
ARTICLE IN PRESS
Journal of Econometrics 135 (2006) 285–310
0304-4076/$ -

doi:10.1016/j

�Correspo
E-mail ad
www.elsevier.com/locate/jeconom
Minimizing the impact of the initial condition
on testing for unit roots

Graham Elliotta,�, Ulrich K. Müllerb

aUniversity of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
bPrinceton University, Economics Department, Princeton, NJ 08544, USA

Available online 31 August 2005
Abstract

The outcome of popular unit root tests depends heavily on the initial condition, i.e. on the

difference between the initial observation and the deterministic component. In some

applications it is difficult to rule out small or large values of the initial condition a priori,

so this dependence can be quite difficult to deal with in practice. We explore a number of

methods for constructing unit root tests whose properties are less affected by the initial

condition. We show that no nontrivial test can remain completely unaffected, and instead

derive an asymptotically efficient unit root test whose power varies relatively little as a

function of the initial condition.
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1. Introduction

There exist by now many tests for examining whether or not a time series has a unit
root. A classical (frequentist) approach for choosing between tests amounts to choosing
an appropriate power profile. Power should be maximized against alternatives of
interest and the outcome of the test should depend as little as possible on nuisance
see front matter r 2005 Elsevier B.V. All rights reserved.
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parameters of the problem. For the unit root testing problem, an important nuisance
parameter is the initial condition: the deviation of the first observation from its
deterministic component—the initial condition—strongly influences the power of
popular tests, up to the point of reversing the power ranking of different tests. See
Evans and Savin (1981, 1984), and Stock (1994) for additional references.

Müller and Elliott (2003) (abbreviated ME in the following) extend results in
Elliott et al. (1996) and derive a family of efficient tests that allow for various
possible weightings on the initial condition. A clear trade-off emerges between power
for small and large1 initial conditions, hence the decision of which test to choose is
not trivial. For situations where the researcher has some idea of the possible size of
the initial condition, these tests or their asymptotic equivalents are likely to be good
choices. Specifically, in many testing situations it would not be expected that the
initial observation of the series is ‘unusual’, where unusual starting observations
imply a very large initial condition. Often the data collected and available for testing
has a beginning date dictated by how far back records can be found, or they date
back to periods when governments started collecting and disseminating data on a
regular basis. In many of these situations a researcher can make the highly plausible
assumption that the absolute value of the initial condition is relatively small, which
suggests the use of a unit root test that exploits this knowledge.

In other testing situations, the researcher may not have any reason to believe that
the initial condition is large or small. Such a situation could arise if the data is chosen
to start after a perceived break in the series, or due to the instigation of a new market
or institution. In these cases a desirable test would be one whose power is as little
affected by the size of the unknown and essentially arbitrary initial condition as
possible. This paper examines the possibility of obtaining unit root tests with
relatively flat power as a function of the initial condition.

The need to either take a stand on the size of the initial condition or alternatively
choose a test with good power over many possible values for the initial condition
would disappear if this choice had no effect in practice. But in practice the decisions
provided by most popular tests do depend strongly on the size of the initial
condition. This means that different conclusions can be reached with samples of the
same data that differ only in the date at which the observations begin. This effect of
the initial condition can be illustrated using data on the real exchange rate. Fig. 1
shows the annual real exchange rate between the British pound and the US dollar
from 1791 until 1990 (the data are from Lothian and Taylor (1996)).

What can be seen from the graph is that there are many ‘unusual’ values that can be
identified ex post. For example, the peak around the time of the first world war, or
similarly the very low value after the end of the second world war deviate substantially
from the sample average. In the 19th century there are many such peaks and troughs.
Supposing that the real exchange rate is mean reverting, an idea fully supported by
economic theory, then power of typically applied unit root tests will be affected
substantially if one chooses one of these unusual values as the starting date of the series.
1Descriptions of the magnitude of the initial condition here and in the following refer to the absolute

value of the initial condition.
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Fig. 1. Real exchange rate between the British pound and US dollar.

Fig. 2. p-values of unit root tests of the British pound/US dollar real exchange rates as a function of the

starting date of the sample.
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We can examine the effect of varying the starting date of the series by considering
the outcome of two unit root tests that differ in their treatment of the initial
condition for all start dates ranging from 1791 to 1915, while keeping the endpoint of
the sample fixed at 1990. The last test is hence based on 76 observations. The effect
of the changing start dates on the outcome of the unit root tests is shown by
calculating the p-value for each sample. In Fig. 2, these p-values are plotted against
the beginning date for the augmented Dickey and Fuller (1979) t-statistic test
(denoted DFm) and a modified (along the lines of Stock (2000)—this corresponds to
the statistic Q̂

m
ð10; 1Þ of ME, see Section 3) version of the QT statistic of Elliott

(1999) (the dotted line).2 Both tests tend to reject for the longer data series (earlier
start dates), but there are vast periods of disagreement. For the first half of the
sample we can see that the p-values, apart from their common upward drift, seem to
2The long-run variance estimator for this test was constructed as described in Section 4; the appropriate

lag-length was determined once for the whole sample based on MAIC of Ng and Perron (2001).



ARTICLE IN PRESS

G. Elliott, U.K. Müller / Journal of Econometrics 135 (2006) 285–310288
be moving in opposite directions. Notice that around 1800, 1808 and 1825 there are
abrupt shifts in the p-values of the two tests in opposite directions, where the p-value
for the Q̂

m
ð10; 1Þ statistic jumps up just as the p-value for the DFm test drops. These

periods correspond precisely to local peaks in the exchange rate. Alternatively, the
relatively more tranquil period around 1870 for the real exchange rate (no big peaks
or troughs) is associated with the Q̂

m
ð10; 1Þ statistic rejecting whereas DFm does not.

These periods are emblematic of the points we are raising in this paper. When
initial values are chosen from a ‘tranquil’ period, so initial conditions for the series
are close to zero, the Q̂

m
ð10; 1Þ test is relatively efficient and has much better power

than the DFm test. Thus it is much more likely to reject if the real exchange rate is
mean reverting. However, when unusual values are employed at the start of the
sample—dates where it is likely that the first observation is far from its deterministic
component—the power ranking between the tests can be reversed. Indeed, most of
the dramatic differences in the p-values in Fig. 2 directly correspond to periods where
the real exchange rate changed suddenly by a relatively large margin. Overall,
however, ‘most’ starting values tend to be close to the deterministic components. For
this example, the DFm test rejects the relatively preposterous null of a unit root in the
real exchange rate for half of the starting dates at the 5% level, whereas the Q̂

m
ð10; 1Þ

statistic rejects for about 84% of the samples.
The aim of this paper is to provide a careful analysis of the role of the initial

condition in the unit root testing problem. To this end, the next section (i) explores in
which circumstances one might be concerned about large initial conditions, (ii)
shows that it is impossible to derive useful test statistics that do not depend
numerically on the value of the initial condition and (iii) discusses methods that one
could think of using or that have been suggested previously in the literature to lessen
the impact of the initial condition on the power of unit root tests. Section 3 contains
an asymptotic analysis. Building on the work of ME, we identify an efficient unit
root test statistic whose power does not vary (much) as a function of the initial
condition. Its local asymptotic power is then compared to an alternative approach
based on partial invariance to the initial condition. Section 4 contains small sample
Monte Carlo simulations of the size and power properties of these tests. In the
Conclusion we return to the real exchange rate data and show that the test statistic
proposed in Section 3 reduces the variation in p-values over the different starting
values, suggesting that its outcome is less dependent on whether the starting point
comes from an unusual or tranquil period. Proofs are collected in an appendix.
2. The dependence of unit root tests on the initial condition

In this paper, we consider the general model

yt ¼ X 0tbþ mþ wt t ¼ 0; 1; . . . ;T ,

wt ¼ rwt�1 þ nt t ¼ 1; . . . ;T ,

w0 ¼ x, ð1Þ
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where X t is a deterministic vector with no constant element, X 0 ¼ 0 and m, b and x
are unknown and fntg are mean zero disturbances that satisfy a functional central
limit theorem (FCLT). We are interested in distinguishing the two hypotheses

H0 : r ¼ 1 vs H1 : ro1. (2)

A large number of test statistics have been suggested for this testing problem. All
of these tests share the property of invariance to the group of transformations

fytg
T
t¼0! fyt þ X 0tbþmgTt¼0 8b;m. (3)

Note that different values of b and m will induce changes of the form (3), so that
restricting attention to invariant tests solves the problem of lack of knowledge of m and b.
In addition, the invariance to translations ðfytg ! fyt þmgÞ renders unit root tests
independent of the value of the initial condition x under the null hypothesis. In order to
see this, note that alternative values of x in general induce changes of the data of the form
fytg!fytþxrtg. So when r ¼ 1, different values of x induce translations of the form
fytg!fytþxg, which are identical to the transformation (3) for b¼0. The numerical
value, and hence size of translation invariant unit root tests does not depend on x.

This clearly cannot be said of the power of unit root tests. Under the alternative of
ro1, different values of x induce changes which in general will alter the value of the
test statistics. In fact, as demonstrated by ME, the power of all popular unit root
tests substantially varies with respect to x. Dickey and Fuller (1979) t-tests, for
instance, have power under local alternatives that increases in jxj, whereas the
efficient tests of Elliott et al. (1996) have power that drops to zero for moderately
large jxj. In these descriptions, the magnitude of x is measured against values of x
that one would expect if fwtg was a (second-order) stationary process under the
alternative, i.e. where x stems from the unconditional distribution of a stationary
process with largest autoregressive root ro1.

One might argue that one can obtain good power for all values of the initial
condition by making the choice of test dependent on an estimator of x. In particular,
one might be tempted to try to obtain optimal inference for any x by ‘plugging’ the
estimator x̂ into an efficient test for known x. By the Neyman–Pearson lemma, a
point-optimal test for known x against the alternative r ¼ r would be based on the
difference in the log-likelihoods of a maximal invariant to (3) under the null and
alternative hypothesis. Unfortunately, it is not possible to estimate x with sufficient
precision for such a procedure to work, even asymptotically.

In order to see why, recall that efficient unit root tests for different (stochastic)
assumptions on x have different power in the dimension of the initial condition. For
concreteness, consider the PT statistic of Elliott et al. (1996) and the QT statistic of
Elliott (1999). By construction, PT is an (asymptotically) point-optimal statistic for a
very small initial condition, whereas QT is point-optimal for an initial condition that
stems from the unconditional distribution of the stationary process under the point-
alternative. Due to their efficiency, both tests are admissible tests by construction, that is
there exists no test that dominates the power of either of the two over all values of the
initial condition. Now clearly, if it was possible to estimate x accurately enough to yield
as good inference as if x was known, then the resulting test would generate a power
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greater or equal to any test constructed for a specific stochastic assumption on the initial
condition. This implies that its power could never be lower of either PT and QT , for any
given value of the initial condition. Since PT and QT do not have the same asymptotic
power properties, a test that has at least as much power than either of the two would
dominate both. But this is impossible, so that no estimator of x with high enough
precision can exist. While it is possible to exploit the information contained in estimators
of the initial condition (cf. Harvey and Leybourne (2005), for instance), such an
approach will not in general result in an efficient test.

In practice, then, the choice of unit root test has to be based on what is known
about the initial condition x a priori. Knowledge about the initial condition is not as
far-fetched as it might appear at first. If the process under investigation stems from
an autoregressive process with stable largest autoregressive root (mean reverting or
not) and has been running quite some time prior to the start of the sample, then in
the mean reverting case, likely initial conditions will have a distribution that is well
approximated by the unconditional distribution. Elliott’s (1999) unit root tests are
designed to be optimal for such instances. Often the beginning of the sample does not
coincide with the beginning of the process under study, so that the assumption of the
initial condition stemming from the unconditional distribution is quite plausible.

At the same time, this makes the alternative one of (second-order) stationarity,
rather than one of mere mean reversion. Depending on the application, any lack of
power of Elliott’s (1999) unit root test against mean reverting processes with large
initial conditions might be not such a bad thing, after all. Consider the case where a
sample stems from a mean reverting process, and jxj is large. If a unit root test
‘correctly’ rejects the null hypothesis of integration, a researcher might be tempted to
use methods for stationary time series in his subsequent statistical analysis. But it
might very well be that these methods perform poorly for large jxj, and that
statistical procedures for integrated series would yield more adequate results.
Unfortunately, little is known about the impact of large initial conditions in time
series methods, so that it seems very difficult to decide what kind of behavior of unit
root tests is desirable from this perspective.

In a considerable number of applications, however, the relevant alternative
hypothesis is one of mean reversion, and there is little reason to believe the initial
condition to be small in absolute value. If the beginning of the sample coincides with
the start of the process itself or with an event with a profound impact on the series,
starting values far off the equilibrium (if one exists) are quite plausible. Think of
macroeconomic time series that were not collected during the second world war, or
German data after the reunification in 1991. For such series, the inability of efficient
tests such as those derived in Elliott et al. (1996) and Elliott (1999) to reject the null
hypothesis of integration for large jxj can be a major drawback.

This is even more true in empirical studies of whether series are ‘convergent’,
which by definition implies a starting point substantially different from the eventual
equilibrium.3 The analysis of such a hypothesis via unit root tests is obviously only
3Contrast this to an empirical investigation of whether two series have already converged over a certain

sample, which would be adequately carried out with Elliott’s (1999) statistic.
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sensible with tests that reject for mean reverting processes with large jxj—which leads
Harvey and Bates (2003), for instance, to promote the Dickey–Fuller test for such
applications.

But as demonstrated in ME and elsewhere, the power of the Dickey–Fuller test is
quite considerably lower than other tests when the initial condition is small, no
doubt to a large extent due to the fact that its power is increasing in jxj. What is
being called for, then, is the construction of an efficient unit root test whose power as
a function of the initial condition does not vary in the jxj dimension. The efficiency
of the test implies maximum possible power for small initial conditions under the
restriction that the test’s ability to reject for large jxj is comparable. Such a test
would be naturally suited for applications where the researcher does not want to rule
out the possibility of a very large initial condition under the alternative, while
sacrificing the least possible power in the case where the initial condition is small in
absolute value.

Furthermore, such a test potentially eliminates the large impact of the (quite often
somewhat arbitrary) choice of the start of the sample even in cases where strict
stationarity is the more interesting alternative. A test that is insensitive to the
magnitude of the initial condition would considerably lessen the scope for data
mining along this dimension.

A number of approaches come to mind how one might attempt to construct a unit
root test with good power for all x. One method consists of generalizing the
invariance argument to the effect of the initial condition under the alternative. After
all, under the alternative of ro1, x in model (1) might be thought of as just another
parameter that describes the importance of the deterministic term frtg in fytg. The
relevant transformations are of the form

fytg ! fyt þ xrtg 8x,r 2 ð0; 1Þ. (4)

A test statistic that is invariant to (4) is by construction independent of x for all
values of ro1, so that the parameter x has no impact whatsoever on the outcome
(and hence power) of the test. The following theorem, however, proves that the only
such test is the trivial test that does not depend on the data.

Theorem 1. Any test of (2) which is invariant to the transformations (4) has trivial

power.

Intuitively, invariance to transformations of the data that remove any possible
dependence on x for any r removes the entire variation of the data, leaving only tests
that do not depend on the data. The result continues to hold even when the set of
transformations (4) is reduced to transformations of the same form which restricts r

to be in an arbitrarily small open set. The slightest uncertainty about the value of r
under the alternative therefore makes it impossible to construct useful tests which
numerically do not depend on x.

Dufour and King (1991) suggested a weaker form of invariance to the initial
condition, which holds only for a particular value of r ¼ ro1:

fytg ! fyt þ xrtg 8x. (5)
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A test that is invariant to both (3) and (5) will be invariant to the value of x only
under the alternative r ¼ r. For other values of ro1, the test will still depend on x,
so that the impact of x on the hypothesis test H0 : r ¼ 1 vs H1 : ro1 is only reduced
in this restricted way.

In order to find an efficient test that is invariant to both (3) and (5), one can draw
on the methods developed for the construction of efficient tests invariant to (3) only.
The reason is simply that with r fixed, (5) can be cast as a special case of (3), where X t

is substituted by X R
t ¼ ðX

0
t; r

tÞ
0. Invariance to (5) can hence be imposed by adding an

artificial regressor in model (1) with tth element rt.
Specifically, following Dufour and King (1991), we consider the point-optimal

invariant test that maximizes power against the alternative r ¼ r for Gaussian
disturbances fntg with known covariance–matrix.4 Proceeding as in ME shows that
the point-optimal invariant test statistic Pinv (invariant to (3) and (5)) is given by the
difference in weighted squared residuals of a GLS regression of fytg on fð1;X

0
t; r

tÞg,
where the GLS weighting corresponds to the variance–covariance matrices of fwtg

under the null hypothesis of r ¼ 1 and the alternative hypothesis of r ¼ r. The
construction of this test requires knowledge of the variance–covariance matrix of
fntg, which is typically not available in practice. But in the next section, drawing on
the results of Elliott et al. (1996) and ME, we show that under weak assumptions it is
possible to construct a test statistic that is asymptotically as powerful as the small
sample optimal statistic and that does not require such knowledge.

It is instructive to explore the form of Pinv for the special case where
fntg is distributed i.i.d. standard normal and there is no X t in model (1)—such
an assumption on the deterministics corresponds to the standard ‘mean only’
case in the unit root literature. Let futg ¼ fyt � y0g ¼ fwt � xg, a maximal invariant
to the group of translations fytg ! fyt þmg 8m. After some tedious algebra, one
finds

Pinv ¼
XT

t¼1

½2ð1� rÞDutut�1 þ ð1� rÞ2u2
t�1� � T�1 uT þ ð1� rÞ

XT

t¼1

ut�1

" #2

þ rT uT þ ð1� rÞ
XT

t¼1

rt�1ut�1

" #2,XT

t¼1

r2t. ð6Þ

Pinv hence depends on the data through five statistics,
PT

t¼1 Dutut�1,
PT

t¼1 u2
t�1, uT ,PT

t¼1 ut�1 and
PT

t¼1 rtut�1. At the same time, the log-likelihood of the maximal
invariant futg as a function of x is, omitting constants, given by

lðujr; xÞ ¼ �
1

2

XT

t¼1

½Du2
t þ 2ð1� rÞDutut�1 þ ð1� rÞ2u2

t�1

þ 2ð1� rÞxDut þ 2ð1� rÞ2xut�1 þ ð1� rÞ2x2�. ð7Þ
4Dufour and King (1991) consider the slightly larger group of transformations that yield an additional

invariance to scale. Their test statistic hence only requires knowledge of the variance–covariance matrix of

fntg up to a scalar multiple.



ARTICLE IN PRESS

G. Elliott, U.K. Müller / Journal of Econometrics 135 (2006) 285–310 293
By the factorization theorem, one set of sufficient statistics hence consists of the four
statistics

PT
t¼1 Dutut�1;

PT
t¼1 u2

t�1; uT and
PT

t¼1 ut�1. The optimal statistic Pinv that is
invariant to x under the alternative r ¼ r therefore depends on the data not only
through the sufficient statistics, but additionally through

PT
t¼1 rt�1ut�1. The

dependence on
PT

t¼1 rt�1ut�1 arises through the inclusion of the ‘artificial’ regressor
frtg, which has no counterpart in the data generating process under the null
hypothesis. The imposition of invariance to the initial condition even only under a
single alternative r ¼ r might hence come at the cost of yielding an inadmissible test,
a possibility we further investigate in Section 3.

A second approach that might seem to limit the influence of the initial condition
on power is to ‘condition’ on the first observation, y0, when constructing likelihood
based tests. The Dickey and Fuller tests, for instance, are based on OLS regressions
of fytg on fðyt�1; 1;X

0
tÞ
0
g. Standard arguments show that the coefficient estimator of r

of such a regression is equivalent to the conditional maximum likelihood estimator
of r assuming Gaussian i.i.d. disturbances fntg, where the contribution of y0 to the
likelihood is omitted. The difficulty that arises here is that the initial condition is not
equal to the initial observation y0, but it is the difference between y0 and the
deterministic component at t ¼ 0: x ¼ y0 � m� X 00b. When the deterministic part of
the model is known, y0 is sufficient for the initial condition x and conditioning on y0

would indeed be the same as conditioning on x. However, when m and b are
unknown this is no longer true, and x is unobserved. In fact, without knowledge of
the deterministic part of the model, knowledge of y0 alone has no implication
whatsoever for the value of x, as y0 ¼ xþ mþ X 00b. Therefore, the conditioning
approach does not limit the effect of the initial condition by construction.

Finally, one might hope that the approach of plugging an estimator of x into the
efficient test statistic for known x limits the impact of x on the power of the test. While
the discussion above demonstrates that such an approach cannot yield as good
inference as if x was known, even asymptotically, one might still think that power is at
least reasonable for all values of x. Intuitively, the estimation of the initial condition
should give the data more flexibility under the alternative, so that no value of x prevents
the test from rejecting. When x is estimated by maximum likelihood under the fixed
alternative r ¼ r (which amounts to finding the value of x that maximizes (7) with
r ¼ r), and the estimator is plugged into the efficient test statistic for known x (which is
simply the difference of (7) evaluated at r ¼ r and r ¼ 1), one obtains the statistic

�
1

2

XT

t¼1

½2ð1� rÞDutut�1 þ ð1� rÞ2u2
t�1� þ

1

2
T�1 uT þ ð1� rÞ

XT

t¼1

ut�1

" #2
(8)

for the mean case model with i.i.d. Gaussian disturbances. Interestingly, some
straightforward algebra reveals that this test statistic is a (limiting) member of the
family of efficient tests derived by ME: it corresponds to Qmðr;1Þ in ME’s notation.
But contrary to the intuition alluded to above, the power of this test varies drastically as
a function of x—see Section 4. Specifically, power is very low for small and
moderate values of jxj compared to other tests, but quickly approaches unity as jxj
becomes large.
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3. Asymptotic analysis

3.1. An efficient test with good power for arbitrary initial conditions

It is hence quite challenging to derive a unit root test whose power does not vary
with the initial condition by construction. While the partial invariance approach of
Dufour and King (1991) necessarily leads to constant power as a function of the
initial condition at least for one alternative, this might very well come at the cost of
inadmissibility of the test. An alternative way to approach this problem is to start
out with a family of efficient tests, where different members of the family have
different power properties in the dimension of the initial condition, and to determine
a member of the efficient family that has close to equal power for various initial
conditions.

The family of unit root tests derived by ME are perfectly suited for that enterprise.
ME derive tests that maximize a weighted average power criterion, where the
weighting is over the power of the unit root tests against a specific alternative for
various values of the initial condition. Members of the family differ in their
weighting function for the initial condition. In this section, we will analytically
determine a specific member of this family (i.e. a specific weighting function)
that leads to roughly constant power over a wide range of initial conditions.
Being a member of the optimal family, the resulting test is guaranteed to be
admissible. The comparison between this particular test and the optimal invariant
test in the spirit of Dufour and King (1991) reveals that the former dominates the
latter.

Since in practice, i.i.d. disturbances are highly implausible, we follow Elliott et al.
(1996) and ME and consider the data generating process (1) with potentially
correlated Gaussian disturbances fntg.
Condition 1. The stationary sequence fntg has a strictly positive spectral density

function f nðlÞ; it has a moving average representation nt ¼
P1

s¼0 ds�t�s where the �t are

independent standard normal random variables and
P1

s¼0 sjdsjo1.
The correlation structure of fntg is typically not known in practice, so the question
arises how to implement optimal tests—based on the Neyman–Pearson Lemma—
under this condition. But it turns out that it is possible to derive feasible unit root
tests without such knowledge that have the same asymptotic power as the infeasible
tests that exploit the exact correlation structure of fntg.

Asymptotic power for the hypothesis test (2) is nontrivial only in a neighborhood
of the null hypothesis of r ¼ 1 of the form where r ¼ 1� g=T , where g40 is
fixed. This is the local-to-unity framework developed by Phillips (1987) and
Chan and Wei (1987). Under such asymptotics, it is reasonable to measure the
initial condition jxj in multiples of the square root of the unconditional variance of a
stationary process for g40, which is equal to oð2gÞ�1=2T1=2 þ oðT1=2Þ, where
o2 ¼ 2pf nð0Þ. We hence denote a ¼ ð2gÞ1=2o�1T�1=2x. In this notation, we find
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for futg ¼ fwt � xg (cf. Elliott (1999))

T�1=2u½Ts� )

oW ðsÞ for g ¼ 0

oaðe�gs � 1Þð2gÞ�1=2 þ o
R s

0 e�gðs�lÞ dW ðlÞ else

(
ð9Þ

� oMðsÞ, ð10Þ

where ‘)’ denotes weak convergence of the underlying probability measures, W ðsÞ is
a standard Brownian motion and ½�� indicates the greatest lesser integer function. The
deterministic part of MðsÞ, aðe�gs � 1Þð2gÞ�1=2 for go0, captures the effect of the
initial condition.

ME derive small sample optimal tests that maximize the weighted average power
criterionZ

PðjðyÞ rejects jr ¼ r; a ¼ aÞdF ðaÞ (11)

over all tests jðyÞ that satisfy the level constraint. Such a test has the largest average
power under the alternative r ¼ ro1, where the averaging over possible initial
conditions a is according to F. Specifically, they employ a Gaussian weighting for
different values of the initial condition a, so that F in (11) is the cumulative
distribution function of a Nð0; kÞ random variable. The variance of this Gaussian
weighting function determines the relative weight of small and large initial
conditions: the larger the variance, the larger the relative weight of large jaj.

Given our interest in finding feasible, asymptotically equivalent tests, it is natural
to set r ¼ 1� g=T for some fixed g, in accordance with the asymptotic thought
experiment concerning r under local-to-unity asymptotics. Only data generating
processes with r such that g ¼ Tð1� rÞ is a moderate number between zero and, say,
50 lead to a challenging testing problem. When g is larger than 50, r is so far from
unity that reasonable tests will reject with probability very close to one. A good test
should hence maximize its power in this region, and we follow Elliott (1999) by
choosing g ¼ 10 in the mean case and g ¼ 15 in the trend case, choices that lead to
optimal power at alternatives where 5% tests have power roughly equal to one half.

ME derive the asymptotic distribution of small sample optimal invariant test
statistics Qiðg; kÞ (derived under Condition 1 with knowledge of the correlation
structure of fvtg as described by fdtg), where i ¼ m; t stands for the mean and trend
cases, respectively. The invariance of Qiðg; kÞ refers to the group of transformations
(3) only. A test that rejects for small values of Qiðg; kÞ maximizes weighted average
power against the alternative r ¼ 1� g=T , where the averaging over the initial
conditions in (11) is carried out according to the cumulative distribution function of
a zero mean Gaussian variate with a variance that is k times the variance of the
unconditional distribution of a stationary AR(1) process with r ¼ 1� g=T . The
statistics PT of Elliott et al. (1996) and QT of Elliott (1999) are therefore
asymptotically equivalent to Qiðg; 0Þ and Qiðg; 1Þ, respectively. Let MmðsÞ ¼MðsÞ �R

MðuÞdu and MtðsÞ ¼MmðsÞ � 12ðs� 1
2
Þ
R

uMmðuÞdu, where integrals here and in
the following are understood to have delimiters zero and one, if not indicated
otherwise. The processes MmðsÞ and MtðsÞ are hence continuous time least squares
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projections of MðsÞ off a constant and off ð1; sÞ, respectively. In this representation,
Theorem 3 of ME implies that

Qiðg; kÞ ) qi
0 þ qi

1M
ið0Þ2 þ qi

2M
ið1Þ2 þ qi

3M
ið0ÞMið1Þ þ qi

4

Z
MiðsÞ2 ds, (12)

where, q
m
0 ¼ �g; q

m
1 ¼ �gð1þ gÞðk � 2Þ=ð2þ gkÞ, q

m
2 ¼ ð2g� gk þ g2kÞ=ð2þ gkÞ,

q
m
3 ¼ 2gðk � 2Þ=ð2þ gkÞ, q

m
4 ¼ g2 and qt

0 ¼ �g, qt
1 ¼ ð8g2 þ g3ð8� 3kÞ � g4ðk � 2ÞÞ=

ð24þ 24gþ 8g2 þ g3kÞ, qt
2 ¼ ð8g2 þ g3ð8� 3kÞ þ g4kÞ=ð24þ 24gþ 8g2 þ g3kÞ, qt

3 ¼

ð8g2 þ 2g3ð4� 3kÞÞ=ð24þ 24gþ 8g2 þ g3kÞ, qt
4 ¼ g2.

There does not seem to be a way of analytically investigating the power of unit
root tests based on Qiðg; kÞ as a function of a. A tractable question, however, is how
these tests behave under local alternatives for very large initial conditions. In order
to see this, recall that MðsÞ can be decomposed in a sum of two elements: aðe�gs �

1Þð2gÞ�1=2 and
R s

0 e�gðs�lÞ dW ðlÞ. As a becomes large, the deterministic part
dominates the overall shape of the process Mð�Þ. Typically, the deterministic part
of the asymptotic distribution of Qiðg; kÞ diverges to either þ1 or �1 as jaj grows
without bound under the fixed alternative g ¼ g. Given that the critical value of a test
based on Qiðg; kÞ is finite for any level, this implies that the power as a function of jaj
converges to either zero or unity for large enough jaj. The power of such tests hence
necessarily varies substantially for some jaj. In an attempt to limit the influence of
the initial condition on the power of the test, one might hence try to pick k ¼ k� in a
judicious way for this not to happen. A test based on Qiðg; k�Þ for such a k� has
asymptotic power under the local alternative g ¼ g which does not converge to either
zero or one even when jaj is huge.

Preventing Qiðg; kÞ from diverging under g ¼ g as jaj ! 1 requires the
deterministic element KðsÞ ¼ aðe�gs � 1Þð2gÞ�1=2 of MðsÞ to cancel in the asymptotic
distribution. In other words, when MiðsÞ is replaced by KiðsÞ with g ¼ g in (12), the
weighted sum must equal zero, where KmðsÞ ¼ KðsÞ �

R
KðuÞdu and KtðsÞ is the

residual of a continuous time regression of KðsÞ on ð1; sÞ. The reason is simply that if
this weighted sum is positive (negative), the asymptotic distribution of Qiðg; kÞ=a2

converges to a positive (negative) constant as a2 !1, which in turn implies Qiðg; kÞ
to diverge as jaj ! 1.

After a considerable amount of tedious algebra, one finds that the appropriate
choice of k ¼ km

� in the mean case is given by

km
� ¼

4g� 2þ 2e�2g

ð1� e�2gÞg
(13)

and in the trend case

kt
� ¼

2

eg � 1
�

2ð2þ gÞ2

egðg� 2Þ2 þ g2 � 4
þ

48þ 24g� 8g2 � 8g3 þ 4g4

g3ðg� 2Þ
(14)

which evaluates to km
� ¼

38
10
for g ¼ 10 and kt

� ¼ 3:968 . . . for g ¼ 15. See the appendix
for development.

Qiðg; kÞ is a small sample optimal statistic for known covariance matrix E½nn0�. Its
asymptotic distribution (12) under Condition 1, however, does not depend on E½nn0�
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in any particular form. This makes it possible to construct test statistics which share
the same asymptotic distribution (and hence asymptotic power) without knowledge
of E½nn0�—see Elliott et al. (1996). One possible choice is

Q̂
i
ðg; kÞ ¼ qi

0 þ qi
1ðT
�1=2ŷi

0Þ
2
þ qi

2ðT
�1=2ŷi

T Þ
2
þ qi

3T
�1ŷi

0ŷi
T þ qi

4T
�2
XT

t¼1

ðŷi
t�1Þ

2

(15)

with i ¼ m; t. In these expressions, ŷm
t ¼ ô�1ðyt � T�1

PT
s¼0 ysÞ with ô2 some

consistent estimator of the long-run variance of fntg, and fŷ
t
t g are the residuals of

a regression of fŷm
t g

T
t¼0 on f1; tg.

Application of the FCLT and continuous mapping theorem (CMT) yields that the

asymptotic distribution of Q̂
i
ðg; kÞ for all gX0 is as given in (12), such that the

asymptotic (local) power of tests based on Q̂
i
ðg; kÞ; and in particular Q̂

i
ðg; ki

n
Þ, is the

same as the asymptotic power of tests based on the efficient but typically unfeasible tests

Qiðg; kÞ and Qiðg; ki
�Þ: In fact, Q̂

i
ðg; kÞ follows the asymptotic distribution (12) under

much more general assumptions than Condition 1: whenever fntg satisfies a FCLT and
ô is a consistent estimator of the scale of the limiting Wiener process, the asymptotic

distribution and asymptotic power of the statistic Q̂
i
ðg; kÞ are equivalent to those

obtained under Condition 1. While the normality of the disturbances is crucial for the

optimality claim, the validity and asymptotic behavior of tests based on Q̂
i
ðg; kÞ is

therefore as described by (12) under very general conditions on the disturbances.
3.2. Asymptotic properties of Pinv

It is interesting to compare the performance of a test based on Qiðg; ki
�Þ with the

approach of Dufour and King (1991) that imposes invariance to the initial condition
under r ¼ r ¼ 1� g=T . To this end we extend the results of ME by deriving the
asymptotic distribution of the small sample optimal invariant Dufour and King
statistic Pi

invðgÞ, generalized to a Condition 1 data generating processes. A test based
on Pi

invðgÞ maximizes the power under the alternative r ¼ r ¼ 1� g=T under the
restriction of invariance of the test to transformations of data of the form (3) and (4).
Since the group of transformations (4) corresponds to all possible initial conditions
for r ¼ r, the test is numerically independent of the true value of the initial condition
under the alternative r ¼ r ¼ 1� g=T . Any weighting over x as in (11) does hence
generate the same statistic.

From the reasoning in Dufour and King (1991) and ME, under Condition 1 Pinv is
given by

Pi
invðgÞ ¼ y0MZ½MZS1MZ�

�MZy� y0MZ½MZS0MZ�
�MZy, (16)

where the tth row of the T þ 1 rows of Z is given by ð1; rtÞ for i ¼ m and by ð1; t; rtÞ

for i ¼ t, MZ ¼ ITþ1 � ZðZ0ZÞ�1Z0, S1 ¼ E½uu0� for r ¼ r ¼ 1� g=T and x ¼ 0 and
S0 ¼ E½uu0� for r ¼ 1 and x ¼ 0, u is the ðT þ 1Þ � 1 vector with tth element wt � x
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and ½��� is any generalized inverse. The following theorem establishes the asymptotic
distribution of Pi

invðgÞ.

Theorem 2. Let MiR ðsÞ be the continuous time projection of MiðsÞ off ð1� e�gsÞ. Under

Condition 1, for i ¼ m; t

Pi
invðgÞ ) ki

0 þ ki
1MiR ð0Þ2 þ ki

2M
iR ð1Þ2 þ ki

3MiR ð0ÞMiR ð1Þ þ ki
4

Z
MiR ðsÞ2 ds,

(17)

where km0 ¼ �g, km1 ¼ km2 ¼ ð1þ gþ e2gðg� 1ÞÞ=ðe2g � 1Þ, km3 ¼ ð2e
2g � 2� 4gegÞ=

ðe2g�1Þ, km4¼g2 and kt0 ¼ �g, kt1 ¼ kt2 ¼ ð8� 16eg þ 5gþ g2 þ e2gð8� 5gþ g2ÞÞ=lt,
kt3¼ð8�2e

2gðg�4Þþ2g�4egð4þg2ÞÞ=lt, kt4¼g2 with lt ¼ ðeg � 1Þð2þ gþ egðg� 2ÞÞ.

It is interesting to note that the weights ki
1 and ki

2 on MiR ð0Þ2 and MiR ð1Þ2 coincide
in (17). This simply reflects that with the invariance restriction (4), the efficient test
for unit roots is invariant to reversing the time scale of the observations. The only
other way to achieve this reversibility is to make the data strictly stationary under the
alternative—as is reflected in the equality of the weights qi

i and qi
2 in (17) when k ¼ 1.

Theorem 2 shows that the asymptotic distribution of Pi
invðgÞ does not depend on the

correlation structure of n. Just as for Qiðg; kÞ, one can hence construct a feasible statistic
P̂

i

invðgÞ with the same asymptotic distribution and hence power by taking a weighted
sum of the small sample analogs to the integrals of MiR . Details are omitted for brevity.

3.3. Local asymptotic power

We now turn to a numerical description of the asymptotic power of tests based on

Qiðg; kÞ and Pi
invðgÞ (or, equivalently, of Q̂

i
ðg; kÞ and P̂

i

invðgÞ). Rather than basing this

comparison on Monte Carlo results, we follow Nabeya and Tanaka (1990) and
Tanaka (1996) and numerically invert the characteristic functions of the asymptotic
distributions (12) and (17). The following Lemma establishes the characteristic
function of a class of random variables general enough for our purposes.

Lemma 1. In the notation of (10), let H ¼ ðMð1Þ,
R

MðsÞds,
R

g3ðsÞ dW ðsÞ; . . . ;
R

g‘ðsÞ

dW ðsÞÞ0 with gjð�Þ, j ¼ 3; . . . ; ‘, square integrable functions on the unit interval

(possibly dependent on g) and define V ðgÞ ¼ E½HH 0�. Let C ¼ l0 þ l1
R

MðsÞ2 dsþ

H 0LH þ l0H, where the matrix L, the vector l, l0 and l1 are nonstochastic. Then the

characteristic function of C is given by

fðyÞ ¼ jI ‘ � 2V ðdÞ ~Lj�1=2 exp ~l0 þ 1
2
~l
0
ðV ðdÞ�1 � 2 ~LÞ�1 ~l� 1

4
a2g

h i
, (18)

where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 2l1yi

p
, ~l0 ¼ yl0i�

1
2
ðd� gÞ, ~L ¼ yLiþ diagððd� gÞ=2; 0I ‘�1Þ, ~l ¼

yli� a
ffiffiffi
2
p

=2ðg1=2; g3=2;O0‘�2Þ
0 and i ¼

ffiffiffiffiffiffiffi
�1
p

and O‘�2 is a ð‘ � 2Þ � 1 vector of zeros.

Furthermore, the ij element of V ðgÞ is given by
R

giðsÞgjðsÞds, where g1ðsÞ ¼

exp½�gð1� sÞ� and g2ðsÞ ¼ f1� exp½�gð1� sÞ�g=g.

Table 1 contains the asymptotic critical values of the unit root tests considered in
this paper, and Fig. 3 depicts the local asymptotic power for tests with size 5% based
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Table 1

Asymptotic critical values

Test Critical value

1% 5% 10%

Q̂
m
ð10; 1Þ �6.94 �5.34 �4.06

Q̂
m
ð10; 3:8Þ �7.70 �6.40 �5.37

Q̂
m
ð10;1Þ �10.01 �7.58 �6.46

P̂
m
invð10Þ

�7.520 �6.34 �5.40

Q̂
t
ð15; 1Þ �10.53 �8.85 �7.61

Q̂
t
ð15; 3:968Þ �11.24 �9.77 �8.70

Q̂
t
ð15;1Þ �12.97 �11.44 �10.09

P̂
t
invð15Þ

�11.11 �9.73 �8.73

Fig. 3. Asymptotic power for g ¼ 5; 10; 15; 20; 25 as a function of the initial condition a.
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on Qmð10; 3:8Þ, Qtð15; 3:968Þ, P
m
invð10Þ and Pt

invð15Þ for g ¼ 5; 10; 15; 20; 25 as a
function of a. Curves further from the horizontal axis correspond to more distant
alternatives. The local asymptotic power of both tests remains relatively flat as a
function of a, especially for alternatives against which power is approximately 50%.
The numerical independence of P

m
invð10Þ and Pt

invð15Þ of the value of a at the
alternatives g ¼ 10 and g ¼ 15, respectively, implies constant power for all values of
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a. But the tests based on Qmð10; 3:8Þ and Qtð15; 3:968Þ also have power very close to
constant against these alternatives, although their construction only implies that
their power does not converge to zero or one as a becomes large. Interestingly, the
power of Qmð10; 3:8Þ and Qtð15; 3:968Þ is uniformly higher than the power of P

m
invð10Þ

and Pt
invð15Þ at the alternatives g ¼ 10 and g ¼ 15, respectively, i.e. at the alternative

against which these tests have optimality properties. Numerical results not reported
here show that this remains true for any a. Tests based on P

m
invð10Þ and Pt

invð15Þ are
hence inadmissible for testing the point alternative they were constructed for. This
numerical result validates the intuition developed in Section 2 which suggested that
the dependence of Pi

invðgÞ on the data other than through sufficient statistics might
lead to an inadmissible test. In contrast, the construction of Qiðg; ki

�Þ renders tests on
this statistic necessarily admissible, i.e. no unit root test can have higher power over
all alternatives and initial conditions.

Even taking other alternatives into account, the overall asymptotic power
properties of Qiðg; ki

�Þ are almost everywhere superior to those of Pi
invðgÞ: The

approximately flat power profile of Qiðg; ki
�Þ makes tests on this statistic poten-

tially attractive in instances where a large initial condition cannot be ruled out a
priori.
4. Monte Carlo evidence

The asymptotically efficient test based on Q̂
i
ðg; ki

�Þ proposed in the previous
section has the property that its power converges to neither zero nor one as the initial
condition gets large for the alternative Tð1� rÞ ¼ g ¼ g. In this section we examine
the small sample properties of this test statistic, showing size control properties as
well as examining what happens to power when the sample size is not large.

In addition, we will examine some other tests that have been used or suggested for
testing for a unit root. We examine the Dickey and Fuller (1979) t-statistic, denoted
DFi, augmented with lagged dependent variables to account for serial correlation.
For comparison purposes we include Q̂

m
ð10; 1Þ and Q̂

t
ð15; 1Þ, which are asympto-

tically efficient against the strictly stationary alternative, i.e. where the initial stems
from the unconditional distribution under the point alternative. We also consider the
small sample performance of two other tests: The Q̂

i
ðg;1Þ statistic that—as

explained in Section 2—arises if the maximum likelihood estimator of the initial
condition is plugged into the efficient unit root statistic for a known initial condition,
and the P̂

i

invðgÞ statistic derived from a test that is invariant to data transformations
fytg ! fyt þ xrtg 8x, where r ¼ 1� g=T . The power of a test based on P̂

i

invðgÞ is
therefore independent of the value of the initial condition under the alternative of
r ¼ r.

We consider the model in (1) where we set m and b to zero without loss of
generality, since all tests are numerically independent of the value of these
parameters. The model is generated with

ð1� fLÞnt ¼ ð1þ yLÞ�t t ¼ 1; . . . ;T , (19)
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Table 2

Size of various 5% level unit root tests

f ¼ 0 0 0.3 �0.3 0 0

y ¼ 0 0 0 0 0.3 �0.3

DFm 0.056 0.050 0.044 0.056 0.044 0.064

Q̂
m
ð10; 1Þ 0.039 0.036 0.054 0.063 0.055 0.074

Q̂
m
ð10;1Þ 0.039 0.038 0.050 0.050 0.048 0.056

Q̂
m
ð10; km

�Þ
0.034 0.032 0.052 0.058 0.052 0.068

P̂
m
invð10Þ

0.036 0.033 0.054 0.058 0.054 0.070

DFt 0.055 0.044 0.030 0.054 0.029 0.065

Q̂
t
ð15; 1Þ 0.026 0.026 0.053 0.078 0.050 0.097

Q̂
t
ð15;1Þ 0.019 0.020 0.030 0.038 0.031 0.046

Q̂
t
ð15; kt

�Þ
0.022 0.022 0.048 0.067 0.045 0.086

P̂
t
invð15Þ

0.023 0.022 0.052 0.067 0.049 0.087

Based on 10 000 Monte Carlo replications with pmax ¼ 0 for the first column and pmax ¼ 4 for the

remaining columns.
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where �t�i:i:d: Nð0; 1Þ and n0 is drawn from the unconditional stationary
distribution. For ro1 ðg40Þ the initial condition is chosen as x ¼ T1=2aoð2gÞ�1=2

where o ¼ ð1þ yÞ=ð1� fÞ, such that a measures the magnitude of the initial
condition in (approximate) standard deviations of the stationary process fwtg. The
data is for observations 0 through T, and we consider 5% level tests throughout.

Size results are presented in Table 2 for various parameterizations of the serial
correlation in nt for T ¼ 100. The serial correlation was accounted for using slightly
different methods for the Dickey–Fuller test compared to the other tests. We have
endeavoured to keep the tests on an equal footing here. In particular, we use the
MAIC method of Ng and Perron (2001) to choose a lag length that is used for all
tests in adjusting for serial correlation. The maximum lag length considered by the
method is denoted by pmax. The augmented Dickey–Fuller statistic DFi adds lagged
first differences in yt where the number of lags chosen is as determined by MAIC.
The test statistics which require a ‘plug-in’ estimator of ô2 use the autoregressive
estimator for this parameter based on the regression used to compute the DFi test.5

Size is well controlled across all of the considered models when only a nonzero
mean is allowed for. The tests tend to be a little oversized when there is negative
serial correlation or a negative moving average component in the residuals. For the
tests invariant to a constant and a time trend, the size distortions are qualitatively
similar but somewhat more pronounced. Such results are typical for unit root tests.

We present size adjusted power for comparison with the asymptotic results
examined in Section 3 in Tables 3 and 4, where fwtg is an ARð1Þ with independent
5The ADF regression is Dyi
t ¼ ayi

t�1 þ
Pp

j¼1 bjDyi
t�j þ et and the estimator ô2

¼ ŝ2=ð1�
Pp

j¼1 bjÞ
2 with

ŝ2 ¼ T�1
P

ê2t : Here yi
t is the detrended data where the detrending method is by OLS. For Pi

invðgÞ the

detrending includes the additional regressor described in Section 2.



ARTICLE IN PRESS

Table 3

Size corrected small sample power in the mean case

Test a

0 1 2 3 4 5 6

r ¼ 0:95
DFm 0.11 0.12 0.15 0.21 0.30 0.44 0.61

Q̂
m
ð10; 1Þ 0.27 0.16 0.03 0.00 0.00 0.00 0.00

Q̂
m
ð10;1Þ 0.05 0.09 0.19 0.29 0.38 0.43 0.48

Q̂
m
ð10; km

�Þ
0.17 0.16 0.13 0.09 0.06 0.03 0.02

P̂
m
invð10Þ

0.16 0.15 0.14 0.12 0.10 0.08 0.06

r ¼ 0:90
DFm 0.30 0.32 0.39 0.51 0.67 0.83 0.94

Q̂
m
ð10; 1Þ 0.64 0.51 0.16 0.01 0.00 0.00 0.00

Q̂
m
ð10;1Þ 0.14 0.21 0.40 0.62 0.80 0.91 0.96

Q̂
m
ð10; km

�Þ
0.43 0.43 0.43 0.43 0.42 0.42 0.41

P̂
m
invð10Þ

0.39 0.39 0.39 0.39 0.39 0.39 0.39

r ¼ 0:85
DFm 0.60 0.63 0.70 0.80 0.91 0.97 0.99

Q̂
m
ð10; 1Þ 0.90 0.85 0.55 0.08 0.00 0.00 0.00

Q̂
m
ð10;1Þ 0.33 0.43 0.64 0.85 0.96 0.99 1.00

Q̂
m
ð10; km

�Þ
0.75 0.75 0.77 0.79 0.82 0.85 0.88

P̂
m
invð10Þ

0.71 0.70 0.68 0.66 0.62 0.59 0.54

r ¼ 0:80
DFm 0.85 0.87 0.91 0.95 0.98 1.00 1.00

Q̂
m
ð10; 1Þ 0.99 0.98 0.89 0.43 0.02 0.00 0.00

Q̂
m
ð10;1Þ 0.61 0.69 0.85 0.96 0.99 1.00 1.00

Q̂
m
ð10; km

�Þ
0.93 0.93 0.95 0.96 0.97 0.98 0.99

P̂
m
invð10Þ

0.91 0.90 0.87 0.83 0.76 0.67 0.58

Based on 10 000 Monte Carlo replications with pmax ¼ 0.
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Gaussian disturbances. Results are presented for various a with four panels of results
corresponding to r ¼ 0:95; 0:9; 0:85 and 0.8, respectively.

The Dickey and Fuller t-statistic test has the unusual power profile of power
increasing in jaj. The larger the initial value the higher the power, a property that
comes at the expense of having relatively low power when the initial condition is
small. When a ¼ 0 and rX0:9 power for DFm is less than half that attained by
Q̂

m
ð10; 1Þ.
The statistics presented in Sections 2 and 3, each attempting to deal with obtaining

inference that is not too much affected over a wide range of values for a, achieve this
goal with varying degrees of success. As found above, relying on the efficient test for
a known initial condition x with x replaced by its maximum likelihood estimator
under the fixed alternative r ¼ r ¼ 1� g=T results in a test that is in the efficient
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Table 4

Size corrected small sample power in the trend case

Test a

0 1 2 3 4 5 6

r ¼ 0:95
DFt 0.08 0.08 0.09 0.09 0.10 0.12 0.14

Q̂
t
ð15; 1Þ 0.10 0.09 0.06 0.03 0.01 0.00 0.00

Q̂
t
ð15;1Þ 0.06 0.07 0.10 0.13 0.17 0.20 0.23

Q̂
t
ð15; kt

�Þ
0.10 0.09 0.08 0.07 0.05 0.03 0.02

P̂
t
invð15Þ

0.09 0.09 0.09 0.08 0.07 0.05 0.04

r ¼ 0:90
DFt 0.19 0.19 0.21 0.25 0.31 0.39 0.49

Q̂
t
ð15; 1Þ 0.29 0.24 0.12 0.04 0.01 0.00 0.00

Q̂
t
ð15;1Þ 0.10 0.13 0.21 0.33 0.46 0.58 0.69

Q̂
t
ð15; kt

�Þ
0.23 0.23 0.21 0.19 0.16 0.13 0.10

P̂
t
invð15Þ

0.22 0.22 0.21 0.21 0.20 0.19 0.18

r ¼ 0:85
DFt 0.38 0.39 0.44 0.51 0.61 0.72 0.82

Q̂
t
ð15; 1Þ 0.59 0.50 0.29 0.09 0.01 0.00 0.00

Q̂
t
ð15;1Þ 0.22 0.27 0.40 0.58 0.75 0.87 0.94

Q̂
t
ð15; kt

�Þ
0.47 0.47 0.46 0.45 0.43 0.41 0.39

P̂
t
invð15Þ

0.43 0.43 0.43 0.43 0.43 0.43 0.43

r ¼ 0:80
DFt 0.64 0.66 0.70 0.77 0.85 0.91 0.96

Q̂
t
ð15; 1Þ 0.84 0.78 0.55 0.22 0.03 0.00 0.00

Q̂
t
ð15;1Þ 0.42 0.48 0.63 0.80 0.92 0.97 0.99

Q̂
t
ð15; kt

�Þ
0.73 0.73 0.73 0.74 0.75 0.75 0.76

P̂
t
invð15Þ

0.70 0.69 0.69 0.68 0.66 0.64 0.62

Based on 10 000 Monte Carlo replications with pmax ¼ 0.
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class derived by ME with k!1. This test, denoted Q̂
i
ðg;1Þ, has power that

increases as a gets larger just as for the DFi statistic, however it starts from a much
lower level power when a is small and increases at a faster rate as a gets larger. Hence
if a researcher believed that the initial value was far from the deterministic
component, this test is preferable as it has higher power when the initial is indeed
large. The test does not, however, possess attractive power properties for the case
where the initial condition is plausibly either small or large.

The test P̂
m
invð10Þ, designed to be invariant to x at g ¼ 10 (which corresponds to

r ¼ 0:9 for T ¼ 100), does achieve to some extent the goal of providing a reliable
testing procedure for a wide range of values for x. Against the alternative that
r ¼ 0:9, the test has power of 39% everywhere, a result that matches the asymptotic
results given in Section 3. For closer and more distant alternatives, however, just as
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the asymptotic theory predicts, power falls over the range of a considered. This
drop in power is quite dramatic at r ¼ 0:80.

Finally, Q̂
m
ð10; km

�Þ does achieve the aim of having relatively flat power over
different initial conditions. For r ¼ 0:9 the power of the statistic is between 41% and
43%. Compared to Q̂

m
ð10; 1Þ, it is making a trade-off reducing power for small initial

conditions but gaining in power for larger values of a. For alternatives closer to the
null power falls as a gets large, and the reverse is true for more distant alternatives.

However, over nearly all of the range of a power of Q̂
m
ð10; km

�Þ exceeds that of

P̂
m
invð10Þ. The power gains of Q̂

m
ð10; km

�Þ over P̂
m
invð10Þ are more pronounced for more

distant alternatives (i.e., small r) and larger initial conditions. For such models,

Q̂
m
ð10; km

�Þ has power getting larger as the initial condition gets larger whereas the

power of P̂
m
invð10Þ goes to zero.

The comparison between DFm and Q̂
m
ð10; km

�Þ shows the unusual trade-off made by

the former test. It has greater power than Q̂
m
ð10; km

�Þ only when the initial condition is

quite far from zero, again at a fairly substantial cost to power when the initial
condition is small. Whilst DFm does maintain some semblance of power against all

possible initial conditions, the less pronounced variations in power of Q̂
m
ð10; km

�Þ

makes it a more attractive test statistic when it is not known whether the initial
condition is large or small.

The same models are considered when the tests are invariant to a time trend in
addition to a mean shift. These results are given in Table 4. Essentially the same
comments apply, although as is typical of results in this literature magnitudes are all
smaller when a time trend is considered. For more distant alternatives and large

values for a the differences between Q̂
t
ð15; kt

�Þ over P̂
t
invð15Þ are less pronounced than

in the mean case.
The development of the family of tests Qiðg; kÞ relied on constructing

likelihood ratios under the assumption that the shocks driving the process are

normally distributed. All of the asymptotic properties of the tests—asymptotic
critical values and power properties—were derived under wider distributional

assumptions on these shocks. The effect of departures from normality

such as skewness and kurtosis are explored in Table 5. We report size adjusted
power for Q̂

m
ð10; km

�Þ in the model examined in Table 3 with the exception that we

now have three different generating processes for nt. The first is the Nð0; 1Þ
results from Table 3, the second model has nt�w21 � 1, where w21 is a centered chi-
squared random variable with one degree of freedom, and in the third nt�t5, a

student-t distribution with 5 degrees of freedom. Thus for the second model the
shocks are skewed and for the third there is excess kurtosis over the standard

normal. Size for both the second and third models is 3:2% and 3:9%, respectively,

similar to the case of a standard normal. The table shows clearly that there is little to
no effect of the distributional assumption for i.i.d. innovations with this number of

observations.
Overall the small sample results validate our asymptotic results of Section 3. For

situations with potentially large initial conditions, we hence recommend basing
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Table 5

Size corrected small sample power of a test based on Q̂
m
ð10; km

�Þ for i.i.d. innovations of various

distributions in the mean case

a 0 1 2 3 4 5 6

r ¼ 0:95
Nð0; 1Þ 0.17 0.16 0.13 0.09 0.06 0.03 0.02

w21 � 1 0.19 0.18 0.16 0.12 0.09 0.06 0.04

t5 0.18 0.17 0.15 0.12 0.09 0.07 0.04

r ¼ 0:90
Nð0; 1Þ 0.43 0.43 0.43 0.43 0.42 0.42 0.41

w21 � 1 0.47 0.47 0.47 0.47 0.46 0.46 0.45

t5 0.43 0.44 0.44 0.43 0.43 0.43 0.42

r ¼ 0:85
Nð0; 1Þ 0.75 0.75 0.77 0.79 0.82 0.85 0.88

w21 � 1 0.80 0.80 0.81 0.82 0.84 0.85 0.87

t5 0.75 0.75 0.76 0.78 0.80 0.82 0.84

r ¼ 0:80
Nð0; 1Þ 0.93 0.93 0.95 0.96 0.97 0.98 0.99

w21 � 1 0.95 0.95 0.96 0.96 0.97 0.97 0.98

t5 0.94 0.94 0.94 0.95 0.96 0.97 0.98

Based on 10 000 Monte Carlo replications with pmax ¼ 0.
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inference on Q̂
m
ð10; km

�Þ or Q̂
t
ð15; kt

�Þ, which have approximately flat power as a
function of the initial condition while controlling size reasonably well.
5. Conclusion

The power of all unit root tests suggested in the literature so far depends on the
initial condition. We show that numerical independence of the outcome of a unit
root test on the value of the initial condition can only be achieved by the trivial test
that does not depend on the data. A requirement of no influence of the initial
condition on unit root tests is hence not a reasonable proposition in practice. This
means that researchers are forced to consider the influence of the initial condition on
the power of their tests. In classical testing theory the choice between tests reduces to
the choice between power profiles, and the appropriate choice of test reduces to
choosing the power profile most appropriate to the problem at hand. Whilst this
usually means considering power as a function in the direction of the stated
alternative, in the case of unit root tests this also includes consideration of power as a
function of various initial conditions. For problems where it is unlikely that the
initial condition is large, it makes sense to choose a test that has maximal power
when the initial condition is small or moderate. On the other hand, if the data is such
that the initial condition is quite possibly large, it makes sense to choose a test that
has good power over many possible values for the initial condition. In either case, the
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choice should be an efficient test, i.e. a test whose power cannot be dominated over
all alternatives and values of the initial condition.

In some circumstances, it makes sense not to make the assumption of a necessarily
small initial condition and to rely on unit root tests with equal power for general
initial conditions, including large ones (in absolute value). We derive an
asymptotically efficient unit root test statistic that possesses this property, at least
to a fair degree. The test is one specific member of the family of efficient tests derived
by ME: in the case where the deterministics are given by a constant only, it is
Q̂

m
ð10; 3:8Þ and in the linear trend case it is Q̂

t
ð15; 3:968Þ. In contrast to the DFi test

(whose power especially in the mean case becomes quite low when the initial
condition is small) and tests that are optimal for small initial conditions (whose
power becomes very low when the initial is large), tests based on our statistic have
power that is less sensitive to the size of the initial condition. We hence suggest
relying on the statistic derived in this paper when a researcher has no knowledge or
expectation that the initial value is large or small.

The effect of using this test in the empirical example described in the introduction
can be seen in Fig. 4, which depicts the p-values of unit root tests based on the DFm

statistic, Q̂
m
ð10; 1Þ and Q̂

m
ð10; 3:8Þ as a function of the sample starting date. The

figure shows that the variability of the p-values of Q̂
m
ð10; 3:8Þ is considerably reduced

compared to the other tests, especially compared to the DFm statistic. The differences
are stark in the first half of the 19th century. For starting dates in this period, a
period of high volatility of the real exchange rate, the p-values for the DFm test
exhibit large variations, exceeding the 5% threshold for some short periods. Contrast
this with the p-values of the Q̂

m
ð10; 3:8Þ test, which—despite being positively

correlated with those of the DFm test—are considerably smoother over time and do
not lead to these sudden failures to reject the null hypothesis. The most striking
feature in the comparison with Q̂

m
ð10; 1Þ is that the test based on Q̂

m
ð10; 3:8Þ does not

lead to peaks in the p-values aligned with peaks in the data, as we discussed in the
Introduction. Overall the outcome of Q̂

m
ð10; 3:8Þ statistic is most stable as a function

of the starting date, with a relatively smooth evolution of its p-values.
Fig. 4. p-values of unit root tests of the British pound/US dollar real exchange rates as a function of the

starting date of the sample.
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We noted that the differing performance of unit root tests for different initial
values allowed data mining of the form of choosing the start date to obtain the
desired outcome. A researcher that wanted to use cointegration methods with the
real exchange rate using the DFm statistic, say, could choose a starting date of 1820 in
order to ensure that the unit root is not rejected, so as to justify the subsequent
cointegration analysis. Basing unit root testing inference on Q̂

m
ð10; 3:8Þ minimizes

this possibility, as the outcomes of this test are much less volatile.
Either as safeguard against this form of data mining, or as the appropriate test in

situations where nothing definite can be said about the magnitude of the initial
condition, the tests developed in this paper should be a useful addition to the unit
root testing toolbox: They are asymptotically efficient, control size reasonably well
and have the appropriate power profile with respect to the initial condition for such
circumstances.
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Appendix

Proof of Theorem 1. We show that any y can be reduced to ð0; . . . ; 0Þ0 by an
appropriate sequence of T þ 1 transformations of the form y! yþ aiRðrÞ, where
y ¼ ðy0; . . . ; yT Þ

0, RðrÞ ¼ ð1; r; r2; . . . ; rT Þ
0 and ai is a scalar. Let A ¼ ða0; a1; . . . ; aT Þ

0

and B ¼ ðRðr0Þ, Rðr1Þ; . . . ;RðrT ÞÞ. An appropriate sequence must exist if for some
choice of r0; . . . ;rT , B has rank T þ 1, as in this case

0 ¼ yþ BA 3 A ¼ �B�1y. (20)

We now prove by contradiction that there must exist r0; . . . ;rT such that B

has rank T þ 1. Suppose otherwise. Let r0; r1; . . . ; rN , NoT , be such that B ¼

ðRðr0Þ;Rðr1Þ; . . . ;RðrN ÞÞ has rank N þ 1 and RðsÞ lies in the column space of B for all
s 2 ð0; 1Þ. A least-squares regression of RðsÞ on B must then yield residuals that are a
T þ 1 column vector of zeros

0 ¼ RðsÞ � BðB0BÞ�1B0RðsÞ (21)

for any s 2 ð0; 1Þ. Differentiation of (21) with respect to s yields

0 ¼
qRðsÞ

qs
� BðB0BÞ�1B0

qRðsÞ

qs
. (22)

It follows that qRðsÞ=qs lies in the column space of B, too. Reapplication of the same
argument with qRðsÞ=qs in place of RðsÞ shows that derivatives of RðsÞ of any order
must lie in the column space of B. But clearly the jth derivative of RðsÞ has zeros in
the first j rows and no zeros in all other rows, so that the derivatives of order zero to
T form a basis of RTþ1. It cannot be true that they all lie in the column space of B at
the same time.
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Proof of Theorem 2. The proof is similar to the proof of Theorem 3 of ME, we only
need to consider the larger column space of X ¼ ðX 0; . . . ;X T Þ

0, which we generate by
considering the additional regressor frt � 1g. We focus on the time trend case, so that
we define Z as the ðT þ 1Þ � 3 matrix with tth row ð1; t; rt � 1Þ. The mean case is
proved analogously.

First note that the results (i) and (iii) of Lemma 1 of ME extend to the T � 4
matrix ~B with tth row ð1; t;rt; rtÞ with the same proof, simply redefine ~C as the T � 4
matrix with tth row Ct ¼ ð0; 1;�grt;�grtÞ and proceed as in ME.

Define S�0 , S
�
1 ,

~V
�1
, c and ~jðcÞ as in the proof of Theorem 3 of ME. Let ~r¼1�c=T ,

~HðcÞ ¼ ð~eþ cT�1~t�1; cT�1 ~eþ ðc� gÞT�1 ~Rð~rÞ=~rÞ0, U1 ¼ diagðT1=2;T�1=2;T1=2Þ and

U0¼diagð1;T�1=2;T1=2Þ. Then U1Z0S�1 ZU1¼diagð2go�2;T�1 ~HðgÞ0 ~V
�1 ~HðgÞÞ, U0Z0

S�0 ZU0 ¼ diagð1;T�1 ~Hð0Þ0 ~V
�1 ~Hð0ÞÞ, U1Z0S�1 u ¼ ð0;T�1=2 ~HðgÞ0 ~V

�1
~jðgÞÞ0 and U0Z0

S�0 u ¼ ð0;T�1=2 ~Hð0Þ0 ~V
�1
~jð0ÞÞ0. Proceeding as in ME, we find by applying (the

slightly generalized) Lemma 1 of ME, (10) and the continuous mapping theorem that

PinvðgÞ ) g ~M
tR
ð1Þ2 � gþ g2

Z
~M
tR
ðsÞ2 ds

�
ðgþ 1Þ ~M

tR
ð1Þ

g ~M
tR
ð1Þ þ g2

R
~M
tR
ðsÞ ds

0
@

1
A
0 R
ð1þ gsÞ2 ds

R
gð1þ gsÞdsR

gð1þ gsÞds g2

0
@

1
A
�1

�
ðgþ 1Þ ~M

tR
ð1Þ

g ~M
tR
ð1Þ þ g2

R
~M
tR
ðsÞds

0
@

1
Aþ ~M

tR
ð1Þ

g2
R
~M
tR
ðsÞ þ ge�g ~M

tR
ð1Þ

0
@

1
A
0

�
1 �g

R
e�gs ds

�g
R
e�gs ds g2

R
e�2gs ds

 !�1 ~M
tR
ð1Þ

g2
R
~M
tR
ðsÞ þ ge�g ~M

tR
ð1Þ

0
@

1
A,

ð23Þ

where ~M
tR
ðsÞ is the continuous time projection of MðsÞ off ðs; 1� e�gsÞ, such thatR

~M
tR
ðsÞð1� e�gsÞds ¼ 0 implies

R
~M
tR
ðsÞe�gs ds ¼

R
~M
tR
ðsÞds. The result now

follows from the relationship between ~M
tR
ðsÞ and MtR ðsÞ after some straightforward

but tedious algebra.

Proof of Lemma 1. The proof follows closely the method developed in Nabeya and
Tanaka (1990) and Tanaka (1996, p. 109). A similar result may also be found in
Elliott and Stock (2001). We have to take care, however, how a enters the picture.

By Girsanov’s Theorem, the Radon–Nikodym derivative of the measure of the Itô
Process G with Gð0Þ ¼ 0 and

dGðsÞ ¼ �WGðsÞ �
ffiffi
2
p

2
aW1=2 þ dW ðsÞ (24)

with respect to the measure of the Wiener process W, evaluated at G, is given by

exp �

Z
ðWGðsÞ þ

ffiffiffi
2
p

2
aW1=2ÞdGðsÞ �

1

2

Z
ðWGðsÞ þ

ffiffiffi
2
p

2
aW1=2Þ2 ds

" #
. (25)
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The Radon–Nikodym derivative of the measure of M as defined in (10), i.e. the process G

with a ¼ a and W ¼ g, with respect to the measure of the process d ~MðsÞ ¼
�d ~MðsÞ þ dW ðsÞ, i.e. G with a ¼ 0 and W ¼ d, evaluated at ~M is hence given by

exp ðd� gÞ
Z

~MðsÞd ~MðsÞ þ
1

2
ðd2 � g2Þ

Z
~MðsÞ2 ds

�

�ð2gÞ�1=2a g ~Mð1Þ þ g2
Z

~MðsÞds

� �
�

1

4
a2g
�
.

Therefore

fðyÞ ¼ E½expfyCig�, ð26Þ

¼ ~E exp yl0i�
1

2
ðd� gÞ �

1

4
a2g

��

þ yl1i�
1

2
ðg2 � d2Þ

� �Z
MðsÞ2 dsþH 0 ~LH þ ~l

0
H

��
, ð27Þ

¼ expfyl0i�
1
2
ðd� gÞ � 1

4
a2gg ~E½expfH 0 ~LH þ ~l

0
Hg�, ð28Þ

where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 2l1yi

p
and ~E denotes the expectation of M with respect to the measure

of ~M.
But under the measure of ~M, H is Gaussian, and by ‘completing the square’

~E½expfH 0 ~LH þ ~l
0
Hg� ¼ ð2pÞ�‘=2jV ðdÞj�1=2

�

Z 1
�1

exp �
1

2
½H 0ðV ðdÞ�1 � 2 ~LÞH � 2~l

0
H�

� �
dH,

ð29Þ

¼ jI ‘ � 2V ðdÞ ~Lj�1=2 exp
1

2
~l
0
ðV ðdÞ�1 � 2 ~LÞ�1 ~l

� �
. ð30Þ

The last line follows after noting that ~E½H� ¼ 0 and, with ~m ¼ ðV ðdÞ�1 � 2 ~LÞ�1 ~l, that
ðH � ~mÞ0ðV ðdÞ�1 � 2 ~LÞðH � ~mÞ ¼ H 0ðV ðdÞ�1 � 2 ~LÞH � 2~l

0
H þ ~l

0
ðV ðdÞ�1 � 2 ~LÞ�1 ~l.

For the second claim of the Lemma, note that the definition of ~Mð�Þ and some
stochastic calculus yields for a ¼ 0 that H�

R
ðg1ðsÞ; . . . ; g‘ðsÞÞ

0 dW ðsÞ, and the result
follows.

Derivation of km
� and kt

�.
We focus on km

�, the derivations for kt
� are analogous but highly tedious and are

omitted for brevity.
From direct calculations

Kmð0Þ ¼ a
g� 1þ e�gffiffiffi

2
p

g3=2
, ð31Þ

Kmð1Þ ¼ a
e�gð1þ gÞ � 1ffiffiffi

2
p

g3=2
, ð32Þ

Z
KmðsÞ2 ds ¼ a2

4e�g þ g� 2� e�2gðgþ 2Þ

4g3
, ð33Þ
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q
m
0¼�g, q

m
1¼�gð1þgÞðk�2Þ=ð2þgkÞ, q

m
2¼ð2g�gkþg2kÞ=ð2þgkÞ, q

m
3¼2gðk�2Þ=

ð2þ gkÞ, q
m
4 ¼ g2. Hence

q
m
1Kmð0Þ2 þ q

m
2Kmð1Þ2 þ q

m
3Kmð0ÞKmð1Þ þ q

m
4

Z
KmðsÞ2 ds ð34Þ

¼ a2 �
gð1þ gÞðk � 2Þ

2þ gk

g� 1þ e�gffiffiffi
2
p

g3=2

� �2

þ
2g� gk þ g2k

2þ gk

e�gð1þ gÞ � 1ffiffiffi
2
p

g3=2

� �2
"

þ
2gðk � 2Þ

2þ gk

� �
g� 1þ e�gffiffiffi

2
p

g3=2

� �
e�gð1þ gÞ � 1ffiffiffi

2
p

g3=2

� �
þ g2 4e

�g þ g� 2� e�2gðgþ 2Þ

4g3

#
,

¼
1

4
a2 �1þ e�2g þ

4g

2þ gk

� �
ð35Þ

from the definition of q
m
i in (12). Setting this expression to zero and solving for k yields km

�.

References

Chan, N., Wei, C., 1987. Asymptotic inference for nearly nonstationary AR(1) processes. The Annals of

Statistics 15, 1050–1063.

Dickey, D., Fuller, W., 1979. Distribution of the estimators for autoregressive time series with a unit root.

Journal of the American Statistical Association 74, 427–431.

Dufour, J.-M., King, M., 1991. Optimal invariant tests for the autocorrelation coefficient in linear

regressions with stationary or nonstationary AR(1) errors. Journal of Econometrics 47, 115–143.

Elliott, G., 1999. Efficient tests for a unit root when the initial observation is drawn from its unconditional

distribution. International Economic Review 40, 767–783.

Elliott, G., Rothenberg, T., Stock, J., 1996. Efficient tests for an autoregressive unit root. Econometrica

64, 813–836.

Elliott, G., Stock, J., 2001. Confidence intervals for autoregressive coefficients near one. Journal of

Econometrics 103, 155–181.

Evans, G., Savin, N., 1981. Testing for unit roots: 1. Econometrica 49, 753–779.

Evans, G., Savin, N., 1984. Testing for unit roots: 2. Econometrica 52, 1241–1269.

Harvey, A., Bates, D., 2003. Multivariate unit root tests and testing for convergence. Cambridge Working

Paper in Economics 0301.

Harvey, D., Leybourne, S., 2005. On testing for unit roots and the initial observation. The Econometrics

Journal 8, 97–111.

Lothian, J., Taylor, M., 1996. Real exchange rate behavior: the recent float from the perspective of the

past two centuries. Journal of Political Economy 104, 488–509.

Müller, U., Elliott, G., 2003. Tests for unit roots and the initial condition. Econometrica 71, 1269–1286.

Nabeya, S., Tanaka, K., 1990. Limiting power of unit-root tests in time-series regression. Journal of

Econometrics 46, 247–271.

Ng, S., Perron, P., 2001. Lag length selection and the construction of unit root tests with good size and

power. Econometrica 69, 1519–1554.

Phillips, P., 1987. Towards a unified asymptotic theory for autoregression. Biometrika 74, 535–547.

Stock, J., 1994. Unit roots, structural breaks and trends. In: Engle, R., McFadden, D. (Eds.), Handbook

of Econometrics, vol. 1. North-Holland, New York, pp. 2740–2841.

Stock, J., 2000. A class of tests for integration and cointegration. In: Engle, R., White, H. (Eds.),

Cointegration, Causality, and Forecasting—A Festschrift in Honour of Clive W.J. Granger. Oxford

University Press, Cambridge, pp. 135–167.

Tanaka, K., 1996. Time Series Analysis—Nonstationary and Noninvertible Distribution Theory. Wiley,

New York.


	Minimizing the impact of the initial condition �on testing for unit roots
	Introduction
	The dependence of unit root tests on the initial condition
	Asymptotic analysis
	An efficient test with good power for arbitrary initial conditions
	Asymptotic properties of Pinv
	Local asymptotic power

	Monte Carlo evidence
	Conclusion
	Acknowledgements
	Appendix
	References


