A Appendix to "Measuring Prior Sensitivity and Prior Informativness in Large Bayesian Models"

A. 1 Derivation of PI from Axiomatic Requirements

Consider functions f_{k} that map the triple $\left(v, J, \Sigma_{p}\right)$ to the unit interval, $f_{k}\left(v, J, \Sigma_{p}\right) \in[0,1]$. Under a linear reparamterization $\theta^{*}=H \theta$, the parameter of interest $v^{\prime} \theta$ becomes $v^{\prime} \theta=\left(H^{-1 \prime} v\right)^{\prime} \theta^{*}=v^{* \prime} \theta^{*}$ with $v^{*}=H^{-1 /} v$. Denote the implied prior and posterior of θ^{*} by $p^{*}\left(\theta^{*}\right)=|H|^{-1} p\left(H^{-1} \theta^{*}\right)$ and π^{*}, respectively, so that $E_{p^{*}}\left[\theta^{*}\right]=\mu_{p^{*}}=H E_{p}[\theta]$ and $\Sigma_{p}^{*}=H \Sigma_{p} H^{\prime}$. Let $\mu_{\pi}^{*}\left(\alpha^{*}\right)$ be the posterior mean of θ^{*} under the prior (10), where $\alpha^{*}=H \alpha$. By a change of variables and the chain rule, we obtain

$$
\begin{equation*}
J^{*}=\left.\frac{\partial \mu_{\pi}^{*}\left(\alpha^{*}\right)}{\partial \alpha^{* \prime}}\right|_{\alpha^{*}=0}=H J H^{-1}=H \Sigma_{\pi} \Sigma_{p}^{-1} H^{-1} \tag{36}
\end{equation*}
$$

Thus, invariance to linear reparametrizations formally corresponds to
Condition $1 f_{k}\left(v, J, \Sigma_{p}\right)=f_{k}\left(v^{*}, J^{*}, \Sigma_{p^{*}}\right)=f_{k}\left(H^{-1 \prime} v, H \Sigma_{\pi} \Sigma_{p}^{-1} H^{-1}, H \Sigma_{p} H^{\prime}\right)$ for all full rank matrices H.

As a special case, let $H=D Q^{\prime} P$, were P^{\prime} is the Choleksy decomposition of Σ_{p}^{-1}, the columns of Q are the normalized eigenvectors of $P \Sigma_{\pi} P^{\prime}$, and D is the diagonal matrix with diagonal elements equal to -1 if the corresponding element in $Q^{\prime} P^{-1 /} v$ is negative, and equal to one otherwise. Then $\Sigma_{p^{*}}=I_{k}, J^{*}$ is diagonal with $J^{*}=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{k}\right)$, and v^{*} has nonnegative elements. The problem is thus effectively reduced to identifying a suitable function $g_{k}: \mathbb{R}^{2 k} \mapsto[0,1]$ that maps

$$
\begin{equation*}
\left(\binom{\omega_{1}^{2}}{\lambda_{1}}, \cdots,\binom{\omega_{k}^{2}}{\lambda_{k}}\right) \tag{37}
\end{equation*}
$$

with $v^{*}=\left(\omega_{1}, \cdots, \omega_{k}\right)^{\prime}$ to the unit interval. Note that Condition 1 also implies that g_{k} is invariant to permutations of the k bivariate vectors $\left(\omega_{i}^{2}, \lambda_{i}\right)^{\prime}, i=1, \cdots, k$, as the order of the eigenvectors in Q can be chosen arbitrarily. The diagonal elements of J^{*} are recognized as the eigenvalues of the matrix J, since $J^{*}=H J H^{-1}$ implies that J^{*} and J are similar.

The second and third set of constraints of the main text now corresponds to the following conditions on g_{k}.

Condition 2 For any integers k and $m<k$, and any values of $\left\{\left\{\omega_{i}, \lambda_{i}\right\}_{i=1}^{k}\right\}$:
(a) $g_{1}\left(\binom{\omega_{1}^{2}}{\lambda_{1}}\right)=\min \left(\lambda_{1}, 1\right)$;
(b) $g_{k+1}\left(\binom{\omega_{1}^{2}}{\lambda_{1}}, \cdots,\binom{\omega_{k}^{2}}{\lambda_{k}},\binom{0}{\lambda_{k+1}}\right)=g_{k}\left(\binom{\omega_{1}^{2}}{\lambda_{1}}, \cdots,\binom{\omega_{k}^{2}}{\lambda_{k}}\right)$;
(c) $g_{k}\left(\binom{\omega_{1}^{2}}{\lambda_{1}}, \cdots,\binom{\omega_{k}^{2}}{\lambda_{k}}\right)$ has range $[0,1]$, is weakly increasing in λ_{1}, and, for $\omega_{1}^{2}>0$ and $\max _{i \leq k} \lambda_{i}<1$, is continuous in $\left(\omega_{1}^{2}, \lambda_{1}\right)$ and strictly increasing and differentiable in λ_{1};
(d) $g_{k}\left(\binom{\omega_{1}^{2}}{\lambda_{1}}, \cdots,\binom{\omega_{k-2}^{2}}{\lambda_{k-2}},\binom{\omega_{k-1}^{2}}{\lambda_{k}},\binom{\omega_{k}^{2}}{\lambda_{k}}\right)=g_{k}\left(\binom{\omega_{1}^{2}}{\lambda_{1}}, \cdots,\binom{\omega_{k-2}^{2}}{\lambda_{k-2}},\binom{\omega_{k-1}^{2}+\omega_{k}^{2}}{\lambda_{k}},\binom{0}{\lambda_{k}}\right)$;
(e) $g_{k}\left(\binom{\omega_{1}^{2}}{\lambda_{1}}, \cdots,\binom{\omega_{k}^{2}}{\lambda_{k}}\right)=g_{k}\left(\binom{\omega_{1}^{2}}{\bar{\lambda}_{m}}, \cdots,\binom{\omega_{m}^{2}}{\bar{\lambda}_{m}},\binom{\omega_{m+1}^{2}}{\lambda_{m+1}}, \cdots,\binom{\omega_{k}^{2}}{\lambda_{k}}\right)$ for $\bar{\lambda}_{m}=$ $g_{m}\left(\binom{\omega_{1}^{2}}{\lambda_{1}}, \cdots,\binom{\omega_{m}^{2}}{\lambda_{m}}\right)$.

Condition 3 For $\lambda_{1}<1, g_{2}\left(\binom{1}{\lambda_{1}},\binom{1}{0}\right)=\frac{\lambda_{1}}{2-\lambda_{1}}$.
The main theoretical result is formally stated as follows:
Theorem 2 Under Conditions 1-3,

$$
g_{k}\left(\binom{\omega_{1}^{2}}{\lambda_{1}}, \cdots,\binom{\omega_{k}^{2}}{\lambda_{k}}\right)=\left\{\begin{array}{l}
1 \quad \text { if }\left(\max _{i \leq k} \omega_{i}^{2} \mathbf{1}\left[\lambda_{i} \geq 1\right]\right)>0 \\
1-\frac{\sum_{i=1}^{k} \omega_{i}^{2}}{\sum_{i=1}^{k} \frac{\omega_{i}^{2}}{1-\lambda_{i}}}=1-\frac{v^{* \prime} v^{*}}{v^{* \prime}\left(I_{k}-J^{*}\right)^{-1} v^{*}} \text { otherwise }
\end{array}\right.
$$

The expression (17) for PI in the main text now follows by substituting $v^{*}=H^{-1 / v}$ and $J^{*}=$ $H J H^{-1}$.

Proof. By Condition 2 (b) and the permutation invariance noted below Condition 1, we can restrict attention to the case where $\omega_{i}^{2}>0$ for all $i=1, \cdots, k$. Consider first the case of overall limited prior informativeness in the sense of Definition 1, that is $\lambda_{i}<1$ for $i=1, \cdots, k$. We start by showing that Conditions 1 and 2 imply the four Axioms of Kitagawa (1934), with g_{k}, k and $\left(\omega_{i}^{2}, \lambda_{i}\right)$ playing the role of M_{n}, n and (w_{i}, x_{i}) in Kitagawa's notation. As noted, Axiom 1 follows from Condition 1. Condition 2 (d) implies Axiom 2. Repeated application of Condition 2 (d) yields $g_{k}\left(\binom{\omega_{1}^{2}}{\lambda_{k}},\binom{\omega_{2}^{2}}{\lambda_{k}}, \cdots,\binom{\omega_{k}^{2}}{\lambda_{k}}\right)=g_{1}\left(\binom{\sum_{i=1}^{k} \omega_{i}^{2}}{\lambda_{k}}\right)$, which equals $\min \left(\lambda_{k}, 1\right)=\lambda_{k}$ by Condition 2 (a). This shows that Axiom 3 is satisfied. Finally, for Axiom 4, note that applying the permutation invariance and Condition 2 (e) and (b) (repeatedly) yields $g_{k}\left(\binom{\omega_{1}^{2}}{\lambda_{1}}, \cdots,\binom{\omega_{k}^{2}}{\lambda_{k}}\right)=g_{k}\left(\binom{\omega_{1}^{2}}{\lambda_{m}}, \cdots,\binom{\omega_{m}^{2}}{\bar{\lambda}_{m}},\binom{\omega_{m+1}^{2}}{\lambda_{m+1}}, \cdots\binom{\omega_{k}}{\lambda_{k}}\right)=$ $g_{k-m+1}\left(\binom{\omega_{m+1}^{2}}{\lambda_{m+1}}, \cdots,\binom{\omega_{k}^{2}}{\lambda_{k}},\binom{\sum_{i=1}^{m} \omega_{m}^{2}}{\bar{\lambda}_{m}}\right)$, so that Axiom 4 follows from another application of Condition 2 (b), with Kitagawa's w_{r}^{*} equal to $w_{r}^{*}=\sum_{i=1}^{r} w_{i}$.

Thus, Kitagawa's results are applicable and imply that g_{k} is of the form

$$
\begin{equation*}
g_{k}\left(\binom{\omega_{1}^{2}}{\lambda_{1}}, \cdots,\binom{\omega_{k}^{2}}{\lambda_{k}}\right)=\phi^{-1}\left(\frac{\sum_{i=1}^{k} \omega_{i}^{2} \phi\left(\lambda_{i}\right)}{\sum_{i=1}^{k} \omega_{i}^{2}}\right) \tag{38}
\end{equation*}
$$

where $\phi:[0,1) \mapsto \mathbb{R}$ is a strictly monotone increasing, continuous function with strictly monotone increasing and continuous inverse ϕ^{-1} (the continuity is not asserted by Kitagawa, but follows from

Kolmogorov's (1930) Theorem invoked in Kitagawa's proof). Without loss of generality, normalize $\phi(0)=1$.

We now show that ϕ is differentiable at 0 . Recall that every strictly monotone function is Lebesgue almost everywhere differentiable. Thus, the two $[0,1) \mapsto \mathbb{R}$ functions $\chi(\lambda)=\frac{1}{2} \phi(0)+\frac{1}{2} \phi(\lambda)$ and $\phi^{-1}(\chi(\lambda))$ are almost everywhere differentiable. Pick $\lambda_{0}>0$ such that both are differentiable at $\lambda=\lambda_{0}$. We first argue that this implies that ϕ^{-1} is differentiable at $x_{0}=\chi\left(\lambda_{0}\right)$. Let h_{n} be arbitrary nonzero numbers converging to zero as $n \rightarrow \infty$. By continuity and monotonicity of χ, there exists, for all large enough $n, h_{n}^{\prime} \neq 0$ such that $h_{n}=\chi\left(\lambda_{0}+h_{n}^{\prime}\right)-\chi\left(\lambda_{0}\right)$, and $h_{n}^{\prime} \rightarrow 0$. Thus

$$
\begin{align*}
\Delta & =\lim _{n \rightarrow \infty} \frac{\phi^{-1}\left(x_{0}+h_{n}\right)-\phi^{-1}\left(x_{0}\right)}{h_{n}} \tag{39}\\
& =\lim _{n \rightarrow \infty} \frac{\phi^{-1}\left(\chi\left(\lambda_{0}+h_{n}^{\prime}\right)\right)-\phi^{-1}\left(\chi\left(\lambda_{0}\right)\right)}{\chi\left(\lambda_{0}+h_{n}^{\prime}\right)-\chi\left(\lambda_{0}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{\phi^{-1}\left(\chi\left(\lambda_{0}+h_{n}^{\prime}\right)\right)-\phi^{-1}\left(\chi\left(\lambda_{0}\right)\right)}{h_{n}^{\prime}} \cdot \frac{h_{n}^{\prime}}{\chi\left(\lambda_{0}+h_{n}^{\prime}\right)-\chi\left(\lambda_{0}\right)} \\
& =\left.\frac{d \phi^{-1}(\chi(\lambda))}{d \lambda}\right|_{\lambda=\lambda_{0}} /\left.\frac{d \chi(\lambda)}{d \lambda}\right|_{\lambda=\lambda_{0}}
\end{align*}
$$

by the product rule for limits, so that ϕ^{-1} is differentiable at $x_{0}=\chi\left(\lambda_{0}\right)$. Furthermore, by the continuity of ϕ at 0 ,

$$
\begin{equation*}
\frac{\phi^{-1}\left(\frac{1}{2} \phi\left(h_{n}\right)+\frac{1}{2} \phi\left(\lambda_{0}\right)\right)-\phi^{-1}\left(\frac{1}{2} \phi(0)+\frac{1}{2} \phi\left(\lambda_{0}\right)\right)}{h_{n}}=\Delta_{n} \frac{\frac{1}{2} \phi\left(h_{n}\right)-\frac{1}{2} \phi(0)}{h_{n}} \tag{40}
\end{equation*}
$$

where $\Delta_{n} \rightarrow \Delta$ as $n \rightarrow \infty$. By Condition $2(\mathrm{c}), g_{2}\left(\binom{1}{\lambda_{1}},\binom{1}{\lambda_{0}}\right)=\phi^{-1}\left(\frac{1}{2} \phi\left(\lambda_{1}\right)+\frac{1}{2} \phi\left(\lambda_{0}\right)\right)$ is differentiable in λ_{1} at $\lambda_{1}=0$. Thus, the limit of (40) as $n \rightarrow \infty$ exists and doesn't depend on h_{n}, which implies differentiability of ϕ at 0 .

Now by Condition 3,

$$
\begin{equation*}
g_{2}\left(\binom{1}{\lambda_{1}},\binom{1}{0}\right)=\phi^{-1}\left(\frac{1}{2} \phi\left(\lambda_{1}\right)+\frac{1}{2} \phi(0)\right)=\frac{\lambda_{1}}{2-\lambda_{1}} . \tag{41}
\end{equation*}
$$

Define the continuous and strictly monotone increasing function $\varphi:[0,1) \mapsto \mathbb{R}$ as $\varphi(\lambda)=1 /(1-\lambda)$, and let $h:[1, \infty) \mapsto \mathbb{R}$ be the monotone increasing function such that $\phi(\lambda)=h(\varphi(\lambda))$. The monotonicity and differentiability of ϕ at zero then implies that $h(x)$ has a positive derivative at $x=1$. Furthermore, $h(1)=1$ by the normalization $\phi(0)=1$, and using (41), we have $\phi\left(\lambda_{1}\right)+\phi(0)=$ $2 \phi\left(\lambda_{1} /\left(2-\lambda_{1}\right)\right)$ for all $\lambda_{1} \in[0,1)$, so that

$$
\begin{equation*}
h\left(\frac{1}{1-\lambda_{1}}\right)+1=2 h\left(\frac{2-\lambda_{1}}{2-2 \lambda_{1}}\right) . \tag{42}
\end{equation*}
$$

With $\lambda_{1}=1-1 / x$, we obtain $h(x)+1=2 h((x+1) / 2)$ for all $x \in[1, \infty)$. Repeated substitution yields $h(x)-1=2^{j} h\left(2^{-j} x+1-2^{-j}\right)-2^{j}$ for all integer j, so that for $x_{1}, x_{2} \in(1, \infty)$

$$
\begin{equation*}
\frac{h\left(x_{1}\right)-1}{h\left(x_{2}\right)-1}=\frac{x_{1}-1}{x_{2}-1} \frac{\frac{h\left(1+2^{-j}\left(x_{1}-1\right)\right)-1}{2^{-j}\left(x_{1}-1\right)}}{\frac{h\left(1+2^{-j}\left(x_{2}-1\right)\right)-1}{2^{-j}\left(x_{2}-1\right)}}=\frac{x_{1}-1}{x_{2}-1} \frac{d h(x) /\left.d x\right|_{x=1}}{d h(x) /\left.d x\right|_{x=1}}=\frac{x_{1}-1}{x_{2}-1} . \tag{43}
\end{equation*}
$$

Thus h is linear function, so that $\phi(\lambda)=\varphi(\lambda)=1 /(1-\lambda)$, and the result follows.
Finally, consider the case where $\lambda_{i} \geq 1$ for some i. Let $\tilde{\lambda}_{i}(n)=1-h_{n}$ if $\lambda_{i} \geq 1$ and $\tilde{\lambda}_{i}(n)=\lambda_{i}$ otherwise, where h_{n} is a positive sequence converging to zero. Applying the result for the overall identified case, we obtain $\lim _{n \rightarrow \infty} g_{k}\left(\binom{\omega_{1}^{2}}{\tilde{\lambda}_{1}(n)}, \cdots,\binom{\omega_{k}^{2}}{\tilde{\lambda}_{k}(n)}\right)=1$. Furthermore, by permutation invariance and Condition 2 (c), $g_{k}\left(\binom{\omega_{1}^{2}}{\lambda_{1}}, \cdots,\binom{\omega_{k}^{2}}{\lambda_{k}}\right) \geq g_{k}\left(\binom{\omega_{1}^{2}}{\tilde{\lambda}_{1}(n)}, \cdots,\binom{\omega_{k}^{2}}{\tilde{\lambda}_{k}(n)}\right)$ for all n, so that the result follows from the range upper bound in Condition 2 (c).

A. 2 Proof of Inequalities of Section 3.1

Note that with $H=D Q^{\prime} P$ (as discussed below Condition 1 above), for any vector $v^{*}=H^{-1} v$, we have $v^{\prime} \Sigma_{p} v=v^{* \prime} v^{*}=\sum_{i=1}^{k} \omega_{i}^{2}, v^{\prime} \Sigma_{\pi} v=v^{* \prime} J^{*} v^{*}=\sum_{i=1}^{k} \omega_{i}^{2} \lambda_{i}, v^{\prime} \Sigma_{\pi} \Sigma_{p}^{-1} \Sigma_{\pi} v=v^{* \prime} J^{* 2} v^{*}=\sum_{i=1}^{k} \omega_{i}^{2} \lambda_{i}^{2}$ and, for $\lambda_{\max }<1, \mathrm{PI}=\varphi^{-1}\left(\sum_{i=1}^{k} \omega_{i}^{2} \varphi\left(\lambda_{i}\right) / \sum_{i=1}^{k} \omega_{i}^{2}\right)$ with $\varphi(\lambda)=1 /(1-\lambda)$.

Inequality (18) follows from $\sum_{i=1}^{k} \omega_{i}^{2} \lambda_{i}^{2} \leq \lambda_{\max } \sum_{i=1}^{k} \omega_{i}^{2} \lambda_{i}$;
(19) follows from $\sum_{i=1}^{k} \omega_{i}^{2} \lambda_{i}^{2} / \sum_{i=1}^{k} \omega_{i}^{2} \geq\left(\sum_{i=1}^{k} \omega_{i}^{2} \lambda_{i} / \sum_{i=1}^{k} \omega_{i}^{2}\right)^{2}$ by convexity;
(20) follows from $\sum_{i=1}^{k} \omega_{i}^{2} \varphi\left(\lambda_{i}\right) / \sum_{i=1}^{k} \omega_{i}^{2} \geq \varphi\left(\sum_{i=1}^{k} \omega_{i}^{2} \lambda_{i} / \sum_{i=1}^{k} \omega_{i}^{2}\right)$ by convexity of φ;
(21) follows from $\sum_{i=1}^{k} \omega_{i}^{2} \varphi\left(\lambda_{i}\right) \leq \sum_{i=1}^{k} \omega_{i}^{2} \varphi\left(\lambda_{\max }\right)$ for $\lambda_{\max }<1$, and the inequality is trivial otherwise;
for (22), note that PS $/ \sqrt{v^{\prime} \Sigma_{p} v}=\varphi_{\mathrm{PS}}^{-1}\left(\sum_{i=1}^{k} \omega_{i}^{2} \varphi_{\mathrm{PS}}\left(\lambda_{i}\right) / \sum_{i=1}^{k} \omega_{i}^{2}\right)$ with $\varphi_{\mathrm{PS}}(x)=x^{2}$. Both PI and PS $/ \sqrt{v^{\prime} \Sigma_{p} v}$ can thus be considered the certainty equivalence of an expected utility maximizer with utility function φ and φ_{PS}, respectively, facing a lottery with payoff's $\left\{\lambda_{i}\right\}_{i=1}^{k}$ with probabilities $\left\{\omega_{i}^{2} / \sum_{j=1}^{k} \omega_{j}^{2}\right\}_{i=1}^{k}$. The result now follows from Pratt's (1964) Theorem 1, since a calculation shows that φ has a weakly larger (negative) coefficient of absolute risk aversion than φ_{PS} on the interval [$0,1 / 3]$.

Inequality (23) follows from $v^{* \prime}\left(I_{k}-J^{*}\right)^{-1} v^{*}=v^{* \prime} \sum_{i=0}^{\infty}\left(J^{*}\right)^{i} v^{*} \geq v^{* \prime}\left(I+J^{*}+J^{* 2}\right) v^{*}$, so that $\mathrm{PI}=1-v^{* \prime} v^{*} / v^{* \prime}\left(I_{k}-J^{*}\right)^{-1} v^{*} \geq v^{* \prime}\left(J^{*}+J^{* 2}\right) v^{*} / v^{* \prime}\left(I+J^{*}+J^{* 2}\right) v^{*} \geq \frac{2}{3} v^{* \prime} J^{* 2} v^{*} / v^{* \prime} v^{*}$.

