Drop formation in viscous flows at a vertical capillary tube

D. F. Zhang and H. A. Stone
Division of Engineering & Applied Sciences, Harvard University, Cambridge, Massachusetts 02138

(Received 4 February 1997; accepted 14 April 1997

Drop formation at the tip of a vertical, circular capillary tube immersed in a second immiscible fluid

is studied numerically for low-Reynolds-number flows using the boundary integral method. The
evolution and breakup of the drop fluid is considered to assess the influences of the viscosity ratio
\, the Bond number#, and the capillary numbef for 10" ?2<\<10, 10 ?’<¢<1, and
0.1=.#<5. For very small\, breakup occurs at shorter times, there is no detectable thread between
the detaching drop and the remaining pendant fluid column, and thus no large satellite drops are
formed. The distance to detachment increases monotonicallynméhd changes substantially for
N>1, but the volume of the primary drop varies only slightly wikthAn additional application of

the numerical investigation is to consider the effect of imposing a uniform flow in the ambient fluid
[e.g., Oguz and Prosperetti, J. Fluid Me@57, 111 (1993], which is shown to lead to a smaller
primary drop volume and a longer detachment length, as has been previously demonstrated
primarily for high-Reynolds-number flows. @997 American Institute of Physics.
[S1070-663(97)01808-4

I. INTRODUCTION hibit deviations from experimental measurements with errors
exceeding 2098:1°

Drop formation at the tip of a capillary tube occursina  Qverall, two themes are common to the great majority of
variety of engineering applications. Gases as well as liquidgydies in this field. First, either gas-in-liquidle., bubble
are commonly dispersed into a second fluid phase. Fregrmation or liquid-in-gas(e.g., drops in ajrsystems have
quently cited applications include separation and extractiog .., investigated, where the gas has negligible dynamical
processe$ spraying and ink-jet printing technologiésjood influence; the complete two-phase flow situation has been
oxygenatior!, and the bubble departure process during bOiI'seldom s,tudied. Second, the majority of these dynamical

ing (e.g., Ref. 4. A summary of many modeling ideas is studies have focused on inertial effettdence we now sum-

provided by Cliftet al® from which it is clear that the ma- marize some recent studies of this drop formation problem
jority of studies have concerned flows at high Reynolds num- 2 . . uaies 1S € P . lon p
h emphasis on investigations of viscous influences.

bers. Here we study the low-Reynolds-number situation b;)”" . 1 . - ,
numerically investigating the detailed evolution of drop for- W|Isor?1 developed a quaS|-one-d|menS|or1aI _ﬂOW model
mation at the end of a capillary, continuing the simulationsi© detérmine the drop volume formed by dripping from a
past breakup, in order to obtain insight into the formation offluid-filled tube into a gaseous surrounding. The flow is as-
the primary drop and the largest satellite drop. Buoyancy,sumed to be a Stokes flow and the unsteady extension of the
interfacial tension effects, viscous effects in both fluidViscous thread as it sags under its own weight is analyzed.
phases, and the effect of an external flow are all considered.his useful model, however, is unable to describe flow near
When the flow rate is small, a static description of thethe nozzle exit, as well as the end of the thread, and an
shape of the drop is useful since a pendant droplet slowlynfinite detachment length is predicted. The predicted pri-
forms at the capillary tip and the drop detaches when a critimary drop volume is about 25% lower than Wilson’s own
cal volume is reachef;® the critical volume corresponds to experiments. The viscous flow limit was also studied re-
a balance between interfacial tension and buoyancy. Thes&ntly by Wonget al*? who investigated the formation of a
analyses have been modified to include dynamical effectgypple from a submerged capillary in a viscous environment.

and the primary focus of many studies has then been 10 preg merical solutions in excellent agreement with their experi-
dict the drop sizes as a function of the fluid properties, thements were described

nozzle geometry, and the flow rate inside the noZelg.,
Refs. 5 and 2 Conceptually, from a simplified modeling
point of view, the drop formation process is conveniently . . . )
divided into two stages: The firghearly stati¢ stage corre- au.thors derived one-dllmensmnal mass copservatlon and
sponds to growth of the drop attached to the capillary, whicﬂax'al_ momentum eguauons accou_ntmg for wsc;ous_ effects,
ends with a loss of equilibrium of forces, and the secondertia and capillarity by systematically approximating the
stage corresponds to the necking and breaking of the drOFI)\_Iawer—Stokes equations. These ideas were applied to the
The final volume of the primary drop so formed is the sum ofhighly nonlinear problem of pinchingbreakup of a fluid

the volume of that portion of the static drop that breaks off athread* and the model predictions were shown to be in ex-
the end of the first stage and the volume that flows into the&ellent agreement with experiments focusing on the dynam-
drop during the second, or pinching, stage. It should be noteigs near breakup> '’ The breakup of the liquid thread shows
that the predictions of these simplified models typically ex-a self-similar behavior during the final stages of the pinching

A one-dimensional model for jet-like flowdiquid into
ga9 was presented recently by Eggers and DuPbdithese
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process where the flow near the exit has no influence. In \
particular, after the formation of a long thread with a nearly St v n -1
conical tip connected to an almost spherical drop, a remark- ' :
able series of smaller necks with thinner diameters were se-
quentially spawned. Following breakup and formation of a M
large primary drop, there is recoil of the liquid thread, and vV
then secondary necking and breakup, which leads to satellite Ry /
drops. The purely flow viscous limit of the pinching process
was studied by Papageorgi§usee also Ref. 19 This re-
search, and many of its extensions, are described in a recent l g
review article by Eggeré’

Recent investigations have utilized modern numerical !
methods to investigate the complete free-boundary problem
in both the high- and low-Reynolds-number flow limits. For
example, Oguz and Prosper€ttisee also Day and Hinéh
studied dynamics of bubble growth and detachment from a
submerged needle by assuming the flow was inviscid and
irrotational. A boundary integral method was used and sev-
eral simple, illustrative models of the detachment process €
were developed. The boundary-integral numerical results P, Al
were in excellent agreement with published experinférts v
well as their own experiments. Oguz and Prosperetti also
showed that bubbles growing when there is a liquid flowing
parallel to the needle may detach with a considerably smaller
radius than in a quiescent liquidee also Cliftet al®). This
significant effect motivated our investigati¢8ec. 1l of the
analogous viscous flow problem. Also, in the spirit of Oguz
and Prosperetti's numerical investigation of the free-
boundary problem, Wongt all? used a boundary integral i
method for low-Reynolds-number flows to study bubble de-
tachment in a viscous fluid. Our work reported here thus
combines elements of the above two investigations. FIG. 1. Schematic of drop formation at a vertical, circular capillary tube.

It is important to note that the aforementioned studies

pertain to two limits of the drop formation processes: one is . . . .
a liquid flowing into an ambient gas and the other is a gassmaller than the typical dimension over which the bulk flow

ejected into a liquid. Here we explore the details of dropva”tes' For t.h'z a;?qsi/jmr:ﬁt&c flovy, a pylllrédrlgal_tc;]otcr)]rd;n?te
formation at a capillary in a general two-fluid system for a>ystem {,2) is defined wi & axis coinciaent wi ato

viscously dominated flow. Numerical results are based on thg".e .ca.plllary tube, increasing in the dlrecthn gpfgnd the
boundary integral method for Stokes flows. The formation,Orlgln is placed at the center of the tub_e g(sbe Fig. 1 .
extension, and breakup of the drop fluid and, subsequently, In the low-Reynolds-number flow limit, the goveming
the generation of satellite drops, are investigated for a Widgquatlons for motion of the two fluids are<1.2)

range of fluid viscosity ratios. Other effects such as buoy- V.-T;=-Vp;+ u;VU;+p;g=0, V-u;=0, @
ancy, interfacial tension, and an external flow are also stud-

ied. We describe the numerical formulation in Sec. Il andWhere in fluidi, u; is the yeloqty f[eld,pi is the pressure,
; . and u; and p; are the fluid viscosity and density, respec-
report numerical results in Sec. Ill.

tively. In (1) the stress tensor is defined to include the
hydrostatic body force in order to define a divergence-free

field,

The formation of a drop at the tip of a vertical, circular
capillary tube of radiuR, is shown in Fig. 1. An incom- Ti=—(pi—pig-X)1 + (VU +(Vup)T), 2
pressible, Newtonian fluidi € 1) flows, owing to a pressure wherex is a position vector and-x=gz
gradient, with a constant flow ra@ into a second incom- In the present study, the drop fluie € (2,) is bounded
pressible, Newtonian fluidi €2). For simplicity, the tube by the fluid interfaceSy, the capillary tube inner walb;,,
wall is assumed to have zero thickness, which is physicallyand the tube inle§, . The ambient fluid Xe (),) is bounded
reasonable since the wall thickness has been shown expeiiternally by the fluid interfaceS; and the capillary tube
mentally to have little influence on the drop formation outer wall Sy,. In Fig. 1 these surfaces are represented by
process? The ambient fluid may be quiescent or may betheir traces in ther(z) plane.
assumed to be in a constant steady motignfar from the Inside the capillary tube, far from the tube exit, a Poi-
capillary; the latter case is representative of configurationseuille flow is assumed and, thus, the velocity profile at the
where the characteristic dimension of the capillary is muchinlet S, is

=

Sp

Q2
Py

Il. NUMERICAL FORMULATION

Phys. Fluids, Vol. 9, No. 8, August 1997 D. F. Zhang and H. A. Stone 2235

Downloaded-14-Feb-2003-t0-140.247.59.174.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/phf/phfcr.jsp



. 2Q r\? r\2 (1+N)
U=—r2 1_(R_0) e,=2V 1—(R—0) e, (3 5 u(x)—E{OmeerJSDJ-n[(VS-n)—.ﬂz]dSer()\—1)

TRo

wheree, is the unit vector along the axis aitis the average X L n-K-ud§+ L J-n-Ty dS
fluid velocity in the capillary ¥=Q/wR3). ° !

The boundary conditions along the inner and outer tube
walls, Sy; andS;,, are no slipu; =0, u,=0. Along the fluid +A S n-K-up dS§+ | J-(n-T
. L ! | St
interface,Sp, the velocity is continuousy;=u,, and the
stress jump is balanced by the density contrast and the inter- —-n-TdS§, for xe$Sp, (7

facial tension stress, which depends on the local curvature

V<-n of the interface, ) )
s OZZ'outeZ—Ff J-n[(Vg-n)—.2z]dS,+ (A~ 1)
Sp

n-To—n-T;=[¥(Vs-n)—Apg-x]n, 4

xf n-K-u dSerf J-n-T, dSﬁ)\f n-K-u; d§
Sp S S

wherey is the constant interfacial tensiom,is the unit nor-

mal vector directed into the ambient flums=(|_— nn)-Vis +f J-(n-T,—n-Tyds, for xe Sy, (7b)

the gradient operator tangent to the interface, and St

Ap=p,—p,. Along Sy there is also a kinematic constraint,

which can be expressed with the Lagrangian description of where the kernels functions are

labeled pointx, as

_ i +(x—y)(x—y)}
dx, 8wl[x=yl  |x=yI* | ®
W=u(x|_) for x €Sp. (5

Ko 3 YY)

4w Ix=y[®

The governing equations and boundary conditions are
nondimensionalized by choosing the tube radR¢sas the  We note that the capillary number appears in the dimension-
length scale, and it is convenient to choose the velocity scalRss form of the inlet velocity profiléintegral overS,). For
as y/u. Accordingly, the scales for time and pressure, re-this axisymmetric flow, the surface integrals are simplified to
spectively, areRou/y and y/Ry. line integrals along the generating curve of the boundary by
Three dimensionless parameters, a Bond numbea  performing the azimuthal integrations analyticaifyDetails
capillary number?, and a viscosity ratio\, describe the of the numerical implementation are given in the Appendix

flow: and here we only note that although the drop was pinned at
the edge of the tube, no contact angle was specified and so
Ap gR(z) 11 Y was gllowed to take any value consistent with the numerical
P= ., A=—, and g="—. (6)  solution(e.g., Ref. 12
Y M2 Y

The Bond number measures the relative importance of thg RESULTS AND DISCUSSION

buoyancy force to the interfacial tension force while the cap-

illary number represents the relative importance of the vis-  In this section the formation, extension, and breakup of
cous force generated by the internal flow relative to the inthe drop fluid and, subsequently, the generation of satellite
terfacial tension force. If a constant veloclty, is imposed drops, are investigated. Calculations are performed by vary-
in the fluid surrounding the capillary, the outer capillary ing one dimensionless parameter while keeping the other two
number?,,= uU.. /7y enters the problem description. parameters fixed and we have investigated 20\ <10,

In order to solve this free-boundary problem, Stokesl0 ?<#'<1, and 0..X.#<5. We have chosen to consider
equations are reformulated into a system of integral equasituations where the flow rat@ is fixed (constant?), which,
tions. The numerical procedure is standard and the detailswing to the dynamics of interfacial rearrangement, would,
can be found elsewhefé?® In the present flow, along the in practice, require a time-varying pressure gradient. In com-
tube walls the velocitiesi; (xe Sp;) andu, (xe Sr,) are  mon circumstances, this pressure change is not significant.
identically zero, at the inle§, the velocity distribution is For low-Reynolds-number flow situations, dimensional
specified, and along the deforming fluid—fluid interfege¢  analysis implies, for example, that in the absence of an im-
the stress jump conditiom¢(T,—n-T;) is known[Eq. (4)]. posed flow in the external fluid the dimensionless volume
The unknown quantities are thenon Sy, n-T, onSyq, and  Vy of the primary drop formed i8/4=f(.%Z,%,\). In the
n-T, on Sy,; in fact, only the differencer(-T,—n-T;) ap-  nearly static limit,z’<1, thenV4=.%"* for all .8 However,
pears at theinfinitely thin) tube wall,S; (= S11=S;,). The  although there have been many studies on bubble formation
final form of the boundary integral equations are under high-Reynolds-number flow conditions, there appears
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FIG. 3. A time sequence of the interface shapesNer0.1,.%#=0.5, and
FIG. 2. Variation of the minimum dimensionless drop radRg;,, and the ~ #'=0.1. After separation of the primary and satellite drops from the main
corresponding dimensionless length,,, with time;\=0.1, #=0.5, and  fluid column, the drops are neglected in further calculations of the pendant
#=0.1. Some drop shapes are also shown. drop shape.

to be little specific information available about drop forma-
tion in viscous fluid flow3 so our results for a wide range of critical value, predicted approximately by static stability
7, \, and 7, essentially are graphical forms of the dimen- analyses applicable to low capillary number flows, where the
sionless functiorf, or its analogue for other properties, for drop begins to break awai.g., Middlemarf, see also Fig.
such parameters as the dimensionless drop volume, breaki$y
time, and fluid column length at breakup. In order to distinguish the flow characteristics at differ-
ent times, the drop formation process is generally divided
into (at least two stages, the latter stage after the drop begins
We first consider a typical case=0.1, .#=0.5, and to break away and is much shorter than the former. As a
Z=0.1. Figure 2 shows the variation 8, andL ., with result of the rapid flow in the second stage, the drop stretches
time, whereR,,;, denotes the minimum dimensionless dropand a neck subsequently fornts<(40). A thread then devel-
radius andL ., is the axial ¢) distance from the capillary ops with a diameter that decreases rapidly with time. The
tube exit £=0) to Ryi,- These two quantities characterize shape of the thread is not symmetric about its horizontal
the formation of a neck which leads to breakup at a timecenterline. The thread is connected to a nearly spherical pri-
t,. Some drop shapes have also been included in Fig. 2. Imary drop at its lower end, where large curvatures develop
the present numerical simulation, the drop is assumed to ru@nd a local interfacial-tension-driven flow leads to breakup.
ture, forming the primary drop, wher@,,;<0.005, which At t=50.7, thread breakoff is about to occur with
appears to be a reasonable numerical criterion for breakulp,,;~3.16. We note that the portion of the drop below the
when focus is on the primary drop since any additional debreaking point takes a spherical shape while the upper part
crease in the neck radius happens quickly and further comapproximates a conée.g., Peregrinet all’). These shape
putations of the solution become difficult because of thefeatures near pinching are common to most, if not all, ex-
large velocity and curvature gradients near the pinch poinamples of drop breakup and so from now on we focus on
(see, for example, Eggérsand Papageorgidf). In fact, for  features of the shape and flow specific to drops formed at a
a purely viscous internalStokes flow, inertial effects be- capillary tube.
come important agrapid) pinching occurs® so locally the In order to demonstrate the entire drop formation pro-
low-Reynolds-number approximation becomes invalid. Withcess, in Fig 3 a time sequence is showansing the same
an outer fluid present, however, the pinching dynamics ar@arameters as in Fig) 2ncluding breakup of a drop, forma-
slowed and the low-Reynolds-number approximation can retion of a satellite drop, and return of the fluid interface to a
main valid all the way to breakufy. blob-like shape similar to the initial shape. Growth, exten-
In Fig. 2 we observe that at early times, the drop volumesion, necking, and breakup of the drop can be clearly seen
increases by the continuous addition of fluid from the capil-prior to t=50.7. Immediately after the thread breaks at its
lary tube and the interface shape transforms slowly from théower end, its free end is retracted by interfacial tension. The
hemispherical initial shape to a pear-shaped surface. Durinthiread breaks again at its upper end, resulting in the produc-
this period, the buoyancy force acting on the drop, which igion of a small satellite droplet, as shown in Fig. 3 at
proportional to the drop volume, is not large enough to overt=51.2. Satellite drop formation depends primarily on the
come the interfacial tension force, and the drop remains atshape of the thread when it is about to break for the first time
tached to the capillary tube. Figure 2 shows tRaj,=1 and and so depends upon the initial and flow conditigires., \,
Lmin=0 for t<30.2, after which the drop volume reaches a?#, and.#%); the volumes of the primary and satellite drops

A. Typical case
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t*=0.25 r*=0.55 t*=9.75
Lb 10}
A=0.01
) A=0.10
0.01 0.1 1 10
A
FIG. 4. The breaking length, versus\ for .#=0.5 and%=0.1. Four
shapes of the fluid interfaces at breakup are included fel0~2,107%, 1,
and 10, respectively. The drop shape shownXNer10 is displayed with
compressed horizontal and vertical scales since very long fluid columns
develop forn>1.
A=1.0

are studied in the remaining sections. After a Cornpk_}tilG. 5. The fluid interfaces fox=10"2, 10" %, and 1 at the instant of the

breaKUp process, |eadin.g.t0 the formatior? of primary an rimary satellite drop detachment wit#=0.5, #’=0.1. The viscosity ratio
satellite drops, the remaining drop fluid which hangs on the\ and the satellite drop formation tini&=t—t,, are labeled on the figures.

tube continues to deform and subsequently, another similar
drop formation process occurs. Careful examination shows
that the interface shape &t 53.7 is almost identical to that role when threads form as breakup occurs. As a result, the
att=10.0(see Fig. 2 breaking distancd ,, increases monotonically with and
rather dramatically fon>1.

As indicated in the introduction, long, narrow threads
which connect the falling drop and the remaining fluid col-

The viscosity ration plays an important role during the umn have been experimentally and theoretically observed in
dynamical processes of necking and breaking. Figure #revious studies of high-viscosity dripping flows:31524
shows the breaking length, versus\ for .#=0.5 and with much recent interest given to the dynamics in the neigh-
#=0.1, whereL, is the dimensionless axiak) location of  borhood of the pinch poirt?° The consistency of the
the breaking point. Four interface shapes, just prior to breapresent results with these previous studies is not surprising
koff, have also been included. The interface shapes fosince in fact these previous studies are an asymptotic limit
A=10"2, 101, 1 are displayed with the same scale while (A— o) of the two-fluid flow. We note that numerical accu-
that for\ =10 is presented with a much smaller scale owingracy in the calculations presented here is difficult to preserve
to the very long fluid column that is formed for this large for the very extended interface shapes characteristic of
viscosity ratio. Clearly, as varies, there are different shapes A>1, as large numbers of node points must be used, and this
at breakup and although, as we shall see, the primary drogequirement limited our calculations 10<10. Also, detailed
volume changes only a little with for the range of2" and  investigations of the dynamics near pinching shows that, in
% studied, the viscosity ratio has a significant effect on thefact, inertia eventually becomes importantAi=~ but can
formation of satellites. For =102 breakup occurs at an remain insignificant for the finita case’®
early time, there is no detectable thread between the detach- The viscosity ratio also influences formation of satellite
ing drop and the remaining pendant drop, and so no largdrops. Figure 5 depicts the interfaces ¥or 1072, 10" %, 1 at
satellite drops are expected. This interface shape, calculatéde instant of the satellite drop detachment<€0.5 and
for a low value of the capillary number, is similar to that #=0.1). Satellites form forn=10"' and 1 but, for
calculated for bubbles in Stokes flows by Woeigal}2and N =102, there exists no visible thread, thus no satellite drop
observed experimentally by Longuet-Higgieisal>® and ex-  is expected. Foin=10"1, a thin thread evolves and the
perimentally and numerically by Oguz and Prospefkttir-  breakup of this thread occurs soon after formation of the
ing the high-Reynolds-number bubble formation procesgrimary drop, ¢*=t—t,=0.55), which generates a very
from a needle X—0); dynamics(viscous or inertiglonly ~ small satellite ¥s=5.6x10"%). In contrast, relatively slow
play a significant role at late times near pinching. Ass  satellite drop formation occurs for=1 (t* =9.75) and the
increased, a fluid thread develops and its length increasesatellite drop ¥ =8x10"?) is larger than that for
owing primarily to the difficulty of fluid squeezing out axi- A =101, a result which is due to the existence of the longer
ally along the thread. Thus viscous effects play a significanthread in the case of the more viscous drop fluid.

B. Effect of the viscosity ratio A
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Ip 100k
FIG. 6. The dimensionless breaking timgeand the dimensionless volume
of the primary dropV, as a function ofz for #=0.5 andZ'=5x10"2,
1071, and 5<10° %, respectively.
Figures 6 summarizes the dimensionless breaking time 100 0',1 02 0:3 04 05 06 0.7 08 09 1
(t,) and the dimensionless volumes of the primary drop C

(Vp). The Bond number is maintained constant= 0.5)

and three capillary numberg{=0.05,0.1, and 0.5) are con- FIG. 8. variation oft,, as a function of the capillary numbef, .%=0.5 and
sidered, corresponding to an increasing pressure differende=0.1.

driving larger flow rates through the tube. We note ttigt
varies only a little as\ varies, especially for the small cap- 2 \13 :
illary number cases, e.g7=0.05, in spite of the different Ra= (37/16Ropg)™, where the released drop is assumed to

. . . . . . —113
dynamics indicated in Fig. 4, and so static predictions, de- e a sphere; nondimensionalization gig/ Rox.7 or

71 iati i
pendent on the Bond number, for the primary drop volume_vboc'ﬁ - The small deviation of the exponentirom unity

will be useful. Viscous stresses are more important as th&® attribu_ted to the sm_all but finite_capillary number as well
capillary number increases, and correspond to shorter breaRS 1€ fV'S(_:OUS dynamics at later times. hat for | g
ing times and larger primary drop volumes. Also, the viscos- F;e errng %giun to E'g' 7’. v;/e nOt? t. at ?rhar%er Bon

ity ratio influences the flow during the latter stages, which"UMPers, €.g./=5, substantial translation of the drop oc-

terminate in breakup with different breaking len Fig. cursona short time scale which effectively leads to forma-
4) and breaking timisb (Fig. 6). g lengths(Fig tion of narrow, tapered threads connecting the drop and fluid

column. Further calculations show that the dynamics of the

subsequent satellite formation for varying are also differ-

ent because the thread shape is substantially changed. For
The effect of the Bond number is demonstrated in Fig. 7small.# (= 0.1), a small satellite relative to the primary drop

for 0.1<=.7<5 with A=0.1 and #=0.1. Three interface develops after only a short timé*(=0.1) while, in contrast,

shapes at breakup are shown fat=0.1, 1, and 5, respec- for large.”7 (= 5) a relatively large satellite forms from the

tively. The primary drop volum¥, decreases nearly linearly narrow, tapered thread, but the satellite formation time is

with %, and our numerical results indicate thdgoc. % " longer ¢* =2.04).

with n~0.90, which is similar to theoretical results based

upon a static analysigor which the critical drop radius is D. Effect of the capillary number

C. Effect of the Bond number .%

Figure 8 shows thdarge variation of the breaking time
ty, as a function of the capillary numbér with .Z7=0.5 and
A=0.1. We observe thdi, decreases significantly with in-
creasingz for #<<0.2. However, forz>0.2, decreases in
the breaking time become gradual apds nearly constant
for #>0.75. For #<0.2 the drop grows slowly until it
reaches the critical volume and the subsequent necking and
breakup processes are relatively fast. In these cdges,
essentially determined by the time necessary for the drop
fluid volume to reach the critical volume for detachment
from the capillary tube. For larg&’, accumulation of the
drop fluid is fast and the critical volume is reached at earlier
times. The accumulation time no longer determines the
breaking time and, instead, the time for the subsequent neck-
10 1 1 10 ing and breakup process is most significant. We note that the
' B necking and breaking process for large is complicated
because a large amount of the drop fluid exits the tube during
FIG. 7. Variation of the primary drop voluma/, with % A—0.1, the secpnd stgge and the fluid intgrface keeps gxtgnding and
#=0.1. The interface shapes at breakup f6-=0.1, 1, and 5 are also d€forming. This breakup process is somewhat similar to that
shown. of a “jetting” flow, as shown in Fig. 8 forz’=1. For such

100

Vi 10t

Phys. Fluids, Vol. 9, No. 8, August 1997 D. F. Zhang and H. A. Stone 2239

Downloaded-14-Feb-2003-t0-140.247.59.174.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/phf/phfcr.jsp



1,=372.9 1,=3402 1,=190.9 #,=235

5 &

0.01 0.1 1 0.01 0.1 1

c ¢ 1,=50.7 1,=499 1,=441 1,=194
FIG. 9. Variation ofL,, andV,, with # for A=0.1 and three different Bond
numbers,#=0.1, 0.5, and 1.0.

large #” flow conditions, the breakup timg, primarily de-
pends on the necking and breaking process in which the flow

in the vicinity of the tube exit has a little influence: an ap- 1, =226 1,=224 1,=215 1,=164

proximately constant, is thus expected.

Figure 9 reports/, andL,, as functions of the capillary
number for 10°<#<1,A=0.1, and#=0.1, 0.5, 1.0. Both
L, and V, increase withZ". Since static analysis predicts
V%1, this scaling is used in Fig. 9, and is seen to be

useful for collapsing some of the data. In the cases studied,
for fixed \, the breaking length is only weakly dependent on
2 for a givenz".

As a final remark, whert>1 and the shape remains
nearly spherical, the dimensionless drop volume scales as
V< (71.%)%* as described by Wongt al'? (see also Ref. _
5), who show that this result is in good agreement with theiIJ;'_G(') llo'T'r?terfaC.e shapes at breakup for differenand 7 o,; ./'=0.5 and

) . ? 9 =0.1. The capillary numberg’, from top to bottom, are I%, 10", and

numerical calculations fax=0 provided?/.%7>10>. Onthe 1 and the outer capillary numbefs,,,, from left to right, are 0, 107,
other hand, foin>1, long fluid columns form and Wilson’s 107!, and 1.
one-dimensional mod¥l predicts V4= 3m(7#1.%)*?
+2.4/%. To study these asymptotic limits in detail would
require more node points than used in our numerical simulaleft to right, arez’,,=0,10"2,10"*, and 1. In each frame the
tions reported in the rest of the paper. dimensionless breakup timg is indicated. It is evident that
imposing a constant flow on the ambient fluid can effectively
influence the drop formation process, as indicated by Clift
et al® and quantified here for the viscous flow limit. As com-

The above results summarize the response for a quiepared to the earlier cases of no externally imposed flow, with
cent ambient fluidU.,=0. In this last section, drop forma- a constantU,,, or finite Z,,, a smaller primary drop, a
tion is studied for a uniform steady flow,, . The motivation longer breaking lengtl.,,, and a shorter breaking time re-
for this flow configuration is to explore the possibility of sult, whereas, as discussed earlier, a largeteads to a
controlling the drop size and the drop detachment rate. Thikrger primary drop and a longer breaking length. For a given
idea was investigated numerically by Oguz and Prospétetti 7, the drag force on the drop fluid, which increases with
in a study of bubble growth and detachment from a needléncreasing?,, tends to stretch the fluid column, and the
for the case of irrotational flow conditions and earlier re-earlier breakup time therefore leads to the formation of a
search was summarized by Clét al® It has been observed smaller primary drop. Figure 11 shows the variation/gfas
that the external flow typically leads to the formation of a function of z,, (#=0.5,A=0.1, andz=0.1).
smaller drops, which provides a useful control parameter In Fig. 10, it is observed that large values ©f,,; not
since in the absence of flow the drop radius is proportional tanly alter the primary drop size and the breaking length, but
the one-third power of the capillary tube radius. We nowalso change the shapes of the interfaces dramatiéalty,
consider the low-Reynolds-number flow limit and summa-%,,=1 with #=10"2 and 10'!). Thus we expect that the
rize the change in drop volume, breakoff length, andouter flow also influences the formation of satellite drops.
breakoff time as the external flow velocityz(,,) is in- The influence of an applied flow on drop formation with
creased. different Bond numbers? is considered in Fig. 12, where

Figure 10 shows the interface shapes at breakup for difthe dimensionless drop volumé&g, at 7,,=0 and 0.2 are
ferent 2 and 7 ,; with other parameters fixed4=0.5 and compared fon =0.1 and 0.£.%<5. Significant differences
A=0.1). All of the results are shown with the same scale sdan V,, are observed for small? (<0.1), but the differences
that the drop size and the breakup length can be comparexdte much smaller for7>0O(1). There are now two forces
directly. The capillary numbers from top to bottom are trying to move the drop fluid away from the tube, one is the
#=10 2,101, and 1, and the outer capillary numbers, from buoyancy force(.%) and the other is the viscous drag force

E. Effect of an external uniform flow
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FIG. 11. Variation ofV,, with #,, for #=0.5,A=0.1, andZz=0.1.

exerted by the ambient fluid4,,). The buoyancy force

dominates for large Bond numbers, such.ds=5, which Coutz 0.2

results in a rapid formation of the small primary drop

(t,=5.32). In contrast, for a small’=0.1, the drag force g 13, interface shapes far. =0,0.2 with. #=0, \=0.1, and7=0.1.

exerted by the imposing flow is most significant.

. Fi’gure 13 .proyides. a further .view of interface shapeslv_ CONCLUDING REMARKS

with .Z=0, which is a limit of obvious relevance to micro-

gravity applications. Two outer capillary numbefs, =0 We have studied numerically the dynamics of drop for-

and 0.2, are examined far=0.1 and#=0.1. For#,,=0, Mmation from a capillary tube for two-phase low-Reynolds-

as expected, the volume of the drop fluid increases continu?umber flows. The emphasis has been on determining the

ously, the drop fluid remains attached to the tube, and th&¥olume of the primary drop as a function of the Bond num-

interface maintains a spherical shape due to interfacial terfRer, capillary number, and the viscosity ratio. Known

sion. With an external flow, however, viscous stresses ar@Symptotic limits have been summarized in the text and the

exerted on the interface by the ambient fluid, and leads tdigures reported here thus represent graphically, in the spirit

drop breakup at,=440.7. It is interesting to note that a Of the compendium of Clifet al® (Chap. 12, the complete

comparison of different simulations indicates that the inter-dependence of the drop volume, breakup length, and breakup

face shape for#=0, % ,,=0.2 (Fig. 13 is similar to that time as a function of the dimensionless parameteisich

near breakup forz=0.1, 7 ,,=0 (Fig. 12. typically are outside the region where the asymptotic results
are valig. The effect of an external flow, known to generally
lead to smaller drop sizes, is here quantified for viscously
dominated flows.
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APPENDIX

In this appendix we provide the details of the numerical
implementation for the solution of the integral equations
from which the boundary velocity is determined.

01 1 10 Given an initial shape for the interface, Ed3a) and
B (7b) can be solved numerically by approximating the integral
equations by a linear system of equations. Each boundary,
FIG. 12. Comparison ofV, for #7,,=0 and 7,,=0.2 with \=0.1,  Sp Of Sy, is defined by a set of discrete boundary nodes at
0.1< #<5. which the velocity is calculated. A hemispherical cap is as-
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