A Proof of Theorem 2

(i) If the likelihood ratio \(p(X|\theta_i)/p(X|\theta_j) \) is an absolutely continuous random variable for any \(i \neq j \), then \(p(X|\theta_j), j = 1, \ldots, m \), have the same support and the posterior distribution is well defined for any prior \(\pi \) and \(\nu \)-almost all \(x \in \mathcal{X} \). Moreover, ties in the posterior probabilities \((p(\theta_i|X) = p(\theta_j|X), i \neq j) \) happen with probability zero under any \(\theta \in \Theta \). An HPD credible set \(\varphi(_, \cdot; \pi) \) is uniquely defined and continuous in \(\pi \) whenever there are no ties in the posterior probabilities. The function \(z(\pi) \) defined in Theorem 1 is therefore continuous in \(\pi \) and Theorem 1 implies that there exists a prior \(\pi^* \) for which \(\varphi(_, \cdot; \pi^*) \) has coverage of at least \(1 - \alpha \).

(ii) Next, let us show that \(\pi^*_j > 0 \) for any \(j \) and \(\varphi(_, \cdot; \pi^*) \) is a similar \(1 - \alpha \) confidence set. If \(\pi^*_j = 0 \) for some \(j \) then \(\theta_j \) is not contained in the \(1 - \alpha \) HPD credible set for any \(x \) and \(\varphi(_, \cdot; \pi^*) \) has zero coverage at \(\theta_j \). Thus, \(\pi^*_j > 0 \) for all \(j \). Since \(\varphi(_, \cdot; \pi^*) \) is a \(1 - \alpha \) credible set

\[
\sum_{j=1}^{m} \varphi(\theta_j, x; \pi^*) p(x|\theta_j) \pi^*_j = \alpha \sum_{j=1}^{m} p(x|\theta_j) \pi^*_j.
\]

Integration of the last display implies

\[
\sum_{j=1}^{m} \left[\int \varphi(\theta_j, x; \pi^*) p(x|\theta_j)d\nu(x) \right] \pi^*_j = \alpha. \tag{12}
\]

Since the coverage of \(\varphi(_, \cdot; \pi^*) \) is at least \(1 - \alpha \), \(\int \varphi(\theta_j, x; \pi^*) p(x|\theta_j)d\nu(x) \leq \alpha \). Because \(\pi^*_j > 0 \) for all \(j \) the equality in (12) can hold only if \(\int \varphi(\theta_j, x; \pi^*) p(x|\theta_j)d\nu(x) = \alpha \) for all \(j \) or, in other words, \(\varphi(_, \cdot; \pi^*) \) is similar.

(iii) It suffices to show that if \(\sum_{j=1}^{m} \varphi'(\theta_j, x) \geq \sum_{j=1}^{m} \varphi(\theta_j, x; \pi^*) \) for all \(x \in \mathcal{X} \) and \(\sum_{j=1}^{m} \varphi'(\theta_j, x) > \sum_{j=1}^{m} \varphi(\theta_j, x; \pi^*) \) for all \(x \in \mathcal{X}_l \) with \(\nu(\mathcal{X}_l) > 0 \), then
\[\int \varphi'(\theta_j, x) p(x|\theta_j) d\nu(x) > \alpha \text{ for some } j. \]

The HPD set \(\varphi(\theta, x; \pi^*) \) can be defined for \(\nu \)-almost all \(x \) by the minimum length property that for all \(\varphi'' \) with \(\sum_{j=1}^{m} \varphi''(\theta_j, x) = \sum_{j=1}^{m} \varphi(\theta_j, x; \pi^*) \),
\[\sum_{j=1}^{m} \varphi(\theta_j, x; \pi^*) p(\theta_j|x) \leq \sum_{j=1}^{m} \varphi''(\theta_j, x) p(\theta_j|x). \]
Thus, for \(\nu \)-almost all \(x \in X_i \),
\[\sum_{j=1}^{m} \varphi(\theta_j, x; \pi^*) p(x|\theta_j) \pi_j^* < \sum_{j=1}^{m} \varphi'(\theta_j, x) p(x|\theta_j) \pi_j^* \]
and for all \(x \in X \) the inequality holds weakly. Integrating this inequality with respect to \(\nu \) yields
\[\sum_{j=1}^{m} \pi_j^* \int (\varphi(\theta_j, x; \pi^*) - \varphi'(\theta_j, x)) p(x|\theta_j) d\nu(x) < 0. \]
Since \(\sum_{j=1}^{m} \pi_j^* \int \varphi(\theta_j, x; \pi^*) p(x|\theta_j) d\nu(x) = \alpha \) by part (ii), this implies that there exists \(j \) such that \(\int \varphi'(\theta_j, x) p(x|\theta_j) d\nu(x) > \alpha \).

B Proof of Theorem 3

(i) By the assumed uniform continuity and \(\max_j \text{diam}(\tilde{\Theta}_j^m) \to 0 \), there exists \(M_\epsilon \) such that for any \(m \geq M_\epsilon \) and \(\tilde{\theta}_1, \tilde{\theta}_2 \in \tilde{\Theta}_j^m, j = 1, \ldots, m, \)
\[\int |\tilde{p}(x|\tilde{\theta}_1) - \tilde{p}(x|\tilde{\theta}_2)| d\nu(x) < \epsilon. \] (13)

In order to obtain a contradiction, assume there exists \(j^* \) and \(\tilde{\theta}^* \in \tilde{\Theta}_j^{m^*} \) such that
\[\int \tilde{\varphi}^m(\tilde{\theta}^*, x; \pi^{m*}) \tilde{p}(x|\tilde{\theta}^*) d\nu(x) < \alpha - \epsilon. \] (14)

For any \(\tilde{\theta}_1 \in \tilde{\Theta}_j^m, \tilde{\varphi}^m(\tilde{\theta}^*, x; \pi^{m*}) = \tilde{\varphi}^m(\tilde{\theta}_1, x; \pi^{m*}) \) as \(\tilde{\varphi}^m \) is constant on \(\tilde{\Theta}_j^m \), by definition. Therefore, by (13) and (14),
\[\int \tilde{\varphi}^m(\tilde{\theta}_1, x; \pi^{m*}) \tilde{p}(x|\tilde{\theta}_1) d\nu(x) < \alpha, \forall \tilde{\theta}_1 \in \tilde{\Theta}_j^m, \]
which would make the equality in (6) impossible. A contradiction for
\[\int \tilde{\varphi}^m(\tilde{\theta}^*, x; \pi^{m*}) \tilde{p}(x|\tilde{\theta}^*) d\nu(x) > \alpha + \epsilon \] can be obtained in the same way.
(ii) Suppose the claim does not hold. Then, there exists a subsequence \(\{m_k\} \) with
\[
\int \tilde{\phi}(\theta, x) d\tilde{\theta} \geq (1 + \epsilon) \cdot \int \tilde{\varphi}^{m_k}(\theta, x; \pi^{m_k*}) d\tilde{\theta}
\]
for \(\nu \)-almost all \(x \). Pick \(m_k > M_\epsilon \), with \(M_\epsilon \) defined in part (i) of this proof. For this \(m_k \), and any \(\tilde{\theta} \in \tilde{\Theta}_j^{m_k} \), define
\[
\tilde{\phi}'(\theta_j, x) = \tilde{\phi}'(\theta_j, x) = \int_{\tilde{\Theta}_j} \tilde{\phi}(\theta_j, x) d\tilde{\theta}_1/V_j \text{ and } \tilde{\phi}''(\theta_j, x) = \tilde{\phi}''(\theta_j, x)/(1 + \epsilon),
\]
where \(V_j = \text{vol}(\tilde{\Theta}_j^{m_k}), \ j = 1, \ldots, m_k \). Note that
\[
\int \tilde{\phi}(\tilde{\theta}, x) d\tilde{\theta} = \int \tilde{\phi}'(\tilde{\theta}, x) d\tilde{\theta} = (1 + \epsilon) \int \tilde{\phi}''(\tilde{\theta}, x) d\tilde{\theta} = (1 + \epsilon) \sum_j \tilde{\phi}''(\theta_j, x)V_j.
\]
Thus, \(\sum_j \tilde{\phi}''(\theta_j, x)V_j \geq \int \tilde{\varphi}^{m_k}(\tilde{\theta}, x; \pi^{m_k*}) d\tilde{\theta} = \sum_j \varphi^{m_k}(\theta_j, x; \pi^{m_k*})V_j \), and since \(\varphi^{m_k}(\theta, x; \pi^{m_k*}) \) maximizes \(\sum_j \varphi(\theta_j, x)V_j \) subject to \(\sum_j [\alpha - \varphi(\theta_j, x)]p(x|\theta_j)\pi_j^{m_k*} \leq 0 \),
\[
\sum_j \varphi''(\theta_j, x)p(x|\theta_j)\pi_j^{m_k*} \geq \sum_j \varphi^{m_k}(\theta_j, x; \pi^{m_k*})p(x|\theta_j)\pi_j^{m_k*}.
\]
Integration of this inequality with respect to \(\nu \) gives
\[
\sum_j \pi_j^{m_k*} \int \tilde{\phi}''(\theta_j, x)p(x|\theta_j) d\nu(x) \geq \alpha.
\]
Thus, there exists \(j^* \) such that \(\int \tilde{\phi}''(\theta_{j^*}, x)p(x|\theta_{j^*}) d\nu(x) \geq \alpha \) and
\[
\int \tilde{\phi}'(\theta_{j^*}, x)p(x|\theta_{j^*}) d\nu(x) \geq (1 + \epsilon)\alpha. \tag{15}
\]
At the same time,
\[
\int \tilde{\phi}'(\theta_{j^*}, x)p(x|\theta_{j^*}) d\nu(x) = \int_{\tilde{\Theta}_{j^*}^{m_k}} \int_{\tilde{\Theta}_{j^*}^{m_k}} \int \tilde{\phi}(\tilde{\theta}_1, x)p(x|\tilde{\theta}_2) d\nu(x) d\tilde{\theta}_1 d\tilde{\theta}_2/V_{j^*}^2.
\]
Because \(\int \tilde{\phi}(\tilde{\theta}_1, x)p(x|\tilde{\theta}_1) d\nu(x) \leq \alpha \) for all \(\tilde{\theta}_1 \in \tilde{\Theta} \) by assumption on \(\tilde{\phi} \),
\[
\int \tilde{\phi}'(\theta_{j^*}, x)p(x|\theta_{j^*}) d\nu(x) \leq \alpha + \sup_{\tilde{\theta}_1, \tilde{\theta}_2 \in \tilde{\Theta}_{j^*}^{m_k}} \int |\tilde{p}(x|\tilde{\theta}_1) - \tilde{p}(x|\tilde{\theta}_2)| d\nu(x) < (1 + \epsilon)\alpha. \tag{16}
\]
Combining (15) and (16) yields the desired contradiction.
C Computational Details for Applications

C.1 Algorithm

The fixed point iterations described in Section 3 require repeated evaluation of coverage probabilities. These may be computed using an importance sampling approach: Let \(\bar{p} \) be a proposal density such that \(p(\theta_j|x) \) is absolutely continuous with respect to \(\bar{p} \), and let \(X_i, i = 1, \ldots, N \) be \(N \) i.i.d. draws from \(\bar{p} \). Then non-coverage probability of a set \(\varphi \) at \(\theta_j \) can then be written as

\[
\text{RP}_j = \int \varphi(\theta_j, x) p(\theta_j|x) d\nu(x) = \int \varphi(\theta_j, x) \frac{p(\theta_j|x)}{\bar{p}(x)} \bar{p}(x) d\nu(x),
\]

yielding the approximation

\[
\hat{\text{RP}}_j(\varphi) = N^{-1} \sum_{i=1}^{N} \varphi(\hat{\theta}_i, X_i) \frac{p(\theta_j|X_i)}{\bar{p}(X_i)}.
\]

Write \(\varphi_\pi \) for the set \(\varphi(\theta_j, x; \pi) \) of Theorem 1. We employ the following algorithm to obtain an approximate \(\pi^* \) such that the HPD set \(\varphi_{\pi^*} \) has nearly coverage close to the nominal level:

1. Compute and store \(\frac{p(\theta_j|X_i)}{\bar{p}(X_i)} \), \(i = 1, \ldots, N, j = 1, \ldots, m \).

2. Initialize \(\pi^{(0)} \) at \(\pi^{(0)}_j = 1/m, j = 1, \ldots, m \).

3. For \(l = 0, 1, \ldots \)

 (a) Compute \(z_j = \hat{\text{RP}}_j(\varphi_{\pi^{(l)}}) - \alpha, j = 1, \ldots, m \).

 (b) If \(\max_j z_j - \min_j z_j < \varepsilon \), set \(\pi^* = \pi^{(l)} \) and end.

 (c) Otherwise, set \(\pi^{(l+1)}_j = \exp(\omega j z_j) \pi^{(l)}_j / \sum_{k=1}^{m} \exp(\omega j z_k) \pi^{(l)}_k, j = 1, \ldots, m \), and go to step 3a.
We set $\varepsilon = 0.0003$, and found $\omega = 1.5$ to yield reliable results as long as N is chosen large enough.

In the context of obtaining a credible set with approximately uniform coverage in a bounded but continuous set $\tilde{\Theta}$, we employ the above algorithm for a given partition m with $\varphi_\pi = \varphi^m(\theta_j, x; \pi)$ now defined as described in Section 2.3.3. In addition, we evaluate the uniform coverage properties of the resulting set estimator on $\tilde{\Theta}$, $\tilde{\varphi}^m(\bar{\theta}, x; \pi^m)$, by computing the (approximate) non-coverage probabilities $\hat{\text{RP}}(\tilde{\theta}) = N^{-1} \sum_{i=1}^N \tilde{\varphi}^m(\bar{\theta}, X_i; \pi^m) \frac{p(\bar{\theta}|X_i)}{p(X_i)}$ over a fine grid of values of $\bar{\theta}$. If these uniform properties are unsatisfactory, then the algorithm is repeated using a finer partition.

For an unbounded parameter space $\tilde{\Theta}$, we implement the guess and verify approach described in Section 2.3.4. We first choose an appropriate κ_S by computing the coverage of the HPD set relative to a flat prior on $\tilde{\Theta}$, and select κ_S to be just large enough for coverage to be sufficiently close to $1 - \alpha$ for all $\bar{\theta}$ with $\varsigma(\bar{\theta}) > \kappa_S$. We then partition $\tilde{\Theta}_{NS}$ into $m - 1$ subsets, and set $\tilde{\Theta}_m = \tilde{\Theta}_S$. As discussed in Section 2.3.4, it makes sense to rule out a large discontinuity of $\tilde{\Pi}^m(\bar{\theta}, \pi^m)$ at the boundary between $\tilde{\Theta}_{NS}$ and $\tilde{\Theta}_S$. Thus, in the above algorithm, we directly adjust the $m - 1$ values of $\tilde{\Pi}^m(\bar{\theta}, \pi)$ on $\tilde{\Theta}_j^m, j = 1, \ldots, m - 1$ without any scale normalization, and simply set $\Pi^m(\bar{\theta}, \pi)$ on $\tilde{\Theta}_S$ equal to the value of $\Pi^m(\bar{\theta}, \pi)$ of a subset $\tilde{\Theta}_j^m$ neighboring $\tilde{\Theta}_S$. This has the additional advantage of avoiding computation of the potentially ill-defined RP_m. After the iterations have concluded, we evaluate the coverage properties of the resulting set estimator $\tilde{\varphi}^m(\bar{\theta}, x; \pi^m)$ on a fine grid on $\tilde{\Theta}_{NS}$, and on a fine grid in the part of $\tilde{\Theta}_S$ where $\tilde{\varphi}^m(\bar{\theta}, x; \pi^m)$ is affected by the shape of the prior.
C.2 Details for Break Date and Magnitude

The continuous process X is approximated with 800 steps. Uniform coverage is evaluated on the Cartesian grid with $\lambda \in \{0.15, 0.15125, 0.1525, \ldots, 0.85\}$ and $\delta \in \{-15.0, -14.99, -14.98, \ldots, 15\}$. We set $N = 3 \cdot 10^6$, and \bar{p} to be uniform on $\{(\lambda, \delta) : 0.13 \leq \lambda \leq 0.87, -16 \leq \delta \leq 16\}$, which yields Monte Carlo standard deviations of coverage probabilities uniformly smaller than 0.001. We impose symmetry with respect to the sign of δ, and around $\lambda = 0.5$, in the computation of $\pi^{\text{m*}}$.

Computations for the finer partition take about 6 hours on a modern PC.

In the application, we use Elliott and Müller’s (2014) estimate of 2.6 for the long-run standard deviation of the quarterly data y_t.

C.3 Details for Autoregressive Root Near Unity

The continuous process X is approximated with 800 steps. Uniform coverage is evaluated on 5001 values $\tilde{\theta} \in \{120(\frac{j}{5000})^2\}_{j=0}^{5000}$. We set $N = 1.5 \cdot 10^6$, and set \bar{p} to be uniform on the 101 values $\tilde{\theta} \in \{160(\frac{j}{100})^2\}_{j=0}^{100}$, which yields Monte Carlo standard deviations of coverage probabilities uniformly smaller than 0.001.

For the application, we rely on output of the DF-GLS regression also employed in Lopez, Murray, and Papell (2013) to obtain small sample analogues to $\int_0^1 X(s)dX(s)$ and $\int_0^1 X(s)^2ds$. Specifically, let $\hat{\rho}$, $\hat{\sigma}_\rho$ and $\hat{\phi}$ be the usual OLS estimate of ρ, its standard error and the additional coefficients in an aug-
mented Dickey-Fuller regression using GLS demeaned data (with lag length as determined by Lopez, Murray, and Papell (2013)). We then employ the analogue

\[
(T^{-1}\hat{\phi}(1)(\hat{\rho} - 1)/\hat{\sigma}^2, T^{-2}\hat{\phi}(1)^2/\hat{\sigma}^2) \Rightarrow (\int_0^1 X(s) dX(s), \int_0^1 X(s)^2 ds)
\]

for the empirical results in Table 1.