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There are a large number of tests for instability or breaks in coefficients in regression models de-
signed for different possible departures from the stable model. We make two contributions to this litera-
ture. First, we consider a large class of persistent breaking processes that lead to asymptotically equivalent
efficient tests. Our class allows for many or relatively few breaks, clustered breaks, regularly occurring
breaks, or smooth transitions to changes in the regression coefficients. Thus, asymptotically nothing is
gained by knowing the exact breaking process of the class. Second, we provide a test statistic that is
simple to compute, avoids any need for searching over high dimensions when there are many breaks,
is valid for a wide range of data-generating processes and has good power and size properties even in
heteroscedastic models.

1. INTRODUCTION

It is reasonable to expect that there is some instability in most econometric relationships across
time or space. In cross sections, there is likely (as is typically found in longitudinal data) some
degree of heterogeneity among agents. In time series, changing market conditions, rules and reg-
ulations, etc. will also result in heterogeneity in the relationships. So long as this heterogeneity is
not “too strong”, standard regression methods still have reasonable properties with the replace-
ment of “true” values of the coefficients with averages of the individual or inter-temporal true
values of coefficients (see White, 2001, for precise results for limit theory under heterogene-
ity). If the heterogeneity is of a stronger form, then inference using standard methods will be
misleading.

For this reason there is a large literature on testing for instability or “breaks” in parameters in
time series regressions (restrictions to time series reduce the dimension of the problem since there
is a natural ordering to the data). We consider tests of the null hypothesis of a stable linear model
yt = X ′

t β̄ + Z ′
tδ + εt against the alternative of a partially unstable model yt = X ′

tβt + Z ′
tδ + εt ,

where the variation in βt is of the strong form.
The literature on this problem is huge as numerous difficulties have arisen in testing this pos-

sibility. The diversity of testing approaches in this literature follows primarily from the diversity

1. This paper is a revision of an earlier working paper circulated under the title “Optimally Testing General Break-
ing Processes in Linear Time Series Models”.
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of possible ways {βt } can be non-constant. Tests have been derived for many different posited
models of the breaking process {βt }, despite theory giving relatively little guide as to what alter-
natives to expect in practice. Tests developed for one model of a non-constant {βt } may not be
useful for other possible models. A secondary effect is that many of the tests for each of these
models are justified on the grounds that they provide consistent tests rather than an appeal to
being optimal for some particular model. Progress has been made in examining optimality for
particular special models of the alternative. But for many plausible models of the breaking pro-
cess optimal tests have not been derived, and to do so requires overcoming many difficulties.
Even when optimal tests have been derived, they often become computationally very involved,
since they require searching over all possible combinations of the break dates. Alternatively, for
other cases the test statistic is simple to compute but asymptotic distributions are not available
for construction of valid critical values under realistic assumptions.

This paper analyses tests for parameter stability in a single unified framework. We point
out that when restricting attention to efficient tests, the seemingly different approaches of “struc-
tural breaks” and “random coefficients” are in fact equivalent. Thus approaches that describe the
breaking process with a number of non-random parameters are unified with tests that specify
stochastic processes for {βt }. The crucial determinant of any efficient test for structural stability
is the assumption it makes for the evolution of {βt }. We argue that for most applications, it is rea-
sonable to focus on testing against the alternative of persistent time variation in {βt }, although that
clearly leaves a myriad of possibilities for the exact evolution of {βt }. Making further progress
hence requires a systematic investigation of the impact of the specific choice of persistent process
under the alternative on efficient tests of parameter stability.

This paper carries out such an investigation in a novel analytical framework. We consider
general mean-zero and persistent breaking processes such that the scaled parameter coefficients
converge weakly to a Wiener process. The processes we study include breaks that occur in a
random fashion, serial correlation in the changes of the coefficients, a clustering of break dates,
and so forth. The main result is that under a normality assumption on the disturbances, small
sample efficient tests in this broad set are asymptotically equivalent. Optimal tests for any spe-
cific breaking process that satisfies our assumptions are interchangeable with an optimal test
for another breaking process that satisfies the assumptions—the tests are asymptotically equally
capable of distinguishing the null hypothesis from any of the breaking processes we examine.
We hence show that leaving the exact breaking process unspecified (apart from a scaling pa-
rameter) does not result in a loss of power in large samples. In a simulation section, we show
this asymptotic result to be an accurate prediction for some simple small sample data-generating
processes: for 100 observations and a martingale assumption on {βt } with five known break
dates, the gain in power of the small sample efficient invariant tests over asymptotically equiv-
alent tests that focus on Gaussian random walk variation in {βt } never exceeds five percentage
points.

An important precursor to this work is Nyblom’s (1989) result that the small sample locally
best test is unique as long as {βt } follows a martingale. Locally best tests maximize the slope
of the power function at the null hypothesis of a stable model, where power and the level of
a test coincide. In contrast, our asymptotic equivalence result concerns the behaviour of tests at
distinguishable alternatives, that is at alternatives where tests have power between level and unity.
At the same time, our set of breaking processes neither contains nor is contained in the class of
all martingales.

Our equivalence result has a number of positive implications for testing for breaks, both
theoretically and empirically. From a theoretical perspective, the equivalence of power over many
models means that there is little point in deriving further optimal tests for particular processes in
our set. Doing so will not lead to any substantive power gains over tests already in the literature
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or the one developed here. From a practical perspective it means that the researcher does not have
to specify the exact path of the breaking process in order to be able to carry out (almost) efficient
inference. This is fortunate for applied work—for many of the breaking processes optimal tests
are highly cumbersome to derive, and in most cases theory provides no guidance as to what form
of time variation to expect.

Finally, we suggest a new, easy-to-compute statistic that is asymptotically point-optimal for
our broad set of breaking processes. It remains valid under very general specifications of the error
term, including heteroscedasticity as well as general assumptions on the covariates. The proposed
test has a number of advantages over previously suggested tests. Computation of the test statistic
requires no more than k + 1 ordinary least squares (OLS) regressions, where k is the dimension
of the vector Xt . This is a significant simplification over tests that require computations for each
possible combination of break dates. Our test statistic requires no trimming of the data, often
a feature of other tests for breaks. This simplifies testing not only in regards to programming
the test statistic, but also avoids the awkward and empirically relevant dependence of the test
outcome on the trimming parameter. Finally, we find that our statistic has superior size control
in small samples than other popular tests, particularly when the disturbances are heteroscedastic.
Since the implications of our theoretical results are that among reasonable tests power will be
very comparable, it would seem that simplicity of construction and good size control are strong
reasons to choose between available tests.

The following section examines the testing problem and describes the new test statistic. In
the third section we establish the asymptotic equivalence of optimal tests for a large class of
breaking processes. The construction of the recommended point-optimal statistic is taken up in
Section 4, and Section 5 evaluates the small sample size and power of a number of tests for time
variation in βt . A final section concludes. Proofs are collected in an appendix.

2. THE MODEL AND TESTS FOR BREAKS

This paper is concerned with distinguishing the null hypothesis of a stable regression model

yt = X ′
t β̄ + Z ′

tδ + εt t = 1, . . . ,T (1)

from the alternative hypothesis of the unstable model

yt = X ′
tβt + Z ′

tδ + εt t = 1, . . . ,T (2)

with non-constant {βt}, where yt is a scalar, Xt ,βt are k ×1 vectors, Zt and δ are d ×1,{yt , Xt , Zt}
are observed, β̄,{βt}, and δ are unknown, and εt is a mean-zero disturbance. In words, we want
to test whether the coefficient vector that links the observables Xt to yt remains stable over time,
while allowing for other stable links between yt and the observables through Zt . We focus on a
situation where there is little or no reliable information on the form of potential instabilities.

Hypothesis tests that distinguish between models (1) and (2) have received a great deal
of attention in both the statistical and econometrics literature. It might usefully be organized
into two strands: the “structural break” literature, which views the path of {βt } under the alter-
native as unknown but fixed and described by vector of unknown parameters, and the “time-
varying parameter” literature, which views {βt } under the alternative as random with some
distribution.

c© 2006 The Review of Economic Studies Limited
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The “structural break” literature posits a model with a fixed number N of breaks at fixed
points in time τi ,

βt = β̄0 for t < τ1

βt = β̄1 for τ1 ≤ t < τ2

... (3)

βt = β̄N−1 for τN−1 ≤ t < τN

βt = β̄N for τN ≤ t ≤ T

where β̄i are non-zero for i = 1, . . . , N .
By far the most attention has been given to the single break model in which N = 1. In this

literature, β̄0, β̄1, and τ1 are fixed but unknown parameters. With τ1 unknown, Quandt (1958,
1960) suggested considering the maximum of the usual Chow (1960) F-tests computed over all
possible τ1, denoted here by supF. This search over a set of dependent F-statistics results in the
asymptotic distribution of the test ceasing to be χ2. Andrews (1993) derives asymptotic proper-
ties of such tests. Many other tests have been suggested (e.g. Brown, Durbin and Evans, 1975;
Ploberger, Krämer and Kontrus, 1989; Ploberger and Krämer, 1992). Fewer results are available
when N > 1. Bai and Perron (1998) extend the Quandt approach and examine the maximum of
the F-statistics over all combinations of (τ1, . . . ,τN ). Because the number of break date combi-
nations becomes huge even for moderate N (with T = 100 and N = 5, there are over 75 million
combinations), they employ some clever dynamic programming and additional assumptions on
the breaking process to implement such a test. Most tests are motivated on consistency grounds,
which often provides no reason to distinguish between them or think that they provide “best”
tests. And though the supF statistics can be naturally motivated as generalized likelihood ratio
tests, this does not necessarily make them desirable tests. Under the null hypothesis the break
dates τ j are unidentified, which strips standard testing procedures like the likelihood ratio and
Wald or Lagrange multiplier tests of their usual asymptotic optimality properties.2 Andrews and
Ploberger (1994) have devised an optimal method for dealing with testing problems of this kind,
which can also be applied to testing structural stability against (3). Their procedure is (asymp-
totically) optimal in the sense of maximizing a weighted average power criterion: for each fixed
set of break dates and magnitudes (β̄ j − β̄ j−1), the power of a test is potentially different. In
choosing among possible tests, Andrews and Ploberger (1994) identify the test that maximizes
the weighted average of these powers, where the non-negative weighting is over the magnitude of
the breaks and over the break dates under the alternative. Using the same criterion, Sowell (1996)
derives asymptotically optimal tests for the set of statistics that are continuous functionals of the
partial sums of the sample moment condition. By choosing the weighting over the magnitude of
the breaks as a Gaussian density function, the expressions for these test statistics become much
more compact, but still involve a sum over all combinations of break dates. While not posing
any conceptual difficulties, even a moderate N thus leads to computationally very cumbersome
test statistics. Andrews, Lee and Ploberger (1996) and Forchini (2002) derive analogous small
sample optimal statistics, but calculations are only made for N = 1.

The “time-varying parameter” literature approaches the problem from a seemingly very dif-
ferent angle. There the non-constant {βt } is viewed as being random, and contributions to this
strand differ in the probability law they pose for {βt }. While some studies investigate mod-
els in which {βt } deviates only temporarily from a constant (e.g. Watson and Engle, 1985;
Shively, 1988a), the majority of studies have considered the model where deviations of {βt } are

2. Andrews and Ploberger (1995) showed, however, that the supF statistic does possess an optimality property.
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permanent. In these models the alternative hypothesis is that {βt } follows a random walk. In the
case where Xt = 1 this model is the “unobserved components” model examined in Chernoff and
Zacks (1964) and Nyblom and Mäkeläinen (1983). For more general stationary Xt the model has
been examined in Garbade (1977), LaMotte and McWorter (1978), Franzini and Harvey (1983),
Nabeya and Tanaka (1988), Shively (1988b), Leybourne and McCabe (1989), Nyblom (1989),
and Saikkonen and Luukonen (1993)—see the annotated bibliography by Hackl and Westlund
(1989) for further references. More recently, there has been a renewed interest in a fully Bayesian
analysis of such models. Chib (1998), Koop and Potter (2004), and Giordani, Kohn and van Dijk
(2005) employ Markov Chain Monte Carlo methods to overcome computational challenges. Also
see Pesaran, Pettenuzzo and Timmermann (2004) for an application to forecasting.

As with the deterministic approach, optimal tests have been derived in closed form only for
the simplest cases. With distributional assumptions for {εt } and {βt }, efficient tests are given by
the likelihood ratio statistic. The difficulty consists of analysing the likelihood of the model under
both the null and alternative hypothesis—even for independent Gaussian disturbances {εt } and
a Gaussian random walk of {βt } the resulting expressions are such complicated functions of the
observables that the asymptotic distributions have not been derived for non-constant covariates.
As a by-product of our derivations in Section 3, we derive this analytical result, enabling the
computation of asymptotic critical values. For more complicated processes, this is even more
difficult and, in general, depends on the specific alternative.

As noted in the introduction, a focus on the slope of the power function greatly simplifies
testing for time variation: Nyblom (1989) establishes the remarkable result that for β0 and δ
known, the small sample locally best test of parameter constancy is unique as long as {βt } follows
a martingale. The generality and implications of this result are not quite clear, however. Not all
economically interesting processes for {βt } are martingales. Furthermore, in non-standard testing
problems local optimality does not necessarily imply good power relative to other tests even for
alternatives very close to the null hypothesis. In the case of testing for a unit root, for instance,
the locally best test has significantly lower power against local alternatives than nearly all other
tests—see Stock (1994).

Despite their different rationales, we would suspect that tests against a time-varying param-
eter have power against the alternative of structural breaks and vice versa. Ploberger et al. (1989)
show the consistency of their approach against a wide range of alternatives, and Stock and Wat-
son (1998) derive the asymptotic local power of the supF statistic and the Andrews and Ploberger
(1994) tests in a time-varying parameter model. But the relationship between tests for these two
models runs deeper than this insight.

Consider the typical path of {βt } in a time-varying parameter model with βt =∑t
s=1 ws,ws

independent zero-mean Gaussian variates. This is quite different from a model with N breaks
such as (3). But, as noted by Nyblom (1989), we could let wt have a continuous distribution with
probability p and wt = 0 with probability (1− p). The number of breaks N in βt (i.e. the number
of �βt which are non-zero) then follows a Poisson distribution with E[N ] = (T − 1)p. The
outcome of such a model can hence be cast in terms of model (3), with N and {β̄0, β̄1, . . . , β̄N }
being random variables. By allowing for a suitable dependence in {wt }, a model with a fixed
number of breaks can be written in the time-varying parameter form, too.

Similarly, tests of model (3) that are optimal in the weighted average power sense of An-
drews and Ploberger (1994) and Andrews et al. (1996) will have to specify weight functions
on (i) the number of breaks, (ii) the distribution of break dates given their number, and (iii)
the distribution of the breaks given their dates and number. A reinterpretation of these weights
as probability measures naturally leads to a particular time-varying parameter model. Thinking
about the unobserved {βt } as fixed and using weights for their outcomes under the alternative or
treating them as random hence amounts to the same thing. This equivalence between efficient
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frequentist tests in the weighted average power sense and Bayesian decision rules has long been
understood—see, for instance, Ferguson (1967) or Berger (1985) for general treatments and An-
drews and Ploberger (1994) for the application to tests for parameter stability.

With this insight, the one essential determinant of efficient tests—derived from either the
structural break perspective or the time-varying parameter perspective—is hence its weighting
function, or, equivalently, the probability distribution it posits for {βt } under the alternative. As
argued, the time-varying parameter literature and the structural break literature have emphasized
quite different processes for {βt }. This raises the important question how this weighting function
should be chosen. The answer obviously depends crucially on why we want to test for parameter
constancy in the first place. Three main motivations come to mind:

First, the stability of a relationship can be an important question in its own right. The sta-
bility of the link between monetary aggregates and output, for instance, is a crucial question for
monetary policy-makers (see Clarida, Gali and Gertler, 2000, for a recent example). Also, tests
for the Lucas critique arise directly as tests of parameter instability (Engle, Hendry and Richard,
1983; Engle and Hendry, 1993; Oliner, Rudebusch and Sichel, 1996; Linde, 2001). Typically, the
alternative of interest here is absence of any stable relationship, including long-term relations.
Relevant alternatives are hence those in which changes in {βt } are permanent. Second, if a model
turns out to be unstable, then this must be taken into account in the construction of appropriate
forecasts, since recent observations of the relationship (2) will be closer to the (unknown) future
relationship than past observations—see Chernoff and Zacks (1964), Cohen and Kushary (1994),
and Clements and Hendry (1999), among others. Temporary unforecastable breaks are important
for the width of confidence intervals but less so for computing the point forecasts, since they
can be thought of as an extra source of stationary noise. Third, parameter stability tests are a
crucial specification test for standard inference on β̄. Consider model (2) with Xt = 1 and no Zt .
If βt =∑t

s=1 ws , then model (2) is an unobserved components model where yt contains a unit
root. While it is possible to estimate the sample mean of yt for any realization, it is difficult to
interpret it in a meaningful way. More generally, whenever {βt } varies in a permanent fashion (as,
for instance, in (3)), ignoring its variation and computing averages makes little sense—the com-
puted average value has no interpretation as describing the effect on yt of a marginal change Xt ,
since the true marginal effect depends on time t . Note that temporary deviations of {βt } from a
constant do not necessarily lead to the same interpretational difficulties. In the extreme temporary
case of {βt } being independent and identically distributed with mean β̄, X ′

t (βt − β̄) can usefully
be thought of as part of a heteroscedastic disturbance. There is no problem in interpreting β̄ as a
meaningful and interesting parameter of the model. The more persistent {βt } becomes, however,
the more β̄ becomes an inadequate description of the time homogenous marginal effect on yt of a
marginal change in Xt and the more misleading standard inference ignoring parameter variation
will be.

The more pervasive all three motivations are, the more persistent the changes in {βt }. When
carried out for one of the reasons discussed, a useful test of parameter stability should hence
maximize its power against persistent changes of {βt }. While this suggests a focus on alternatives
with a persistently varying {βt }, the obvious problem remains that there exist many different
persistent breaking processes. What is being called for, then, is a systematic investigation of
the impact of alternative assumptions for persistently varying {βt } on the properties of efficient
tests. Given that the stochastic properties of the process {βt } (or, equivalently, the weighting
function employed over various fixed paths of {βt }) are the one determinant of efficient tests for
parameter instability, the answer to this question is of great theoretical and practical interest. At
least intuitively, it seems that knowledge about the precise form of the (persistent) variation in
{βt } under the alternative is required in order to carry out an efficient hypothesis test of parameter
stability.

c© 2006 The Review of Economic Studies Limited
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This paper shows that this intuition is largely mistaken. We develop a new analytical frame-
work to show that for a large class of breaking processes with persistently varying {βt } and an
assumption on the distribution of the disturbances, the optimal small sample statistics are asymp-
totically equivalent. In other words, the precise form of the breaking process {βt } is irrelevant
for the asymptotic power of the tests. The one parameter that drives the asymptotic power of the
optimal statistics is the expected average size of the breaks. The set of breaking processes we
consider is as follows.

Condition 1. Let {�βT,t } be a double array of k×1 random vectors �βT,t = (�βT,t,1, . . . ,
�βT,t,k)

′. Assume that

(i) {T�βT,t } is uniform mixing with mixing coefficient of size −r/(2r −2) or strong mixing of
size −r/(r −2), r > 2

(ii) E[�βT,t ] = 0, and there exists K < ∞ such that E[|T�βT,t,i |r ] < K for all T , t , i
(iii) {T�βT,t } is globally covariance stationary with non-singular long-run covariance matrix

�, that is, limT→∞ T −1 E
[(∑[sT ]

t=1 T�βT,t

)(∑[sT ]
t=1 T�β ′

T,t

)]
= s� for all s.

For notational simplicity, we will drop the dependence on T of all elements defined in
Condition 1 and subsequent similar conditions. The dependence of the scale of {�βt } on T
is introduced because optimal tests in an asymptotic framework will have power in a local
neighbourhood of the null hypothesis of parameter constancy. The appropriate neighbourhood
of non-trivial power of optimal tests is where the global covariance matrix � of {�βt } is of
order T −2. We stress that optimal tests against a random {βt } as described in Condition 1 may
equally be interpreted as optimal tests that maximize weighted average power over alterna-
tives with non-stochastic {βt }, where the weighting is according to a distribution that satisfies
Condition 1.

Condition 1 enables the application of theorem 7.30 in White (2001), ensuring that suitably
scaled, the breaking process {βt −β0} is asymptotically well approximated by a k ×1 Wiener pro-
cess. This allows for a multitude of diverse breaking models from relatively rare to very frequent
breaks. For any finite sample even a model with a single break satisfies Condition 1. The asymp-
totic thought experiment then entails that a larger sample from the same data-generating process
will contain more breaks eventually. The alternative thought experiment of having a finite num-
ber of breaks independent of the sample size—as employed by Andrews and Ploberger (1994),
for instance—is not covered by Condition 1. Also stationary processes {βt }, such as those typi-
cally arising from Markov switching models, are ruled out by Condition 1. Note that Nyblom’s
(1989) martingale assumption is different from Condition 1: not all Condition 1 processes are
martingales, and not all martingales are Condition 1 processes.

Examples of Condition 1 processes include models, which are subject to breaks every period
with probability p and arbitrary mean-zero distribution with covariance �p in case of a break. In
this case, � = p�p. Thus, Condition 1 spans a wide range of specifications from models with rare
large breaks to models with frequent small breaks. This covers the economically interesting case
of persistent stochastic shocks that hit the economy infrequently but repeatedly. Autocorrelations
in �βt allow the coefficient vector to smoothly adjust to a new level after a break. The effect of an
oil price shock, for instance, might take several periods before it is fully felt in the economy. Such
breaking processes are, of course, not martingales. Furthermore, mixing allows for variation in
the variance of �βt , thus generating periods of fewer or more changes. Similar to the randomly
occurring breaks, Condition 1 covers the case of breaks that occur with a certain regular pattern,
say, every 16 quarters. Such a set-up might be motivated by policy changes following presidential
elections.

c© 2006 The Review of Economic Studies Limited
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In the next section, we derive small sample efficient tests of parameter stability for any se-
lected alternative process {βt } of the set described by Condition 1, which by the Neyman–Pearson
lemma might be based on the likelihood ratio statistic LRT . We also consider an approximate
statistic L̃RT that depends on the selected process only through �. Additional regularity con-
ditions concerning {Xt , Zt }, and the assumption of Gaussian disturbances {εt } are summarized
in Condition 2 below. The following theorem, which implies the asymptotic equivalence of all
small sample efficient tests of parameter stability against Condition 1 processes with a common
�, is the main result of this paper.

Theorem 1. Under Conditions 1 and 2, as T → ∞,

LRT − L̃RT
p→ 0

under both the null and alternative hypotheses.

The equivalence of efficient tests in this class is not only of theoretical interest, but also
dramatically simplifies the practice of testing against parameter instability: it allows the applied
researcher to leave the exact form of the alternative unspecified without foregoing (asymptotic)
power. Any tailor-made statistic against a certain breaking process approaches the power of any
other optimal statistic as the sample size increases, as long as the breaking processes are such that
Condition 1 holds. This insight allows us to suggest an easy-to-compute test statistic q̂LL, based
on a “quasi Local Level” model, that is asymptotically point-optimal for Condition 1 processes.

For the special case of Xt = 1 and serially uncorrelated, homoscedastic {εt }, q̂LL is the most
powerful invariant test in a Gaussian unobserved component model, as analysed by Franzini and
Harvey (1983) and Shively (1988b). For more general assumptions on {Xt } and {εt }, q̂LL does
not correspond to a test previously suggested in the literature. The statistic is asymptotically valid
under very general assumptions on the disturbances and the regressors—see Section 4 for details.
The test requires no trimming at the end points and the estimation of only k +1 regressions. This
contrasts with considerable computational complexity of test statistics against, say, four breaks.
In addition, we find q̂LL to have very attractive small sample properties in our simulations in
Section 5.

q̂LL is computed in the following simple steps:

• Step 1. Compute the OLS residuals {ε̂t } by regressing {yt } on {Xt , Zt }
• Step 2. Construct a consistent estimator V̂X of the k × k long-run covariance matrix of

{Xtεt }. When εt can be assumed uncorrelated, a natural choice is the heteroscedasticity
robust estimator V̂X = T −1∑T

t=1 Xt X ′
t ε̂

2
t . For the more general case of possibly autocor-

related εt , many such estimators have been suggested; see Newey and West (1987) or
Andrews (1991) and the discussion in Section 4.

• Step 3. Compute {Ût } = {V̂ −1/2
X Xt ε̂t } and denote the k elements of {Ût } by {Ût,i },

i = 1, . . . ,k.
• Step 4. For each series {Ût,i }, compute a new series, {ŵt,i } via ŵt,i = r̄ŵt−1,i + �Ût,i ,

and ŵ1,i = Û1,i , where r̄ = 1−10/T .
• Step 5. Compute the squared residuals from OLS regressions of {ŵt,i } on {r̄ t } individually,

and sum all of those over i = 1, . . . ,k.
• Step 6. Multiply this sum of sum of squared residuals by r̄ , and subtract

∑k
i=1
∑T

t=1(Ût,i )
2.

The null hypothesis of parameter stability is rejected for small values of q̂LL, and asymptotic
critical values are given in Table 1 for k = 1, . . . ,10. The critical values are independent of the
dimension of Zt .

c© 2006 The Review of Economic Studies Limited
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TABLE 1

Asymptotic critical values of q̂LL (reject for small values)

k 1 2 3 4 5 6 7 8 9 10

1% −11·05 −17·57 −23·42 −29·18 −35·09 −40·24 −45·85 −51·18 −56·46 −61·77
5% −8·36 −14·32 −19·84 −25·28 −30·60 −35·74 −40·80 −46·18 −51·10 −56·14
10% −7·14 −12·80 −18·07 −23·37 −28·55 −33·45 −38·49 −43·59 −48·78 −53·38

Note: Percentiles reported are calculated from 40,000 draws from distributions of the random variable reported in
Lemma 2, p. 919, with ci = 10 for all i using 2000 standard normal steps to approximate Wiener processes.

The intuition for these computations is most easily developed in the “local-level model”
(see Harvey, 1989), where Xt is constant, and there is no Zt . In this model, an efficient test for
stability can be based on the difference in the log likelihood between the stable model yt = β̄ +εt

and the time-varying model yt = βt + εt , where T −1∑T
t=1 βt = β̄. The requirement that the

average value of the parameter path in the unstable model equals that of the stable model ensures
that power is directed entirely at detecting parameter instability, rather than different average
parameter values between the null and alternative hypothesis. Theorem 1 shows the equivalence
of the small sample efficient test statistics for alternative Condition 1 assumptions, so that we
might conveniently derive the optimal test when βt −β0 follows a Gaussian random walk. Under
this alternative, the first differences of yt ,�yt = �βt +�εt , follow a Gaussian moving average
of order one, that is, �yt ∼ ηt + rηηt−1 for ηt ∼ i id N (0,σ 2

η ) and constant rη < 1, where rη and
σ 2

η are functions of σ 2
ε ,T , and �. If η1 was known, one could easily solve for ηt recursively via

ηt = �yt −rηηt−1, mirroring Step 4, and evaluate the log likelihood (apart from constants) under
the alternative as − 1

2σ−2
η

∑
η2

t , interpreted as a function of {�yt }. Under the null hypothesis,
the log likelihood is − 1

2σ−2
ε

∑
(�yt )

2, such that an efficient test statistic would be given by
σ 2

ε

σ 2
η

∑
η2

t −∑(�yt )
2 (Step 6). Now η1 is not known, but with the restriction T −1∑T

t=1 βt = β̄, it

turns out after some matrix algebra (cf. Lemma 4 of Appendix) that the appropriate modifications
can be written in terms of regressions (Steps 1 and 5). In practice, also � is, of course, unknown,
but we argue in Section 4 below for the specific choice that underlies q̂LL as defined above.

The intuition for general regressors Xt is that for purposes of testing the stability of βt , the
unstable model yt = X ′

tβt +εt is asymptotically well approximated by the k ×1 vector local level
model Xt yt = 
̂Xβt + Xtεt , where 
̂X = T −1∑ Xt X ′

t . Our results show that treating Xt yt as
if they were Gaussian observations with time-varying mean 
̂Xβt under the alternative yields an
asymptotically efficient test. See Eliasz, Stock and Watson (2004) for a similar heuristic argument
concerning the equivalence of an unstable linear regression to a vector local level model.

3. ASYMPTOTIC EQUIVALENCE OF OPTIMAL TESTS FOR
GENERAL BREAKING PROCESSES

We now turn to the proof of the asymptotic equivalence result in Theorem 1. It turns out that
optimal tests depend on the average magnitude of the breaks, as described by � of Condition 1,
even asymptotically. With our focus on understanding the impact of assuming breaking pro-
cesses of different forms—rather than differences in breaking processes that simply arise by some
unknown scaling—we will treat � as known in this section. This will establish the relevant
benchmark case in which additional knowledge about the exact form of the breaking process
is without asymptotic value for the testing problem.
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To write the model in matrix form, define the T ×k matrix X = (X1, . . . , XT )′, the T ×d ma-
trix Z = (Z1, . . . , ZT )′, the T ×1 vector ε = (ε1, . . . ,εT )′, the (kT )×1 vector β = (β ′

1, . . . ,β
′
T )′

and the T ×(kT ) matrix � = diag(X ′
1, . . . , X ′

T ), the T ×1 vector e of ones, Me = IT −e(e′e)−1e′
and, for future reference, the T × (d + k) matrix Q = (X, Z) and M = IT − Q(Q′Q)−1 Q′. The
symbol “⊗” denotes the Kronecker product.

By the Neyman–Pearson lemma, optimal tests to distinguish the unstable model (2) from
the stable model (1) can be based on the likelihood ratio statistic. We are interested in deriving
efficient tests of stability of the coefficient of Xt . For this purpose, it makes sense to ensure that
under the alternative, the average value of the random parameter path is always the same as that
under the stable model, that is, T −1∑T

t=1 βt = β̄. Under Condition 1, this can be achieved by let-
ting β0 = β̄ − T −1∑T

t=1
∑t

s=1 �βs . This normalization ensures that the likelihood ratio statistic
efficiently detects variation in the coefficient of Xt , rather than differences between the average
value of the parameter. In matrix form, the stable and unstable model can then be rewritten as

y = X β̄ + Zδ + ε

y = �[Me ⊗ Ik]β + X β̄ + Zδ + ε.
(4)

To be able to write down the likelihood, we must make distributional assumptions on ε and
Q. Let FT,t be the sigma field generated by {QT,t , yT,t , QT,t−1, yT,t−1, . . . , QT,1, yT,1} and FT,0
the trivial sigma field. (We assume all random elements introduced here and below to be defined
on the same probability space.)

Condition 2. In the stable model (1) and the unstable model (2)

(i) QT,t and εT,t are conditionally independent given FT,t−1, and the conditional distribution
of εT,t given FT,t−1 is N (0,σ 2), for t = 1, . . . ,T and all T .

(ii) QT,t given FT,t−1 has density fQ,T,t with respect to the sigma-finite measures ν̄Q,T,t , and
{ fQ,T,t , ν̄Q,T,t } do not depend on β̄, {βt }, and δ for all t = 1, . . . ,T and all T .
Furthermore, the stable model (1) satisfies

(iii) {QT,t ,εT,t } is either uniform mixing of size −r/(2r −2) or strong mixing of size −r/(r −
2), r > 2.

(iv) E[QT,t Q′
T,t ] = 
Q, T −1∑[sT ]

t=1 QT,t Q′
T,t

p→ s
Q uniformly in s, 
Q and T −1∑T
t=1 QT,t

Q′
T,t are positive definite for all T and there exists K < ∞ such that the elements QT,t,i

of QT,t satisfy E[|QT,t,i |r ] < K for all T , t , and i .

The distributional assumption on εt is crucial for the development of an optimal statistic,
but our test will be valid under much less stringent conditions on εt —see Section 4 below. Part
(ii) of Condition 2 requires the conditional distribution of Qt given past values of Qt and yt

not to depend on β̄,{βt }, and δ, which is the assumption of weak exogeneity as described in
detail by Engle et al. (1983). This will allow the factorization of the likelihood of (y, Q) under
the alternative into two pieces, one capturing the contribution to the likelihood of {εt = yt −
X ′

tβt − Z ′
tδ} and the other the contribution of Qt given Ft−1. The independence of the latter

piece of {βt } will ensure that it cancels in the ratio of the likelihoods of the null and alternative
hypothesis, making the resulting optimal statistic independent of the exact form of either { fQ,t }
or {ν̄Q,t }.

Further restrictions on {Qt } in parts (iii) and (iv) are only required to hold under the null
hypothesis of a stable model. The assumptions are rather weak, allowing for stationary as well as
non-stationary behaviour of the regressors. They do not, however, accommodate deterministic or
stochastic trends.
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Under Condition 2, we find that for a given parameter path β = b, the conditional density of
the data is

fy,Q|β=b(y, Q)

=
T∏

t=1

(2π)−1/2σ−1 exp

⎡⎣− 1

2

(
yt − X ′

t

(
β̄ +bt − T −1

T∑
s=1

bs

)
− Z ′

tδ

)2/
σ 2

⎤⎦ fQ,t (Qt )

= (2πσ 2)−T/2 exp

[
−1

2
(h −�[Me ⊗ Ik]b)′(h −�[Me ⊗ Ik]b)/σ 2

] T∏
t=1

fQ,t (Qt )

where h = y − X β̄ − Zδ. The unconditional density under the alternative may hence be written as

f 1
y,Q(y, Q) = (2πσ 2)−T/2

∫
exp

[
−1

2
(h −�[Me ⊗ Ik]b)′

×(h −�[Me ⊗ Ik]b)/σ 2
]

dνβ(b)

T∏
t=1

fQ,t (Qt ) (5)

where νβ is the measure of β, whereas under the null hypothesis, clearly

f 0
y,Q(y, Q) = (2πσ 2)−T/2 exp

[
−1

2
σ−2h′h

] T∏
t=1

fQ,t (Qt ). (6)

We therefore find the likelihood ratio statistic to be

LRT =
∫

exp

[
σ−2h′�[Me ⊗ Ik]b − 1

2
σ−2b′[Me ⊗ Ik]�′�[Me ⊗ Ik]b

]
dνβ(b). (7)

Note that computation of LRT , a function of h, requires knowledge of β̄ and δ. One way to
resolve this difficulty is to derive the efficient test that is invariant to transformations of the form

(y, Q) → (y + Xb̄ + Zd̄, Q) for any b̄ and d̄. (8)

All standard tests for structural breaks satisfy this invariance requirement. From the theory of
invariant tests as described in Lehmann (1986, pp. 282–364), any invariant test can be written
as a function of a maximal invariant of the group of transformations (8). One maximal invariant
is given by (My, Q), which can be computed without knowing β̄ or δ. By the Neyman–Pearson
lemma, the optimal invariant test can be based on the likelihood ratio statistic LRI

T of (My, Q).
When the regressors {Qt } are independent of {εt }, it follows from standard calculations that

LRI
T =

∫
exp

[
σ−2y′M�b − 1

2
σ−2b′�′M�b

]
dνβ(b). (9)

In the weakly exogenous case, though, the density of the maximal invariant (My, Q) becomes a
complicated function of { fQ,t }, since { fQ,t } depends on {yt }. Note that invariance is an additional
restriction on the class of tests under consideration, so that the power of LRI

T can be at most as
large as that of LRT . At the same time, L̃RT defined below in (10) is a function of the maximal
invariant (My, Q), so that a test based on LRI

T has at least as much power as a test based on
L̃RT . But Theorem 1 shows that the asymptotic power of LRT and L̃RT is identical, so that,
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by this sandwich argument, this also holds for LRI
T . The following derivations therefore focus

exclusively on the analysis of LRT .
The essential problem for obtaining the optimal test for a particular break process (i.e. a

particular choice of νβ ) revolves around the complexity of evaluating LRT . For any specific
choice of νβ , it is in principle possible to write LRT as an explicit function of y and Q. But
even for moderately complex breaking processes, the resulting function becomes analytically
intractable. The usual way of obtaining asymptotic optimality results—writing down the small
sample optimal statistic and taking limits—is thus not feasible here.

Rather, we will show that LRT converges in probability under both the null and alternative
hypothesis to the much more tractable statistic L̃RT that depends on the distribution of β only
through �. On the one hand, this proves the claim that all small sample optimal statistics for any
breaking process that satisfies Condition 1 will be asymptotically equivalent. On the other hand,
we will choose L̃RT in a way that makes the actual computation of the statistic straightforward,
thus making progress towards the goal of deriving a simple statistic with good power against any
Condition 1 process.

For the definition of L̃RT and the subsequent proofs, we will need some additional notation
and definitions. Let

�∗ = σ−2

1/2
X �


1/2
X ,

where E[Xt X ′
t ] = 
X is the upper left k × k block of 
Q , and note that �∗ is the long-run vari-

ance of {T�β∗
t } = {Tσ−1


1/2
X �βt }. �∗ is the average size of the breaks after having normalized

the model for the covariance of {Xt } and the variance of εt , a more appropriate measure for the
relative magnitude of the breaking process.

The spectral decomposition of �∗ will play a major role in the subsequent analysis. Let
P∗ be the k × k orthonormal matrix of the eigenvectors of �∗ and let � = diag(a2

1, . . . ,a2
k )

be the diagonal matrix of the eigenvalues of �∗ (such that �∗ = P∗�P∗′), where we define
ai , i = 1, . . . ,k, to be non-negative. Furthermore, define the k × 1 vector ιk,i with a one in

the i-th row and 0’s elsewhere, the T × T matrix F =
⎛⎝1 0 ··· 0

1 1 ··· 0
...
...

...
1 1 ··· 1

⎞⎠, the T × T matrix Ga =

H−1
a − H−1

a e(e′H−1
a e)−1e′H−1

a , where Ha = r−1
a F Aa A′

a F ′, Aa =
⎛⎝ 1 0 ··· 0 0−ra 1 ··· 0 0

...
...

...
...

0 0 ··· −ra 1

⎞⎠, and ra =
1
2 (2+a2T −2 −T −1

√
4a2 +a4T −2) = 1−aT −1 +o(T −1). Further define the following random

elements, that are needed for the ensuing arguments: let T β̃ ∼N (0, F F ′⊗�), let γ̃ be a (T k×1)
random vector, and let {�γT,t } be a double array of k ×1 random vectors with elements �γT,t,i ,
where (i) γ̃ has the same distribution as β̃ and {�γT,t } has the same distribution as {�βT,t } of
Condition 1 and (ii) β̃, γ̃ and {�γT,t } are mutually independent and independent of {εt },{QT,t },
and {�βT,t } in the stable model.

We will show that LRT is asymptotically equivalent to the statistic

L̃RT =
∫

exp

[
σ−2y′M�[Me ⊗ Ik]b − 1

2
σ−2b′[Me ⊗ 
X ]b

]
dνβ̃(b). (10)

Note that L̃RT depends on the generally unknown parameters σ 2 and 
X . Let LRT be defined
just like L̃RT , with σ 2 and 
X replaced by the estimators σ̂ 2 = T −1y′My and 
̂X = T −1 X ′X ,
respectively. We show in Theorem 2 and Corollary 1 below that LRT and L̃RT have the same
asymptotic distributions under both the null and alternative hypothesis. The lack of knowledge
of σ 2 and 
X hence has no cost in terms of asymptotic power.
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We begin by considering the asymptotic behaviour of L̃RT and will then show LRT −
L̃RT

p→ 0. Because νβ̃ is the distribution of a multivariate normal, we can explicitly carry out
the integration in (10) by “completing the square”. By some matrix manipulations detailed in the
appendix, we arrive at the following equality.

Lemma 1.

L̃RT =
k∏

i=1

[
1− r2T

ai

T
(
1− r2

ai

)
rT−1
ai

]−1/2

exp

[
−1

2
v ′

i [Gai − Me]vi

]

where the t-th element vi,t of vi is the ((t − 1)k + i)-th element of [IT ⊗ P∗′σ−1

−1/2
X ]�′My

or, equivalently, vi = [IT ⊗ ι′k,i P∗′σ−1

−1/2
X ]�′My.

A test based on the statistic

qLL =
k∑

i=1

v ′
i [Gai − Me]vi (11)

will hence be exactly equivalent to a test based on L̃RT , since qLL is just a monotone trans-
formation of L̃RT . Being an explicit function of observables, it is tedious but straightforward to
derive the asymptotic distribution of qLL under the null hypothesis, which is an obvious special
case of the following lemma (the greater generality is needed for an argument in the proof of
Theorem 2 below).

Here and in subsequent derivations, the limits of integration are understood to be 0 and 1, if
not stated otherwise. Further,

∫
G stands for

∫
G(s)ds and so forth.

Lemma 2. Under Condition 2 and the null hypothesis (1), for any positive c1, . . . ,ck

k∑
i=1

v ′
i [Gci − Me]vi

⇒
k∑

i=1

[
−ci Ji (1)2 − c2

i

∫
J 2
i − 2ci

1− e−2ci

[
e−ci Ji (1)+ ci

∫
e−ci s Ji

]2

+
[

Ji (1)+ ci

∫
Ji

]2
]

where Ji (s) = Wε,i (s)− ci
∫ s

0 e−ci (s−λ)Wε,i (λ)dλ and Wε,i is the i-th element of the k × 1 stan-
dard Wiener processes Wε.

We now turn to the argument that LRT − L̃RT
p→ 0. Given that it is not feasible to compute

the integral in the expression for LRT explicitly, we will take advantage of the similarity of
the expressions inside the integral in expressions (7) and (10). The strategy will be to do the
asymptotic reasoning “inside the integration”. Recall that γ and β are independent and identically
distributed Condition 1 processes, and γ̃ and β̃ are independent and distributed N (0, F F ′ ⊗
T −2�), all independent of ε and Q = (X, Z) in the stable model (1).

Lemma 3. Under the null hypothesis (1) and Conditions 1 and 2 the following weak con-
vergences hold jointly with the convergence in Lemma 2

(i) σ−2(ε′�[Me ⊗ Ik]β,ε′�[Me ⊗ Ik]γ ) ⇒ (
∫

W̄ ′
β�1/2dWε,

∫
W̄ ′

γ �1/2dWε)

(ii) σ−2(β ′[Me ⊗ Ik]�′�[Me ⊗ Ik]β,γ ′[Me ⊗ Ik]�′�[Me ⊗ Ik]γ ) ⇒ (
∫

W̄ ′
β�W̄β,

∫
W̄ ′

γ �W̄γ )
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(iii) σ−2(ε′M�[Me ⊗ Ik]β̃,ε′M�[Me ⊗ Ik]γ̃ ) ⇒ (
∫

W̄ ′
β̃
�1/2dWε,

∫
W̄ ′

γ̃ �1/2dWε)

(iv) σ−2(β̃ ′[Me ⊗ 
X ]β̃, γ̃ ′[Me ⊗ 
X ]γ̃ ) ⇒ (
∫

W̄ ′
β̃
�W̄β̃ ,

∫
W̄ ′

γ̃ �W̄γ̃ )

where Wβ , Wγ , Wβ̃ , Wγ̃ , and Wε are independent k × 1 standard Wiener processes and bars
denote demeaned Wiener processes.

Parts (i)–(iv) of Lemma 3 imply that the integrands in expressions (7) and (10) converge
weakly to the same limit under the null hypothesis, where b is replaced by the random vectors β
and β̃ with distributions νβ and νβ̃ , respectively. While highly suggestive, this result in itself is

not enough for the convergence of LRT − L̃RT
p→ 0 because the convergence in probability is a

statement of the asymptotic behaviour of the integrals (7) and (10).
To tackle this problem, it will be useful to note that LRT and L̃RT can be alternatively

written as integrals with respect to the measures νγ and νγ̃ of γ and γ̃ , respectively, since these
measures are identical to those of β and β̃

LRT =
∫

exp

[
σ−2h′�[Me ⊗ Ik]b − 1

2
σ−2b′[Me ⊗ Ik]�′�[Me ⊗ Ik]b

]
dνγ (b)

L̃RT =
∫

exp

[
σ−2h′M�[Me ⊗ Ik]b − 1

2
σ−2b′[Me ⊗ 
X ]b

]
dνγ̃ (b).

Define

ξ(b) = exp

[
σ−2h′�[Me ⊗ Ik]b − 1

2
σ−2b′[Me ⊗ Ik]�′�[Me ⊗ Ik]b

]
ξ̃ (b) = exp

[
σ−2h′M�[Me ⊗ Ik]b − 1

2
σ−2b′[Me ⊗ 
X ]b

]
,

so that by the equivalence of the distribution of β and γ and of the distribution of β̃ and γ̃ ,LRT =∫
ξ(b)νβ(b) = ∫ ξ(b)dνγ (b) and L̃RT = ∫ ξ̃ (b)νβ̃(b) = ∫ ξ̃ (b)dνγ̃ (b). Therefore,

E[(LRT − L̃RT )2] = E

[(∫
ξ(b)νβ(b)−

∫
ξ̃ (b)νβ̃(b)

)(∫
ξ(b)dνγ (b)−

∫
ξ̃ (b)dνγ̃ (b)

)]
= E[ξ(β)ξ(γ )− ξ(β)ξ̃ (γ̃ )− ξ̃ (β̃)ξ(γ )+ ξ̃ (β̃)ξ̃ (γ̃ )], (12)

where β, β̃,γ , and γ̃ in the second line are random vectors with distribution νβ,νβ̃ ,νγ , and
νγ̃ , respectively. Now all four terms inside the expectation operator in (12) converge weakly to
the same limit by the continuous mapping theorem (CMT) and Lemma 3. But convergence in
distribution implies convergence in expectation for uniformly integrable random variables. So if
the products of ξ(β),ξ(γ ), ξ̃ (β̃), and ξ̃ (γ̃ ) could be shown to be uniformly integrable, we would
find that LRT − L̃RT → 0 in mean square under the null hypothesis, and the convergence in
probability follows.

By exploiting the conditionally Gaussian likelihood structure of Condition 2 and the Gaus-
sianity of β̃ and γ̃ , we show that these products can be approximated arbitrarily accurately by
uniformly integrable random variables.

Theorem 2. Under Conditions 1 and 2, as T → ∞,

LRT − L̃RT
p→ 0 and L̃RT −LRT

p→ 0

under the null hypothesis (1).
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In order to substantiate the claim of asymptotic equivalence of tests based on LRT , L̃RT , and
LRT , we still lack the crucial additional step of showing that the convergence in probability of
Theorem 2 also holds under the alternative hypothesis. A brute force approach of running through
the same arguments that led to Theorem 2 also for the alternative hypothesis is extremely cum-
bersome and barely tractable, since a non-constant {βt } will lead to changes in yt that in general
will feed back to changes in Qt , given that Condition 2 allows weakly exogenous regressors.

We therefore rather follow Andrews and Ploberger (1994) in taking the more indirect route
of proving that the density of (y, Q) under the alternative hypothesis is contiguous to the density
of (y, Q) under the null. Contiguity can be thought of as a generalization of the concept of abso-
lute continuity to sequences of densities; if a sequence of densities describing a data-generating
process can be shown to be contiguous to another sequence of densities, then all statements of
convergence in probability of the latter automatically also hold under the former data-generating
process. The reader is referred to the excellent survey of Pollard (2001) for a more detailed intro-
duction to the concept.

Theorem 3. Under Conditions 1 and 2, the sequence of densities { f 1
y,Q(y, Q)}T is

contiguous to the densities { f 0
y,Q(y, Q)}T .

Corollary 1. Under Conditions 1 and 2 the convergences in probability of Theorem 2 also
hold under the alternative hypothesis (2).

Theorem 2 and Corollary 1 imply Theorem 1 of Section 2 above. Since convergence in
probability implies convergence in distribution, Theorem 1 implies that the small sample optimal
statistic LRT and the statistic L̃RT have the same asymptotic distributions under the null and
alternative hypothesis, which in turn implies the same local power. As the sample size gets large,
nothing is hence lost by relying on L̃RT rather than the tailor-made LRT for testing the stability
of parameters. Or put differently, the knowledge of the exact Condition 1 breaking process is not
helpful for conducting a better test.

Additionally, given that any specific LRT satisfies LRT − L̃RT
p→ 0, the difference of any

given pair of small sample optimal statistics for Condition 1 breaking processes also converge in
probability to 0 under the null hypothesis. The densities implied by these two breaking processes
are both contiguous to the null density by Theorem 3, hence the convergence in probability con-
tinues to hold under both these alternatives. Theorems 2 and 3 thus also imply that one can rely on
any one specific small sample optimal statistic for a breaking process that satisfies Condition 1 to
obtain the same asymptotic power against any breaking process that is covered in Condition 1.3

Each optimal test has asymptotically the same ability to distinguish each possible alternative in
our class of models.

4. AN ASYMPTOTICALLY POINT-OPTIMAL TEST STATISTIC

The main result of this paper is the asymptotic equivalence of small sample efficient tests against
alternatives that are covered by Condition 1. As a by-product of our analysis, we found the
statistic qLL to be an asymptotically optimal test statistic against the processes of Condition 1.
This makes qLL an attractive choice for applied work, and this section deals with the issues that
led to our recommendation of basing inference on q̂LL at the end of Section 2.

3. This statement is not true for arbitrary sequences of processes that satisfy Condition 1, though, since the con-
vergence statements are not shown to hold uniformly over all processes that satisfy Condition 1. In fact, such a uniform
convergence result does not hold.
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FIGURE 1

Local asymptotic power against Condition 1 processes with �∗ = a2 Ik

As noted, qLL depends on the scaling parameter � that describes the average magnitude
of the breaking process under the alternative. Clearly, the effect of � depends on the scale of
{Xt } and {εt }—the larger {Xt } and the smaller {εt }, the larger the “signal-to-noise” ratio of the
time-varying {βt } is going to be. In many regressions, the scale of {Xt } is arbitrary (think of units
of measurement), so that it makes sense to think of the “signal-to-noise ratio” as measured by
�∗ = σ−2


1/2
X �


1/2
X in the rotated problem where regressors have identity covariance matrix

and the disturbances have unit variance.
In fact, when one faces the problem of choosing a specific � for the construction of a test, a

natural requirement is to demand that the outcome of a test of structural stability to be indepen-
dent of the rotation the original regression is written in. A violation of such a requirement would
lead to the counterintuitive possibility that the test outcome depends on the units of measurement
of Xt . This is the same reasoning that led Wald (1943) to the construction of the usual F-statistic,
and was employed in the construction of structural break tests by Nyblom (1989) and Andrews
and Ploberger (1994). Rotational invariance is achieved by letting �∗ = a2 Ik . As in Andrews and
Ploberger (1994), the problem thus reduces to choosing a single parameter a that describes the
distance between the alternative and the null hypothesis.

Not knowing this exact distance between the null and the alternative hypothesis will lead
to losses in asymptotic power compared to the benchmark case. But drawing on the ideas of
King (1988) regarding point-optimal testing, it might be possible to find a certain choice of
a = ā in the construction of the test that makes these losses small. Figure 1 shows the asymptotic
local power envelope for k = 1 and k = 2 along with the power of our recommended statistic
q̂LL, which is asymptotically point-optimal for ā = 10. As can be seen, q̂LL has asymptotic
power very close to the power envelope for any distance from the null hypothesis. This also
holds for larger k, the largest difference in power for k = 5 is smaller than four percentage points.
If not theoretically, at least in practice the lack of knowledge of the distance of the alternative is
hence a minor issue.

In applications, in addition to being powerful, the validity of a test statistic over a wide range
of data-generating processes is of major importance. We consider data-generating processes for
{εt } and {Qt = (X ′

t , Z ′
t )

′} of the following form.

Condition 3. Let {QT,t } and {εT,t } be double arrays of (d + k) × 1 and 1 × 1 random
vectors with elements QT,t,i and εT,t , respectively. With some K < ∞, assume that under the
null hypothesis (1)
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(i) E[QT,tεT,t ] = 0 for all T , t
(ii) {QT,t ,εT,t } is either a uniform mixing sequence of size −r/(r − 1) or strong mixing

sequence of size −2r/(r −2), r > 2
(iii) E[QT,t Q′

T,t ] = 
Q, E[|QT,t,iεT,t |2r ] < K, T −1∑[sT ]
t=1 QT,t Q′

T,t
p→ s
Q uniformly in s

and 
Q and T −1∑T
t=1 QT,t Q′

T,t is positive definite almost surely for all large enough T
(iv) {QT,tεT,t } is globally covariance stationary with non-singular long-run covariance

matrix VQ.

In comparison to Condition 2 of Section 3, the assumptions on the disturbances of Con-
dition 3 are much weaker. Among the many possibilities are non-stationary, heteroscedastic,
and autocorrelated {εt }, which are allowed to be correlated with lagged values of {Qt }. The as-
sumptions on the regressors {Qt } are similar to those of Condition 2, the moment and memory
conditions are strengthened to allow for a consistent estimator the long-run covariance matrix
VX of {Xtεt }. {Qt } is not required to be stationary, although only relatively mild heterogeneity
of {Qt } is allowed under Condition 3. See Hansen (2000) for a possible approach to relaxing this
assumption.

To obtain a valid test statistic under Condition 3, we will substitute the unknown quantity
σ−1


−1/2
X in the definition (11) of qLL (which depends on σ−1


−1/2
X through vi as defined in

Lemma 1) by a consistent estimator V̂ −1/2
X of V −1/2

X , where VX is long-run covariance matrix
of {Xtεt }. If it is known that {εt } is not autocorrelated, a natural estimator of VX is given by the
heteroscedasticity robust estimator V̂X = T −1∑T

t=1 Xt X ′
t ε̂

2
t . In the more general case of possibly

autocorrelated {εt }, one might employ estimators of the form

V̂X = T −1
T∑

t=1

Xt X ′
t ε̂

2
t +

bT∑
l=1

wT,l T
−1

T∑
t=1+l

(Xt X ′
t−l + Xt−l X

′
t )ε̂t ε̂t−l . (13)

Theorem 6.21 of White (2001) establishes the consistency of V̂X in (13) under Condition 3 as
long as bT → ∞ as T → ∞ such that bT = o(T 1/4), and 1 ≥ wT,l → 1 for all l as T → ∞.
Alternatively, the long-run covariance matrix estimators studied by Andrews (1991) may be
employed.

The feasible estimator q̂LL is hence defined as

q̂LL =
k∑

i=1

v̂ ′
i [Gā − Me]v̂i

v̂i = [IT ⊗ ι′k,i V̂
−1/2
X ]�′My

with ā = 10 and the equivalence to the statistic described at the end of Section 2 follows after
manipulations from the definition of Gā . The asymptotic properties of q̂LL are investigated in
the following theorem.

Theorem 4. Under Condition 3, the asymptotic null distribution of q̂LL is given in
Lemma 2 with ci = 10, i = 1, . . . ,k.

In addition to being a point-optimal test statistic against Condition 1 breaking processes,
q̂LL is hence asymptotically valid over a wide range of data-generating processes. Table 1 above
contains asymptotic critical values of q̂LL for k = 1, . . . ,10.
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5. MONTE CARLO EVIDENCE

The main analytical result of this paper—the equivalence of a large class of efficient structural
break tests—is asymptotic in nature. The question hence arises whether this asymptotic insight
may serve as guide to small samples the econometrician faces in practice. We address this issue
in this section for some simple designs, and find the asymptotic predictions to be quite accurate.
In addition, we compare the small sample size and power properties of q̂LL with other popular
structural break tests. Tests based on q̂LL turn out to have considerably superior size control,
especially when disturbances are potentially heteroscedastic.

The small sample data-generating process we consider consists of a constant and a station-
ary, mean-zero autoregressive process of order one process {ζt } with coefficient 0·5 and unit
unconditional variance, and

yt = µ+αζt + εt , (14)

where the disturbances {εt } are independent standard normal and independent of {ζt }. In all ex-
periments, we consider tests of 5% nominal level and a sample size of T = 100.

We investigate power against two types of parameter instability: on the one hand, a single
zero-mean Gaussian break whose date is uniformly distributed on {2, . . . ,T }, and on the other
hand five persistent Gaussian breaks occurring at dates ς = {11,31,51,71,91}, that is, βt =∑t

s=1 1[s ∈ ς ]�s for independent Gaussian {�s}. In both cases, the variances of the breaks are
normalized such that under the alternative denoted by c, (βT −β0) has a variance of c2/T 2 Ik .
We consider the three cases where only µ, only α or both µ and α are time varying under the
alternative.

These small sample assumptions on {βt } can be embedded in different asymptotic thought
experiments, which determines whether Condition 1 is satisfied. In the thought experiment with
a single break under the alternative for all T , Condition 1 does not hold, and the same is true for
a breaking process with five breaks independent of T . But a breaking process {βt } that is subject
to a mean-zero Gaussian break every 20 periods does satisfy Condition 1, as well as a process
{βt } that is subject to mean-zero Gaussian increments that are randomly distributed over all 100
observation segments. The relevance of the asymptotic equivalence results based on Condition 1
for small samples hinges on whether an embedding of such small sample breaking processes in
Condition 1 asymptotics yields useful approximations.

This issue is investigated by a comparison of the small sample power of three infeasible
tests: the small sample efficient test based on LRT as defined in (7), the small sample efficient
invariant test based on LRI

T as defined in (9), and the test based on L̃RT as defined in (10). These
tests are infeasible, since they rely on knowledge of σ 2 = E[ε2

t ],� = c2 Ik and, in addition, on
knowledge of µ and α in the case of LRT , and on knowledge of 
X in the case of L̃RT . Note
that LRT and LRI

T efficiently exploit knowledge of the number of breaks under the alternative,
and the break dates ς in the case of the five break process. The statistic L̃RT , in contrast, can be
thought of as efficiently testing for the presence of a Gaussian random walk of known variance
in the mean of {yt Xt }. Theorem 1 and the discussion of LRI

T in Section 3 imply that for large
enough T and breaks every 20 periods, the difference in power of these three tests converges
to 0. The small sample results of Figure 2, based on 20,000 replications,4 shows this to be a
useful prediction. In fact, if one considers only the two invariant statistics LRI

T and L̃RT , whose
computation do not require knowledge of α and µ, the difference in power never exceeds five
percentage points. A similar result holds for the single break case, even though a single break is

4. The statistics LRT and LRI
T are efficient test statistics conditional on the realization of {ζt }. Accordingly,

Figures 2–4 show the average power of conditionally size adjusted tests. The figures are based on 500 repetitions for 40
independent draws of {ζt }. In general, power is not sensitive to the realization of {ζt }.
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FIGURE 2

Small sample power of infeasible tests based on LRT ,LRI
T , and L̃RT

arguably the most extreme deviation from the break every period case L̃RT is constructed against.
These results show that for testing purposes, the two considered breaking processes can be well
approximated by a Gaussian Random walk.

We now turn to the size and power performance of feasible tests. Specifically, we compare
q̂LL to tests that have been especially constructed for a single break at an unknown date: the
supF statistic (Andrews, 1993), and the Andrews and Ploberger (1994) exponentially weighted
F-statistics (AP∞) for independent normal disturbances. In addition, we include the Nyblom
(1989) statistic in our experiments, denoted Ny.

In most applications, heteroscedasticity cannot be ruled out a priori, so that we follow
Stock and Watson (1996) and consider both heteroscedasticity robust and non-robust versions
of all statistics. For the non-heteroscedasticity robust version of AP∞ and supF, the sequence
of Chow F-statistics is computed without a heteroscedasticity correction and V̂X in q̂LL and Ny
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TABLE 2

Empirical small sample size in per cent

Heteroscedasticity non-robust Heteroscedasticity robust

DGP q̂LL Ny AP∞ supF q̂LL Ny AP∞ supF

Xt = 1, Zt = ζt ,HOMO 4·4 4·4 5·5 4·7 4·4 4·4 6·6 6·4
Xt = ζt , Zt = 1,HOMO 5·3 4·2 5·5 4·1 4·5 4·2 10·0 10·3
Xt = (1,ζt )

′,HOMO 5·1 3·9 5·9 4·6 4·6 3·8 14·2 15·3
Xt = 1, Zt = ζt ,HET 4·0 4·0 4·9 3·9 4·0 4·0 5·6 4·3
Xt = ζt , Zt = 1,HET 69·4 30·3 42·5 42·4 4·3 3·9 13·9 14·0
Xt = (1,ζt )

′,HET 53·0 22·3 35·1 33·9 4·8 3·5 17·4 17·7

DGP, data-generating process.

is given by V̂X = (T − 2)−1
(∑

ε̂2
t

)
T −1∑ Xt X ′

t , where {ε̂t } are the OLS residuals in (14). The
heteroscedasticity robust versions employ the White (1980) correction in the construction of the
sequence of F-statistics and use V̂X = (T −2)−1∑ Xt X ′

t ε̂
2
t for q̂LL and Ny. Following Andrews

(1993) and Stock and Watson (1996), we chose a 15% trimming in the construction of AP∞ and
supF. We experimented with less trimming and found comparable power but substantially worse
size control.

Table 2 shows the empirical small sample size of these statistics, using 20,000 repetitions.
We consider model (14) with homoscedastic disturbances (HOMO), as well as with heteroscedas-
tic disturbances (HET), where {εt } in (14) is given by {εt } = {|ζt |ε̃t } for i.i.d. standard normal
{ε̃t }. When the disturbances are homoscedastic (HOMO), size control is very good for all statis-
tics that are constructed without the heteroscedasticity correction. The heteroscedasticity robust
versions of AP∞ and supF, however, are substantially oversized even when the disturbances are
homoscedastic, especially in the case where the stability of both µ and α are tested. With het-
eroscedastic disturbances (HET), non-heteroscedasticity robust tests perform very poorly when
the stability of α is examined. Unsurprisingly, the heteroscedasticity robust tests control size
much better, but q̂LL and Ny stand out as being by far the best performers in this regard.

Figures 3 and 4 show size adjusted power of the feasible statistics, along with the power
envelope based on the infeasible optimal invariant statistic LRI

T . The size-adjusted power of
the feasible test statistics is close throughout. Compared to Figure 2, the loss in power of q̂LL
compared to the benchmark LRI

T is somewhat greater, especially for the heteroscedasticity robust
version of q̂LL, but the absolute loss is still quite moderate.

Overall, these results underline the relevance of the asymptotic result derived in Section 3.
At the same time, we find considerably better size control properties and moderately higher
power of q̂LL compared to AP∞ and supF in many scenarios, making q̂LL an attractive choice
for applied work.

6. CONCLUSIONS

Permanent parameter instability at unknown dates is interesting economically, causes problems
for forecasting and typically invalidates inference in linear regression models. This has led re-
searchers to construct many different tests for the stability of regression parameters, almost all
specific to a particular breaking process under the alternative. Intuition suggests that reasonable
tests for a specific breaking process should have some power also against other breaking pro-
cesses. An optimal test for a permanent break every other period, for instance, will have power
also against an alternative with a permanent break every period. We show not only that this intui-
tion is correct, but a much stronger claim: conditional on the average magnitude of the breaks
being the same, the optimal test for a break every other period will do just as well as the optimal
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FIGURE 3

Small sample size-adjusted power of non-heteroscedasticity robust tests

test for breaks every period when in fact there is a break every period, at least for a large enough
sample size. This (asymptotic) equivalence extends over a large class of persistent breaking
processes.

The result has three implications. First, the exact breaking process under the alternative is
usually unknown to the applied researcher. But since power is close over a wide range of breaking
processes for any reasonable test statistic, this ignorance does not matter for being able to conduct
a powerful test. The applied researcher is hence relieved of having to make stark choices about
the assumed breaking process under the alternative.

Second, under local alternatives standard tests for parameter instability contain very little
information about the exact form of the breaking process. This is simply the flip side of all tests
behaving roughly the same, no matter how the breaking process precisely looks. If a test that has
been designed against the alternative of five breaks rejects, say, then this does by no means imply

c© 2006 The Review of Economic Studies Limited



928 REVIEW OF ECONOMIC STUDIES

FIGURE 4

Small sample size-adjusted power of heteroscedasticity robust tests

that the true breaking process consists in fact of five breaks. While for non-local alternatives, that
is, for breaks that are large asymptotically, methods have been developed to discern the number
and location of breaks (Bai and Perron, 1998), distinguishing local breaking processes is more
difficult (see Elliott and Müller, 2004).

Third, for a large class of mean-zero, persistent breaking processes, complicated tailor-
made tests will not result in significant gains in power over any other reasonable statistic. This
considerably simplifies the practice of testing parameter stability, because tailor-made tests have
non-standard distributions (so that one needs a set of critical values for each special case) and
many of them are very difficult to compute. Our results suggest that one can choose any specific
breaking process for which the optimal statistic has a simple form. Very little power will be
foregone by basing inference on this simple statistic even if it is known that the true breaking
process under the alternative is not of the form the simple statistic has been constructed for.
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We suggest such an easy-to-compute statistic that is asymptotically point-optimal for the
class of breaking processes we focus on. We find tests based on this statistic to have very good
small-sample size and power properties, making the statistic an appealing choice for applied
work.

APPENDIX

Many subsequent results are easier to obtain by working with regressors having identity covariance matrix. To this
end, let C be the (k +d)×(k +d) matrix with (


−1/2
X ,0k×d ) in its upper k ×(d +k) block that satisfies C
QC ′ = Ik+d .

Denote Q∗ = QC ′, X∗ = X

−1/2
X , let �∗ be defined just as � with X∗

t = 

−1/2
X Xt replacing Xt ,ε

∗
t = σ−1εt and

β∗ = [IT ⊗ σ−1

1/2
X ](β − [e ⊗ Ik ]β1). Note that the long-run variance of {�β∗

t } is given by σ−2

1/2
X �


1/2
X = �∗ =

P∗�P∗′.
Further define Be to be the T × (T − 1) matrix that satisfies B′

e Be = IT−1 and B′
ee = 0, so that Be B′

e = Me . Also
let L = F−1.

We proceed by establishing several lemmas that are needed in preparation for the proofs of the lemmas and theorems
in the main text.

Lemma 4.

(i)
B′

e(a
2T −2 F F ′ + IT )Be = B′

e Ha Be

(ii)
Be(B′

e Ha Be)
−1 B′

e = Ga

(iii)

|B′
e Ha Be| = 1− r2T

a

T (1− r2
a )rT−1

a
.

Proof.

(i) We have

B′
e(a

2T −2 F F ′ + IT )Be = B′
e(a

2T −2 F F ′ + IT + (1− ra)ee′)Be

= B′
e F(LL ′ +a2T −2 IT + (1− ra)ιT,1ι′T,1)F ′Be.

From a direct calculation

LL ′ +a2T −2 IT + (1− ra)ιT,1ι′T,1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a2T −2 +2− ra −1 0 · · · 0 0
−1 a2T −2 +2 −1 · · · 0 0
0 −1 a2T −2 +2 · · · 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 · · · a2T −2 +2 −1
0 0 0 · · · −1 a2T −2 +2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

r−1
a Aa A′

a =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r−1
a −1 0 · · · 0 0
−1 r−1

a + ra −1 · · · 0 0
0 −1 r−1

a + ra · · · 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 · · · r−1
a + ra −1

0 0 0 · · · −1 r−1
a + ra

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
so that

B′
e(a

2T −2 F F ′ + IT )Be = B′
e F(r−1

a Aa A′
a)F ′Be

= B′
e Ha Be.
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(ii) See Rao (1973, p. 77).
(iii) From (ii)

Be(B′
e Ha Be)

−1 B′
e = Ga

(B′
e Ha Be)

−1 = B′
eGa Be

yielding |B′
e Ha Be| = |B′

eGa Be|−1. Now note that (T −1/2e, Be)
′(T −1/2e, Be) = IT , so that

|H−1
a | = |(T −1/2e Be)

′H−1
a (T −1/2e Be)|

=
∣∣∣∣∣
(

T −1e′H−1
a e T −1/2e′H−1

a Be

T −1/2 B′
e H−1

a e B′
e H−1

a Be

)∣∣∣∣∣
= |T −1e′H−1

a e‖B′
e H−1

a Be − B′
e H−1

a e(e′H−1
a e)−1e′H−1

a Be|
= |T −1e′H−1

a e‖B′
eGa Be|

= |T −1e′H−1
a e‖B′

e Ha Be|−1.

But |Ha | = |r−1
a F Aa A′

a F ′| = r−T
a and

|e′H−1
a e| = ra ι′T,1 A′−1

a A−1
a ιT,1

= ra

T−1∑
j=0

r2 j
a = ra

1− r2T
a

1− r2
a

and we find

|B′
e Ha Be| = 1− r2T

a

T (1− r2
a )rT−1

a
. ‖

Proof of Lemma 1. Let β̃e = [B′
e ⊗ Ik ]β̃ and νβ̃e

its measure, and let Ka = T −2a2 B′
e F F ′Be, K� = T −2 B′

e F

F ′Be ⊗ � and K� = T −2 B′
e F F ′Be ⊗ �. Recall that � = σ 2


−1/2
X P∗�P∗′
−1/2

X . We compute

L̃RT =
∫

exp

[
σ−2 y′M�[Me ⊗ Ik ]b − 1

2
σ−2b′[Me ⊗ 
X ]b

]
dν

β̃
(b)

=
∫

exp

[
σ−2 y′M�[Be ⊗ Ik ]be − 1

2
b′

e[IT−1 ⊗ σ−2
X ]be

]
dν

β̃e
(be)

=
∫

(2π)−k(T−1)/2|K�|−1/2 exp

[
σ−2 y′M�[Be ⊗ Ik ]be − 1

2
b′

e[K−1
� + IT−1 ⊗ σ−2
X ]be

]
dbe

= |K�|−1/2|K−1
� + IT−1 ⊗ σ−2
X |−1/2

×exp

[
1

2
σ−4 y′M�[Be ⊗ Ik ][K−1

� + IT−1 ⊗ σ−2
X ]−1[B′
e ⊗ Ik ]�′My

]
= |IT−1 ⊗ Ik + K�|−1/2

×exp

[
1

2
σ−2 y′M�[Be ⊗ 


−1/2
X P∗][K−1

� + IT−1 ⊗ Ik ]−1[B′
e ⊗ P∗′
−1/2

X ]�′My

]
.

Now

[K−1
� + IT−1 ⊗ Ik ]−1 = K�[K� + IT−1 ⊗ Ik ]−1

= IT−1 ⊗ Ik − [K� + IT−1 ⊗ Ik ]−1
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and

[K� + IT−1 ⊗ Ik ]−1 =
⎡⎣ k∑

i=1

Kai ⊗ (ιk,i ι
′
k,i )+ IT−1 ⊗ Ik

⎤⎦−1

=
⎡⎣ k∑

i=1

(Kai + IT−1)⊗ (ιk,i ι
′
k,i )

⎤⎦−1

=
k∑

i=1

[Kai + IT−1]−1 ⊗ (ιk,i ι
′
k,i )

so that

[Be ⊗ Ik ][K−1
� + IT−1 ⊗ Ik ]−1[B′

e ⊗ Ik ] =
k∑

i=1

Be(IT−1 − [Kai + IT−1]−1)B′
e ⊗ (ιk,i ι

′
k,i )

=
k∑

i=1

(Me − Gai )⊗ (ιk,i ι
′
k,i ),

where the last line relies on Lemma 4 above. Furthermore, again relying on Lemma 4, we find

|K� + IT−1 ⊗ Ik | =
k∏

i=1

|a2
i T −2 B′

e F F ′Be + IT−1|

=
k∏

i=1

|B′
e(a

2
i T −2 F F ′ + IT )Be| =

k∏
i=1

1− r2T
ai

T (1− r2
ai )r

T−1
ai

.

Therefore

L̃RT =
k∏

i=1

[
1− r2T

ai

T (1− r2
ai )r

T−1
ai

]−1/2

exp

[
− 1

2
v ′

i [Gai − Me]vi

]

with vi = [IT ⊗ ι′k,i P∗′σ−1

−1/2
X ]�′My. ‖

Lemma 5. Let {Qt } satisfy Condition 2 and assume that {υt } is independent of {Qt } and satisfies υ[T s] ⇒
Aυ Wυ(s), where Aυ is a (d + k)× (d + k) non-stochastic, possibly singular matrix and Wυ is a (d + k)× 1 standard
Wiener process. Then

(i) T −1∑T
t=1(Q∗

t Q∗′
t − Ik+d )υt

p→ 0 and

(ii) T −1∑T
t=1(Q∗

t Q∗′
t − Ik+d )υtυ

′
t

p→ 0.

Proof.

(i) We will show convergence in probability of

T −1
T∑

t=1

(Q∗
t,i Q∗

t, j − δi, j )υt, j

for any i, j ∈ {1, . . . ,d + k}, where δi, j = 1 if i = j and 0 otherwise. The proof relies on a truncation argument
with respect to υt, j . For all t and T , define υ̃t, j = υt, j if |υt, j | < Kυ and υ̃t, j = 0 otherwise. Then

P[∃ t : υ̃t, j �= υt, j ] = P

[
max

t
|υt, j | > Kυ

]
→ P

[
sup

s
|Aυ, j Wυ(s)| > Kυ

]
, (15)

where Aυ, j is the j-th row of Aυ , and the last line follows from the CMT and the definition of weak convergence.
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We will first show that (Q∗
t,i Q∗

t, j − δi, j )υ̃t, j is a L1 adapted mixingale with respect to the σ -field F∗
t generated

by {Q∗
t , Q∗

t−1, . . . ,υT ,υT−1, . . .}. Apart from the presence of υ̃t, j , the reasoning is similar to example 16.4
of Davidson (1994, p. 249). From E[Q∗

t Q∗′
t ] = Ik+d and the independence of {Q∗

t } and {υt }, E[(Q∗
t,i Q∗

t, j −
δi, j )υ̃t, j ] = 0. Since {Q∗

t,i } and {Q∗
t, j } are Lr -bounded and supt≤T |υ̃t, j | ≤ Kυ a.s., {(Q∗

t,i Q∗
t, j − δi, j )υ̃t, j } is

Lr/2-bounded

E[|(Q∗
t,i Q∗

t, j − δi, j )υ̃t, j |r/2]2/r ≤ Kυ E[|Q∗
t,i Q∗

t, j − δi, j |r/2]2/r

≤ Kυ(E[|Q∗
t,i |r ]1/r E[|Q∗

t, j |r ]1/r + δi, j ) ≤ Kυ KQ

for some KQ < ∞ for all t and T , where the second inequality follows from the triangle and Cauchy–Schwarz
inequalities. Furthermore, because r > 2, this implies that {(Q∗

t,i Q∗
t, j −δi, j )υ̃t, j } is uniformly integrable. For the

L1 mixingale property, we need to bound |E[(Q∗
t,i Q∗

t, j − δi, j )υ̃t, j |F∗
t−m ]|.

Now under strong mixing, theorem 14.2 of Davidson (1994) is applicable and we find

|E[(Q∗
t,i Q∗

t, j − δi, j )υ̃t, j |F∗
t−m ]| ≤ Kυ |E[(Q∗

t,i Q∗
t, j − δi, j )|F∗

t−m ]|

≤ 6Kυα
1−2/r
m E[|Q∗

t,i Q∗
t, j − δi, j |r/2]2/r

≤ 6Kυα
1−2/r
m KQ

with αm the m-th strong mixing coefficient. Since αm = O(m−r/(r−2)−ε) for some ε > 0, we find that α
1−2/r
m =

O(m−1−ε′
) for some ε′ > 0, so that under strong mixing, {(Q∗

t,i Q∗′
t, j − δi, j )υ̃t, j ,F

∗
t } is a L1 mixingale of

size −1 (with constants that do not depend on t).
Under uniform mixing, we can apply theorem 14.4 of Davidson (1994) to find

|E[(Q∗
t,i Q∗

t, j − δi, j )υ̃t, j |F∗
t−m ]| ≤ 2Kυφ

1−2/r
m KQ

with φm the m-th uniform mixing coefficient. Since φm = O(m−r/(2r−2)−ε) for some ε > 0, we find φ
1−2/r
m =

O(m−(r−2)/(2r−2)−ε′
) for some ε′ > 0, so that {(Q∗

t,i Q∗
t, j − δi, j )υ̃t, j ,F

∗
t } becomes a L1 mixingale of size

−(r −2)/(2r −2) with constants that do not depend on t when {Qt } is uniform mixing.
But theorem 19.11 of Davidson (1994, p. 302), shows that the mean of a uniformly integrable L1 mixingale of
any size with respect to constants that do not depend on t converges to 0 in the L1-norm, and hence in probability.
Since the probability of the truncation (15) can be made arbitrarily small by choosing Kυ large for large enough
T , the result follows.

(ii) The proof is analogous to part (i), the only difference is that now the j, l-th element [υtυ
′
t ] j,l of υtυ

′
t is truncated.

The probability of such a truncation taking place is then

P

[
max

t
|[υtυ

′
t ] j,l | > Kυ

]
→ P

[
sup

s
|[Aυ Wυ(s)Wυ(s)′ A′

υ ] j,l | > Kυ

]
,

which can also be made arbitrarily small by choosing Kυ large for large enough T .

‖

Lemma 6. Let the T ×1 vector u = (u1, . . . ,uT )′ be such that T −1/2∑[T ·]
t=1 ut ⇒ Wu(·), where Wu is a standard

scalar Wiener process. Then

u′[Gc − Me]u ⇒ −cJu(1)2 − c2
∫

J2
u − 2c

1− e−2c

[
e−c Ju(1)+ c

∫
e−cs Ju

]2
+
[

Ju(1)+ c
∫

Ju

]2

where Ju(s) = Wu(s)− c
∫ s

0 e−c(s−λ)Wu(λ)dλ.

Proof. Write u′[Gc − Me]u = u′(H−1
c − IT )u −u′H−1

c e(e′H−1
c e)−1e′H−1

c u +(T −1/2e′u)2. Define B = A−1
c u,

so that the t-th element of B satisfies Bt =∑t
s=1 r t−s

c us , and let B−1 = (0, B1, . . . , BT−1)′. Also note that A−1
c L Ac = L .

For the first term, we compute

u′(H−1
c − IT )u = u′(rc L ′ A−1′

c A−1
c L − IT )u

= rc B′L ′L B −u′u
= rc(u + (rc −1)B−1)′(u + (rc −1)B−1)−u′u
= (rc −1)u′u + rc(rc −1)2 B′−1 B−1 +2rc(rc −1)B′−1u.
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Now from u + rc B−1 = B, we find u′u +2rc B′−1u + r2
c B′−1 B−1 = B′B, yielding

B′−1u = (2rc)
−1[B2

T + (1− r2
c )B′−1 B−1 −u′u].

So after rearranging we have
u′(H−1

c − IT )u = (rc −1)B2
T − (1− rc)

2 B′−1 B−1.

By direct calculation T −1e′H−1
c e = rc

1−r2T
c

T (1−r2
c )

= 1−e−2c

2c +o(1). Also

T −1/2e′H−1
c u = rcT −1/2e′L ′ A−1′

c A−1
c L Ac A−1

c u

= rcT −1/2ι′T,1 A−1′
c L B

= T (1− rc)T
−3/2

T−1∑
t=1

r t
c Bt + rT

c T −1/2 BT .

For the final term T −1/2e′u = T −1/2e′ Ac B = T −1/2 BT + T (1 − rc)T −3/2e′B−1. The lemma now follows from
the joint convergence of T −1/2 BT ⇒ Ju(1),T −2∑T

t=1 B2
t−1 ⇒ ∫

J2
u ,T −1∑T−1

t=1 r t
c Bt ⇒ ∫

e−cs Ju(s)ds,T −1∑T
t=1

Bt−1 ⇒ ∫
Ju ,rT

c → e−c and the CMT. ‖

Proof of Lemma 2. Since under Condition 2 {Q∗
t ε∗

t } is a mixing sequence, E[|Q∗
t, j ε

∗
t |] = E[|Q∗

t, j |]E[|ε∗
t |] is

uniformly bounded in T for j = 1, . . . ,k + d and the long-run variance of {Q∗
t ε∗

t } is given by E[Q∗
t Q∗′

t (ε∗
t )2] =

σ−2 E[C Qt Q′
t C

′ε2
t ] = Ik+d by the law of iterated expectations, we find that the sum of the first [sT ] k × 1 vectors

of σ−1[IT ⊗ P∗′
−1/2
X ]�′Mε satisfies

T −1/2[(e′
[sT ],0′

T−[sT ])⊗ Ik ][IT ⊗ P∗′]�∗′M∗ε∗

= T −1/2 P∗′
⎛⎝[sT ]∑

t=1

X∗
t ε∗

t

⎞⎠− P∗′
⎛⎝T −1

[sT ]∑
t=1

X∗
t Q∗′

t

⎞⎠(T −1 Q∗′Q∗)−1T −1/2
T∑

t=1

Q∗
t ε∗

t

⇒ P∗′W̃ε(s)− s P∗′W̃ε(1) = Wε(s)− sWε(1)

where W̃ε is a k × 1 Wiener process and Wε = P∗′W̃ε from a functional central limit theorem (FCLT) for mixing

sequences as in White (2001, p. 189), and
(
T −1∑[sT ]

t=1 X∗
t Q∗′

t − sT −1∑T
t=1 X∗

t Q∗′
t
) p→ 0 by the uniform convergence

of T −1∑[sT ]
t=1 Qt Q′

t
p→ s
Q in s. Note that since P∗ is orthonormal, Wε is a standard Wiener process, too.

Since v ′
i (Gai − Me)vi = (vi + qi e)

′(Gai − Me)(vi + qi e) for any choice of scalar qi , we find with qi = T −1ι′k,i
P∗′ X∗′ε∗ (so that T 1/2qi ⇒ Wε,i (1))

T −1/2(e′
[sT ],0′

T−[sT ])(vi +qi e) = T −1/2(e′
[sT ],0′

T−[sT ])[IT ⊗ ι′k,i P∗′]�∗′M∗ε∗ + [sT ]T −3/2ι′k,i P∗′X∗′ε∗

⇒ Wε,i (s)− sWε,i (1)+ sWε,i (1) = Wε,i (s).

An application of Lemma 6 with u = vi +qi e, i = 1, . . . ,k, and the CMT now yield the result. ‖
Proof of Lemma 3. As in the proof of Lemma 2, we rely on a FCLT for mixing sequences as described in

theorem 7.45 of White (2001, p. 201) for the following computations concerning the weak convergence of
{Qt εt ,T�βt ,T�γt ,T�β̃t ,T�γ̃t }. Furthermore, we make repeated use of parts (i) and (ii) of Lemma 5 above. We
explicitly consider terms involving β and β̃ only, the identical distributions of γ and γ̂ obviously lead to the analogous
results. Let

∑
stand for summation over t = 1, . . . ,T .

(i)

σ−2ε′�[Me ⊗ Ik ]β = ε∗′�∗[Me ⊗ Ik ]β∗

= ε∗′�∗β∗ − T −1ε∗′ X∗[e′ ⊗ Ik ]β∗.

But ∑
β∗′

t X∗
t ε∗

t = tr
[

P∗�1/2
(∑

�−1/2 P∗′β∗
t X∗′

t ε∗
t

)]
⇒ tr

[
P∗�1/2

∫
WβdW̃ ′

ε

]
=
∫

W ′
β�1/2dWε
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where Wε = P∗′W̃ε , and

T −1/2 X∗′ε∗ = T −1/2
∑

X∗
t ε∗

t ⇒ P∗Wε(1)

T −1/2[e′ ⊗ Ik ]β∗ = T −1/2
∑

β∗
t ⇒ P∗�1/2

∫
Wβ,

so that by the CMT,

σ−2ε′�[Me ⊗ Ik ]β ⇒
∫

W ′
β�1/2dWε −

(∫
W ′

β

)
�1/2Wε(1) =

∫
W̄ ′

β�1/2dWε.

(ii)

σ−2β ′[Me ⊗ Ik ]�′�[Me ⊗ Ik ]β = β∗′�∗′�∗β∗ − T −12β∗′(e ⊗ Ik )X∗′�∗β∗

+ T −2β∗′(e ⊗ Ik )X∗′ X∗(e ⊗ Ik )′β∗.

Now

β∗′�∗′�∗β∗ =
∑

β∗′
t X∗

t X∗′
t β∗

t

= tr
[∑

X∗
t X∗′

t β∗
t β∗′

t

]
⇒ tr

[
P∗�1/2

(∫
Wβ W ′

β

)
�1/2 P∗′

]
=
∫

W ′
β�Wβ

using part (ii) of Lemma 5, and similarly

T −1/2 X∗′�∗β∗ = T −1/2
∑

X∗
t X∗

t β∗
t ⇒ P∗�1/2

∫
Wβ

so that, with the results established in part (i) above, T −1 X∗′ X∗ p→ Ik and the CMT,

σ−2β ′[Me ⊗ Ik ]�′�[Me ⊗ Ik ]β ⇒
∫

W ′
β�Wβ −

(∫
Wβ

)′
�

(∫
Wβ

)
=
∫

W̄ ′
β�W̄β .

(iii) Define β̃∗ in analogy to β∗.

σ−2ε′M�[Me ⊗ Ik ]β̃ = ε∗′�∗[Me ⊗ Ik ]β̃∗ − ε∗′Q∗(Q∗′Q∗)−1 Q∗′�∗[Me ⊗ Ik ]β̃∗.

From the same reasoning as in part (i), ε∗′�∗[Me ⊗ Ik ]β̃∗ ⇒ ∫
W̄ ′

β̃
�1/2dWε . Furthermore, with WZε a d × 1

standard Wiener process independent of Wε ,

T 1/2ε∗′Q∗(Q∗′Q∗)−1 =
(

T −1/2
∑

Q∗
t ε∗

t

)′
(T −1 Q∗′Q∗)−1 ⇒

(
P∗Wε(1)

WZε(1)

)′

T −3/2 Q∗′�∗[ee′ ⊗ Ik ]β̃∗ =
(

T −1
∑

Q∗
t X∗′

t

)(
T −1/2

∑
β̃∗

t

)
⇒
(

P∗�1/2 ∫ Wβ̃

0

)

T −1/2 Q∗′�∗β̃∗ = T −1/2
∑

Q∗
t X∗′

t β̃∗
t ⇒

(
P∗�1/2 ∫ Wβ̃

0

)

yielding the result.
(iv) From the same reasoning as in part (i) and the CMT,

σ−2β̃ ′[Me ⊗ 
X ]β̃ = tr
[∑

β̃∗
t β̃∗′

t

]
−
(

T −1/2
∑

β̃∗′
t

)(
T −1/2

∑
β̃∗

t

)
⇒
∫

W ′
β̃
�Wβ̃ −

(∫
Wβ̃

)′
�

(∫
Wβ̃

)
=
∫

W̄ ′
β̃
�W̄β̃ .

The joint convergence is an immediate consequence of the independence of β, β̃,γ , and γ̃ . ‖
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Proof of Theorem 2. All computations in the proof are made in the stable model (1), that is, under the assumption
that h = ε. Denote by Eβ , Eγ , E

β̃
, and Eγ̃ integration with respect to νβ ,νγ ,ν

β̃
, and νγ̃ , so that L RT = Eβξ(β) and

L̃ RT = Eβ̃ ξ̃ (β̃). Let φ =∑k
i=1 v ′

i [G2ai − Me]vi and 
̂X∗ = T −1∑T
t=1 X∗

t X∗′
t , and for real constants KG and KS ,

define the two indicator functions

GT = 1[φ < KG ]1[tr
̂X∗ < k +1]

ST (b) = 1

[
sup
t≤T

T b′
t bt < KS

]
.

Further define

L̃RG,T = GT E
β̃
ξ̃ (β̃)

L̃RS,T = GT Eβ̃ ξ̃ (β̃)ST (β̃∗)

LRG,T = GT Eβξ(β)

LRS,T = GT Eβξ(β)ST (β∗).

Note that

P(|LRT − L̃RT | > 5ε) ≤ P(|LRT −LRG,T | > ε)+ P(|LRG,T −LRS,T | > ε)

+ P(|LRS,T − L̃RS,T | > ε)+ P(|L̃RS,T − L̃RG,T | > ε)+ P(|L̃RG,T − L̃RT | > ε).

We hence need to show (i) for any ε,η > 0 there exists T ∗, KG , and KS such that for all T ≥ T ∗, P(|LRT −LRG,T | >

ε) < η, P(|LRG,T − LRS,T | > ε) < η, P(|L̃RS,T − L̃RG,T | > ε) < η, and P(|L̃RG,T − L̃RT | > ε) < η and (ii) for all

KG and KS ,LRS,T − L̃RS,T
p→ 0.

We show (i) first. Now

P(|L̃RG,T − L̃RT | > ε) ≤ P(φ ≥ KG )+ P(tr
̂X∗ ≥ k +1)

P(|LRT −LRG,T | > ε) ≤ P(φ ≥ KG )+ P(tr
̂X∗ ≥ k +1).

Since 
̂Q
p→ 
Q , P(tr
̂X∗ ≥ k +1) → 0. Also, by Lemma 2

φ ⇒
k∑

i=1

[
−ci Ji (1)2 − c2

i

∫
J2
i − 2ci

1− e−2ci

[
e−ci Ji (1)+ ci

∫
e−ci s Ji

]2
+
[

Ji (1)+ ci

∫
Ji

]2
]

where ci = 2ai , i = 1, . . . ,k, so that by choosing KG large enough, P(φ ≥ KG ) can be made smaller than η for sufficiently
large T .

Before proceeding further, note that by computations close to those in the proof of Lemma 1,

E[GT ξ̃ (β̃)4] = EGT E
β̃

exp[4σ−2ε′M�[Me ⊗ Ik ]β̃ −2σ−2β̃ ′[Me ⊗ 
X ]β̃]

= EGT

∫
(2π)−k(T−1)/2|K�|−1/2

exp

[
4σ−2ε′M�[Be ⊗ Ik ]be − 1

2
b′

e[K−1
� +4IT−1 ⊗ σ−2
X ]be

]
dbe

= EGT |K�|−1/2|K−1
� +4IT−1 ⊗ σ−2
X |−1/2

exp[8σ−4ε′M�[Be ⊗ Ik ][K−1
� +4IT−1 ⊗ σ−2
X ]−1[B′

e ⊗ Ik ]�′Mε]

= EGT |IT−1 ⊗ Ik + K4�|−1/2

exp[8σ−2ε′M�[Be ⊗ 

−1/2
X P∗][K−1

4� + IT−1 ⊗ Ik ]−1[B′
e ⊗ P∗′
−1/2

X ]�′Mε]

= EGT exp[8φ]
k∏

i=1

⎡⎣ 1− r2T
2ai

T (1− r2
2ai

)rT−1
2ai

⎤⎦−1/2

≤ exp[8KG ]
k∏

i=1

⎡⎣ 1− r2T
2ai

T (1− r2
2ai

)rT−1
2ai

⎤⎦−1/2

so that there exists a constant K ′ (that depends on KG ) such that supT E[GT ξ̃ (β̃)4] < K ′.
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With this result, by applying Markov’s and Hölder’s inequalities

P(|L̃RS,T − L̃RG,T | > ε) ≤ ε−1 E ξ̃ (β̃)GT (1− ST (β̃∗))

≤ ε−1[E(1− ST (β̃∗))4/3]3/4[E ξ̃ (β̃)4GT ]1/4

≤ ε−1 P

(
sup

t
T β̃∗′

t β̃∗
t ≥ KS

)3/4
(K ′)1/4.

Also, applying again Markov’s inequality

P(|LRG,T −LRS,T | > ε) ≤ ε−1 Eξ(β)GT (1− ST (β∗))

≤ ε−1 Eξ(β)(1− ST (β∗))

= ε−1
∫

(1− ST ((IT ⊗ σ−1

1/2
X )(b − (e ⊗ Ik )b1))E

⎡⎣ fy,Q|β=b(y, Q)

f 0
y,Q(y, Q)

⎤⎦dνβ(b)

= ε−1 E(1− ST (β∗))

= ε−1 P

(
sup

t
Tβ∗′

t β∗
t ≥ KS

)
where the interchange of the order of integration in the third line is allowed by Fubini’s theorem, and the second equality
follows from the fact that the density fy,Q|β=b(y, Q) integrates to unity for all b. Since P(supt T β̃∗′

t β̃∗
t ≥ KS) →

P(sups Wβ̃ (s)′�Wβ̃ (s) ≥ KS) and P(supt Tβ∗′
t β∗

t ≥ KS) → P(sups Wβ(s)′�Wβ(s) ≥ KS), by choosing KS large

enough, P(|L̃RS,T − L̃RG,T | > ε) and P(|LRG,T −LRS,T | > ε) can hence be made smaller than η for large enough T .

We are left to show (ii), that is, that LRS,T − L̃RS,T
p→ 0 for all 0 < KG < ∞ and 0 < KS < ∞. We will show

below that supT E[(LRS,T )4] < ∞ and supT E[(L̃RS,T )4] < ∞, which implies that (LRS,T − L̃RS,T )2 is uniformly
integrable. Let ψ(β) = ξ(β)ST (β∗) and ψ̃(β̃) = ξ(β̃)ST (β̃∗). Then, as in (12),

E[(LRS,T − L̃RS,T )2] = EGT ψ(β)ψ(γ )− EGT ψ(β)ψ̃(γ̃ )− EGT ψ̃(β̃)ψ(γ )+ EGT ψ̃(β̃)ψ̃(γ̃ ).

Now Lemmas 2 and 3 and the CMT imply that GT ψ(β)ψ(γ ),GT ψ(β)ψ̃(γ̃ ),GT ψ̃(β̃)ψ(γ ), and GT ψ̃(β̃)ψ̃(γ̃ ) have
the same asymptotic distribution, which is given by

1

⎡⎣ k∑
i=1

[
−ci Ji (1)2 − c2

i

∫
J2
i − 2ci

1− e−2ci

[
e−ci Ji (1)+ ci

∫
e−ci s Ji

]2
+
[

Ji (1)+ ci

∫
Ji

]2
]

< KG

⎤⎦
×1
[

sup
s

W0(s)′�W0(s) < KS

]
1
[

sup
s

W1(s)′�W1(s) < KS

]
× exp

[∫
W̄ ′

0�1/2dWε − 1

2

∫
W̄ ′

0�W̄0

]
exp

[∫
W̄ ′

1�1/2dWε − 1

2

∫
W̄ ′

1�W̄1

]
,

where W0 and W1 are mutually independent k ×1 standard Wiener processes independent of Wε,ci = 2ai and Ji (which
are continuous functionals of Wε(·)) are defined as in Lemma 2. The expectation of the asymptotic distribution of
(LRS,T − L̃RS,T )2 is hence 0, and by the uniform integrability of (LRS,T − L̃RS,T )2, this implies that

E[(LRS,T − L̃RS,T )2] → 0

so that LRS,T − L̃RS,T
p→ 0.

Now in order to show supT E[(L̃RS,T )4] < ∞, note that by Jensen’s inequality

E[(L̃RS,T )4] = E[(GT Eβ̃ ξ̃ (β̃)ST (β̃∗))4]

≤ E[GT Eβ̃ ξ̃ (β̃)4] < K ′

uniformly in T from the result above, and for supT E[(LRS,T )4], again by Jensen’s inequality,

E[(LRS,T )4] = E[(GT Eβξ(β)ST (β∗))4]

≤ EGT ξ(β)4ST (β∗)

= EGT exp[4σ−2ε′�β −2σ−2β ′[Me ⊗ Ik ]�′�[Me ⊗ Ik ]β]ST (β∗)

≤ EGT exp[4ε∗′�∗β∗]ST (β∗).
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From a repeated application of the Law of Iterated Expectations and the conditional Gaussianity of {εt } of Condition 2

EGT exp[4ε∗′�∗β∗]ST (β∗) ≤ E1[tr
̂X∗ < k +1]exp[4ε∗′�∗β∗]ST (β∗)

= E

⎡⎣1[tr
̂X∗ < k +1]exp

⎡⎣8
T∑

t=1

(β∗′
t X∗

t )2

⎤⎦ ST (β∗)

⎤⎦
≤ E

⎡⎣1[tr
̂X∗ < k +1]exp

⎡⎣8KST −1
T∑

t=1

X∗′
t X∗

t

⎤⎦⎤⎦
≤ exp[8KS(k +1)]

uniformly in T .

For the convergence L̃RT −LRT
p→ 0, let ṽi = [IT ⊗ ι′k,i P∗′σ̂−1
̂

−1/2
X ]�′Mε. Note that σ̂ 2 and 
̂X are consistent

by standard arguments. Therefore,⎛⎝T −1/2
[sT ]∑
t=1

vi,t ,T −1/2
[sT ]∑
t=1

ṽi,t

⎞⎠⇒ (Wε,i (s)− sWε,i (1),Wε,i (s)− sWε,i (1)),

and proceeding as in the proof of Lemma 2, the CMT yields

v ′
i [Gai − Me]vi − ṽ ′

i [Gai − Me]ṽi ⇒ 0.

But weak convergence to a constant is equivalent to convergence in probability, and the result follows by Slutsky’s
Theorem. ‖

Proof of Theorem 3. In order to establish contiguity, we need to show that (i) LRT converges weakly to some random
variable L̃R under the null hypothesis of h = ε and (ii) E[L̃R] = 1.

For (i), first note that by Theorem 2, LRT − L̃RT
p→ 0 under the null hypothesis. But convergence in probability

implies convergence in distribution, and after noting that[
1− r2T

a

T (1− r2
a )rT−1

a

]−1

→ 2ae−a

1− e−2a

as T → ∞ the result is immediate from the CMT and Lemma 2, with L̃R =∏k
i=1 L̃Ri where

L̃Ri =
[

2ai e
−ai

1− e−2ai

]1/2

×exp

[
− 1

2

[
−ai Ji (1)2 −a2

i

∫
J2
i − 2ai

1− e−2ai

[
e−ai Ji (1)+ai

∫
e−ai s Ji

]2
+
[

Ji (1)+ai

∫
Ji

]2
]]

and Ji is defined in Lemma 2.
Turning to (ii), from the independence of the processes Ji we find

E[L̃R] =
k∏

i=1

E[L̃Ri ]

so that it is sufficient to show that E[L̃Ri ] = 1. From Girsanov’s (1960) theorem as described in Tanaka (1996, p. 109), a
change of measure yields

E[L̃Ri ] =
[

2ai e
−ai

1− e−2ai

]1/2

× E

[
exp

[
− 1

2

[
−ai − 2ai

1− e−2ai

[
e−ai Wi (1)+ai

∫
e−ai s Wi (s)ds

]2
+
[

Wi (1)+ai

∫
Wi (s)ds

]2
]]]

c© 2006 The Review of Economic Studies Limited



938 REVIEW OF ECONOMIC STUDIES

where Wi is a Wiener process. Define

ZW =
(

Wi (1)+ai
∫

Wi (s)ds

Wi (1)+ai
∫

eai (1−s)Wi (s)ds

)
and

�W =
(

1 0

0 −2ai e
−2ai /(1− e−2ai )

)
=
(

1 0

0 2ai /(1− e2ai )

)
so that

E[L̃Ri ] =
[

2ai

1− e−2ai

]1/2
E

[
exp

[
− 1

2
Z ′

W �W ZW

]]
.

With

ZW =
∫ (1+ai (1− s)

eai (1−s)

)
dWi (s)

we find ZW ∼N (0,VW ), where

VW = E[ZW Z ′
W ] =

(
1+ai +a2

i /3 eai

eai (e2ai −1)/(2ai )

)
.

By completing the square we compute

E[L̃Ri ] =
[

2ai

1− e−2ai

]1/2 ∫
(2π)−1|VW |−1/2 exp

[
− 1

2
z′
W [�W + V −1

W ]zW

]
dzW

=
[

2ai

1− e−2ai

]1/2
|(�W + V −1

W )VW |−1/2

=
[

2ai

1− e−2ai
|�W VW + I2|−1

]1/2
,

and a direct calculation shows

�W VW + I2 =
(

2+ai +a2
i /3 eai

−2ai e
ai /(e2ai −1) 0

)
so that |�W VW + I2| = 2ai e

2ai /(e2ai −1), yielding the desired result. ‖

Proof of Theorem 4.
Noting that {X∗

t ε∗
t } = {σ−1


−1/2
X Xt εt }, Condition 3 implies that the long-run covariance of {X∗

t ε∗
t } is given by

σ−2

−1/2
X VX 


−1/2
X , so that

T −1/2[(e′
[sT ],0′

T−[sT ])⊗ Ik ][IT ⊗ P∗′V̂ −1/2
X ]�′Mε

= T −1/2 P∗′V̂ −1/2
X σ


1/2
X

[sT ]∑
t=1

X∗
t ε∗

t

−P∗′V̂ −1/2
X σ


1/2
X

⎛⎝T −1
[sT ]∑
t=1

X∗
t Q∗′

t

⎞⎠(T −1 Q∗′Q∗)−1T −1/2
T∑

t=1

Q∗
t ε∗

t

⇒ P∗′V −1/2
X V 1/2

X P∗Wε(s)− s P∗′V −1/2
X V 1/2

X P∗Wε(1)

= Wε(s)− sWε(1),

where the weak convergence follows from the uniform convergence of T −1∑[sT ]
t=1 Q∗

t Q∗′
t

p→ s Ik+d , the consistency of
V̂X , the CMT and the FCLT for mixing series as in the proof of Lemma 3. Proceeding as in the proof of Lemma 2 now
yields the result. ‖
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