A Appendix to "Measuring Prior Sensitivity and Prior Informativness in Large Bayesian Models"

A.1 Derivation of PI from Axiomatic Requirements

Consider functions f_k that map the triple (v, J, Σ_p) to the unit interval, $f_k(v, J, \Sigma_p) \in [0, 1]$. Under a linear reparamterization $\theta^* = H\theta$, the parameter of interest $v'\theta$ becomes $v'\theta = (H^{-1'}v)'\theta^* = v^{*'}\theta^*$ with $v^* = H^{-1'}v$. Denote the implied prior and posterior of θ^* by $p^*(\theta^*) = |H|^{-1}p(H^{-1}\theta^*)$ and π^* , respectively, so that $E_{p^*}[\theta^*] = \mu_{p^*} = HE_p[\theta]$ and $\Sigma_p^* = H\Sigma_pH'$. Let $\mu_{\pi}^*(\alpha^*)$ be the posterior mean of θ^* under the prior (10), where $\alpha^* = H\alpha$. By a change of variables and the chain rule, we obtain

$$J^{*} = \frac{\partial \mu_{\pi}^{*}(\alpha^{*})}{\partial \alpha^{*'}}|_{\alpha^{*}=0} = HJH^{-1} = H\Sigma_{\pi}\Sigma_{p}^{-1}H^{-1}.$$
(36)

Thus, invariance to linear reparametrizations formally corresponds to

Condition 1 $f_k(v, J, \Sigma_p) = f_k(v^*, J^*, \Sigma_{p^*}) = f_k(H^{-1\prime}v, H\Sigma_{\pi}\Sigma_p^{-1}H^{-1}, H\Sigma_pH')$ for all full rank matrices H.

As a special case, let H = DQ'P, were P' is the Choleksy decomposition of Σ_p^{-1} , the columns of Q are the normalized eigenvectors of $P\Sigma_{\pi}P'$, and D is the diagonal matrix with diagonal elements equal to -1 if the corresponding element in $Q'P^{-1'}v$ is negative, and equal to one otherwise. Then $\Sigma_{p^*} = I_k, J^*$ is diagonal with $J^* = \text{diag}(\lambda_1, \cdots, \lambda_k)$, and v^* has nonnegative elements. The problem is thus effectively reduced to identifying a suitable function $g_k : \mathbb{R}^{2k} \mapsto [0, 1]$ that maps

$$\left(\begin{pmatrix} \omega_1^2 \\ \lambda_1 \end{pmatrix}, \cdots, \begin{pmatrix} \omega_k^2 \\ \lambda_k \end{pmatrix} \right)$$
(37)

for $\omega_1^2 > 0$ and

with $v^* = (\omega_1, \dots, \omega_k)'$ to the unit interval. Note that Condition 1 also implies that g_k is invariant to permutations of the k bivariate vectors $(\omega_i^2, \lambda_i)'$, $i = 1, \dots, k$, as the order of the eigenvectors in Q can be chosen arbitrarily. The diagonal elements of J^* are recognized as the eigenvalues of the matrix J, since $J^* = HJH^{-1}$ implies that J^* and J are similar.

The second and third set of constraints of the main text now corresponds to the following conditions on g_k .

Condition 2 For any integers k and
$$m < k$$
, and any values of $\{\{\omega_i, \lambda_i\}_{i=1}^k\}$:
(a) $g_1\left(\binom{\omega_1^2}{\lambda_1}\right) = \min(\lambda_1, 1);$
(b) $g_{k+1}\left(\binom{\omega_1^2}{\lambda_1}, \cdots, \binom{\omega_k^2}{\lambda_k}, \binom{0}{\lambda_{k+1}}\right) = g_k\left(\binom{\omega_1^2}{\lambda_1}, \cdots, \binom{\omega_k^2}{\lambda_k}\right);$
(c) $g_k\left(\binom{\omega_1^2}{\lambda_1}, \cdots, \binom{\omega_k^2}{\lambda_k}\right)$ has range [0, 1], is weakly increasing in λ_1 , and,

 $\max_{i \leq k} \lambda_i < 1$, is continuous in (ω_1^2, λ_1) and strictly increasing and differentiable in λ_1 ;

$$(d) g_k \left(\begin{pmatrix} \omega_1^2 \\ \lambda_1 \end{pmatrix}, \cdots, \begin{pmatrix} \omega_{k-2}^2 \\ \lambda_{k-2} \end{pmatrix}, \begin{pmatrix} \omega_{k-1}^2 \\ \lambda_k \end{pmatrix}, \begin{pmatrix} \omega_k^2 \\ \lambda_k \end{pmatrix} \right) = g_k \left(\begin{pmatrix} \omega_1^2 \\ \lambda_1 \end{pmatrix}, \cdots, \begin{pmatrix} \omega_{k-2}^2 \\ \lambda_{k-2} \end{pmatrix}, \begin{pmatrix} \omega_{k-1}^2 + \omega_k^2 \\ \lambda_k \end{pmatrix}, \begin{pmatrix} 0 \\ \lambda_k \end{pmatrix} \right);$$

$$(e) g_k \left(\begin{pmatrix} \omega_1^2 \\ \lambda_1 \end{pmatrix}, \cdots, \begin{pmatrix} \omega_k^2 \\ \lambda_k \end{pmatrix} \right) = g_k \left(\begin{pmatrix} \omega_1^2 \\ \overline{\lambda}_m \end{pmatrix}, \cdots, \begin{pmatrix} \omega_m^2 \\ \overline{\lambda}_m \end{pmatrix}, \begin{pmatrix} \omega_{m+1}^2 \\ \lambda_{m+1} \end{pmatrix}, \cdots, \begin{pmatrix} \omega_k^2 \\ \lambda_k \end{pmatrix} \right) \text{ for } \overline{\lambda}_m = g_m \left(\begin{pmatrix} \omega_1^2 \\ \lambda_1 \end{pmatrix}, \cdots, \begin{pmatrix} \omega_m^2 \\ \lambda_m \end{pmatrix} \right).$$

Condition 3 For $\lambda_1 < 1$, $g_2\left(\begin{pmatrix}1\\\lambda_1\end{pmatrix}, \begin{pmatrix}1\\0\end{pmatrix}\right) = \frac{\lambda_1}{2-\lambda_1}$.

The main theoretical result is formally stated as follows:

Theorem 2 Under Conditions 1–3,

$$g_k\left(\binom{\omega_1^2}{\lambda_1}, \cdots, \binom{\omega_k^2}{\lambda_k}\right) = \begin{cases} 1 & \text{if } (\max_{i \le k} \omega_i^2 \mathbf{1}[\lambda_i \ge 1]) > 0\\ 1 - \frac{\sum_{i=1}^k \omega_i^2}{\sum_{i=1}^k \frac{\omega_i^2}{1 - \lambda_i}} = 1 - \frac{v^{*\prime}v^*}{v^{*\prime}(I_k - J^*)^{-1}v^*} \text{ otherwise} \end{cases}$$

The expression (17) for PI in the main text now follows by substituting $v^* = H^{-1}v$ and $J^* = HJH^{-1}$.

Proof. By Condition 2 (b) and the permutation invariance noted below Condition 1, we can restrict attention to the case where $\omega_i^2 > 0$ for all $i = 1, \dots, k$. Consider first the case of overall limited prior informativeness in the sense of Definition 1, that is $\lambda_i < 1$ for $i = 1, \dots, k$. We start by showing that Conditions 1 and 2 imply the four Axioms of Kitagawa (1934), with g_k , k and (ω_i^2, λ_i) playing the role of M_n , n and (w_i, x_i) in Kitagawa's notation. As noted, Axiom 1 follows from Condition 1. Condition 2 (d) implies Axiom 2. Repeated application of Condition 2 (d) yields $g_k\left(\binom{\omega_1^2}{\lambda_k}, \binom{\omega_2^2}{\lambda_k}, \dots, \binom{\omega_k^2}{\lambda_k}\right) = g_1\left(\binom{\sum_{i=1}^k \omega_i^2}{\lambda_k}\right)$, which equals $\min(\lambda_k, 1) = \lambda_k$ by Condition 2 (a). This shows that Axiom 3 is satisfied. Finally, for Axiom 4, note that applying the permutation invariance and Condition 2 (e) and (b) (repeatedly) yields $g_k\left(\binom{\omega_1^2}{\lambda_1}, \dots, \binom{\omega_k^2}{\lambda_k}\right) = g_k\left(\binom{\omega_1^2}{\lambda_m}, \dots, \binom{\omega_k^2}{\lambda_m}\right), \binom{\omega_{m+1}^2}{\lambda_{m+1}}, \dots, \binom{\omega_k}{\lambda_k}\right) = g_{k-m+1}\left(\binom{\omega_{m+1}^2}{\lambda_m}, \dots, \binom{\omega_k^2}{\lambda_k}, \binom{\sum_{i=1}^m \omega_m^2}{\lambda_m}\right)$, so that Axiom 4 follows from another application of Condition 2 (b), with Kitagawa's w_r^* equal to $w_r^* = \sum_{i=1}^r w_i$.

Thus, Kitagawa's results are applicable and imply that g_k is of the form

$$g_k\left(\binom{\omega_1^2}{\lambda_1}, \cdots, \binom{\omega_k^2}{\lambda_k}\right) = \phi^{-1}\left(\frac{\sum_{i=1}^k \omega_i^2 \phi(\lambda_i)}{\sum_{i=1}^k \omega_i^2}\right)$$
(38)

where $\phi : [0,1) \mapsto \mathbb{R}$ is a strictly monotone increasing, continuous function with strictly monotone increasing and continuous inverse ϕ^{-1} (the continuity is not asserted by Kitagawa, but follows from

Kolmogorov's (1930) Theorem invoked in Kitagawa's proof). Without loss of generality, normalize $\phi(0) = 1$.

We now show that ϕ is differentiable at 0. Recall that every strictly monotone function is Lebesgue almost everywhere differentiable. Thus, the two $[0,1) \mapsto \mathbb{R}$ functions $\chi(\lambda) = \frac{1}{2}\phi(0) + \frac{1}{2}\phi(\lambda)$ and $\phi^{-1}(\chi(\lambda))$ are almost everywhere differentiable. Pick $\lambda_0 > 0$ such that both are differentiable at $\lambda = \lambda_0$. We first argue that this implies that ϕ^{-1} is differentiable at $x_0 = \chi(\lambda_0)$. Let h_n be arbitrary nonzero numbers converging to zero as $n \to \infty$. By continuity and monotonicity of χ , there exists, for all large enough $n, h'_n \neq 0$ such that $h_n = \chi(\lambda_0 + h'_n) - \chi(\lambda_0)$, and $h'_n \to 0$. Thus

$$\Delta = \lim_{n \to \infty} \frac{\phi^{-1}(x_0 + h_n) - \phi^{-1}(x_0)}{h_n}$$

$$= \lim_{n \to \infty} \frac{\phi^{-1}(\chi(\lambda_0 + h'_n)) - \phi^{-1}(\chi(\lambda_0))}{\chi(\lambda_0 + h'_n) - \chi(\lambda_0)}$$

$$= \lim_{n \to \infty} \frac{\phi^{-1}(\chi(\lambda_0 + h'_n)) - \phi^{-1}(\chi(\lambda_0))}{h'_n} \cdot \frac{h'_n}{\chi(\lambda_0 + h'_n) - \chi(\lambda_0)}$$

$$= \frac{d\phi^{-1}(\chi(\lambda))}{d\lambda}|_{\lambda = \lambda_0} / \frac{d\chi(\lambda)}{d\lambda}|_{\lambda = \lambda_0}$$
(39)

by the product rule for limits, so that ϕ^{-1} is differentiable at $x_0 = \chi(\lambda_0)$. Furthermore, by the continuity of ϕ at 0,

$$\frac{\phi^{-1}\left(\frac{1}{2}\phi(h_n) + \frac{1}{2}\phi(\lambda_0)\right) - \phi^{-1}\left(\frac{1}{2}\phi(0) + \frac{1}{2}\phi(\lambda_0)\right)}{h_n} = \Delta_n \frac{\frac{1}{2}\phi(h_n) - \frac{1}{2}\phi(0)}{h_n}$$
(40)

where $\Delta_n \to \Delta$ as $n \to \infty$. By Condition 2 (c), $g_2\left(\begin{pmatrix}1\\\lambda_1\end{pmatrix}, \begin{pmatrix}1\\\lambda_0\end{pmatrix}\right) = \phi^{-1}\left(\frac{1}{2}\phi(\lambda_1) + \frac{1}{2}\phi(\lambda_0)\right)$ is differentiable in λ_1 at $\lambda_1 = 0$. Thus, the limit of (40) as $n \to \infty$ exists and doesn't depend on h_n , which implies differentiability of ϕ at 0.

Now by Condition 3,

$$g_2\left(\binom{1}{\lambda_1}, \binom{1}{0}\right) = \phi^{-1}\left(\frac{1}{2}\phi(\lambda_1) + \frac{1}{2}\phi(0)\right) = \frac{\lambda_1}{2 - \lambda_1}.$$
(41)

Define the continuous and strictly monotone increasing function $\varphi : [0, 1) \mapsto \mathbb{R}$ as $\varphi(\lambda) = 1/(1-\lambda)$, and let $h : [1, \infty) \mapsto \mathbb{R}$ be the monotone increasing function such that $\phi(\lambda) = h(\varphi(\lambda))$. The monotonicity and differentiability of ϕ at zero then implies that h(x) has a positive derivative at x = 1. Furthermore, h(1) = 1 by the normalization $\phi(0) = 1$, and using (41), we have $\phi(\lambda_1) + \phi(0) = 2\phi(\lambda_1/(2-\lambda_1))$ for all $\lambda_1 \in [0, 1)$, so that

$$h\left(\frac{1}{1-\lambda_1}\right) + 1 = 2h\left(\frac{2-\lambda_1}{2-2\lambda_1}\right).$$
(42)

With $\lambda_1 = 1 - 1/x$, we obtain h(x) + 1 = 2h((x+1)/2) for all $x \in [1,\infty)$. Repeated substitution yields $h(x) - 1 = 2^{j}h(2^{-j}x + 1 - 2^{-j}) - 2^{j}$ for all integer j, so that for $x_1, x_2 \in (1, \infty)$

$$\frac{h(x_1) - 1}{h(x_2) - 1} = \frac{x_1 - 1}{x_2 - 1} \frac{\frac{h(1 + 2^{-j}(x_1 - 1)) - 1}{2^{-j}(x_2 - 1)}}{\frac{h(1 + 2^{-j}(x_2 - 1)) - 1}{2^{-j}(x_2 - 1)}} = \frac{x_1 - 1}{x_2 - 1} \frac{dh(x)/dx|_{x=1}}{dh(x)/dx|_{x=1}} = \frac{x_1 - 1}{x_2 - 1}.$$
(43)

Thus h is linear function, so that $\phi(\lambda) = \varphi(\lambda) = 1/(1-\lambda)$, and the result follows.

Finally, consider the case where $\lambda_i \geq 1$ for some *i*. Let $\tilde{\lambda}_i(n) = 1 - h_n$ if $\lambda_i \geq 1$ and $\tilde{\lambda}_i(n) = \lambda_i$ otherwise, where h_n is a positive sequence converging to zero. Applying the result for the overall identified case, we obtain $\lim_{n\to\infty} g_k\left(\begin{pmatrix}\omega_1^2\\ \tilde{\lambda}_1(n)\end{pmatrix}, \cdots, \begin{pmatrix}\omega_k^2\\ \tilde{\lambda}_k(n)\end{pmatrix}\right) = 1$. Furthermore, by permutation invariance and Condition 2 (c), $g_k \left(\begin{pmatrix} \omega_1^2 \\ \lambda_1 \end{pmatrix}, \cdots, \begin{pmatrix} \omega_k^2 \\ \lambda_k \end{pmatrix} \right) \ge g_k \left(\begin{pmatrix} \omega_1^2 \\ \tilde{\lambda}_1(n) \end{pmatrix}, \cdots, \begin{pmatrix} \omega_k^2 \\ \tilde{\lambda}_k(n) \end{pmatrix} \right)$ for all n, so that the result follows from the range upper bound in Condition 2 (c)

A.2**Proof of Inequalities of Section 3.1**

Note that with H = DQ'P (as discussed below Condition 1 above), for any vector $v^* = H^{-1'}v$, we have $v' \Sigma_p v = v^{*\prime} v^* = \sum_{i=1}^k \omega_i^2, \ v' \Sigma_\pi v = v^{*\prime} J^* v^* = \sum_{i=1}^k \omega_i^2 \lambda_i, \ v' \Sigma_\pi \Sigma_p^{-1} \Sigma_\pi v = v^{*\prime} J^{*2} v^* = \sum_{i=1}^k \omega_i^2 \lambda_i^2$ and, for $\lambda_{\max} < 1$, $\operatorname{PI} = \varphi^{-1} (\sum_{i=1}^{k} \omega_i^2 \varphi(\lambda_i) / \sum_{i=1}^{k} \omega_i^2)$ with $\varphi(\lambda) = 1/(1-\lambda)$.

Inequality (18) follows from $\sum_{i=1}^{k} \omega_i^2 \lambda_i^2 \leq \lambda_{\max} \sum_{i=1}^{k} \omega_i^2 \lambda_i;$

(19) follows from $\sum_{i=1}^{k} \omega_i^2 \lambda_i^2 / \sum_{i=1}^{k} \omega_i^2 \geq (\sum_{i=1}^{k} \omega_i^2 \lambda_i / \sum_{i=1}^{k} \omega_i^2)^2$ by convexity; (20) follows from $\sum_{i=1}^{k} \omega_i^2 \varphi(\lambda_i) / \sum_{i=1}^{k} \omega_i^2 \geq \varphi(\sum_{i=1}^{k} \omega_i^2 \lambda_i / \sum_{i=1}^{k} \omega_i^2)$ by convexity of φ ; (21) follows from $\sum_{i=1}^{k} \omega_i^2 \varphi(\lambda_i) \leq \sum_{i=1}^{k} \omega_i^2 \varphi(\lambda_{\max})$ for $\lambda_{\max} < 1$, and the inequality is trivial otherwise;

for (22), note that $\operatorname{PS}/\sqrt{v'\Sigma_p v} = \varphi_{\operatorname{PS}}^{-1}(\sum_{i=1}^k \omega_i^2 \varphi_{\operatorname{PS}}(\lambda_i)/\sum_{i=1}^k \omega_i^2)$ with $\varphi_{\operatorname{PS}}(x) = x^2$. Both PI and $PS/\sqrt{v'\Sigma_p v}$ can thus be considered the certainty equivalence of an expected utility maximizer with utility function φ and $\varphi_{\rm PS}$, respectively, facing a lottery with payoff's $\{\lambda_i\}_{i=1}^k$ with probabilities $\{\omega_i^2/\sum_{i=1}^k \omega_i^2\}_{i=1}^k$. The result now follows from Pratt's (1964) Theorem 1, since a calculation shows that φ has a weakly larger (negative) coefficient of absolute risk aversion than $\varphi_{\rm PS}$ on the interval [0, 1/3].

Inequality (23) follows from $v^{*'}(I_k - J^*)^{-1}v^* = v^{*'}\sum_{i=0}^{\infty} (J^*)^i v^* \ge v^{*'}(I + J^* + J^{*2})v^*$, so that $PI = 1 - v^{*\prime}v^{*\prime}/v^{*\prime}(I_k - J^*)^{-1}v^* \ge v^{*\prime}(J^* + J^{*2})v^{*\prime}/v^{*\prime}(I + J^* + J^{*2})v^* \ge \frac{2}{2}v^{*\prime}J^{*2}v^*/v^{*\prime}v^*.$