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Drop formation at the tip of a vertical, circular capillary tube immersed in a second immiscible fluid
is studied numerically for low-Reynolds-number flows using the boundary integral method. The
evolution and breakup of the drop fluid is considered to assess the influences of the viscosity ratio
l, the Bond numberB, and the capillary numberC for 1022<l<10, 1022<C<1, and
0.1<B<5. For very smalll, breakup occurs at shorter times, there is no detectable thread between
the detaching drop and the remaining pendant fluid column, and thus no large satellite drops are
formed. The distance to detachment increases monotonically withl and changes substantially for
l.1, but the volume of the primary drop varies only slightly withl. An additional application of
the numerical investigation is to consider the effect of imposing a uniform flow in the ambient fluid
@e.g., Oguz and Prosperetti, J. Fluid Mech.257, 111 ~1993!#, which is shown to lead to a smaller
primary drop volume and a longer detachment length, as has been previously demonstrated
primarily for high-Reynolds-number flows. ©1997 American Institute of Physics.
@S1070-6631~97!01808-4#
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I. INTRODUCTION

Drop formation at the tip of a capillary tube occurs in
variety of engineering applications. Gases as well as liqu
are commonly dispersed into a second fluid phase. F
quently cited applications include separation and extrac
processes,1 spraying and ink-jet printing technologies,2 blood
oxygenation,3 and the bubble departure process during b
ing ~e.g., Ref. 4!. A summary of many modeling ideas
provided by Cliftet al.5 from which it is clear that the ma
jority of studies have concerned flows at high Reynolds nu
bers. Here we study the low-Reynolds-number situation
numerically investigating the detailed evolution of drop fo
mation at the end of a capillary, continuing the simulatio
past breakup, in order to obtain insight into the formation
the primary drop and the largest satellite drop. Buoyan
interfacial tension effects, viscous effects in both flu
phases, and the effect of an external flow are all conside

When the flow rate is small, a static description of t
shape of the drop is useful since a pendant droplet slo
forms at the capillary tip and the drop detaches when a c
cal volume is reached;6–8 the critical volume corresponds t
a balance between interfacial tension and buoyancy. Th
analyses have been modified to include dynamical effe
and the primary focus of many studies has then been to
dict the drop sizes as a function of the fluid properties,
nozzle geometry, and the flow rate inside the nozzle~e.g.,
Refs. 5 and 9!. Conceptually, from a simplified modelin
point of view, the drop formation process is convenien
divided into two stages: The first~nearly static! stage corre-
sponds to growth of the drop attached to the capillary, wh
ends with a loss of equilibrium of forces, and the seco
stage corresponds to the necking and breaking of the d
The final volume of the primary drop so formed is the sum
the volume of that portion of the static drop that breaks of
the end of the first stage and the volume that flows into
drop during the second, or pinching, stage. It should be no
that the predictions of these simplified models typically e
2234 Phys. Fluids 9 (8), August 1997 1070-6631/97/9
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hibit deviations from experimental measurements with err
exceeding 20%.9,10

Overall, two themes are common to the great majority
studies in this field. First, either gas-in-liquid~i.e., bubble
formation! or liquid-in-gas~e.g., drops in air! systems have
been investigated, where the gas has negligible dynam
influence; the complete two-phase flow situation has b
seldom studied. Second, the majority of these dynam
studies have focused on inertial effects.5 Hence we now sum-
marize some recent studies of this drop formation probl
with emphasis on investigations of viscous influences.

Wilson11 developed a quasi-one-dimensional flow mod
to determine the drop volume formed by dripping from
fluid-filled tube into a gaseous surrounding. The flow is a
sumed to be a Stokes flow and the unsteady extension o
viscous thread as it sags under its own weight is analyz
This useful model, however, is unable to describe flow n
the nozzle exit, as well as the end of the thread, and
infinite detachment length is predicted. The predicted p
mary drop volume is about 25% lower than Wilson’s ow
experiments. The viscous flow limit was also studied
cently by Wonget al.12 who investigated the formation of
bubble from a submerged capillary in a viscous environme
Numerical solutions in excellent agreement with their expe
ments were described.

A one-dimensional model for jet-like flows~liquid into
gas! was presented recently by Eggers and DuPont.13 These
authors derived one-dimensional mass conservation
axial momentum equations accounting for viscous effe
inertia and capillarity by systematically approximating t
Navier–Stokes equations. These ideas were applied to
highly nonlinear problem of pinching~breakup! of a fluid
thread14 and the model predictions were shown to be in e
cellent agreement with experiments focusing on the dyna
ics near breakup.15–17The breakup of the liquid thread show
a self-similar behavior during the final stages of the pinch
(8)/2234/9/$10.00 © 1997 American Institute of Physics
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process where the flow near the exit has no influence
particular, after the formation of a long thread with a nea
conical tip connected to an almost spherical drop, a rem
able series of smaller necks with thinner diameters were
quentially spawned. Following breakup and formation o
large primary drop, there is recoil of the liquid thread, a
then secondary necking and breakup, which leads to sate
drops. The purely flow viscous limit of the pinching proce
was studied by Papageorgiou18 ~see also Ref. 19!. This re-
search, and many of its extensions, are described in a re
review article by Eggers.20

Recent investigations have utilized modern numeri
methods to investigate the complete free-boundary prob
in both the high- and low-Reynolds-number flow limits. F
example, Oguz and Prosperetti21 ~see also Day and Hinch22!
studied dynamics of bubble growth and detachment from
submerged needle by assuming the flow was inviscid
irrotational. A boundary integral method was used and s
eral simple, illustrative models of the detachment proc
were developed. The boundary-integral numerical res
were in excellent agreement with published experiments23 as
well as their own experiments. Oguz and Prosperetti a
showed that bubbles growing when there is a liquid flow
parallel to the needle may detach with a considerably sma
radius than in a quiescent liquid~see also Cliftet al.5!. This
significant effect motivated our investigation~Sec. III! of the
analogous viscous flow problem. Also, in the spirit of Og
and Prosperetti’s numerical investigation of the fre
boundary problem, Wonget al.12 used a boundary integra
method for low-Reynolds-number flows to study bubble d
tachment in a viscous fluid. Our work reported here th
combines elements of the above two investigations.

It is important to note that the aforementioned stud
pertain to two limits of the drop formation processes: one
a liquid flowing into an ambient gas and the other is a g
ejected into a liquid. Here we explore the details of dr
formation at a capillary in a general two-fluid system for
viscously dominated flow. Numerical results are based on
boundary integral method for Stokes flows. The formati
extension, and breakup of the drop fluid and, subseque
the generation of satellite drops, are investigated for a w
range of fluid viscosity ratios. Other effects such as bu
ancy, interfacial tension, and an external flow are also s
ied. We describe the numerical formulation in Sec. II a
report numerical results in Sec. III.

II. NUMERICAL FORMULATION

The formation of a drop at the tip of a vertical, circul
capillary tube of radiusR0 is shown in Fig. 1. An incom-
pressible, Newtonian fluid (i51) flows, owing to a pressure
gradient, with a constant flow rateQ into a second incom-
pressible, Newtonian fluid (i52). For simplicity, the tube
wall is assumed to have zero thickness, which is physic
reasonable since the wall thickness has been shown ex
mentally to have little influence on the drop formatio
process.24 The ambient fluid may be quiescent or may
assumed to be in a constant steady motionU` far from the
capillary; the latter case is representative of configurati
where the characteristic dimension of the capillary is mu
Phys. Fluids, Vol. 9, No. 8, August 1997
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smaller than the typical dimension over which the bulk flo
varies. For this axisymmetric flow, a cylindrical coordina
system (r ,z) is defined with thez axis coincident with that of
the capillary tube, increasing in the direction ofg, and the
origin is placed at the center of the tube exit~see Fig. 1!.

In the low-Reynolds-number flow limit, the governin
equations for motion of the two fluids are (i51,2)

¹•T i52¹pi1m i¹
2ui1r ig50, ¹•ui50, ~1!

where in fluid i , ui is the velocity field,pi is the pressure,
and m i and r i are the fluid viscosity and density, respe
tively. In ~1! the stress tensorT is defined to include the
hydrostatic body force in order to define a divergence-f
field,

T i52~pi2r ig–x!I1m i~¹ui1~¹ui !
T!, ~2!

wherex is a position vector andg–x5gz.
In the present study, the drop fluid (xPV1) is bounded

by the fluid interfaceSD , the capillary tube inner wallST1,
and the tube inletSI . The ambient fluid (xPV2) is bounded
internally by the fluid interfaceSD and the capillary tube
outer wallST2. In Fig. 1 these surfaces are represented
their traces in the (r ,z) plane.

Inside the capillary tube, far from the tube exit, a Po
seuille flow is assumed and, thus, the velocity profile at
inlet SI is

FIG. 1. Schematic of drop formation at a vertical, circular capillary tub
2235D. F. Zhang and H. A. Stone
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2Q

pR0
2F12S r

R0
D 2Gez52VF12S r

R0
D 2Gez , ~3!

whereez is the unit vector along the axis andV is the average
fluid velocity in the capillary (V5Q/pR0

2).
The boundary conditions along the inner and outer tu

walls,ST1 andST2, are no slip:u150, u250. Along the fluid
interface,SD , the velocity is continuous,u15u2, and the
stress jump is balanced by the density contrast and the in
facial tension stress, which depends on the local curva
¹s–n of the interface,

n–T22n–T15@g~¹s–n!2Drg–x#n, ~4!

whereg is the constant interfacial tension,n is the unit nor-
mal vector directed into the ambient fluid,¹s5(I2nn)–¹ is
the gradient operator tangent to the interface, a
Dr5r12r2. Along SD there is also a kinematic constrain
which can be expressed with the Lagrangian description
labeled pointxL as

dxL
dt

5u~xL! for xLPSD . ~5!

The governing equations and boundary conditions
nondimensionalized by choosing the tube radiusR0 as the
length scale, and it is convenient to choose the velocity s
as g/m. Accordingly, the scales for time and pressure,
spectively, areR0m/g andg/R0.

Three dimensionless parameters, a Bond numberB, a
capillary numberC , and a viscosity ratiol, describe the
flow:

B5
DrgR0

2

g
, l5

m1

m2
, and C5

mV

g
. ~6!

The Bond number measures the relative importance of
buoyancy force to the interfacial tension force while the c
illary number represents the relative importance of the v
cous force generated by the internal flow relative to the
terfacial tension force. If a constant velocityU` is imposed
in the fluid surrounding the capillary, the outer capilla
numberC out5 mU` /g enters the problem description.

In order to solve this free-boundary problem, Stok
equations are reformulated into a system of integral eq
tions. The numerical procedure is standard and the de
can be found elsewhere.25,26 In the present flow, along the
tube walls the velocitiesu1 (xPST1) and u2 (xPST2) are
identically zero, at the inletSI the velocity distribution is
specified, and along the deforming fluid–fluid interfaceSD
the stress jump condition (n–T22n–T1) is known @Eq. ~4!#.
The unknown quantities are thenu onSD , n–T1 onST1, and
n–T2 on ST2; in fact, only the difference (n–T22n–T1) ap-
pears at the~infinitely thin! tube wall,ST ~5 ST15ST2). The
final form of the boundary integral equations are
2236 Phys. Fluids, Vol. 9, No. 8, August 1997
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~11l!

2
u~x!5C outez1E

SD

J–n@~¹s–n!2Bz#dSy1~l21!

3E
SD

n–K–u dSy1E
SI

J–n–T1 dSy

1lE
SI

n–K–u1 dSy1E
ST

J–~n–T2

2n–T1!dSy for xPSD , ~7a!

05C outez1E
SD

J–n@~¹s–n!2Bz#dSy1~l21!

3E
SD

n–K–u dSy1E
SI

J–n–T1 dSy1lE
SI

n–K–u1 dSy

1E
ST

J–~n–T22n–T1!dSy, for xPST , ~7b!

where the kernels functions are

J5
1

8pF I

ux2yu
1

~x2y!~x2y!

ux2yu3 G ,
~8!

K52
3

4p

~x2y!~x2y!~x2y!

ux2yu5
.

We note that the capillary number appears in the dimens
less form of the inlet velocity profile~integral overSI). For
this axisymmetric flow, the surface integrals are simplified
line integrals along the generating curve of the boundary
performing the azimuthal integrations analytically.27 Details
of the numerical implementation are given in the Append
and here we only note that although the drop was pinne
the edge of the tube, no contact angle was specified an
was allowed to take any value consistent with the numer
solution ~e.g., Ref. 12!.

III. RESULTS AND DISCUSSION

In this section the formation, extension, and breakup
the drop fluid and, subsequently, the generation of sate
drops, are investigated. Calculations are performed by v
ing one dimensionless parameter while keeping the other
parameters fixed and we have investigated 1022<l<10,
1022<C<1, and 0.1<B<5. We have chosen to conside
situations where the flow rateQ is fixed~constantC !, which,
owing to the dynamics of interfacial rearrangement, wou
in practice, require a time-varying pressure gradient. In co
mon circumstances, this pressure change is not significa5

For low-Reynolds-number flow situations, dimension
analysis implies, for example, that in the absence of an
posed flow in the external fluid the dimensionless volu
Vd of the primary drop formed isVd5 f (B,C ,l). In the
nearly static limit,C!1, thenVd}B

21 for all l.8 However,
although there have been many studies on bubble forma
under high-Reynolds-number flow conditions, there appe
D. F. Zhang and H. A. Stone
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to be little specific information available about drop forma
tion in viscous fluid flows5 so our results for a wide range o
C , l, andC out essentially are graphical forms of the dimen
sionless functionf , or its analogue for other properties, fo
such parameters as the dimensionless drop volume, brea
time, and fluid column length at breakup.

A. Typical case

We first consider a typical casel50.1, B50.5, and
C50.1. Figure 2 shows the variation ofRmin andLmin with
time, whereRmin denotes the minimum dimensionless dro
radius andLmin is the axial (z) distance from the capillary
tube exit (z50! to Rmin . These two quantities characteriz
the formation of a neck which leads to breakup at a tim
tb . Some drop shapes have also been included in Fig. 2
the present numerical simulation, the drop is assumed to r
ture, forming the primary drop, whereRmin<0.005, which
appears to be a reasonable numerical criterion for brea
when focus is on the primary drop since any additional d
crease in the neck radius happens quickly and further co
putations of the solution become difficult because of t
large velocity and curvature gradients near the pinch po
~see, for example, Eggers13 and Papageorgiou18!. In fact, for
a purely viscous internal~Stokes! flow, inertial effects be-
come important as~rapid! pinching occurs,18 so locally the
low-Reynolds-number approximation becomes invalid. Wi
an outer fluid present, however, the pinching dynamics a
slowed and the low-Reynolds-number approximation can
main valid all the way to breakup.28

In Fig. 2 we observe that at early times, the drop volum
increases by the continuous addition of fluid from the cap
lary tube and the interface shape transforms slowly from t
hemispherical initial shape to a pear-shaped surface. Dur
this period, the buoyancy force acting on the drop, which
proportional to the drop volume, is not large enough to ove
come the interfacial tension force, and the drop remains
tached to the capillary tube. Figure 2 shows thatRmin51 and
Lmin50 for t,30.2, after which the drop volume reaches

FIG. 2. Variation of the minimum dimensionless drop radius,Rmin , and the
corresponding dimensionless length,Lmin , with time; l50.1,B50.5, and
C50.1. Some drop shapes are also shown.
Phys. Fluids, Vol. 9, No. 8, August 1997
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critical value, predicted approximately by static stabili
analyses applicable to low capillary number flows, where
drop begins to break away~e.g., Middleman;8 see also Fig.
9!.

In order to distinguish the flow characteristics at diffe
ent times, the drop formation process is generally divid
into ~at least! two stages, the latter stage after the drop beg
to break away and is much shorter than the former. A
result of the rapid flow in the second stage, the drop stretc
and a neck subsequently forms (t'40). A thread then devel-
ops with a diameter that decreases rapidly with time. T
shape of the thread is not symmetric about its horizon
centerline. The thread is connected to a nearly spherical
mary drop at its lower end, where large curvatures deve
and a local interfacial-tension-driven flow leads to break
At t550.7, thread breakoff is about to occur wi
Lmin'3.16. We note that the portion of the drop below t
breaking point takes a spherical shape while the upper
approximates a cone~e.g., Peregrineet al.17!. These shape
features near pinching are common to most, if not all,
amples of drop breakup and so from now on we focus
features of the shape and flow specific to drops formed
capillary tube.

In order to demonstrate the entire drop formation p
cess, in Fig. 3 a time sequence is shown~using the same
parameters as in Fig. 2! including breakup of a drop, forma
tion of a satellite drop, and return of the fluid interface to
blob-like shape similar to the initial shape. Growth, exte
sion, necking, and breakup of the drop can be clearly s
prior to t550.7. Immediately after the thread breaks at
lower end, its free end is retracted by interfacial tension. T
thread breaks again at its upper end, resulting in the prod
tion of a small satellite droplet, as shown in Fig. 3
t551.2. Satellite drop formation depends primarily on t
shape of the thread when it is about to break for the first ti
and so depends upon the initial and flow conditions~i.e., l,
C , andB!; the volumes of the primary and satellite dro

FIG. 3. A time sequence of the interface shapes forl50.1,B50.5, and
C50.1. After separation of the primary and satellite drops from the m
fluid column, the drops are neglected in further calculations of the pen
drop shape.
2237D. F. Zhang and H. A. Stone
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are studied in the remaining sections. After a compl
breakup process, leading to the formation of primary a
satellite drops, the remaining drop fluid which hangs on
tube continues to deform and subsequently, another sim
drop formation process occurs. Careful examination sho
that the interface shape att553.7 is almost identical to tha
at t510.0 ~see Fig. 2!.

B. Effect of the viscosity ratio l

The viscosity ratiol plays an important role during th
dynamical processes of necking and breaking. Figure
shows the breaking lengthLb versusl for B50.5 and
C50.1, whereLb is the dimensionless axial (z) location of
the breaking point. Four interface shapes, just prior to br
koff, have also been included. The interface shapes
l51022, 1021, 1 are displayed with the same scale wh
that forl510 is presented with a much smaller scale ow
to the very long fluid column that is formed for this larg
viscosity ratio. Clearly, asl varies, there are different shape
at breakup and although, as we shall see, the primary d
volume changes only a little withl for the range ofC and
B studied, the viscosity ratio has a significant effect on
formation of satellites. Forl 51022 breakup occurs at an
early time, there is no detectable thread between the det
ing drop and the remaining pendant drop, and so no la
satellite drops are expected. This interface shape, calcu
for a low value of the capillary number, is similar to th
calculated for bubbles in Stokes flows by Wonget al.12 and
observed experimentally by Longuet-Higginset al.23 and ex-
perimentally and numerically by Oguz and Prosperetti21 dur-
ing the high-Reynolds-number bubble formation proc
from a needle (l→0); dynamics~viscous or inertial! only
play a significant role at late times near pinching. Asl is
increased, a fluid thread develops and its length increa
owing primarily to the difficulty of fluid squeezing out ax
ally along the thread. Thus viscous effects play a signific

FIG. 4. The breaking lengthLb versusl for B50.5 andC50.1. Four
shapes of the fluid interfaces at breakup are included forl51022,1021, 1,
and 10, respectively. The drop shape shown forl510 is displayed with
compressed horizontal and vertical scales since very long fluid colu
develop forl@1.
2238 Phys. Fluids, Vol. 9, No. 8, August 1997
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role when threads form as breakup occurs. As a result,
breaking distanceLb increases monotonically withl and
rather dramatically forl.1.

As indicated in the introduction, long, narrow threa
which connect the falling drop and the remaining fluid co
umn have been experimentally and theoretically observe
previous studies of high-viscosity dripping flows,11,13,15,24

with much recent interest given to the dynamics in the nei
borhood of the pinch point.19,20 The consistency of the
present results with these previous studies is not surpri
since in fact these previous studies are an asymptotic l
(l→`) of the two-fluid flow. We note that numerical accu
racy in the calculations presented here is difficult to prese
for the very extended interface shapes characteristic
l@1, as large numbers of node points must be used, and
requirement limited our calculations tol<10. Also, detailed
investigations of the dynamics near pinching shows that
fact, inertia eventually becomes important ifl5` but can
remain insignificant for the finitel case.28

The viscosity ratio also influences formation of satell
drops. Figure 5 depicts the interfaces forl51022, 1021, 1 at
the instant of the satellite drop detachment (B50.5 and
C50.1). Satellites form forl51021 and 1 but, for
l51022, there exists no visible thread, thus no satellite dr
is expected. Forl51021, a thin thread evolves and th
breakup of this thread occurs soon after formation of
primary drop, (t*5t2tb50.55), which generates a ver
small satellite (Vs55.631023). In contrast, relatively slow
satellite drop formation occurs forl51 (t*59.75) and the
satellite drop (Vs5831022) is larger than that for
l51021, a result which is due to the existence of the long
thread in the case of the more viscous drop fluid.

ns

FIG. 5. The fluid interfaces forl51022, 1021, and 1 at the instant of the
primary satellite drop detachment withB50.5,C50.1. The viscosity ratio
l and the satellite drop formation timet*5t2tb are labeled on the figures
D. F. Zhang and H. A. Stone
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Figures 6 summarizes the dimensionless breaking ti
(tb) and the dimensionless volumes of the primary dr
(Vb). The Bond number is maintained constant (B50.5)
and three capillary numbers (C50.05,0.1, and 0.5) are con
sidered, corresponding to an increasing pressure differe
driving larger flow rates through the tube. We note thatVb

varies only a little asl varies, especially for the small cap
illary number cases, e.g.,C50.05, in spite of the differen
dynamics indicated in Fig. 4, and so static predictions,
pendent on the Bond number, for the primary drop volu
will be useful. Viscous stresses are more important as
capillary number increases, and correspond to shorter br
ing times and larger primary drop volumes. Also, the visc
ity ratio influences the flow during the latter stages, wh
terminate in breakup with different breaking lengthsLb ~Fig.
4! and breaking timestb ~Fig. 6!.

C. Effect of the Bond number B

The effect of the Bond number is demonstrated in Fig
for 0.1<B<5 with l50.1 andC50.1. Three interface
shapes at breakup are shown forB50.1, 1, and 5, respec
tively. The primary drop volumeVb decreases nearly linearl
with B, and our numerical results indicate thatVb}B

2n

with n'0.90, which is similar to theoretical results bas
upon a static analysis8 for which the critical drop radius is

FIG. 6. The dimensionless breaking timetb and the dimensionless volum
of the primary dropVb as a function ofl for B50.5 andC5531022,
1021, and 531021, respectively.

FIG. 7. Variation of the primary drop volumeVb with B; l50.1,
C50.1. The interface shapes at breakup forB50.1, 1, and 5 are also
shown.
Phys. Fluids, Vol. 9, No. 8, August 1997
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Rd5(3g/16R0
2rg)1/3, where the released drop is assumed

be a sphere; nondimensionalization givesRd /R0}B
21/3 or

Vb}B
21. The small deviation of the exponentn from unity

is attributed to the small but finite capillary number as w
as the viscous dynamics at later times.

Referring again to Fig. 7, we note that for larger Bo
numbers, e.g.,B55, substantial translation of the drop o
curs on a short time scale which effectively leads to form
tion of narrow, tapered threads connecting the drop and fl
column. Further calculations show that the dynamics of
subsequent satellite formation for varyingB are also differ-
ent because the thread shape is substantially changed
smallB ~5 0.1!, a small satellite relative to the primary dro
develops after only a short time (t*50.1) while, in contrast,
for largeB ~5 5! a relatively large satellite forms from th
narrow, tapered thread, but the satellite formation time
longer (t*52.04).

D. Effect of the capillary number C

Figure 8 shows the~large! variation of the breaking time
tb as a function of the capillary numberC with B50.5 and
l50.1. We observe thattb decreases significantly with in
creasingC for C,0.2. However, forC.0.2, decreases in
the breaking time become gradual andtb is nearly constant
for C.0.75. For C,0.2 the drop grows slowly until it
reaches the critical volume and the subsequent necking
breakup processes are relatively fast. In these cases,tb is
essentially determined by the time necessary for the d
fluid volume to reach the critical volume for detachme
from the capillary tube. For largeC , accumulation of the
drop fluid is fast and the critical volume is reached at ear
times. The accumulation time no longer determines
breaking time and, instead, the time for the subsequent n
ing and breakup process is most significant. We note that
necking and breaking process for largeC is complicated
because a large amount of the drop fluid exits the tube du
the second stage and the fluid interface keeps extending
deforming. This breakup process is somewhat similar to t
of a ‘‘jetting’’ flow, as shown in Fig. 8 forC51. For such

FIG. 8. Variation oftb as a function of the capillary numberC ; B50.5 and
l50.1.
2239D. F. Zhang and H. A. Stone
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largeC flow conditions, the breakup timetb primarily de-
pends on the necking and breaking process in which the
in the vicinity of the tube exit has a little influence: an a
proximately constanttb is thus expected.

Figure 9 reportsVb andLb as functions of the capillary
number for 1022<C<1, l50.1, andB50.1, 0.5, 1.0. Both
Lb and Vb increase withC . Since static analysis predict
Vb}B

21, this scaling is used in Fig. 9, and is seen to
useful for collapsing some of the data. In the cases stud
for fixed l, the breaking length is only weakly dependent
B for a givenC .

As a final remark, whenC@1 and the shape remain
nearly spherical, the dimensionless drop volume scale
Vd}(C /B)3/4 as described by Wonget al.12 ~see also Ref.
5!, who show that this result is in good agreement with th
numerical calculations forl50 providedC /B.103. On the
other hand, forl@1, long fluid columns form and Wilson’s
one-dimensional model11 predicts Vd5A3p(C /B)1/2

12.4/B. To study these asymptotic limits in detail wou
require more node points than used in our numerical sim
tions reported in the rest of the paper.

E. Effect of an external uniform flow

The above results summarize the response for a qu
cent ambient fluid,U`50. In this last section, drop forma
tion is studied for a uniform steady flowU` . The motivation
for this flow configuration is to explore the possibility o
controlling the drop size and the drop detachment rate. T
idea was investigated numerically by Oguz and Prospere21

in a study of bubble growth and detachment from a nee
for the case of irrotational flow conditions and earlier r
search was summarized by Cliftet al.5 It has been observe
that the external flow typically leads to the formation
smaller drops, which provides a useful control parame
since in the absence of flow the drop radius is proportiona
the one-third power of the capillary tube radius. We no
consider the low-Reynolds-number flow limit and summ
rize the change in drop volume, breakoff length, a
breakoff time as the external flow velocity (C out) is in-
creased.

Figure 10 shows the interface shapes at breakup for
ferentC andC out with other parameters fixed (B50.5 and
l50.1). All of the results are shown with the same scale
that the drop size and the breakup length can be comp
directly. The capillary numbers from top to bottom a
C51022,1021, and 1, and the outer capillary numbers, fro

FIG. 9. Variation ofLb andVb with C for l50.1 and three different Bond
numbers,B50.1, 0.5, and 1.0.
2240 Phys. Fluids, Vol. 9, No. 8, August 1997
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left to right, areC out50,1022,1021, and 1. In each frame the
dimensionless breakup timetb is indicated. It is evident tha
imposing a constant flow on the ambient fluid can effectiv
influence the drop formation process, as indicated by C
et al.5 and quantified here for the viscous flow limit. As com
pared to the earlier cases of no externally imposed flow, w
a constantU` , or finite C out, a smaller primary drop, a
longer breaking lengthLb , and a shorter breaking time re
sult, whereas, as discussed earlier, a largerC leads to a
larger primary drop and a longer breaking length. For a giv
C , the drag force on the drop fluid, which increases w
increasingC out, tends to stretch the fluid column, and th
earlier breakup time therefore leads to the formation o
smaller primary drop. Figure 11 shows the variation ofVb as
a function ofC out (B50.5,l50.1, andC50.1).

In Fig. 10, it is observed that large values ofC out not
only alter the primary drop size and the breaking length,
also change the shapes of the interfaces dramatically~e.g.,
C out51 with C51022 and 1021). Thus we expect that the
outer flow also influences the formation of satellite drops

The influence of an applied flow on drop formation wi
different Bond numbersB is considered in Fig. 12, wher
the dimensionless drop volumesVb at C out50 and 0.2 are
compared forl50.1 and 0.1<B<5. Significant differences
in Vb are observed for smallB (,0.1), but the differences
are much smaller forB.O(1). There are now two forces
trying to move the drop fluid away from the tube, one is t
buoyancy force~B! and the other is the viscous drag forc

FIG. 10. Interface shapes at breakup for differentC andC out ; B50.5 and
l50.1. The capillary numbersC , from top to bottom, are 1022, 1021, and
1, and the outer capillary numbersC out , from left to right, are 0, 1022,
1021, and 1.
D. F. Zhang and H. A. Stone
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exerted by the ambient fluid (C out). The buoyancy force
dominates for large Bond numbers, such asB55, which
results in a rapid formation of the small primary dro
(tb55.32). In contrast, for a smallB50.1, the drag force
exerted by the imposing flow is most significant.

Figure 13 provides a further view of interface shap
with B50, which is a limit of obvious relevance to micro
gravity applications. Two outer capillary numbers,C out50
and 0.2, are examined forl50.1 andC50.1. ForC out50,
as expected, the volume of the drop fluid increases cont
ously, the drop fluid remains attached to the tube, and
interface maintains a spherical shape due to interfacial
sion. With an external flow, however, viscous stresses
exerted on the interface by the ambient fluid, and leads
drop breakup attb5440.7. It is interesting to note that
comparison of different simulations indicates that the int
face shape forB50, C out50.2 ~Fig. 13! is similar to that
near breakup forB50.1,C out50 ~Fig. 12!.

FIG. 11. Variation ofVb with C out for B50.5,l50.1, andC50.1.

FIG. 12. Comparison ofVb for C out50 and C out50.2 with l50.1,
0.1<B<5.
Phys. Fluids, Vol. 9, No. 8, August 1997
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IV. CONCLUDING REMARKS

We have studied numerically the dynamics of drop fo
mation from a capillary tube for two-phase low-Reynold
number flows. The emphasis has been on determining
volume of the primary drop as a function of the Bond nu
ber, capillary number, and the viscosity ratio. Know
asymptotic limits have been summarized in the text and
figures reported here thus represent graphically, in the s
of the compendium of Cliftet al.5 ~Chap. 12!, the complete
dependence of the drop volume, breakup length, and brea
time as a function of the dimensionless parameters~which
typically are outside the region where the asymptotic res
are valid!. The effect of an external flow, known to general
lead to smaller drop sizes, is here quantified for viscou
dominated flows.
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APPENDIX

In this appendix we provide the details of the numeric
implementation for the solution of the integral equatio
from which the boundary velocity is determined.

Given an initial shape for the interface, Eqs.~7a! and
~7b! can be solved numerically by approximating the integ
equations by a linear system of equations. Each bound
SD or ST , is defined by a set of discrete boundary nodes
which the velocity is calculated. A hemispherical cap is a

FIG. 13. Interface shapes forC `50,0.2 withB50, l50.1, andC50.1.
2241D. F. Zhang and H. A. Stone
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sumed to be the initial shape of the drop at the end of
capillary and is represented by 15–20 points. With increa
of the interface length, more points are added so as to
serve the numerical representation of the interface and
node points are uniformly redistributed along the interfa
every 5–10 time steps. For the calculations reported here
maximum number of node points is 100, which has be
shown to be sufficient by performing several numeri
simulations using more points. To resolve carefully sma
satellite drops than those studied here, more node points
necessary. Cubic splines are used for a continuous interp
tion of the interface shape where the spline parameter is
arclengths along the interface measured from the corner
the tube exit atz50 @i.e., r (s), z(s)]. Along the capillary
tube wall ST (r51), the boundary is discretized usin
r (z), a fixed number of points (20) are distributed along t
capillary for a distance of 10 tube diameters and, beyond
point, the integral is truncated. For the unknown quantit
~velocities and stress jumps!, a linear piecewise interpolatio
in terms of the spline parameter between adjacent node
used.

The numerical integrations are performed with Gauss
quadratures using the IMSL Math/library routines. The ab
lute and relative error limits for the numerical integratio
are chosen as 1025 and 1027, respectively. Special care i
required to handle the logarithmic singularity asy→x. We
subtract the logarithmic behavior of the singularity from t
integrands and so reduce the integrands into a regular
and a singular part, whose contributions are computed s
rately ~using different codes in the IMSL library!. For most
of the cases, the singular partux2yu is set to be 1% of the
distance of the adjacent nodes. The resulting matrix equa
is solved by iterative refinement. Once the linear system
equations is solved to obtain the interfacial velocities,
interface location is updated by solving the kinematic con
tion @Eq. ~5!# using an explicit Euler method.

Numerical accuracy is assessed by increasing the bo
ary discretization and by monitoring the change of the d
fluid volume. Changing the boundary discretization is p
formed by increasing the node number,N, while keeping
Dt/Ds fixed, whereDt is the time step andDs, proportional
to 1/N, is representative of the node spacing. The volume
the drop at the end of the computations is calculated num
cally and compared with the sum of the initial volume a
the fluid volume that flowed from the capillary tube durin
the computing time. The volume differences are alwa
within 2% of the initial volume.
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