoted h0. To conveniently discuss
the scaling form of our results, we separate the amplitude h0 from

the specific “shape” of the cross section by writing h(x) )
h0H(x/(w/2)), where H(X) is a dimensionless function that is zero
for X ) (1 and has a maximum equal to 1 between these two
points. We denote by S the constant cross-sectional area,
S ) ∫-w/2

w/2 h(x) dx. We present results valid for the conditions
h0 , w , L, which are generally true for a large number of micro-
fluidic applications.

Flow and Transport of Particles. We assume that there is a
steady incompressible pressure-driven laminar flow in the channel.
The velocity field is directed along the channel axis, u ) u(x, y)ez,
and this field is independent of z so long as the cross-sectional
shape of the channel is constant. The cross-sectionally averaged
(mean) velocity V is defined as

We then consider a set of similar particles with a molecular
(thermal) diffusivity D and describe their transport by the classi-
cal convective-diffusion equation for the concentration field
c(x, y, z, t):

We assume no flux boundary conditions at the walls of the
channel, n‚∇c ) 0, where n is the local normal vector at the
boundary.

Basic problem statement. We consider a sample of particles
injected in the channel at time t ) 0 and around z ) 0 (initial
concentration c(x, y, z, t ) 0)), and we follow the evolution of this
pulse (see Figure 1, bottom). The moments of the concentration
distribution quantify the evolution:

The innermost integrations in (3) provide the area-averaged
concentration, which is often the quantity measured in experi-
ments using a variety of detection schemes (refractometry,
fluorescence, etc.). The mean position and variance are then
〈z〉(t) and σ2(t) ) 〈z2〉(t) - 〈z〉2(t). It is also common to quantify
dispersion along the flow direction in terms of the (time depend-
ent) effective dispersion coefficient, Deff(t), defined as

which tends to a constant value at long times.2

Time Scales and Different Regimes for Shallow Channels.
As stated above, we focus on the case where the cross section is
shallow, h0 , w. This induces two typical time scales for the
exploration by the solutes of velocity variations perpendicular to
the channel axis, exploration that they perform by thermal
diffusion. These two time scales separate three regimes (see
Figure 2): “very short” times, less than O(h0

2/D), during which
solute only mildly samples the shorter transverse dimension,

Figure 1. (Top) Cross section of a microchannel of arbitrary shape
y ) h(x) ) h0H(x/(w/2)). We focus on shallow channels for which
h0 , w, and estimate the spreading of a localized sample as it is
convected downstream. (Bottom) Schematic of the spread of the
cross-sectionally averaged concentration distribution as it moves
downstream (z).
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“short” times, larger that O(h0
2/D) but less than O(w2/D), during

which solute, having “equilibrated” in the short dimension starts
to sample the longer transverse dimension, and eventually a “long”
time regime, i.e., times longer than O(w2/D). If the thickness of
the channel varies progressively along the largest transverse
dimension, then the thickness-averaged velocities will vary notice-
ably from place to place (i.e., at different positions x along the
width). These variations induce a hydrodynamic stretching
extending throughout the short-time regime that adds up to the
one corresponding to velocity heterogeneities in the thickness
(Figure 2). Only in the long-time regime can molecular diffusion
progressively reduce this “ballistic” hydrodynamic spreading by
“averaging” throughout the cross section.

The reason the transverse variations of velocities along the
width dominate the overall Taylor dispersivity is because the
statistical averaging is poorer in that direction due to the longer
diffusion time required. For a quasi-rectangular channel, there is
little or no such transverse heterogeneity along the x direction of
the height-averaged velocity (except for the vicinity of the side
walls), so that this source of dispersion is weak or absent.

Main Results. To substantiate these qualitative statements,
we now provide our analytical results, obtained, as detailed in the
Appendix, by combining the method of moments applied to
shallow channels as described in Aris3 with a lubrication descrip-
tion of the flow field. Our results thus hold for smooth shallow
cross-sectional shapes. The case of abrupt shape changes, as
occurs for nearly rectangular shapes, is discussed in the section
entitled Long-Time Dispersion for Quasi-Rectangular Shapes.

Long-Time Dispersivity. At long times, i.e., longer than
O(w2/D), the spreading of the sample is effectively diffusive
(Taylor-Aris dispersion). The average position is 〈z〉eVt and the
variance, σ2

long, grows linearly in time

where Pew is the Péclet number defined using the width w as the
relevant length scale (not h0) and V as the mean velocity:

This identification of the prominent role of the channel width is
the first main point of our paper. The second is an explicit formula
for the constant κl in (5), which depends only on the nondimen-
sional shape of the cross section as described by the function
H(X):

where we have introduced the short-hand notation

This long-time behavior is fully described by the effective
dispersion coefficient

We emphasize that remarkably the channel height h0 is
completely absent in this long-time limit obtained for a smooth
cross section (again abrupt shape changes, such as almost
rectangular shapes are not included in this analysis).

Dispersion at Shorter Times. Due to its special relevance
for microfluidic systems, we also investigate dispersion at shorter
times, although the results are then not universal and depend on
the initial distribution of solutes.

Of special interest is the “short” time regime, i.e., times scales
longer than the (fast) time scale for molecular diffusion in the y
direction but shorter than for that along the width of the channel;
i.e., O(h0

2/D) < t < O(w2/D). Then, differences along the width
x of the height-averaged velocities lead to an effective diffusion
coefficient increasing linearly in time. For initial distributions
homogeneous along x, we explicitly obtain as described in the
Appendix

where κs is a dimensionless number that depends only on the
nondimensional shape H of the cross section:

Again, h0 does not enter the description.
For even shorter times, i.e., shorter than O(h0

2/D), and for an
initial distribution homogeneous in the cross section, a simple
calculation using the lubrication description of the flow ( eq 25 in
the Appendix) yields a diffusivity formally similar to (10), with κs

replaced by κvs ) (6I1I5/5I3
2) - 1 ) κs + (I1I5/5I3

2).
Crossover Time. A useful outcome of the previous analysis

is an estimate for the typical crossover time txo between hydro-
dynamic stretching and broadening by Taylor-Aris dispersion.

Figure 2. Schematic diagram of the increase of the variance in time.
The thick solid curve corresponds to the short- and long-time regimes
described in the text, where explicit formulas are given. The thin solid
curve depicts dispersion arising from variations of the velocity along
the height dimension, which is usually examined through a strictly
two-dimensional study. The complete solution for the three-dimen-
sional situation corresponds to the envelope (dashed) of the two
curves and is thus well described by our approach for times longer
than the crossover time between the two curves, which is O(h0

2/D).

σ2
long(t) = 〈(z - Vt)2〉(t) = 2D(1 + κlPew

2)t (5)
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∫-1
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I3
- 1)H(X′) dX′]2
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1
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Deff
long ) D(1 + κlPew

2) (9)

Deff
short (t) ) 1

2
d
dt

σ2
short(t) = D + κsV

2t ) D(1 + κsPew
2Dt
w2)
(10)

κs ) I1I5/I3
2 - 1 (11)
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For large Péclet numbers (Pew . 1), equating the variance in the
two regimes yieldsThis time scale, which as expected scales as

the time to diffuse the width, sets the limit of validity of the long-
time dispersive regime (eqs 6-10). Once again the channel width
w is the important length scale.

In the above quantitative characterization of the dispersion
process, three shape-dependent dimensionless numbers, κl, κs, and
κxo, have been introduced. We calculate and tabulate these
numbers for several representative shapes in the next section.

DISCUSSION
General Remarks. As is well known in the literature on

hydrodynamic dispersion, the flow contributes a long-time effective
diffusion that varies as the square of the average velocity.
However, the channel dimension that enters the description is
the width, not the height (assuming h0 , w), a fact that is
generally obscured since most analyses concern effectively two-
dimensional situations. Furthermore, it is the square of that
dimension that enters the expression of the long-time Taylor
dispersion, so that we are actually arguing that, for channels of
aspect ratio, w/h0, of order 10, hydrodynamic dispersion is 100
times larger than an analysis based on the height would suggest!
It is nevertheless worth noting that if the pressure drop ∆p is
specified for a channel of length L, then the mean velocity V )
(h0

2I3∆p/12I1µL), where µ is the viscosity of the fluid; this feature
brings the smallest dimension, the height, into the overall
description.

The formulas above have been established using the lubrica-
tion approximation (see Appendix), so that we expect them to
hold for arbitrary smooth and narrow cross sections. Note that
although the examples quoted here mostly refer to the format
common in microfluidics where one of the surface is flat (as
described in Figure 1a), our results equally hold for any smooth
narrow shape where the local height is ymax(x) - ymin(x) ) h(x).
Also, the scaling forms are explicit in the formulas given above,
so that we now turn to the computation of the numerical
coefficients for a set of representative shapes.

Parabolic Cross-Sectional Shapes. Parabolic cross sections
are commonly found in many microfluidic geometries based on
soft lithography techniques (e.g., ref 8). Thus, we provide explicit
results for such shapes by using the formulas of the previous
section with h(x) ) h0(1 - (x/w/2)2) or H(X) ) 1 - X2. It is
straightforward to evaluate the integrals in (7) to obtain

This value can immediately be compared with the more familiar
(1/4)(1/48) ≈ 0.005 for the well-known prefactor of the disper-
sivity for pressure-driven flows in a circular tube (the (1/4) factor
stems from the comparison being made using the tube diameter,
rather than the radius, in place of w). The short-time dispersivity

is characterized by the constant κs ) (53/297) ≈ 0.178, so that
the crossover coefficient (eq 12) from “ballistic” short-time to
“diffusive” long-time dispersion is κxo ) (2κl/κs) ) (3347/96460)
≈ 0.035.

One application of these ideas is to the quantitative description
of the rotary mixer introduced by Quake and colleagues.9 This
device is commonly used to mix materials in one step of their
processing in integrated systems using two-layer soft lithography.
For such systems, the operation of active elements such as valves
is favored by using smooth rounded cross sections, and fabrication
often results in parabolic cross-sectional shapes of the channels.
A typical microfluidic rotary mixer has a centerline radius R )
1000 µm, width w ) 100 µm, height h0 ) 10 µm, and mean velocity
V ) 0.1 cm/s. Therefore, if we take the molecular diffusivity to
be D ≈ 5 × 10-6 cm2/s, then the crossover time for an experiment
is typically txo ≈ 0.035w2/D ≈ 0.7 s. This time scale should be
compared with the average circulation time around the rotary
mixer 2πR/V ≈ 6 s. Thus, well before a single revolution, the
transport process is characterized by the description of dispersion
based on the channel width. Our formulas can thus be used to
refine the analysis presented by Squires and Quake,10 where only
one dimension was considered, and provides guidance for a
complete 3D analysis of the problem along the lines of the 2D
analysis presented by Gleeson et al.11

Other Simple Shapes. We have also computed the values of
the nondimensional parameters κl, κs, and κxo ) 2κl/κs for elliptical
and triangular cross sections, which are reported alongside those
for the parabola in Table 1. The long-time result for the elliptical
shape matches the limit of Aris’s exact calculation (p 76 in ref 3).

Focusing on the long-time dispersivity, two facts are im-
mediately apparent and worth emphasizing. First, as is common
in such dispersion problems, the numbers are small for prefactors
in a scaling theory, i.e., typically of order 10-3-10-2. Second, they
are smaller (and so is dispersion) for flatter shapes, as is obvious
following the sequence triangle f parabola f ellipse. This result
corresponds to more uniform values of the velocity distribution,
i.e., smaller gradients of the height-averaged velocities.

An extension of the above argument suggests making a
connection to the case of the flattest shapes, i.e., rectangular
shapes, for which exact (numerical) results are available. Blindly
applying the above results with h(x) ) h0 leads to numerical values
that are exactly zero for both the short- and long-time coefficients,
as the height-averaged velocity is uniform. This result is at odds
with existing calculations, but is logical in the framework of our
approximations as we explain in the next subsection.

Long-Time Dispersion for Quasi-Rectangular Shapes. To
establish the connection between our analysis for smooth shapes
and the rectangle (which is not smooth as h(x) goes abruptly from
h0 to 0 on the two sides), we consider dispersion in quasi-
rectangular channels (Figure 3, top), which are flat for |x| <
w/2 - λ and then monotonically tend to zero over the length λ.
In addition to providing a connection to the case of a rectangle,
the topic is of interest on its own, as this kind of channel shape
is indeed found in some microfluidic systems.7 We start by general

(8) Unger, M. A.; Chou, H. P.; Thorsen, T.; Scherer, A.; Quake, S. R. Science
2000, 288, 113-116.

(9) Chou, H. P.; Unger, M. A.; Quake, S. R. Biomed. Microdevices 2001, 3,
323-330.

(10) Squires, T. M.; Quake, S. R. Rev. Mod. Phys. In press.
(11) Gleeson J. P.; Roche O. M.; West J.; Gelb A. SIAM J. Appl. Math. 2004,

64, 1294-1310.

txo =
2κl

κs

w2

D
) κxo

w2

D
(12)

κl ) 3347
1081080

≈ 3.1 × 10-3 (13)
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considerations that hold irrespective of the shape of the two
(smooth) “wings”, before providing an explicit illustration for the
case of triangular end pieces (Figure 3, bottom). To be specific,
in the discussion below we assume h0 e λ e w/2.

Recall that dispersion is controlled by transverse diffusion,
which samples the velocity distribution. For the general quasi-
rectangular cross-sectional shape, the depth-averaged velocity is
the same throughout the central flat region and variations are
restricted to a region of size λ near the side walls, which then
controls the dispersion. Indeed, the nondimensional coefficient
κl, now dependent on λ/w, can be shown from eq 7 to behave as

where f (λ/w) is an O(1) function with finite limits for λ/w f 0
and λ f w/2. Thus, when λ ) O(w), as outlined above the
dispersive correction O(κlPew

2) is controlled by the width of the
channel. In contrast, in the limit λ , w or λ/w f 0, the depth-
averaged velocity only varies on a scale λ near the boundaries
and κl ≈ (λ/w)2f (0). This implies that the dispersion, proportional
to κlPew

2 ) f (0)(Vλ/D)2, is independent of the width of the channel
and is controlled by the small region of size λ in the neighborhood
of the corner!

At the limit of validity of our formalism, we take λ ) O(h0 ,
w) and observe that for nearly rectangular channels the dispersive
contribution becomes O(Peh

2), where Peh ) Vh0/D; the dispersion
now depends completely on the channel height (not the width).
This result is known in the literature on dispersion in rectangular
channels Deff

long/D ≈ 8(1/210)Peh
2 (e.g., refs 12 and 13), with in

that case the side walls yielding only a prefactor change (not a

scaling one) to the 2D result Deff
long/D ≈ (1/210)Peh

2. However,
as we have demonstrated in this paper, this is not true for generic
shallow microchannels.

To illustrate these points, we consider a special class of shapes
that are rectangular in the middle and triangular near the end
(see Figure 3). As the triangular region of width λ is diminished,
the cross section approaches a rectangle of height h0 and width
w. So, we utilize the dimensionless shape function involving the
parameter ε, 0 e ε ) λ/(w/2) e 1,

Each of the necessary integrals in eqs 7 and 8 for the dispersion
can now be evaluated; e.g., I1 ) 2(1 - 1/2 ε), I3 ) 2(1 - 3/4 ε),
I5 ) 2(1 - 5/6 ε), etc. After some algebra we find that κl(ε) has
the form

in the limit ε f 1, the cross section is a triangle, and we indeed
recover κl(ε f 1) ) 1/192 as given in Table 1. In contrast, in the
limit λ , w or ε f 0, κl ≈ ε2/192, or a dispersion for high Péclet
numbers that is κlPew

2 ) 1/48 (Vλ/D)2. Extrapolating this result
to λ ∼ h0 provides a result consistent with the magnitude and
scaling of the dispersivity for rectangular cross sections. However,
here we reach the limits of our approximations, so that to produce
exact results for such shapes, the detailed velocity distribution in
the corner needs to be known (e.g., refs 12 and 13), and a full
three-dimensional analysis is necessary.
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APPENDIX: MATHEMATICAL DERIVATIONS OF
THE MAIN RESULTS BY ARIS’S METHOD OF
MOMENTS

In this Appendix, we first outline a procedure already followed
by Aris at the end of his seminal paper,3 which led him to a general
formula for the long-time dispersion in shallow channels. We then
describe the additional steps we take to obtain the results
presented in the text, i.e., making use of the lubrication ap-

(12) Doshi, M. R.; Dalya, P. M.; Gill, W. N. Chem. Eng. Sci. 1978, 33, 795-804.
(13) Chatwin, P. C.; Sullivan, P. J. J. Fluid Mech. 1982, 120, 347-358.

Table 1. Coefficients Kl, Ks, and Kxo According to the Lubrication Approach for Shallow Cross-Sectional Shapes
(Height h0 and Width w with h0 , w)

cross-sectional shape κl κs κxo ) 2κl/κs Deff
long

triangle 1/192 ≈ 0.0052 1/3 ≈ 0.333 1/32 ) 0.031 D + 0.0052(V2w2/D)
parabola 3347/1081080 ≈ 0.0031 53/297 ) 0.178 3347/96460 ≈ 0.035 D + 0.0031(V2w2/D)
ellipse 5/2304 ≈ 0.0022 1/9 ≈ 0.111 5/128 ≈ 0.039 D + 0.0022(V2w2/D)

Figure 3. Quasi-rectangular cross-sectional shapes.

κl(λ
w) ) λ2

w2 f (λ
w) (14)

H(X) ) {1 for 0 e |X| e 1 - ε

1 - |X|
ε

for 1 - ε e |X| e 1
(15)

κl(ε) ) ε
2

192
(32-52ε + 20ε

2 + ε
3)

(2-ε)(4-3ε)2 (16)
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proximation and solving for the short-time behavior for a special
class of initial conditions.

Starting from the convection-diffusion eq 2, the first step in
the analysis of the transport problem is to use the approximation
h0 , w to derive a simplified equation for quantities averaged along
the short transverse direction y. It is convenient to define the
transverse averages

Here we have assumed, as sketched in Figure 1, the most
common situation in microfluidics, which is that the channel is
closed on one side by a flat plate so that the channel boundaries
are at y ) 0 and y ) h(x). Any other smooth shape described by
ymin(x) and ymax(x) with ymax(x) - ymin(x) ) h(x) leads to identical
results in the present frame of approximations.

The evolution equation for cj(x, z, t), which is adequate to
describe evolution at time scales longer than h0

2/D, is

with the boundary conditions ∂cj/∂x (x ) ( w/2, z, t) ) 0, and an
arbitrary initial condition cj(x, z, t ) 0), which is normalized for
simplicity so that ∫ dx h(x)∫ dzcj(x, z, t ) 0) ) 1 (which then
obviously holds for any time).

We can now follow the methods of moments developed by
Aris3 and inspect the evolution of the quantities (or moments),
defined as

In particular, the first two moments evolve according to

with (∂cn/∂x) (x ) ( w/2, t) ) 0. The variance σ2(t) )
〈(z - Vt)2〉(t) ) ∫dxh(x)c2(x, t) evolves as

Whatever the initial conditions, as time goes on, c0(x, t) tends
toward a constant value c0(t f ∞) ) c0

∞ ) (∫dx h(x))-1, and
consequently, c1(x, t) tends toward a steady profile c1(x, t f ∞) )
c1

∞(x) given by This result can be used in (23) to compute the

long-time dispersivity through a shape-dependent integral, as
already recognized by Aris (with slightly different notations), and
used by him for the case of ellipses. We now take a few additional
steps.

(i) The main step is to use the lubrication approximation to
relate the flow pattern uj(x) to the shape. Within the lubrication
approximation u(x, y) ) Ay(h(x) - y) with A a constant proportional
to the pressure gradient, so that we find

where the constants In are defined in eq 8.
(ii) Long-time regime: Then we introduce the intermediate

function

to obtain from eqs 23 and 24, through an integration by parts (note
that g(( w/2) ) 0),

Inserting in this equation the lubrication flow field (25) and
extracting from the integrals the dimensional quantities using
h ) h0H(2x/w) yields the final results given as eq 7 in the main
body of the paper for the long-time regime.

(iii) Short-time regime: In addition, to get partial insight into
the “short-time” regime where homogenization along y is effective
but not that along x, we focus on a solvable family of cases, namely
that of initial conditions independent of x: cj(x, z, t ) 0) ) f (z). In
that limit, given the normalization chosen c0(x, t) is a constant in
space and time c0(x, t) ) (∫dxh(x))-1, and c1(x, t ) 0) ) 0 if the
origin of the z axis is chosen at the initial location of the center of
mass of the distribution ∫dzf (z) ) 0. Then for times shorter than
the diffusion time across the channel t < O(w2/D), it is clear that
we have the simple approximation c1(x, t) = (∫dx h(x))-1(uj(x) -
V)t. Thus, the evolution of the variance follows from eq 23:

Inserting the flow field in the lubrication approximation 25 yields
the “short-time” result quoted in the text.
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uj(x) ) 1
h(x) ∫0

h(x)
u(x, y) dy (17)

cj(x, z, t) ) 1
h(x) ∫0

h(x)
c(x, y, z, t) dy (18)

∂cj
∂t

+ uj ∂cj
∂z

) D ∂
2cj

∂z2 + D
h(x)

∂

∂x (h(x) ∂cj
∂x) (19)

cn(x, t) ) ∫cj(x, z, t)(z - Vt)n dz (20)

∂c0

∂t
) D 1

h(x)
∂

∂x (h
∂c0

∂x ) (21)

∂c1

∂t
) (uj(x) - V)c0(x, t) + D 1

h(x)
∂

∂x(h
∂c1

∂x ) (22)

d
dt

〈(z - Vt)2〉 ) 2D + 2∫dxh(x)(uj(x) - V)c1(x, t) (23)

D d
dx (h(x)

dc1
∞

dx ) ) - c0
∞h(x) (uj(x) - V) (24)

uj(x) )
I1h

2(x)

I3h0
2 V (25)

g(x) ) ∫-w/2

x
dx′h(x′)(uj(x′) - V) (26)

d
dt

〈(z - Vt)2〉 ) 2D(1 +
∫dx[g2(x)/h(x)]

∫dxh(x) ) (27)

d
dt

〈(z - Vt)2〉 ) 2D + 2
∫dx h(x)(uj(x) - V)2

∫dx h(x)
t (28)

392 Analytical Chemistry, Vol. 78, No. 2, January 15, 2006


