Generalized Local-to-Unity Models

Liyu Dou and Ulrich K. Müller
CUHK Shenzen and Princeton University

July 2020
Motivation

• Many macroeconomic and financial series are highly persistent
 GDP and its aggregates, unemployment, interest rates, price-dividends ratio, etc.

• I(1) model statistically reasonable benchmark
 Unit root tests often inconclusive or only weak rejections

• I(1) persistence leads to alternative (frequentist) econometrics
Fragility of I(1) Inference

• I(1) inference valid or at least conservative for all strongly persistent series?
 No! Elliott (1998): Local-to-unity (LTU) common stochastic trend x_t
 $$(1 - \rho_T L)x_t = u_t, \quad \rho_T = 1 - c/T$$
 invalidates cointegration inference

• Robust inference under local-to-unity asymptotics
Properties of LTU Model

• Asymptotics on unit interval

\[T^{-1/2}(x_{\lfloor T \rfloor} - x_1) \Rightarrow J_1(\cdot) - J_1(0) \]

where \(J_1 \) is continuous time Gaussian AR(1) (“Ornstein Uhlenbeck process”) satisfying

\[dJ_1(s) = -cJ_1(s)ds + dW(s) \]

so \(x_t \) has AR(1) “long-run” dynamics \(\text{Corr}(x_{\lfloor sT \rfloor}, x_{\lfloor rT \rfloor}) \rightarrow e^{-c|r-s|} \)

• Key parameter \(c \) cannot be consistently estimated, \(c = 0 \) corresponds to \(I(1) \) model

 – Arguably good thing, since \(I(1) \) model is reasonable benchmark

 Measure of \(J_1(\cdot) - J_1(0) \) is equivalent to Wiener measure

 – Leads to more complicated inference
This Paper: Generalized LTU Model

- Fragility of LTU model inference? Generalize to GLTU(p) model with richer long-run dynamics

\[(1 - \rho_{T,1}L) \cdots (1 - \rho_{T,p}L)x_t = (1 - \gamma_{T,1}L) \cdots (1 - \gamma_{T,p-1}L)u_t,\]

where $\rho_{T,j} = 1 - c_j/T$ and $\gamma_{T,j} = 1 - g_j/T$, so GLTU(1) \triangleq LTU

- **Theorem 1**

\[T^{-1/2}x_{[T]} \Rightarrow J_p(\cdot)\]

where J_p is stationary Gaussian CARMA(p, $p-1$) process with parameters $\{c_j\}_{j=1}^p$ and $\{g_j\}_{j=1}^{p-1}$

- Choice of (p, $p-1$) orders ensures that measure of $J_p(\cdot) - J_p(0)$ remains equivalent to $W(\cdot)$ (while CARMA(p, $p-2$), for instance, has measure equivalent to an integrated Wiener process)
This Paper II: Richness of GLTU Model Class

- Fragility of GLTU model inference?

- Theorem 2
 - Let G be a given stationary Gaussian continuous time process whose measure of $G(\cdot) - G(0)$ is equivalent to Wiener measure (+ weak technical condition on its spectral density).

 - For any $\varepsilon > 0$, there exists a Gaussian CARMA($p_\varepsilon, p_\varepsilon - 1$) process $J_{p_\varepsilon}(\cdot)$ such that total variation distance between $G(\cdot)$ and $J_{p_\varepsilon}(\cdot)$ is smaller than ε.

Roughly speaking, GLTU class can approximate all stationary forms of persistence that cannot be perfectly discriminated from I(1) model in large samples.
This Paper III: Estimation of GLTU\((p)\) Model

- For given fixed \(N\), by continuous mapping theorem

\[
\left\{ T^{-1/2} x_{\lfloor jT/N \rfloor} \right\}_{j=1}^{N} \Rightarrow \left\{ J_p(j/N) \right\}_{j=1}^{N}.
\]

Asymptotically justified to treat \(x_{\lfloor jT/N \rfloor}\) as discretely sampled observations from Gaussian CARMA\((p, p - 1)\) process

- Literature contains suggestions for likelihood evaluation of discretely observed CARMA process

 But involve matrix exponentials and/or complex valued state-space systems

- **Result:** Arbitrarily good approximation of this *limited information* likelihood via straightforward real Kalman filter

 Still only limited information about \(\{c_j\}_{j=1}^{p}\) and \(\{g_j\}_{j=1}^{p-1}\), so frequentist inference generically hard
Outline of Talk

1. Introduction

2. GLTU Asymptotics

3. Richness Theorem

4. Limited Information Likelihood Approximation

5. Applications
GLTU(p) Model

- Stationary observed series $x_t, t = 1, \ldots, T$ satisfies

$$(1 - \rho_{T,1}L) \cdots (1 - \rho_{T,p}L)x_t = (1 - \gamma_{T,1}L) \cdots (1 - \gamma_{T,p-1}L)u_t,$$

where $\rho_{T,j} = 1 - c_j/T$ and $\gamma_{T,j} = 1 - g_j/T$

- u_t stationary and I(0) in the sense of $T^{-1/2} \sum_{t=1}^{\lfloor T \rfloor} u_t \Rightarrow W(\cdot)$

- Parameter space for $\{c_j\}_{j=1}^{p}$ and $\{g_j\}_{j=1}^{p-1}$: Polynomials

$$a(z) = \prod_{j=1}^{p} (c_j + z) = z^p + \sum_{j=1}^{p} a_j z^{p-j}$$

$$b(z) = \prod_{j=1}^{p-1} (g_j + z) = z^{p-1} + \sum_{j=0}^{p-2} b_j z^j$$

have real coefficients a_j, b_j
CARMA\((p, p - 1)\) Model \(J_p(\cdot)\)

\(J_p(\cdot)\) is process on unit interval satisfying

\[J_p(s) = b'X(s) \]

where \(p \times 1\) process \(X(\cdot)\) satisfies

\[X(s) = \int_{-\infty}^{s} e^{A(s-r)}edW(r) \]

with

\[
A = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_p & -a_{p-1} & -a_{p-2} & \cdots & -a_1 \\
\end{pmatrix},
\]

\[
b = \begin{pmatrix}
b_0 \\
b_1 \\
\vdots \\
b_{p-2} \\
1 \\
\end{pmatrix},
\]

\[
e = \begin{pmatrix}
0 \\
0 \\
\vdots \\
0 \\
1 \\
\end{pmatrix} \]
GLTU\((p)\) Asymptotics

- By standard state space representation of ARMA\((p, p - 1)\) process

\[
x_t = \theta_T' V_t \\
V_t = \Phi_T V_{t-1} + e u_t
\]

where \(V_t = (v_{t-p+1}, \ldots, v_{t-1}, v_t)' \),

\[
\Phi_T = \begin{pmatrix}
0 & 1 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
-\phi_{T,p} & -\phi_{T,p-1} & \cdots & -\phi_{T,1}
\end{pmatrix}, \quad \theta_T = \begin{pmatrix}
\theta_{T,0} \\
\theta_{T,1} \\
\vdots \\
\theta_{T,p-2} \\
1
\end{pmatrix}, \quad e = \begin{pmatrix}
0 \\
0 \\
\vdots \\
0 \\
1
\end{pmatrix}
\]

\[
\prod_{j=1}^{p} (z - \rho_{T,j}) = z^p + \sum_{j=1}^{p} \phi_{T,j} z^{p-j} \quad \text{and} \quad \prod_{j=1}^{p-1} (z - \gamma_{T,j}) = z^{p-1} + \sum_{j=0}^{p-2} \theta_{T,j} z^j
\]

- But not helpful for GLTU asymptotics, since no obvious convergence in

\[
T^{-1/2} V_{[sT]} = T^{-1/2} \sum_{t=-\infty}^{[sT]} \Phi_T^{[sT]-t} e u_t \quad \text{for} \quad p > 1 \ldots
\]
GLTU(p) Asymptotics II

- Key insight: Above system can be rewritten as

$$x_t = b'Z_t$$
$$Z_t = (I_p + A/T)Z_{t-1} + eu_t$$

where $Z_t \in \mathbb{R}^p$, with A and b as in definition of CARMA($p, p-1$) process

- Now

$$T^{-1/2}Z_{[sT]} = T^{-1/2} \sum_{t=-\infty}^{[sT]} (I_p + A/T)^{-t}e_{u_t},$$

strongly suggesting $T^{-1/2}Z_{[sT]} \Rightarrow X(s) = \int_{-\infty}^{s} e^{A(s-t)}edW(r)$

Theorem 1 GLTU(p) model satisfies $T^{-1/2}x_{[\cdot,T]} \Rightarrow J_p(\cdot)$.
Richness of GLTU Model Class

Theorem 2 Let G be a mean-zero continuous time stationary Gaussian process on the unit interval satisfying

(i) $G(\cdot) - G(0)$ is absolutely continuous with respect to the measure of W;

(ii) G has a spectral density $f_G : \mathbb{R} \to [0, \infty)$ satisfying $\sup_{\lambda} (1 + \lambda^2) f_G(\lambda) < \infty$ and $\inf_{\lambda} (1 + \lambda^2) f_G(\lambda) > 0$.

For any $\varepsilon > 0$, there exists a CARMA($p_\varepsilon, p_\varepsilon - 1$) process J_{p_ε} such that the total variation distance between the measures of G and J_{p_ε} is smaller than ε.
Proof of Theorem 2

• Spectral density of $J_p(\cdot)$ is $f_p : \mathbb{R} \mapsto \mathbb{R}$

$$f_p(\lambda) = \frac{\omega^2 |b(i\lambda)|^2}{2\pi |a(i\lambda)|^2} = \frac{\omega^2 \prod_{j=1}^{q-1}(\lambda^2 + g_j^2)}{2\pi \prod_{j=1}^{q}(\lambda^2 + c_j^2)}$$

Can approximate spectral density f_G of G over compact intervals arbitrarily well

• Tail of spectral density governs high frequency properties

Leverage classic results of Ibragimov and Rozanov (1978) on equivalence (but not approximability) of Gaussian processes
Limited Information Likelihood Approximation

- **Corollary of Theorem 1** For fixed N,

\[
\{T^{-1/2}x_{jT/N}\}_{j=1}^N \Rightarrow \{J_p(j/N)\}_{j=1}^N.
\]

- For $t = 1, \ldots, T_0$ and some large T_0, define Gaussian ARMA($p, p - 1$) process

\[
(1 - \rho_{T_0,1}L) \cdots (1 - \rho_{T_0,p}L)x_t^0 = (1 - \gamma_{T_0,1}L) \cdots (1 - \gamma_{T_0,p-1}L)u_t^0
\]

with $\rho_{T_0,j} = 1 - c_j/T_0$ and $\gamma_{T_0,j} = 1 - g_j/T_0$.

Also satisfies \(\{T_0^{-1/2}x_{[jT_0/N]}\}_{j=1}^N \Rightarrow \{J_p(j/N)\}_{j=1}^N\).

- Write x_t^0 in standard state space form, treat all observations other than \(\{x_{jT_0/N}\}_{j=1}^N\) as missing, and employ Kalman filter

Approximates joint Gaussian likelihood of \(\{J_p(j/N)\}_{j=1}^N\) arbitrarily well as $T_0 \to \infty$.
Two Applications

1. Fragility of LTU inference of Campbell and Yogo (2006)

2. Bayesian limited-information inference about PPP deviations in GLTU(p) model
Campbell-Yogo (2006) in GLTU(2) Model

- Model for stock returns y_t and price dividend ratio x_t

$$y_t = \mu_y + \beta x_{t-1} + \varepsilon_t,$$

$$(1 - \rho_T L)(x_t - \mu) = u_t$$

where (ε_t, u_t) are weakly dependent with long-run correlation r_{eu}.

- Suppose instead

$$(1 - \rho_{T,1} L)(1 - \rho_{T,2} L)(x_t - \mu) = (1 - \gamma_{T,1} L)u_t$$

governed by parameters (c_1, c_2, g_1) instead of single LTU parameter c.

- Does Campbell-Yogo test still yield valid inference? If not, how badly is its size distorted?
Obtain set of “empirically plausible” values for \((c_1, c_2, g_1)\) that are within 2 limited information log-likelihood points of MLE, \(N = 50\)
Campbell-Yogo (2006) in GLTU(2) Model

<table>
<thead>
<tr>
<th>Example No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value of c_1</td>
<td>70.9</td>
<td>70.0</td>
<td>60.6</td>
<td>29.8</td>
</tr>
<tr>
<td>Value of c_2</td>
<td>4.4</td>
<td>4.4</td>
<td>11.1</td>
<td>6.0</td>
</tr>
<tr>
<td>Value of g_1</td>
<td>7.3</td>
<td>11.7</td>
<td>24.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Null rejection probability</td>
<td>49.8%</td>
<td>46.6%</td>
<td>41.2%</td>
<td>40.3%</td>
</tr>
</tbody>
</table>

Severely invalid inference under empirically plausible departures of LTU model
Persistence of Long-Run PPP Deviations

- Use GLTU(p) model for PPP deviations of US/UK real exchange rate

- For given value of p, Bayesian limited information inference for $N = 50$

- Prior also asymptotically important. Normalized such that for each p, prior on half-life in years is flat on $[3, 50]$
Posterior for US/UK Exchange Rate

$p \geq 1$ leads to substantially longer half-lives
Conclusions

• Flexible model for large sample persistence in economic time series

• Nearly unconstrained starting point for stationary processes that are not entirely different from benchmark I(1) model

• Frequentist inference difficult due to additional nuisance parameters that cannot be consistently estimated
 – But not a good reason to insist that such richer dynamics cannot exist
 – Potential constructive approach is Bayesian analysis with careful prior