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A new experimental method is presented using fluorescein dye to determine the spatial and temporal
variations of the liquid volume fraction in aqueous foams. This method is used for quantitative studies
of liquid redistribution (drainage) in three types of experiments: forced, free, and pulsed drainage.
Characteristic quantities, such as the drainage velocity, show power-law dependences on experimental
parameters that are inconsistent with traditional foam drainage models based on Poiseuille-type flow in
the liquid-carrying channels (Plateau borders) of the foam. To obtain a theoretical description, the foam
drainage equation is generalized using an energy argument which accounts for viscous dissipation in both
the channels and the nodes (or vertices, which are the junctions of four channels) of the liquid network.
Good agreement with results for all three types of drainage experiments is found when using this new
model in the limit where the dissipation is dominated by the nodes.

1. Introduction

There are many industrial as well as everyday uses for
foams in either liquid or solid form. Aqueous foams are
ubiquitous in the kitchen: examples are whipped cream,
chocolate mousse (N.B. mousse is the French word for
foam), beer foam, and soapy dish water. Polymeric foams
have numerous applications such as seat cushions and
packaging (e.g. Styrofoam). Recently there has also been
interest in foaming metal melts to produce metallic foams,
which are useful in many mechanical applications because
of their structural stability and ultralight weight. These
foams have recently come into use in the aerospace and
automotive industries.1,2

Many foams are made by introducing bubbles into a
liquid which contains a surfactant in order to stabilize
the gas/liquid interfaces. The spatial and temporal liquid
distribution is governed by the fluid dynamics of the liquid
in the foam. Under the influence of gravity liquid will
drain from the foam and accumulate at the bottom, leaving
the top deprived of liquid. Such an inhomogeneity of liquid
content may be undesirable in applications such as the
aforementioned structural metal foams. It is unclear how
the dynamics of fluid flow varies for different kinds of
foams: Is there a simple description of fluid transport
through foams that is universally applicable to different
situations and different foams? Do different foams have
different boundary conditions at the gas/liquid interface?
In particular, how does the presence of a surfactant affect
the boundary conditions? Even the fluid dynamics of
aqueous (soap) foams, which are the simplest and easiest
system to study, is poorly understood.3-5 Here we report
new results for three types of drainage experiments for

aqueous foams, along with a modification to the existing
foam drainage model that succeeds in capturing the
features of liquid drainage in all of these cases.

Foam drainage is the flow of liquid through the
interstitial spaces between the bubbles. The flow is driven
by capillarity and (usually) gravity and is resisted by
viscous damping.6-9 The interstitial space, i.e., the liquid
volume, can be divided into (i) films, which form between
two adjacent bubbles and are bounded by almost flat
bubble faces, (ii) channels (also known as Plateau borders),
where three films meet, and (iii) nodes (also known as
vertices or junctions), where four channels meet (see Figure
1b). On the scale of single bubbles the flow is rather
intricate: for example in the nodes flows from different
channels merge and subsequently split into flows through
other channels. The dynamics is further complicated by
the flow along the gas/liquid interface; e.g., are the surfaces
rigid or mobile? In spite of this small-scale complexity, on
a macroscopic scale (i.e. lengths of at least several bubble
diameters) simple ordered flow is often observed and it is
possible to successfully describe foam drainage using
effective-medium models.

There are other processes that can change the macro-
scopic appearance of a foam, in particular coarsening,
which refers to the growth of the average bubble size.
This can occur either by film rupture (coalescence of
adjacent bubbles) or by diffusive coarsening, where large
bubbles grow at the expense of smaller bubbles, whose
higher capillary pressure makes them lose gas. This latter
effect is similar to the process known as Ostwald ripening
of metal grains.10 With a good surfactant, films are very
stable and rupture events occur only rarely. Diffusive
coarsening will always be important at long enough times;
however, in the experiments reported here we have taken
countermeasures to avoid coarsening.* To whom correspondence should be addressed. E-mail:
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In the past, researchers have focused on a variety of
aspects of soap foams. The 19th century Belgian scientist
J. A. F. Plateau, at a time when he was already blind,
originated the study of soap foams, mainly investigating
their geometry. He formulated “Plateau’s rules”, which
state that three films must meet at 120° angles and four
channels at the tetrahedral angle of arc cos(-1/3) ≈ 109.5°,
and also the eminent minimal surface problem known as
the Plateau problem.11,12 The reader interested in the large
body of foam research spanning physical chemistry and
engineering applications is referred to the monographs
by Mysels et al.13 and Bikerman6 and the recent compila-
tion by Prud’homme and Khan14 as well as the proceedings
edited by Sadoc and Rivier.15

We are particularly interested in simple dynamical
models for foam drainage. Research in this spirit appears
to begin with the work of Leonard and Lemlich,7 who
performed foam drainage experiments and developed a
model based upon balancing gravity and viscous effects
for a Poiseuille-type flow in the channels. Kraynik found
analytical solutions to this model for the case of negligible
surface tension.4 The attempt to remove the effects of
surface tension recently led Durian and co-workers to
perform drainage experiments using a clever geometry of
the foam container16 (earlier publications17,18 also treat
container shape effects on drainage). Reintroducing
surface tension into the description of drainage, Goldfarb
et al. developed what is now called the foam drainage
equation.19 This theory was supported by systematic
experiments performed in Weaire’s group several years
later,20 who also presented an independent reformulation

of the foam drainage equation. However, already Desai
and Kumar3 and Kraynik4 remarked that the basic
assumptions of this standard model lead to slower
drainage rates than those observed in their experiments.
In recent work, we proposed a modification to the model,
based upon the nodes of the liquid network as the principal
region of dissipation. This modified model agrees well with
data from our forced drainage experiments.5 Very recently
Langevin and co-workers found that changing the surface
viscosity of a SDS (sodium dodecyl sulfate) solution by
adding dodecanol affects the drainage rates, and for SDS
alone their forced drainage results agree with ours.21

Further evidence that changing the interfacial chemistry
significantly alters the drainage rate is provided by Wilde
et al.,22 who report that foams stabilized by proteins drain
much slower than foams stabilized by low molecular
weight surfactants, such as SDS.

In this paper, we treat the two different models as
limiting cases of a generalized theory and demonstrate
that the theory which focuses on dissipation in the nodes5

is in close agreement with data for a variety of drainage
experiments. The remainder of this section details the
geometry of foams and presents the main ideas of a foam
drainage theory, while section 2 describes the experi-
mental setup and methods, along with the main results
of the measurements. In sections 3 and 4 a generalized
foam drainage equation is derived and discussed and
comparedto theexperimental results.Concludingremarks
are given in section 5.

1.1. Foam Geometry. The surfaces of the bubbles of
aqueous foams are coated with surfactants which are
necessary to stabilize the films against rupture by
providing a disjoining pressure (electrostatic and steric
in nature) that keeps opposing faces from merging.23

Outsideof the filmregions, thedominant forcedetermining
the foam geometry is surface tension, which acts to
minimize the surface area of the bubbles and results in
constant mean curvature.

Onesimple idealized foamstructure is theKelvin foam,24

which is a collection of regular tetrakaidecahedral bubbles
(cells) with edge length L (see Figure 1a and e.g. Princen25).
The maximum dimension of a cell is approximately 2.8 L.
Typical film thicknesses of the faces of aqueous foams are
j 100 nm,26 so that most of the liquid resides in the
channels and nodes, which are typically between 10 µm
and 1 mm wide. Here the contact angle between two
channel walls meeting at a face is assumed to be
vanishingly small, and the liquid content of the face (and
thus the film thickness) is assumed zero. As the amount
of liquid in the channels and nodes increases, the mean
curvature of the interfaces decreases, and the edges and
corners of the polygonal bubbles become more rounded.
We quantify the liquid content of a foam by the liquid
volume fraction ε, defined as the volume of liquid in a
macroscopic foam region divided by the total volume of
the region.
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Figure 1. (a) Tetrakaidecahedral bubble with liquid-filled
channels and nodes, with edge length L, that composes an
idealized Kelvin foam (reproduced from a figure by A. Kraynik,
private communication). A liquid network unit composed of
one node and four half-channels with corresponding volume
fraction ε ) 0.005 is shown in (b). A “dog-bone”-shaped liquid
network unit, one channel with one-quarter-node at each end,
is sketched in (c). (a) and (b) have been generated using the
Surface Evolver.27
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To arrive at a geometrical description of the channel
network (no faces) we consider the equilibrium situation
without gravity, where the mean curvature H is constant.
The two principal radii of curvature r1 and r2 will change
from point to point, obeying 2H ) r1

-1 + r2
-1. We define

the characteristic radius of curvature r by r-1 ) 2H and
plot εas a function of r in Figure 2. The points are computed
for the idealized tetrakaidecahedral foam using the
Surface Evolver,27 and the solid line is a fit to the formula

Since here we are principally concerned with the dry foam
limit, corresponding to ε , 1, we have r , L, and the
approximation

is good for liquid volume fractions ε j 0.1.
There is a simple geometrical justification for the

polynomial fit (1). Foams with low liquid content (ε j
0.05) have channels that are long, essentially straight,
and slender, containing much more liquid than the nodes.
With decreasing ε the channel length approaches L and
the transverse radius of curvature of the channel ap-
proaches r from above because the longitudinal radius of
curvature becomes large. The cross-sectional area of a
channel approaches δar2, with δa ) x3 - π/2, which is the
area between three contiguous circles of radius r (see
Figure 1b). If one neglects small overlap regions in the
junctions, the liquid content of a tetrakaidecahedral bubble
is 12δar2L because there are 12 complete channels per
bubble. The volume of the tetrakaidecahedron1 is 27/2L3,
so the liquid volume fraction due to the channels is
12δa2-7/2(r/L)2 ≈ 0.171(r/L)2, which is the first term on the
right-hand side of (1). Higher-order corrections arise from
the presence of nodes which (i) diminish the length of the
channels by O(r) and (ii) introduce a node volume νn )
δnr3, with δn ) O(1).28 This leads to the δ′ term in (1), the
only genuine fit parameter in the equation.29 For foams
with low liquid content, however, the channels account

for almost all of the liquid, and we will neglect node
corrections to the volume.

1.2. Foams as Porous Media. It is useful to consider
an analogy between the drainage of a foam and the flow
of liquid through a porous medium such as sand or a packed
bed of rigid spheres.30,31 The dimensions and number
density of the connected pores determine the permeability
of the porous medium to liquid flow. Darcy’s law relates
the driving pressure gradient G to the permeability k and
the average liquid velocity through the medium v,

where µ is the viscosity, p is the liquid pressure, and Fg
is the gravitational force. Permeability has dimensions of
length squared and scales with the square of a charac-
teristic pore size. For foams the interstitial space between
the bubbles (channels and nodes) plays the role of the
pores through which liquid can pass. However the
interstitial space (i.e. volume fraction) of a foam is not
fixed and bubble deformation accompanies liquid flow.
Thus unlike conventional porous media, foams have a
permeability that is dynamically coupled to the liquid flux.

Note that eq 3 is macroscopic in the sense that all
quantities (e.g. the gradient) are averaged over length
scales larger than a pore size. Unless explicitly denoted
“microscopic”, all quantities will be understood as macro-
scopic, describing foam drainage on an effective-medium
level.

1.3. The Generalized Foam Drainage Equation.
We seek to describe the spatial and temporal dynamics
of the liquid volume fraction, ε(x, t). Inertial terms can be
neglected, as we estimate that the Reynolds numbers of
liquid flow, based upon a typical channel radius, are never
larger than 10 and in most cases are much smaller than
1. The discussion below is a modified presentation of
Koehler, Hilgenfeldt, and Stone32 and has many features
in common with previous models.19,33

A suitable starting point is the equation of mass
conservation,

in which v (see (3)) is the macroscopic velocity of the flow
through the foam. On the left-hand side of (3), the liquid
pressure p is given by the Young-Laplace equation

where γ is the surface tension. The foam is assumed
monodisperse, so all of the bubbles have the same gas
pressure pgas, as well as the same volume, because the
weight of the foam is small and compression due to gravity
is negligible.8

With (2) and (5) the driving force G from (3) becomes

We use (3) and (6) to solve for v in terms of ε and the
permeability k(ε) and substitute this into (4) to arrive at
the generalized foam drainage equation(27) Brakke, K. Univ. of Minnesota Geometry Center, Surface Evolver

Version 2.10c; http://www.geom.umn.edu.
(28) The prefactor δn for the node volume can be estimated assuming

that the geometrical shape of the nodes resembles that of the interstitial
space between hexagonally close-packed spheres (which is the structure
of a wet foam with spherical bubbles). The packing fraction of the fcc
structure is x2π/6 ≈ 0.74, and each sphere has 14/4 complete nodes.
This yields δn ≈ 0.31.
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Figure 2. Liquid volume fraction ε of the idealized Kelvin
foam versus r/L as computed (O) by the Surface Evolver27 in the
absence of gravity. The solid line is the polynomial fit (1) which
is in excellent agreement with the numerical data.

ε ) δε(r
L)2

+ δ′ (r
L)3

δε ≈ 0.171 δ′ ≈ 0.20 (1)

r ≈ δε
-1/2Lε

1/2 (2)

G ) -∇p + Fg ) µv/k (3)

∂ε

∂t
+ ∇‚(εv) ) 0 (4)

p ) pgas - γ/r (5)

G ) Fg + ∇(γ/r) ≈ Fg +
γδε

1/2

L
∇ε

-1/2 (6)
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It remains to compute the foam permeability in terms
of ε. A detailed derivation of a general expression for k(ε)
will be presented in section 3. Here, we give a simple
argument for the functional form of k(ε) in the two limiting
models of foam drainage.

The original foam drainage model is based upon rigid
gas/liquid interfaces, which cause Poiseuille-like flow in
the channels.19,20 The viscous damping force (per unit
volume) in the channels then is O(µv′r-2), where v′ is a
characteristic liquid velocity which is on the order of the
macroscopic liquid velocity. For dry foams the node volume
is negligible (cf. (1)), and so the viscous damping of the
liquid flow is dominated by the channels. Since the
Reynolds number is small, the viscous damping equals
the driving force from Darcy’s law (cf. (6)), and it follows
from µv/k(ε) ∝ µv′r-2 that k(ε) ∝ r2 ∝ L2ε. To differentiate
from other models, we call this the channel-dominated
model.

An alternative boundary condition stipulates that the
gas/liquid interface is not rigid but rather freely slipping
and stress-free.5 Although the flow in the nodes may be
very complicated due to the mixing and bending of the
flow (see Figure 1b), the viscous damping force (per unit
volume) inside the nodes is O(µv′r-2), because r is the only
length scale of the nodes. Inside the channels however
the viscous damping is negligible, because there the flow
is pluglike and the velocity gradients are small. Hence
the nodes dominate the dissipation, and we shall call this
the node-dominated model. Thus the average damping
force over a network structure is given by O(µv′r-2(r/L)),
because the ratio of the node volume to the volume of the
network is O(r/L). Equating the net damping force to the
term µv/k(ε) of Darcy’s law (3) yields k(ε) ∝ rL ∝ L2ε1/2.

2. Foam Drainage Experiments
In the following we briefly describe the experimental tech-

niques we use to measure the liquid volume fraction of draining
foams, which differ from previous work7,34,35 in several respects.
We then review the three different types of foam drainage
experiments that we have studied in detail: forced, free, and
pulsed drainage.20 In this section, we present the main results
of the measurements. An extensive analysis of the drainage
dynamics is deferred to section 4.

2.1. Experimental Procedure. To study foam drainage
experimentally we have developed a new measurement scheme
and a new procedure to produce a uniform, nearly monodisperse
foam that does not show signs of coarsening.5 The foam is inside
a vertical Tygon tube that is 2 m long and has a diameter of 1.3
cm (see Figure 3). The bottom of this foaming tube is inserted
into a vessel containing the soap solution, and a slow flow of C2F6
gas through a blunt-end syringe needle produces a constant
supply of monodisperse bubbles, filling the tube at a rate of 0.025
cm/s. At the top the foam flows out of the Tygon tube into a catch
basin about 1 m above the experimental region of interest.

The foaming solution is composed of single-distilled water,
SDS surfactant (sodium dodecyl sulfate), and fluorescein salt in
the ratio of 1 to 5×10-3 to 2.5×10-4 by weight. The corresponding
molarity of SDS is 0.017 M, which is well above the critical micelle
concentration (CMC) of this surfactant.36 The results were
unchanged when the soap concentration was either doubled or

halved. SDS is a surfactant whose properties are well-known
and which is readily available in purified form. The findings
reported in the present work support earlier experiments with
Dawn dish detergent, tap water, and air5 and show that the
drainage behavior seems to be robust toward these changes. We
also conducted some experiments using the surfactant AOS (R-
olefinsulfonate), with essentially unchanged results.

As a result of the slow bubbling, the foam inside the foaming
tube is well drained and very dry (ε < 10-4). We chose C2F6 for
bubbling, because this gas has a low diffusion coefficient and a
low saturation level in water which minimizes coarsening. The
bubble size was determined from a close-up photograph of the
foam, and the average edge length is L ) 0.15 cm with a standard
deviation of 0.04 cm. The foam does not age or coarsen with time,
when observed at a fixed height in the tube, because it is
continually being replenished from the bottom. The edge length
L does not vary noticeably over the region of observation, which
is 76 cm high and starts 40 cm above the foaming solution.

The actual foam drainage experiments record the dynamics
of excess liquid added to the well-drained foam. This excess liquid
is the same soap solution described above and is injected into the
foam through a syringe needle inside the foaming tube. A
programmable syringe pump was used for the injection process,
and the amount of liquid actually dispensed was independently
checked with digital calipers.

2.2. Fluorescence Measurements. The experimental mea-
surements use UV light to excite fluorescence in the liquid part
of the foam. The small amount of fluorescein salt dissolved in the
foaming solution absorbs the illuminating UV radiation and emits
visible (yellow-green) light. The fluorescence intensity, recorded
by a CCD digital camera, with a green light filter mounted, is
thus a measure of liquid content. Consider a UV light ray that
passes through the foam, which has a total path length H in the
foam and intensity IUV(h), where h e H is the distance traversed.
The attenuated intensity is IUV(h) ) exp(-Rliqεh), where Rliq is
the UV absorption coefficient (inverse of absorption length) of
the fluorescein solution. We assume that the emission of visible
light from the fluorescein occurs isotropically and that for small
ε the visible light is not reabsorbed noticeably, making the total
detected fluorescence intensity

so that a linear relation I ∝ ε between detected intensity and

(34) Weaire, D.; Pittet, N.; Hutzler, S.; Pardal, D. Phys. Rev. Lett.
1993, 71, 2670.

(35) Weaire, D.; Findlay, S.; Verbist, G. J. Phys. Condens. Matter
1995, 7, L217.

(36) Prud’homme, R. K.; Warr, G. G. Foams in Mineral Flotation and
Separation Processes. In Foams, Theory, Measurements and Applica-
tions; Prud’homme, R. K., Khan, S. A., Eds.; Marcel Dekker: New York,
1996; p 511.

Figure 3. Schematic of the experimental setup, here showing
forced drainage. Liquid is injected into the foaming tube at a
constant rate above the field of view of the CCD camera. This
produces a growing region of wet foam in the otherwise well-
drained foam. The CCD camera records the fluorescence of the
foam illuminated by UV light from which the liquid volume
fraction in the foam can be deduced.

I ∝ 1 - exp(-RliqεH) (8)

µ∂ε

∂t
+ Fg‚∇(k(ε)ε) -

γδε
1/2

L
∇‚(k(ε)∇ε

1/2) ) 0 (7)
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volume fraction is valid if RliqεH , 1, and the intensity saturates
(I f Imax) for RliqεH . 1.

An independent measurement of liquid volume fraction is
possible when performing a forced drainage experiment, as
described in section 2.3. Figure 4 shows that the relationship
between I and ε for ε j 0.05 is close to linear in an extended range
of liquid volume fractions. A small deviation is, however,
evidenced by the best-fit power law

which we attribute to a slight nonlinearity of the camera response.
From the range of approximate linearity in Figure 4 and using
eq 8, we estimate Rliq

-1 ≈ 0.5 mm, which is comparable to the
liquid path lengths εH in our experiments, where H is the
diameter of the foaming tube.

Data points at large ε J 0.1 were not used for the fit because
of the saturation of the fluorescence. Also, two data points at
extremely small ε j 10-3 were excluded as these very faint signals
cannot be detected with reasonable accuracy.

2.3. Forced Drainage. In the forced drainage experiment, a
constant flux of the soap solution is added at the top of the foaming
tube (about 20 cm above the field of view of the camera), and the
liquid invades the completely drained foam from above. The
measured volume fraction profiles at five successive times in
Figure 5a show a drainage wave making its way down the foam
tube. It is observed that all forced drainage profiles have a distinct
front that does not change in shape with time and moves
downward with a constant velocity vf, thus forming a solitary
wave. Because the foam is generated at the bottom at a constant
rate, it is necessary to add the (very slow) speed at which the
foam rises to the measured downward front velocity of the
drainage wave.

The forced drainage wave profile consists of three regions (see
Figure 5a): the drained region below the traveling wave, which
has very little liquid volume content (ε < 10-4), the transition
(front) region, which has a characteristic width (typically several
bubble diameters), and finally the main body, which has uniform
volume fraction ε ) εmain. We choose to measure the front width
as the vertical distance along the profile where ε drops from 80%
to 20% of its main body value. In the experiments, both the front
speed vf and width wf are measured as a function of the injected
one-dimensional liquid volume flux Φ. Because of conservation
of liquid volume, the flux through the foam is simply the product
of the average macroscopic liquid velocity v and the main body
liquid volume fraction εmain; thus

The liquid velocity of the forced drainage wave is the front velocity,
v ) vf, because the profile maintains its shapessee Figure 5a.
If the front traveled faster than the average liquid velocity, it
would broaden, and if it were slower than the average liquid
velocity, a steepening of the front would be observed.

Relation (10) allows for an independent calibration of fluo-
rescence intensity measurements as mentioned in section 2.2

and displayed in Figure 4, as the volume flux Φ is a controlled
quantity and v ) vf is directly measured without the need for an
intensity calibration.

Figure 6 shows the front velocity (measured at half-maximum)
versus εmain for 15 forced drainage experiments with the flux
varying over more than four decades from Φ ) 3.0 × 10-5 cm/s
to Φ ) 1.1 cm/s. The error bars are determined by the standard
deviations in the measured front velocity as it moves down the
camera’s field of view, and the relative error rapidly decreases
with increasing volume fraction. The data points demonstrate
a power-law dependence of vf on εmain,

which is shown by the solid line.37 The dashed line shows the
expected dependence of vf on ε using the traditional channel-
dominated foam drainage equation based upon a rigid gas/liquid
interface. Clearly, this model does not describe the data well.

Figure 7 is a log-log plot of the measured front width of the
forced drainage profile against εmain, which shows a decrease in

(37) Note that plotting v against Φ gives a power-law fit vf/(cm/s) )
3.66 (Φ/(cm/s))0.37. This is in close agreement with experiments using
Dawn detergent.5

Figure 4. Forced drainage fluorescence intensity plotted
against main body liquid volume fraction, determined from eq
10. The line shows the best fit to power-law behavior; see eq
9. The open squares were not included in the power-law fit.

Figure5. Profiles showing the dynamics of three foam drainage
experiments: (a) forced drainage, (b) free drainage, and (c)
pulsed drainage. Each profile is labeled by the time (in seconds)
when it was taken, and the +z-axis is pointing in the direction
of gravity. Horizontal arrows in (a) and (b) show the location
of the half-maximum of the profiles. The vertical arrow in (b)
shows the location of the “knee” of the pulse at t ) 1 s. In (c)
the arrows show the location of the pulse maximum for five
successive profiles. All profiles have been averaged over
approximately 1 cm (a few bubble diameters) and for pulsed
drainage at longer times over several centimeters. The inset of
(c) shows the three regions of a pulse to be discussed in section
2.5 (here for t ) 5 s): (i) the rear, which is above the injection
point (dashed line); (ii) the middle region extending from the
injection point to the pulse maximum (solid line); (iii) the front,
which is the region below the pulse maximum (dashed and
dotted line). Note that relation (9) was used to determine ε.

I ∝ ε
0.89 (9)

εmain ) Φ/v (10)

vf ≈ cvεmain
dv cv ≈ 7.94 cm/s dv ≈ 0.60 (11)
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front width that levels off at ε J 0.05. The solid data points fall
on a straight line, indicating power-law behavior, for which a fit
yields

The first two data points in Figure 7 (εmain j 10-3) were not used
for the fit, because of the extremely low signal and relatively
large error in the fluorescence intensity. The dashed line shows
the prediction of channel-dominated theory which captures the
power-law behavior of the front width measurements for εmain j
0.05, but the prefactor is less than half that found in (12).

The leveling off of the front width can in part be attributed
to the break down of the geometric approximations of section
1.1, because the assumption that the channels contain most of
the liquid is no longer valid for large ε. Another important
consideration is that our experiments study one-dimensional flow
along the vertical, which is valid provided that liquid rapidly
spreads horizontally as to remove radial variations in ε.38 Any
radial variations in the liquid volume fraction will give rise to
horizontally acting capillary forces which scale as 1/R, where R
≈ 0.63 cm is the tube radius. The capillary force along the vertical
scales inversely with the front width, 1/wf, and thus is weaker
than the horizontal capillary force for wf J R. In this case, we
expect liquid to be distributed more or less evenly throughout
the cross-section of the tube, and one-dimensional flow is a good
approximation. For wf j R, however, capillary forces are too

weak to allow for sufficient radial liquid redistribution. Instead
of measuring the front of a one-dimensional wave in the vertical
direction, the fluorescence intensity then picks up the radial ε

profile. Figure 7 shows that for large εmain J 0.1 the front width
indeed saturates at wf ∼ R.

2.4. Free Drainage. Free drainage is the evolution of the
liquid volume fraction of an initially uniform foam of finite height.
Figure 5b shows the experimental dynamics with initial uniform
(main body) volume fraction εmain ≈ 5 × 10-3. A foam of finite
height is created by inserting a smaller tube into the foaming
tube at the top of the camera’s field of view where the injection
needle is located. Sucking air through the smaller tube removes
foam above the injection point. The origin of the z-axis is the
location of the injection needle, which has an experimental
uncertainty of about (1 mm and is about 5 mm (equivalent to
a few bubble diameters) below the top of the foam. For the
duration of the free drainage experiment, unlike the other two
experiments, foaming from the bottom is halted. To achieve the
initial condition of a uniform volume fraction, a continuous flux
of liquid is injected, as in forced drainage, at the top of the foam,
and the front is allowed to reach the bottom of the foam. At that
point in time, the foam is uniform, and turning off the liquid
supply marks the beginning of the free drainage experiment.

We observe that the average edge length for some free drainage
experiments increased somewhat from the forced drainage value
L ) 0.15 ( 0.04 cm. During the foaming process, the foam is
pushed up through the foaming tube and there is friction of the
bubbles against the walls. This friction appears to compress the
bubbles inside the foaming tube. Stopping the foaming for free
drainage, as well as removing foam above the injection point,
relieves the compression. This increase in L induces slight
changes in the prefactors cv and cw of (11) and (12).

Under the influence of gravity the free drainage profiles of
liquid volume fraction versus height evolve such that ε increases
monotonically from the top to the bottom of the foam at all times
(see Figure 5b). Liquid continues to drain from the foam, and the
profiles approach a steady state at long times.39

In contrast to forced drainage, where the front is moving down
the foam without changing its shape, the free drainage rear, the
region above the (uniform) main body, is getting wider with time
as it moves downward. We refer to the velocity of the half-
maximum point of the rear as the rear velocity, vr. The solid line
in Figure 8 shows the best power-law fit of vr versus εmain, and
the dashed line shows the expected rear velocity from the channel-
dominated foam drainage model.

A distinctive feature of the free drainage profiles is the “knee”
(Figure 5b), which indicates the transition region between the
main body and the draining foam above. The knee is measured
to be moving downward at a velocity of vk ≈ 1.5vr, which will be
discussed theoretically in section 4.2.2.

It is useful to track the rate at which the liquid volume fraction
decreases with time. However, as is obvious from the profiles in

(38) We will show later in section 4.1 that flow through channels
experiences a slipping boundary condition and is not Poiseuille-like.
However, in the channels lining the foaming tube wall a no-slip boundary
condition is partially imposed, which increases the viscous dissipation
of these channels and decreases the liquid velocity. We thus expect in
the front region that capillarity redistributes liquid from wetter channels
in the center of the foaming tube to drier channels at the periphery. (39) Princen, H. M.; Kiss, A. D. Langmuir 1987, 3, 36.

Figure 6. Front velocity vf, plotted against main body liquid
volume fraction εmain of the forced drainage wave, determined
from eq 10. The solid line is the best fit to power-law dependence
(11), and the dashed line is the channel-dominated forced
drainage prediction (rigid wall boundary condition).

Figure 7. Forced drainage front width plotted against main
body liquid volume fraction. The filled circles were used to
determine the best fit power law (solid line); see eq 12. The
dashed line is the prediction from channel-dominated foam
drainage theory.

wf ≈ cwεmain
dw cw ≈ 0.18 cm dw ≈ -0.57 (12)

Figure 8. Rear velocity of free drainage versus main body
liquid volume fraction. The solid line is the best power-law fit
to the data points, and the dashed line is the channel-dominated
foam drainage prediction.
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Figure 5b, the dynamics depends on time and position as well.
We fix the position at the injection point and plot in Figure 9 the
decreaseof εwithtime for fourdifferent free drainage experiments
with different main body volume fractions εmain. Although the
data cover only a small range in time, because the liquid volume
fraction quickly drops to immeasurably small values, it appears
that there is a rough power-law dependence with ε ∝ t-1.2. We
point out that the channel-dominated drainage equation applied
to free drainage40 predicts that ε ∝ t-2/3 for points close to the top
of the foam.

2.5. Pulsed Drainage. Pulsed drainage is the evolution of a
(small) finite volume of liquid (“pulse”) injected into a foam with
very low liquid content; the injected volume has an uncertainty
of (0.005 mL. As with free drainage, the position of the injection
needle marks the origin for the z-axis. The bolus is injected within
1 s using the syringe pump, and the end of the injection sets the
time t ) 0, which is known within (1 s. Gravity pulls the injected
liquid downward, and capillarity spreads the pulse in all
directions, as shown by the liquid volume fraction profiles in
Figure 5c. Convenient reference points of the profiles are the
peak height (maximum liquid volume fraction) εmax and peak
position zmax of the pulse.

Data for the decrease of εmax with time from four experiments
with different injection volumes are shown in Figure 10. Figure
11 shows the corresponding motion of zmax in time. Both figures
span one decade in pulse volume and several decades in time.
The larger pulses travel downward faster and by t ≈ 200 s have
moved outside the field of view, which ends at z ≈ 70 cm. The
two smaller pulses stay in the field of view longer; however, their
fluorescence signals are much weaker.

The data points fall on straight lines on the log-log plot, and
power-law behaviors

εmax ) cε tdε zmax ) cz tdz (13)

are observed, with dε ≈ -0.57 and dz ≈ 0.65. Again we observe
(small) deviations from the channel-dominated foam drainage
theory, which predicts dε ) -1/2 and dz ) +1/2.40

We verified that the total liquid content, which is determined
from the integral under the ε-profiles (cf. Figure 5c), is conserved
provided that the complete pulse remains within the field of
view of the camera. This also supports the validity of our intensity
calibration.

3. Energy Argument for the Foam Permeability
As discussed in section 1.2, our task will be the deriva-

tion of a generalized foam permeabilityk(ε) which accounts
for the viscous dissipation in both channels and nodes.

In order to derive k(ε), we consider the energy balance
over a “dog-bone” foam network unit (Figure 1c) with liquid
volume ν. All dissipation in the gas bubbles is neglected,
and we only consider dissipation in the liquid. If one
balances the rate of work per unit volume of foam done
by pressure and body forces against the rate of work done
by viscous stresses, one obtains (from the Stokes equation)

∫ν
um‚(Fg - ∇mpm) dν ) -∫ν

µum‚∇m
2 um dν (14)

where Fg is the gravitational force and pm and um are the
microscopic pressure and velocity field, respectively. The
rate of work per unit volume that drives the flow in the
network unit (left-hand side of (14)) can be rewritten as

where G ) Fg - ∇p is the macroscopic driving pressure
gradient (3). By dropping the subscript m, we indicate
that averages over the network unit have been performed,
making the resulting quantities macroscopic. The liquid
volume ν consists of two quarter-node contributions νn ≈
δnr3/2 and a channel contribution νc ≈ δεr2L; see discussion
after (2). Removing length and velocity scales from inside
the integral on the right-hand side of (14) yields

(40) Koehler, S. A.; Stone, H. A.; Brenner, M. P.; Eggers, J. Phys.
Rev. E 1998, 58, 2097.

Figure 9. Decrease of liquid volume fraction at the injection
point for five free drainage profiles, εmain ) 3.3 × 10-3, ..., 7.3
× 10-2. The lines show best fits to power-law behavior.

Figure 10. Peak volume fraction of the drainage pulse as a
function of time for pulse volumes Vliq ) 0.25, 0.14, 0.077, and
0.022 mL. Lines show best fits to power-law behavior.

Figure 11. Peak position of the drainage pulse as a function
of time for pulse volumes Vliq ) 0.25, 0.14, 0.077, and 0.022 mL.
Lines show best fits to power-law behavior.

u‚Gν (15)

µu2(δnr
2 ∫2νn/δnr3(um

u )‚r2∇m
2 (um

u ) 2dν
δnr3

+

δaL∫νc /δar2L(um

u )‚r2∇⊥m
2 (um

u ) dν
δar

2L
+

δar
2

L ∫νc /δar2L(um

u )‚L2∇|m
2 (um

u ) dν
δar

2L) (16)
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where ∇|m
2 is the longitudinal component of the Laplacian

along the channel, which has a typical scale of L-2, and
∇⊥m

2 is its transverse component with scale r-2. We have
indicated explicitly the scales of terms in order to
characterize the relative sizes of the sources of dissipation.
The first term in (16) is the rate of viscous dissipative
work of the flow in the two node regions, while the second
and third are respectively the rate of transverse and
(extensional and compressional) longitudinal dissipative
work in the channel.

Combining (14)-(16) yields

where ˜ denotes dimensionless quantities and û is the
unit vector in the direction of flow in the dog-bone network
unit. ν in (15) has been approximated by νc ≈ δar2L,
consistent with the small liquid volume fraction limit and
the approximations that lead to (2).

A foam is composed of many such interconnected
network units with different orientational angles θ
between the axis of the unit channel û and the direction
of the driving pressure gradient Ĝ. The average liquid
velocity of a region of foam is then given by the average
v≡ 〈u〉θ over all orientations. Averaging (17) over all angles
gives

As expected the average flow velocity is along G. The factor
of 3 results from the angular average 〈G‚ũ〉θ ) G ∫0

1cos2(θ)
d cos(θ) ) G/3.

Thus we have successfully made the transition from a
microscopic equation like (14) to a formula on macroscopic
scales equivalent to Darcy’s law, (3). If one compares (3)
and (18), the effective permeability of the foam is

where In, Ic⊥, and Ic| have been introduced as abbrevia-
tions for the absolute values of the corresponding dimen-
sionless dissipative work integrals in (18). The second
approximation in (19) uses r(ε) from (2) to arrive at an
expression for k(ε). An explicit calculation of these
dimensionless integrals in general is quite difficult, and
beyond the scope of this work, except for the simple case
of no-slip channel walls (i.e. Poiseuille-like flow) as we
discuss in the next section. Nonetheless we will treat In,
Ic⊥, and Ic| as dimensionless numbers that for a given
foam are independent of ε and L.

3.1. Boundary Conditions. The relative contribution
of each of the three terms in eq 19 to the permeability of
a foam is influenced by the relative liquid volume in the
channels and nodes and also is crucially dependent on the
boundaryconditionsat thegas/liquid interfacewhichaffect
the dimensionless integrals In, Ic⊥, and Ic|.

The original foam drainage model19,23 is based upon a
no-slip (i.e. zero-velocity) boundary condition, making the
flow in the channels Poiseuille-like. The second term of
(19) then makes the dominant contribution to k(ε) because
r , L, and the permeability is

From numerical calculations for flow through a rigid,
straight channel with a scalloped-triangle cross section
(see Figure 1b) it follows that5,7 K1 ≈ 6.3 × 10-3. Equation
20 is indeed the proportionality k(ε) ∝ ε inferred from the
physical argument discussed in section 1.3. As the
dissipation in the nodes is negligible here, we call the
foam drainage equation resulting from (7) and (20)
channel-dominated. In its one-dimensional form, (7) for
rigid gas/liquid interfaces can be written as

where the +z axis points along the direction of gravity.
Two arguments have been made to support the no-slip

boundary condition. The first is based upon the assumption
that the liquid in the faces is essentially stationary. Any
motion of the channel walls results in a surface shear
against the rigid faces, which is resisted by the surface
viscosity. If the surface (shear) viscosity is large, the
surface mobility is low, and the channel boundaries are
approximately rigid. Kraynik4 proposed that the surface
shear viscosity µs should fulfill µs J 10rµ in order to justify
the assumption of rigid walls. The surface viscosity is
highly dependent on the surfactant species and concen-
tration, and unfortunately, there is considerable uncer-
tainty in the measured values of µs even for well-defined
surfactant systems such as aqueous solutions of SDS.41

The range of typical values µs ∼ 10-4-10-2 g/s 42 allows
for violations of the “Kraynik criterion” for large enough
r.

A second argument in favor of a no-slip interface is that
the liquid flow through the channels will shear surfactants
off the top portion of the channel surface and push them
toward the bottom of the channel. If the diffusion and
adsorption times for surfactants in the bulk to replenish
the surfaces are large, then a surfactant concentration
gradient in the direction of the downward flow is created.
This sets up a surface (Marangoni) stress that will oppose
the downward flow of the surface and so reduce the surface
velocity. Again, it is difficult to assess a priori the time
scales of exchange of surfactant between surface and bulk.

An alternative physical limit to consider is the case of
very small surface stresses,5 which should be valid for low
surface viscosities, mobile faces, and small surfactant
concentration gradients along the surface. We remind the
reader that the injected liquid in our experiments is the
same soap solution used to generate the foam, so that the
injection will not automatically set up any surface stresses.
If, in addition, the surfactant molecules adsorb and desorb
from the surface quickly enough to equilibrate on the time
scales of the flow, surfactant concentration gradients
should be small and the surfaces would be nearly stress-
free. Indeed, when comparing low molecular weight

(41) Buzza, D. M. A.; Lu, C.-Y. D.; Cates, M. E. J. Phys. II 1995, 5,
37-52.

(42) Shah, D. O.; Djabbarah, N. F.; Wasan, D. T. Colloid Polym. Sci.
1978, 256, 1002.

k(ε) ) K1L
2
ε K1 ≡ (3δε Ic⊥)-1 (20)

µ∂ε

∂t
+ K1FgL2∂ε

2

∂z
-

γδε
1/2K1L
3

∂
2
ε

3/2

∂z2
) 0 (21)

G‚û ≈ -µu( δn

2δarL∫ν̃n
ũm‚∇̃m

2 ũm dν̃ +

1
r2∫ν̃c

ũm‚∇̃⊥m
2 ũm dν̃ + 1

L2∫ν̃c
ũm‚∇̃|m

2 ũm dν̃) (17)

G
3

≈ -µv( δn

2δarL∫ν̃n
ũm‚∇̃m

2 ũm dν̃ +

1
r2∫ν̃c

ũm‚∇̃⊥m
2 ũm dν̃ + 1

L2∫ν̃c
ũm‚∇̃|m

2 ũm dν̃) (18)

k(ε) ≈ ( 3δn

2δarL
In + 3

r2
Ic⊥ + 3

L2
Ic|)-1

≈

(δnδε
1/2

2δaε
1/2

In +
δε

ε
Ic⊥ + Ic|)-1

L2

3
(19)
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surfactants such as SDS to surface active proteins, Wilde
et al.22 describe the interfaces of the former as highly
mobile.

In the case of mobile interfaces, the flow in the channels
is pluglike with some degree of extension/compression
toward the top and bottom ends of the channel where the
cross-sectional area varies (see Figure 1b,c). Thus, in
contrast to the rigid-wall case, Ic⊥ is not necessarily the
dominant term. However, even for a stress-free wall with
perfect slip, there will be dissipation in the nodes due to
the merging, mixing, and bending of the flow (see the
Introduction and Figure 1b; laminar viscous flow in curved
channels is referred to as Dean flow43). The first term of
(19) will then dominate (the third term is negligible
because L . r, as before), and the permeability becomes

which is in agreement with the force balance in section
1.3. The permeability coefficient K1/2 is determined by the
geometry of the node walls and the flow field inside the
nodes.44 We have to caution, though, that experiments
varying bubble size suggest a slight dependence of K1/2 on
L not explicitly indicated in (22). We believe this weak
L-dependence may arise either from interfacial rheology
or from bubble deformations due to hydrostatic pressure
variations. We are not aware of any calculation of the
dimensionless dissipation integral In; however an ex-
perimentally deduced value is reported in section 4.1.
Because of the dominance of node dissipation we call the
equation obtained from (7) with the foam permeability
(22) the node-dominated foam drainage equation

given here in its one-dimensional form projected onto the
z-axis. Note that the exponents in (23) differ from those
in (21) which is due to the change in the permeability’s
dependence on ε (cf. (20) and (22)).

The approach assuming moving, stress-free walls does
not seem unrealistic considering that it has been known
for some time that the gas/liquid interfaces in a foam do
not have to be rigid. In experiments involving soap films,
observers have distinguished between rigid and (simple
or irregular) mobile films.13 In our foam system we visually
observe motion in the faces, similar to that described by
Leonard and Lemlich.7

4. Analysis and Comparison to Experiment
Armed with a generalized theory for foam permeability

(section 3) and data from three types of experiments
(section 2), we now proceed to discuss the dynamics of
foam drainage in more detail. We begin with forced drain-
age and show that our data supports the node-dominated
model. In subsequent sections we use the node-dominated
equation (23) to analyze and elucidate the experimental
results for free and pulsed drainage from sections 2.4 and
2.5. The dynamics of the channel-dominated theory has
been described in a previous publication.40

4.1. Forced Drainage. The natural decomposition of
the traveling wave profile into a well-drained region, front

region, and main body region (cf. section 2.3 and Figure
5a) sets three characteristic scales for a particular
experiment: (i) a length scale, proportional to the front
width wf, (ii) a velocity scale proportional to the front speed
vf, and (iii) the liquid volume fraction of the main body,
εmain. These characteristic scales are determined by
physical parameters, such as surface tension, density,
gravitational acceleration, and viscosity as well as ex-
perimental parameters such as liquid flux and bubble size.
We will later use these scales to normalize experimental
data as well as computational results.

To arrive at a theoretical description of forced drainage,
we make the following ansatz for a traveling volume
fraction profile, ε(z, t) ) ε(s ≡ z - vf t); i.e., we transform
into a frame of reference moving with the drainage wave
speed vf. Using this ansatz in the generalized foam
drainage equation (7), integrating once with respect to s
and using the boundary condition ε(∞) ) 0 yields

In the main body region of the wave above the front, the
liquid volume fraction is constant, ε(-∞) ) εmain. The
ε-derivative in (24) then vanishes, and a simple relation-
ship between permeability and volume fraction results,

where the second equality follows from the experimentally
observed power-law behavior (11). Comparison of the
measured dv ≈ 0.6 with the channel-dominated (i.e. “no-
slip”) approximation (20), k(ε) ∝ ε, and the node-dominated
(i.e. “no-stress”) approximation (22), k(ε) ∝ ε1/2, shows that
the permeability is closer to being dominated by the nodes,
at least for the aqueous foams used here. In particular,
from (22) and (25) the model predicts that the forced
drainage velocity is

with K1/2 defined in (22). Since we are unable to compute
K1/2, we determine it from the experimental data for vf
(Figure 6). In order to obtain a controlled comparison to
node-dominated theory, however, we must not use the
original fit (11) with dv ≈ 0.60, but instead perform a best
fit of the measured data to (26), where dv ) 1/2 exactly. The
result is

which, by comparison to (26), identifies the theoretical
velocity scale VF with the measured c̃v. With F ) 1 g cm-3,
g ) 981 cm s-2, µ ) 0.01 g cm-1, and L ) 0.15 cm, we
obtain45 K1/2 ≈2.3×10-3. Using eq 22 and approximating28

δn ≈ 0.3 gives In ≈ 400 for the dimensionless node

(43) Leal, G. Laminar Flow and Convective Transport Processes;
Butterworth-Heinemann: Boston, MA, 1992.

(44) The convention we adopt for the subscript of the permeability
coefficient is k(ε) ) KøL2εø; ø ) 1/2 for node-dominated drainage, and ø
) 1 for channel-dominated drainage.

(45) It is instructive to consider the permeability of an fcc-close-
packed bed of spheres (εfcc ≈ 0.26), which has the same geometry as a
monodisperse foam at the critical volume fraction ε ) εfcc composed of
spherical bubbles. In our notation, kfcc ≈ (2a2)/(9(1 - εfcc)435) for spheres
of radius a.30 The equivalent sphere radius for the foam follows from
the volume of a cell (27/2L3 ) 4πa3/3) to be a ≈ 1.4L. Substituting for
a yields kfcc ≈ 1.4 × 10-3L2. Similar permeabilities are predicted by both
foam drainage models: the node-dominated model (mobile gas/liquid
interfaces) predicts k(εfcc) ≈ 1.2 × 10-3L2, and the channel-dominated
model (rigid gas/liquid interface) yields k(εfcc) ≈ 1.6 × 10-3L2. Although
both foam drainage models are strictly valid for dry foams only (i.e. ε
, εfcc), this calculation shows that the modeled permeability is still
reasonable even in the limit of wet foams.

k(ε) ) K1/2L
2
ε

1/2 K1/2 ≡ 2δa

3δε
1/2δnIn

(22)

µ∂ε

∂t
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vf ) VFεmain
1/2 VF ) K1/2FgL2/µ (26)

vf ≈ c̃vεmain
1/2 c̃v ≈ 5.12 cm/s (27)
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dissipation integral in (19), compared with Ic⊥ ≈ 310 for
the channel-dominated theory.

Is node-dominated drainage a valid description for all
of our different types of experiments? Much work has been
devoted to the channel-dominated foam drainage model
with rigid walls.8,40 We will focus in the present work on
the other limit of plug-flow in the channels and dissipation
in the nodes. Although the data for the foam we study
here do not exactly match the predictions of either limit,
we will show in the remainder of the paper that the
agreement with the node-dominated model of foam
drainage is much better.

We continue our analysis of the node-dominated model
by shifting our focus from the uniform main body to the
front region of the forced drainage wave. In the front region
ε decreases from εmain to 0, so that the derivative (capillary)
term of (24) becomes important. Using (22), (24), and (26)
yields a nonlinear ODE for ε(s),

A characteristic (capillary) length scale for a foam is

Defining the new variables s̃ ) sεmain
1/2 /ZF and ε̃ ) ε/εmain

reduces (28) to

Imposing the boundary condition ε̃(-∞) ) 1 leads to the
solution

which is formally the square of a Fermi function. This
shows analytically that the node-dominated foam drainage
equation (as well as the channel-dominated one8) admits
a solitary wave solution with unchanging wave profile.
This should not be too surprising considering the similarity
of equations like (21) and (23) with the Burgers equation
and other well-known PDEs with soliton solutions.46

The dimensionless width of the front region ∆s is defined
as the distance between the points in the profile where ε̃
) 0.8 and ε̃ ) 0.2, to match the experimental criterion (see
section 2.3). Using (31), we find ∆s ≈ 4.7, making the
dimensional front width

We note that any equation based upon (1) and (7) predicts
that the front width will scale with εmain

-1/2 . The measured
front width exponent dw ≈ -0.57 is in fairly close
agreement. A ring-tensiometer measurement gives γ ≈
32 dyne/cm47 and substituting into (32) predicts a front
width prefactor cw ≈ 0.21 cm. For consistent comparison
to experiment, we again replace our best fit (12) by a fit
with the theoretical exponent dw ) -1/2 and find

The best-fit prefactor, c̃w, is much closer to the node-

dominated prediction than to the channel-dominated
prediction of 0.084 cm. This fit also provides us with an
experimental value for the length scale ZF, as ZF ) c̃w/∆s
≈ 0.0545 cm.

The analytical solution (31) can be compared with the
complete measured profile of the wave front at various
εmain by rescaling using ZF and εmain. Figure 12 shows that
all data collapse onto a universal curve, in excellent
agreement with the theoretical prediction. Thus, all the
spatial and temporal characteristics of forced foam drain-
age are captured accurately within the node-dominated
model.

4.2. Free Drainage. Though the free drainage experi-
ment is conceptually simple, a theoretical description of
this process is considerably more involved than for forced
drainage. This is largely due to the more complicated
boundary conditions for ε, namely, zero flux at the top of
the foam and ε ) εcrit at the bottom, where the foam is in
contact with the soap solution and the bubbles are
spherical. The latter condition uses the critical volume
fraction εcrit, which corresponds to the void fraction of close
packing of spherical bubbles. In our experiments, the
bottom boundary is far below the field of view of the
camera, so that we do not have to deal with it explicitly.

It is convenient to divide a free-draining foam into two
overlapping regions that grow with time: the rear region
which contains the top of the foam and the knee region
where the liquid volume fraction plateaus to εmain (cf.
section 2.4). The knee is moving downward with a constant
velocity vk, which experiments show to be greater than
the front velocity of forced drainage vf for the same εmain.
It is also greater than the rear velocity vr, so that the rear
region grows over time (see Figure 5b).

4.2.1. Rear Region. At time t ) 0, a uniform profile
ε(z, 0) ) εmain has been established, and the flux of liquid
injected into the foam at z ) 0 is turned off. The no-flux
top boundary condition requires that the liquid velocity
v ) 0 at z ) 0 for t > 0 (otherwise the foam would be
shrinking in height). For node-dominated drainage this
yields

which follows from (3), (5), and (22).

(46) Grundy, R. E. IMA J. Appl. Math. 1983, 31, 121-137.
(47) A common value reported in the literature for the surface tension

of SDS is 30 dyne/cm.36

Figure 12. Collapse of the front profiles of forced drainage
waves for seven different volume fractions εmain (symbols) onto
a universal curve. The solid line is the analytical result of (31)
which predicts the shape of the wave profile from the node-
dominated foam drainage eq 23. The curves have been aligned
such that the coordinate z - z0 ) 0 coincides with the center
of the front region, where we select a value z0 for each data set.
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We define characteristic time and length scales

which are the same as in the forced drainage problem
discussed before (see section 4.1); i.e., TF ) ZF/VF )
c̃w/(∆sc̃v) ≈ 0.0106 s. To nondimensionalize the node-
dominated foam drainage equation (23), we transform
variables according to ε̃ ) ε/εmain, ú ) zεmain

1/2 /ZF, and τ )
tεmain/TF and arrive at the dimensionless foam drainage
equation

In order to solve (36) numerically, we have to impose a
second boundary condition on ε in addition to (34). Here
we are only interested in the top region of the profile far
above the foam/liquid interface, so we impose ε̃(∞, t) ) 1
at the bottom of our simulation. Using the IMSL routine
DMOLCH we obtain the drainage profiles shown in Figure
13 by the connected open symbols. We have plotted the
results in rescaled coordinates, because we can obtain a
self-similar solution in this coordinate system as well. In
the spirit of our previous work,40 we note that a trans-
formation of variables according to

balances all the terms in (36). This leads to self-similar
solutions φ(σ) obeying the ordinary differential equation

with ′ denoting differentiation with respect to σ. The
leading-order solution of (38) is

which is valid for σ e 3τ1/2/2 (otherwise ε̃ > 1). The top
no-flux boundary condition (34) transforms into

To solve the ODE (38), we use a shooting algorithm to
ensure that the solution asymptotes to the parabolic
approximation (39) for the largest σ ) σmax of the
integration range (typically, σmax ∼ 10). The resulting
solution is plotted as open circles in Figure 13. It is
approached by the solution of the full PDE at large τ. At
any given finite time, however, the rescaled profile reaches
its maximum at the knee (to be discussed in the next
section) and plateaus at a value of φ ) τ.

The parabolic approximation (39) can be rewritten in
(ε̃, ú, τ) space as

Note that only for very long times are (39) and (41) good
approximations, because only then is their range of validity
(τ1/2 , ú < 3τ/2) appreciable.

Figure 13 also shows rescaled experimental data (filled
symbols) in the self-similar coordinates ε̃τ versus úτ-1/2.
The length and time scales are determined from the forced
drainage experiment with the same εmain, as discussed in
the previous section. The rescaled experimental data are
in very good agreement with the simulations at the
corresponding dimensionless times. This figure shows that
the rear portion of the experimental profile is indeed
parabolic in rescaled coordinates (see eq 39) and not linear,
ε ≈ ú/2τ, as predicted by the channel-dominated foam
drainage equation.40

Next, we return to the issue raised in section 2.4
pertaining to Figure 8, which shows that the measured
rear velocity is considerably higher than that predicted
by the channel-dominated model. From eq 41 it is easy to
see that the half-maximum at the rear is at a position ú
given by

It follows that the predicted rear velocity vr )
(3/23/2)VFεmain

1/2 ≈ 1.06 VF. The measured rear velocity of
free drainage can be fitted to the node-dominated formula
to yield vr ≈ 6.13 εmain

1/2 cm/s, which is in fairly good
agreement with the prediction above using VF ) c̃v; see
(27). The predicted rear velocity is about 10% below
measurements, which can be attributed to the slightly
larger bubbles of the free drainage experiment as described
in section 2.4.

Figure 9 previously illustrated that at a fixed position
in space near the top of the foam free drainage proceeds
as ε ∝ t-1.2 and not ε ∝ t-2/3 as predicted by the channel-
dominated model.40 However, this measurement is con-
sistent with the node-dominated foam drainage equation.
Close to the top, for σ ) úτ-1/2 , 1, it follows from (37) that
ε̃ ≈ τ-1φ(0). For long enough times, then, ε̃ ∝ τ-1 is valid
for a considerable range of ú values. Note that the initial
decrease in volume fraction is faster, as for times τ1/2 ,
ú the parabolic approximation (41) holds, and ε̃ ∝ τ-2.

4.2.2. The “Knee”. The main body of the drainage
profile with uniform ε ) εmain begins at the knee, which
is moving downward in time. Using similar arguments as
for the rear velocity (42), we expect the center of the knee
(intersection of the rear and main body regions) to be at
ú ) 3τ/2 in dimensionless coordinates. This means that
the knee velocity vk is predicted to be vk ) x2vr (cf. (42)),
which agrees well with the measured vr (section 2.4). In

Figure 13. Rear region of simulated and experimental free
drainage profiles in rescaled dimensionless coordinates for
successive times, starting with a uniform profile. Filled-in
symbols are measurements for εmain ≈ 0.0077, rescaled using
a forced drainage experiment, as explained in the text. All open
symbols are simulations: the open circles show the ODE
solution (38), and symbols connected by dashed lines are
simulations of the full PDE (36) with the no-flux top boundary
condition (34). The dimensionless times τ correspond to the
measured times t for the experimental profiles. For long times
the profiles collapse onto the ODE solution (38).
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contrast the channel-dominated foam drainage theory
predicts that the knee velocity is twice the rear velocity.

For ú . 3τ/2, ε̃ should saturate to 1, and so we seek a
self-similar solution to the dynamics in the transition
region about ú ∼ 3τ/2 of the form

Inserting (43) into (36) and expanding ε̃3/2 up to second
order in τ-1/2f(s), we obtain

In the long-time limit, the error to this approximation
becomes vanishingly small. Collapsing the numerical
simulations of the PDE in this fashion validates the ansatz,
as shown in Figure 14. Integrating (44) once gives

where the integration constant is set to zero because
f(+∞) ) 0. The solution to (45) is

The constant C should be chosen to match (46) onto the
parabolic approximation, ε̃≈ (2ú/3τ)2 from eq 39. To leading
order this requires f(s) f -4s/3 for s f -∞. From (37) and
(43) one obtains s ) σ - 3τ1/2/2, so that at large enough
τ the conditions σ . 1 and s , -1 can indeed be fulfilled
simultaneously. Thus, we find C ) 3xπ, and the corre-
sponding solution (46) is plotted as open circles in Figure
14. Again, the solutions of the PDE (36) approach the
self-similar solution in rescaled (f,s) coordinates for long
times; see Figure 14.

We repeat this rescaling for our experimental data as
shown by the solid symbols in Figure 14. As in the previous
section, the profiles agree very well with theory. The small
mismatches between the simulated and measured profiles
can be attributed to uncertainties in the characteristic
time and length scales. For the longest time, 121 s, the
foam has drained considerably, and the knee no longer is

in the field of view of the camera. Thus the rescaled data
points do not extend to s ) 0 as is the case for the profiles
at shorter times.

4.3. Pulsed Drainage. We now discuss the one-
dimensional dynamics of a pulse with finite liquid volume
Vliq injected into a foaming tube of cross-sectional area A.
We seek a solution to the dimensionless foam drainage
equation (36), with the additional constraint that the
dimensionless liquid volume be unity, ∫ ε̃ dú ) 1. This is
achieved by choosing the scales

The following identities relate the experimentally obtained
scaling factors (TF, ZP) of forced and free drainage to the
pulsed drainage scaling factors (TP, ZP):

We can compute TP and ZP in this way from forced drainage
because the same kind of foam is used for both experiments
(L ) 0.15 cm).

The pulse is composed of three sections (see Figure 5c):
(i) The first is the rear region, where the pulse profile
connects to the dry foam above and which is similar to the
rear region of free drainage (cf. section 4.2.1). We formally
define this region as the range ú ) z/ZP < 0, although the
solutions we present will remain valid for some interval
of positive ú as well. (ii) Next there is the middle region,
in which the volume fraction grows from ú ) 0 to the peak
of the pulse. (iii) Finally, there is the downward moving
front region below the peak. The latter has characteristics
similar to the advancing forced drainage front (see section
4.1). In each of these regions we discuss asymptotic
solutionsobtained fromthenode-dominated foamdrainage
theory and compare them with our experimental mea-
surements.

4.3.1.RearRegion.Here ε is small, so we expect surface
tension and gravity to be of equal importance, as in the
rear region of free drainage. The same self-similar ansatz
(37) used before balances all three terms in the foam
drainage equation and transforms it into the ODE (38).
We expect the upper region of the pulse to develop in this
self-similar fashion, and only toward the pulse’s peak
should deviations from the self-similar behavior occur. In
Figure 15 a simulation (open symbols connected by dashed
lines) of an initially Gaussian pulse of unit volume and
initial width of unity is plotted in (σ, φ)space (the variables
of (38)). The collapse of the rear region is very good.

Figure 15 also shows experimental data (filled symbols
connected by solid lines) for a Vliq ) 0.077 mL pulse plotted
in (σ, φ) space and illustrates the self-similar behavior of
the rear of the pulse. Qualitatively the agreement with
the simulations is good; however, on a more quantitative
level the length scale ZP is too large by a factor of about
1.3-2 to achieve excellent agreement. As the deviations
seem to increase over time, they are presumably due to
the slight differences between the experimentally mea-
sured exponents of pulse dynamics (e.g. the pulse maxi-
mum coordinate vs time; cf. Figure 11) and the theoreti-
cally predicted values. These discrepancies will be
discussed further in the following section. Note also that
the only free parameter in our theoretical description is
K1/2, which has been determined from the forced drainage

Figure 14. Free drainage profiles in the transition region
(about the “knee”) for experiment and simulation at successive
times in rescaled (f, s) coordinates; see (43). Filled-in symbols
are measurements for εmain ≈ 0.0077, rescaled according to the
preceding forced drainage experiments that create uniform
profiles, as described in the text. All open symbols are
simulations: the open circles show the ODE solution (46), and
connected symbols show simulations of the full PDE (36) with
the no-flux top boundary condition (34), at times τ corresponding
to experiment.
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measurements, so that the theoretical predictions for free
and pulsed drainage are parameter-free.

4.3.2. Middle Region. While a rescaling as displayed
in Figure 15 may put emphasis on the rear region, it is
important to realize that the vast majority of the liquid
volume resides in the middle region, whose dominance
becomes ever larger as time increases. Thus, the gravi-
tational term of the foam drainage equation dominates
and the surface tension term may be neglected. As with
free drainage, the parabolic profile ε̃ ≈ (2ú/3τ)2 then is an
approximate solution. The volume constraint, however,
limits the extent of the parabola requiring

from which we conclude the power laws

for the location and height of the pulse peak, respectively.
In accordance with these scalings, we use the coordinates
úτ-2/3 and ε̃τ2/3 to collapse experimental and simulated
profiles as shown in Figure 16. In the long time limit, the
peak location should asymptote toward úmax, and the peak
volume fraction should approach ε̃max. Because the surface
tension term was neglected in this approximation, the

asymptotic solution of a parabolic profile that abruptly
ends at úmax is approached only slowly, which can be seen
in the four simulated profiles.

Although the initial liquid volume distribution is not
controlled to be Gaussian in experiment as assumed for
the simulation, the comparison with the computations is
quite favorable and shows that the data collapse in a
fashion similar to the simulation. At short times
(t ∼ 10 s) the agreement between theory and experiment
is quite good, and at long times (t ∼ 300 s) the rescaled
experimental pulses are within a factor of 2 of the
simulated pulses.

To compare the predictions of (50) to experiment in more
detail, we attempt to describe the simulated data by the
power laws

where dú and dε are now defined locally for a given time
τ as the logarithmic derivative of úmax and ε̃max with respect
to τ, i.e. dú ) ∂log(úmax)/∂log(τ) and dε ) ∂log(ε̃max)/∂log(τ).
Only for very large τ do the simulated peak positions and
volume fractions approach the behavior predicted by (50)
as shown by Table 1. The convergence of the prefactors
to the projected values is even slower than that of the
exponents.

Table 2 shows that the measured exponent for the peak
position dú stays below the asymptotically predicted value
of 2/3, while the simulated values in Table 1 are all larger
than 2/3 for finite times. This explains the discrepancies
seen in Figure 16: as time proceeds, the peak positions,
rescaled with the exact theoretical exponent dú ) 2/3, drift
to the left for the experimental data (with effectively
smaller exponents) and to the right for the simulations
(which have larger exponents). Since the experimental
foam has a permeability of k(ε) ∝ ε0.60 and not k(ε) ∝ ε1/2,
we expect dú ) 0.625.46 The effect is less pronounced for
the scaling of ε, where both experiment and theory yield
dε > -2/3. The shift between experiment and theory in the
previous Figure 15 can be explained along the same lines:
while all peaks move to the right here as time increases
(because of the different rescaling), the measured data do
so considerably slower than the simulation. Note that the

Figure 15. Collapse of the rear regions of simulated and
experimental profiles for pulsed drainage using (37). Experi-
mental profiles have filled symbols, and the open symbols show
simulations for the corresponding dimensionless times. The
liquid volume is Vliq ) 0.077 mL, and the tube area A ) 1.27
cm2. The dips before the peaks of some of the experimental
profiles can be attributed to the glaring reflection from the UV
lamp off the foaming tube.

Figure 16. Collapse of pulsed drainage profiles in the middle
region where surface tension has been neglected (see (50)). Filled
symbols show data for a Vliq ) 0.077 mL pulse; open symbols
are the corresponding simulated profiles.

∫0

úmax(2ú
3τ)2

dú ) 4
27

úmax
3
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úmax ≈ 3(τ/2)2/3
ε̃max ≈ (2/τ)2/3 (50)

Table 1. Asymptotic (Long-Time) Approach of the
Relations (50) of Peak Position and Peak Height

Obtained from a Numerical Simulation (See Text)a

τ 102 103 104 105 106 107 ∞

dε -0.51 -0.53 -0.57 -0.61 -0.64 -0.65 -2/3
dú 0.75 0.74 0.72 0.70 0.69 0.68 2/3
cε 0.29 0.33 0.44 0.67 0.93 1.15 1.59
cú 0.74 0.80 0.90 1.10 1.34 1.53 1.89

a See (51) for the definitions of dε, dú, cε, and cú.

Table 2. Pulse Scales EP, TP, and ZP for Different
Injection Volumes Vliq Used in the Experimentsa

Vliq
(mL) εP TP (s)

ZP
(cm) dε dú cε cú τmax

0.25 13.2 8.1 × 10-4 0.015 -0.56 0.64 0.74 1.16 6.2 × 105

0.14 4.23 2.5 × 10-3 0.027 -0.61 0.67 0.93 0.92 2.0 × 105

0.077 1.25 8.5 × 10-3 0.049 -0.57 0.64 0.72 0.96 5.2 × 104

0.022 0.10 0.11 0.17 -0.55 0.63 0.50 0.80 3.6 × 103

a The fifth and sixth columns are the measured exponents of the
power-law behaviors for the peak height and peak position (see eq
13). The seventh and eighth columns are the prefactors of the peak
volume fraction and position in dimensionless units to be compared
with the predictions from Table 1. The last column is the duration
of the experiment in dimensionless time; τmax ≡ (maximum
experimental time)/TP.

úmax ≈ cúτ
dú ε̃max ≈ cετ

dε (51)
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simulations also show that the asymptotic behavior is
observed only for very long times (Table 1), and in
particular, the peak height requires very long times to
reach the asymptote ε̃max ∝ τ-2/3. Furthermore, in experi-
ments the initial shape of the pulse is not controlled and
most likely not Gaussian. With a more irregular initial
condition, it may take longer to establish self-similar
behavior. Finally, the experimental foam permeability is
measured to be k(ε) ∝ ε0.60 and not ∝ ε1/2 which leads to
dε ≈ -0.625.46

The experimental dimensionless prefactors of Table 2,
cú and cε, are generally about a factor of 2 smaller than
the prediction of (50). But for times τ ∼ 105 even the
prefactors for simulations starting with a Gaussian profile
are only about half the asymptotic value (see Table 1).
This emphasizes the extreme slowness of the asymptotics
for the middle collapse.

4.3.3. Front Region. Here we treat the advancing front
region of the pulse that stretches from εmax to the dry foam
below. In dimensionless variables this region is moving
downward as úmax ≈ 3(τ/2)2/3 (see (56)), and we make the
ansatz that it is spreading at a rate of τλ with λ > 0. We
try a self-similar solution of the form

Substituting into (36) shows that λ ) -1/3 balances the
largest convective term, the gravitational term, and the
surface tension term to O(τ-4/3), while two out of the three
terms from the time derivative are of magnitude O(τ-5/3)
andbecomenegligibleat longtimes.Theresultingordinary
differential equation for f is

where the first term stems from the convective time
derivative, the second from the advective (gravitational)
term, and the third from the diffusive (surface tension)
term. We integrate (53) once, which after a substitution
of variables, s̃ ) 21/3s, and using the boundary condition
f(+∞) ) 0 gives

which is the same ordinary differential equation that
describes the advancing front of forced drainage and whose
solution is (31). Figure 17 shows the asymptotic collapse
of the bottom of the pulse for both experimental and
simulated data using the self-similar ansatz (52). The
agreement with simulations is good, although some scatter

is present. The solution (31) is indistinguishable from the
longest time simulation.

5. Concluding Remarks

We have developed a new method for measuring the
liquid volume fraction of foams using fluorescence. It is
possible to obtain forced drainage data spanning more
than two decades in volume fraction using this technique
and extract power-law behavior for the speed and width
of the forced drainage wave. For free drainage we
measured dynamics over ∼100 s, and for pulsed drainage
we were able to track the dynamics up to ∼500 s.

A generalized foam drainage equation has been derived
which takes into account the contributions to viscous
damping originating from flow in the nodes as well as in
the channels. The foam is modeled as a porous medium
with a permeability that varies dynamically with the liquid
volume fraction. The foam permeability is governed by
the contributions to viscous dissipation in the channels
and nodes of the liquid network.

There are two limiting cases of this generalized equa-
tion: one with a no-slip interface boundary condition,
which is the assumption of the original foam drainage
equation, and one with a no-stress (ideally mobile)
interface. The former, where dissipation is channel-
dominated, is consistent with experimental results from
publications by Weaire and co-workers.8,20,34 The latter,
for which nodes dominate the dissipation, agrees very well
with all the measurements presented here using SDS
surfactant, as well as earlier measurements using Dawn
dish detergent.5

The measured permeability of the foam in the present
experiments has a power-law behavior somewhat different
from the node-dominated model (k ∝ ε0.6 rather than
k ∝ ε1/2). However, the deviations are small and the node-
dominated limit reproduces the results of our forced, free,
and pulsed drainage experiments with good accuracy,
whereas the channel-dominated theory fails to explain
our data. The only free parameter in our treatment of the
node-dominated foam drainage model is the permeability
prefactor K1/2 which is taken from the measured depen-
dence of the front velocity against ε for forced drainage;
see eq 26. The complex foam geometry prevents us from
directly computing K1/2, e.g. using a boundary integral
method with no-stress boundary conditions. Allowing
additional dissipation in the channels would add a
component to the permeability and increase the effective
exponent of the permeability somewhat (see eq 19), thus
coming closer to the experimental results.

The node-dominated drainage model provides a very
good description of the front width of forced drainage as
well as the universal shape of the ε profile (see (31)), onto
which all experimental data can be collapsed after proper
rescaling.

Free drainage experiments are well described by node-
dominated drainage as well. Rescaling coordinates ac-
cording to the theoretical descriptions derived from the
node-dominated foam drainage equation collapses both
the rear and transition (“knee”) regions of free drainage
profiles (see Figures 13 and 14). In the asymptotic long-
time limit of free drainage, self-similar coordinates
transform the PDEs into ODEs, which have exact or
approximate analytical solutions. Note that here, rather
than focusing on the amount of liquid drained out of the
foam in free drainage, we describe the full dynamics of
the liquid volume fraction profiles.

Likewise, self-similar solutions are found for the three
scaling regimes of pulsed drainage profilessthe rear,

Figure 17. Collapse of the front region of pulsed drainage
profiles using (54): experimental data (filled symbols) and
simulations (open symbols) at corresponding times. The mea-
surements are for a pulse with Vliq ) 0.077 mL.

ε̃ ) (2/τ)2/3 f(s) s ) τλ(ú - 3(τ/2)2/3) (52)

f ′ - (f 3/2)′ + 2-1/3 f ′′ + O(τ-1/3) ) 0 (53)

f(s̃) - f(s̃)3/2 +
df(s̃)
ds̃

) 0 (54)
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middle, and front regions. The rear region has similar
dynamics to the rear region of free drainage (see (38)),
and the front region has a similar shape to the advancing
front of pulsed drainage (see (54)). We are able to collapse
the experimental data from these regimes onto universal
curves for long times (see Figures 15-17). The agreement
with theory is good especially when considering that, once
K1/2 is fixed, no other free parameters are used.

In conclusion, we propose a generalized foam drainage
theory of which the existing models are special cases and
experimentally find that foam drainage is governed by
dissipation in the nodes rather than in the channels, which
can be rationalized by assuming a no-stress boundary
condition at the gas/liquid interface. In fact, since we are
dealing with Newtonian fluids, we would expect that
qualitative differences in dynamical behavior, such as
different scaling laws, can only be attributable to changes
in the boundary conditions. Recent experiments by Durand
et al.21 suggest that both limits of the generalized foam

drainage equation can be approached for the same system
by altering the composition of the surfactant: adding
dodecanol to an SDS solution increases the surface
viscosity and changes the drainage behavior from node-
dominated to channel-dominated. Likewise, performing
forced drainage experiments with protein surfactants, we
find excellent agreement with the channel-dominated
model, which has no free parameters. These results
support the validity of a generalized theory of foam
drainage, as it has been presented here.
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