Measuring Uncertainty about Long-Run Predictions

Ulrich K. Müller and Mark W. Watson
Princeton University

Presentation at CBO

November 4, 2015
Set-up

- Observe data x_t, $t = 1, \ldots, T$, such as growth rates of GDP, or inflation

- Want to forecast average over the next $h = \lfloor rT \rfloor$ periods

$$
\bar{x}_{T+1:hT} = h^{-1} \sum_{l=1}^{h} x_{T+l}
$$

where $r = 0.5$, say

- Aim: Construct interval from data $\{x_t\}_{t=1}^{T}$ that contains $\bar{x}_{T+1:hT}$ with 90% probability in repeated samples
US Postwar GDP Per Capita
Focus and Challenges

• This paper: statistical (rather than "structural") univariate long-term forecasting

• Econometric challenges

 – Only limited sample information about long-term behavior

 – Set of plausible models of long-term behavior?

 – How to deal with model and/or parameter uncertainty?
Low-Frequency Transformations

• Intuitively, question concerns low-frequency properties of x_t

• Extract relevant information by computing low-frequency transforms (Müller and Watson, 2008)

$$X_j = T^{-1} \sum_{t=1}^{T} \sqrt{2} \cos(\pi j t / T)x_t, \quad j = 1, \cdots, q$$

where q is a number like $q = 12$, and treat $(X_1, \cdots, X_q)'$ and $\bar{x}_{1:T} = T^{-1} \sum_{t=1}^{T} x_t$ as only available data
Cosine Weights
$q = 12$ LF Transforms for GDP
GDP LF Projection
Pros and Cons of LF Transforms

- Extract low-frequency information in $\{x_t\}$

- Avoids modelling and potential misspecification of higher frequency aspects

- Captures notion that relevant sample information about long-run forecasts limited

- But potential loss of efficiency
Standard I(0) Asymptotics for Time Series

- Under a range of primitive conditions on the dependent and heterogeneous mean-zero process \(\{u_t\} \), a Central Limit Theorem holds for all fractions of the sample, i.e. for all \(0 \leq r_1 < r_2 \leq s_1 < s_2 \),

\[
\begin{align*}
& \left(\frac{1}{\sqrt{T}} \sum_{t=\lfloor r_1 T \rfloor + 1}^{\lfloor r_2 T \rfloor} u_t \right) \\
& \left(\frac{1}{\sqrt{T}} \sum_{t=\lfloor s_1 T \rfloor + 1}^{\lfloor s_2 T \rfloor} u_t \right) \\
& \Rightarrow \mathcal{N} \left(0, \begin{pmatrix} \sigma^2(r_2 - r_1) & 0 \\ 0 & \sigma^2(s_2 - s_1) \end{pmatrix} \right)
\end{align*}
\]

- This (almost) implies the "Functional" Central Limit Theorem for nicely behaved I(0) processes

\[
T^{-1/2} \sum_{t=1}^{\lfloor T \rfloor} u_t \Rightarrow \sigma W(\cdot)
\]
Implications for Low-Frequency Transformations

- Suppose \(x_t = \mu + u_t \) and \(u_t \) is I(0) in the sense \(T^{-1/2} \sum_{t=1}^{\lfloor T \rfloor} u_t \Rightarrow \sigma W(\cdot) \)

- Cosine weights are orthogonal to constant:
 \[
 X_j = \frac{\sqrt{2}}{\sqrt{T}} \sum_{t=1}^{T} \cos(\pi j t / T) x_t = \frac{\sqrt{2}}{\sqrt{T}} \sum_{t=1}^{T} \cos(\pi j t / T) u_t
 \]

- With \(F = \sqrt{T}(\bar{x}_{T+1:hT} - \mu) \), we obtain
 \[(X_1, \cdots, X_q, F)' \Rightarrow \mathcal{N}(0, \sigma^2 \Sigma)\]
 since weighted averages of Gaussian processes are multivariate Gaussian

- If \(\mu \) and \(\sigma^2 \Sigma \) were known, then could simply report 90% set of the (suitably scaled and centered) conditionally normal distribution \(F|\{X_j\}_{j=0}^{q} \)
Invariance

- Impose scale and translation invariance:
 \[
 \{x_t\}_{t=1}^T \mapsto \{m + cx_t\}_{t=1}^T \quad \text{for any } m \text{ and } c \neq 0
 \]
 must lead to corresponding transformation of predictive set

- Can show: Under invariance, problem becomes construction of prediction set of
 \[
 Y^s = \frac{Y}{s_X} \quad \text{given } X^s = \left(\frac{X_1}{s_X}, \ldots, \frac{X_q}{s_X}\right)'
 \]
 where \(Y = \sqrt{T}(\bar{x}_{T+1:hT} - \bar{x}_{1:T}) \) and \(s_X^2 = q^{-1} \sum_{j=1}^q X_j^2 \)
 \[
 \Rightarrow \quad \text{Prediction set for } \bar{x}_{T+1:hT} \text{ is this prediction set for } Y^s \text{ scaled by } s_X/\sqrt{T} \text{ and shifted by } \bar{x}_{1:T}
 \]
 \[
 \Rightarrow \quad \text{Invariance takes care of lack of knowledge of } \mu \text{ and } \sigma\]
Constructing Invariant Prediction Sets

- With $X = (X_1, \ldots, X_q)'$, under
 \[
 \begin{pmatrix}
 X \\
 Y
 \end{pmatrix}
 \Rightarrow \mathcal{N}
 \left(\begin{pmatrix} 0 \\
 0 \end{pmatrix}, \sigma^2 \begin{pmatrix}
 \Sigma_{XX} & \Sigma_{XY} \\
 \Sigma_{XY} & \Sigma_{YY}
 \end{pmatrix} \right)
 \]
 a computation shows that conditional on $X^s = x^s$,
 \[
 \frac{Y^s - \Sigma_{YX} \Sigma_{XX}^{-1} x^s}{\sqrt{\Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY} \sqrt{x^s/\Sigma_{XX}^{-1}} x^s/q}} \sim \text{Student-t}^q
 \]
 \Rightarrow \text{Predictive densities are rescaled student-t densities}

- I(0) model: $\Sigma_{XY} = 0$, $\Sigma_{YY} = 1 + r^{-1}$, so intervals for $\tilde{x}_{T+1:hT}$ are of the form
 \[
 \tilde{x}_{1:T} \pm t_{0.95}^q \times (1 + r^{-1})^{1/2} s_X T^{-1/2}
 \]
GDP 50% and 90% Intervals in I(0) Model
Beyond the I(0) Model

- Natural concern that I(0) model is “too stationary”

- Assume local-level model

\[x_t = \mu + \frac{g}{T} \sum_{s=1}^{t} \eta_s + \varepsilon_t = \mu + u_t \]

where \(\{\varepsilon_t\} \) and \(\{\eta_t\} \) are I(0) with identical long-run variance \(\sigma^2 \), so that \(g \geq 0 \) measures extent of local mean variability

- Still implies

\[T^{-1/2} \sum_{t=1}^{\lfloor T \rfloor} u_t \Rightarrow \sigma G(\cdot) \]

for Gaussian process \(G \), so that \((X', Y') \Rightarrow \mathcal{N}(0, \sigma^2 \Sigma) \), where now \(\Sigma = \Sigma(g) \)
Predictive Density in LLM

- As before, now using $\Sigma = \Sigma(g)$,

$$\frac{Y^s - \Sigma_{YX} \Sigma^{-1}_{XX} x^s}{\sqrt{\Sigma_{YY} - \Sigma_{YX} \Sigma^{-1}_{XX} \Sigma_{XY} \sqrt{x^s/\Sigma^{-1}_{XX} x^s}/q}} \sim \text{Student-}t^q$$

so predictive density for given g is again rescaled student-t density

- Now $\Sigma_{YX} \neq 0$ in general, so realization of X^s shifts mean forecast
GDP Predictive Densities, LLM, $r = 0.2$
GDP Bayes Predictive Densities

- Posit prior with density $\pi(g)$

- Form posterior about g given observation $X^s = X/\sqrt{X'X}$

 \Rightarrow Posterior $p(g|x^s)$ proportional to $\pi(g)f_{X^s|g}(x^s)$

- Bayes predictive density is mixture of predictive densities given g, weighted by $p(g|x^s)$
GDP Log-Likelihood in LLM
GDP Bayes Predictive Densities
Beyond the Local-Level Model

- Approach generalizes to any model $x_t = \mu + u_t$ that satisfies
 $$T^{-\alpha} \sum_{t=1}^{[T]} u_t \Rightarrow \sigma G(\cdot)$$
 for some Gaussian process G and α (for example: fractional model)

- Possible to derive predictive set that remains valid for arbitrary G? No, since Σ then entirely unconstrained

- Need some regularity of x_t to be able to forecast
bcd-Model

- Assume $x_t = \mu + u_t$, where

$$u_t = \varepsilon_{1t} + (bT)^{-d}\eta_t$$

$$(1 - \rho T)^d\eta_t = \varepsilon_{2t}$$

with $\rho = \rho_T = 1 - c/T$, $d \in [-1/2, 3/2]$ and $(\varepsilon_{1T}, \varepsilon_{2T})$ uncorrelated $I(0)$ with long-run variance σ^2

\Rightarrow "bcd-model": Nests local-level model, fractional model and local-to-unity AR(1) model as special cases

\Rightarrow With x_t growth rate, allows for stochastically trending mean growth, slow mean reversions, anti-persistence ($d < 0$)

- Under some regularity conditions, we show that in bcd-model

$$(X', Y') \Rightarrow \mathcal{N}(0, \sigma^2 \Sigma(\theta))$$

with $\theta = (b, c, d)$
Parameter Uncertainty: Bayes Approach

- Σ depends on $\theta = (b, c, d)$, which cannot be estimated consistently by fixed number q of cosine transforms

- As in LLM, with prior Γ on θ, posterior density of y^s is posterior mixture of Student-t densities, now computed from $(X', Y)' \Rightarrow \mathcal{N}(0, \sigma^2 \Sigma(\theta))$

 \Rightarrow But set $\psi_\Gamma(x^s)$ that contains $1 - \alpha$ posterior predictive mass for all x^s does not necessarily satisfy $P_\theta(Y^s \in \psi_\Gamma(X^s)) \geq 1 - \alpha \text{ all } \theta$

 (by construction, only $\int P_\theta(Y^s \in \psi_\Gamma(X^s))d\Gamma(\theta) = 1 - \alpha$)
Parameter Uncertainty: Frequentist Approach

- Frequentist might insist on $P_{\theta}(Y^{s} \in \Psi(X^{s})) \geq 1 - \alpha$ all θ, and prefer short Ψ

- Consider solution Ψ^* to program

$$\min_{\Psi} \int E_{\theta}[\text{length}(\Psi(X^{s}))]dW(\theta) \quad \text{s.t.} \quad P_{\theta}(Y^{s} \in \Psi(X^{s})) \geq 1 - \alpha \ \forall \theta \in \Theta$$

\Rightarrow Can be written as Lagrangian, with Lagrange multipliers λ_{θ} associated with constraints $P_{\theta}(Y^{s} \in \Psi(X^{s})) \geq 1 - \alpha$

\Rightarrow Given Lagrange multipliers, optimal Ψ^* straightforward

- Apply numerical technique developed in Elliott, Müller and Watson (2015) to approximate λ_{θ}
Parameter Uncertainty: Conditional Properties

- Potential problem: $\Psi^*(X^s)$ could be empty for some X^s, and have otherwise unreasonable conditional properties

 ⇒ Intuitively, it might be optimal to report the empty set for very uninformative draws X^s, as there is a high cost in terms of length to report the full degree of uncertainty

 ⇒ see Müller and Norets (2012) for additional examples

- Solution: Impose that $\Psi^*(x^s)$ contains the $1 - \alpha$ credible set relative to some prior Γ for all x^s

 ⇒ Minor change in numerical approach to determining Ψ^*
Implementation

• Set $q = 12$

• Choose W and Γ to be uniformly distributed on $d \in [-0.4, 1.0]$ in fractional model (and $b = c = 0$ under W and Γ)

\[\Rightarrow \text{seek to minimizes expected length on average with data drawn from fractional model, subject to including the } 1 - \alpha \text{ credible set with that prior and model} \]

• Impose coverage $P_{\theta}(Y^s \in \Psi(X^s)) \geq 1 - \alpha$ in bcd-model with $d \in [-0.4, 1.0]$, and (b, c) unconstrained

\[\Rightarrow \text{Frequentist robustification of Bayes credible set} \]
Average GDP Growth 90% Forecast Intervals

Dashed: I(0)
Thick: Bayes
Thin: 90% Coverage
Average Labor Prod. Growth 90% Forecast
Intervals

Dashed: l(0)
Thick: Bayes
Thin: 90% Coverage
Average Population Growth 90% Forecast

Intervals

Dashed: I(0)
Thick: Bayes
Thin: 90% Coverage
Conclusions

• Formalization of uncertainty of statistical long-term predictions
 – Low-frequency transformations to yield robustness
 – Need regularity: Flexible 3 parameter model of low-frequency variability
 – Parameter uncertainty resolved by length minimizing robustification of Bayes credible sets

• Extension to multivariate problem computationally difficult