
A Appendix to "Measuring Prior Sensitivity and Prior In-

formativness in Large Bayesian Models"

A.1 Derivation of PI from Axiomatic Requirements

Consider functions  that map the triple ( Σ) to the unit interval, ( Σ) ∈ [0 1]. Under
a linear reparamterization ∗ = , the parameter of interest 0 becomes 0 = (−10)0∗ = ∗0∗

with ∗ = −10. Denote the implied prior and posterior of ∗ by ∗(∗) = ||−1(−1∗) and ∗,
respectively, so that ∗ [

∗] = ∗ = [] and Σ∗ = Σ
0. Let ∗(

∗) be the posterior mean
of ∗ under the prior (10), where ∗ = . By a change of variables and the chain rule, we obtain

∗ =
∗(

∗)
∗0

|∗=0 = −1 = ΣΣ
−1
 −1 (36)

Thus, invariance to linear reparametrizations formally corresponds to

Condition 1 ( Σ) = (
∗ ∗Σ∗) = (

−10ΣΣ
−1
 −1Σ

0) for all full rank ma-
trices .

As a special case, let  = 0 , were  0 is the Choleksy decomposition of Σ−1 , the columns of
 are the normalized eigenvectors of Σ

0, and  is the diagonal matrix with diagonal elements

equal to −1 if the corresponding element in 0−10 is negative, and equal to one otherwise. Then
Σ∗ = , 

∗ is diagonal with ∗ = diag(1 · · ·  ), and ∗ has nonnegative elements. The problem
is thus effectively reduced to identifying a suitable function  : R2 7→ [0 1] that mapsµµ

21
1

¶
 · · · 

µ
2


¶¶
(37)

with ∗ = (1 · · ·  )
0 to the unit interval. Note that Condition 1 also implies that  is invariant

to permutations of the  bivariate vectors (2  )
0,  = 1 · · ·  , as the order of the eigenvectors in

 can be chosen arbitrarily. The diagonal elements of ∗ are recognized as the eigenvalues of the
matrix  since ∗ = −1 implies that ∗ and  are similar.

The second and third set of constraints of the main text now corresponds to the following

conditions on .

Condition 2 For any integers  and   , and any values of {{ }=1}:
(a) 1

µµ
21
1

¶¶
= min(1 1);

(b) +1

µµ
21
1

¶
 · · · 

µ
2


¶


µ
0

+1

¶¶
= 

µµ
21
1

¶
 · · · 

µ
2


¶¶
;

(c) 

µµ
21
1

¶
 · · · 

µ
2


¶¶
has range [0 1] is weakly increasing in 1, and, for 21  0 and

max≤   1, is continuous in (21 1) and strictly increasing and differentiable in 1;
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(d) 

µµ
21
1

¶
 · · · 

µ
2−2
−2

¶


µ
2−1


¶


µ
2


¶¶
= 

µµ
21
1

¶
 · · · 

µ
2−2
−2

¶


µ
2−1 + 2



¶


µ
0



¶¶
;

(e) 

µµ
21
1

¶
 · · · 

µ
2


¶¶
= 

µµ
21
̄

¶
 · · · 

µ
2
̄

¶


µ
2+1
+1

¶
 · · · 

µ
2


¶¶
for ̄ =



µµ
21
1

¶
 · · · 

µ
2


¶¶


Condition 3 For 1  1, 2

µµ
1

1

¶


µ
1

0

¶¶
=

1
2− 1



The main theoretical result is formally stated as follows:

Theorem 2 Under Conditions 1—3,



µµ
21
1

¶
 · · · 

µ
2


¶¶
=

⎧⎪⎨⎪⎩
1 if (max≤ 21[ ≥ 1])  0
1−

P
=1 

2
P

=1
2
1−

= 1− ∗0∗

∗0( − ∗)−1∗
otherwise

The expression (17) for PI in the main text now follows by substituting ∗ = −10 and ∗ =
−1.
Proof. By Condition 2 (b) and the permutation invariance noted below Condition 1, we

can restrict attention to the case where 2  0 for all  = 1 · · ·  . Consider first the

case of overall limited prior informativeness in the sense of Definition 1, that is   1 for

 = 1 · · ·  . We start by showing that Conditions 1 and 2 imply the four Axioms of Kita-

gawa (1934), with ,  and (
2
  ) playing the role of ,  and ( ) in Kitagawa’s no-

tation. As noted, Axiom 1 follows from Condition 1. Condition 2 (d) implies Axiom 2. Re-

peated application of Condition 2 (d) yields 

µµ
21


¶


µ
22


¶
 · · · 

µ
2


¶¶
= 1

ÃµP
=1 

2




¶!
,

which equals min( 1) =  by Condition 2 (a). This shows that Axiom 3 is satisfied. Fi-

nally, for Axiom 4, note that applying the permutation invariance and Condition 2 (e) and

(b) (repeatedly) yields 

µµ
21
1

¶
 · · · 

µ
2


¶¶
= 

µµ
21
̄

¶
 · · · 

µ
2
̄

¶


µ
2+1
+1

¶
 · · ·

µ




¶¶
=

−+1

µµ
2+1
+1

¶
 · · · 

µ
2


¶


µP
=1 

2


̄

¶¶
, so that Axiom 4 follows from another application of

Condition 2 (b), with Kitagawa’s ∗ equal to 
∗
 =

P
=1.

Thus, Kitagawa’s results are applicable and imply that  is of the form



µµ
21
1

¶
 · · · 

µ
2


¶¶
= −1

ÃP
=1 

2
()P

=1 
2


!
(38)

where  : [0 1) 7→ R is a strictly monotone increasing, continuous function with strictly monotone
increasing and continuous inverse −1 (the continuity is not asserted by Kitagawa, but follows from
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Kolmogorov’s (1930) Theorem invoked in Kitagawa’s proof). Without loss of generality, normalize

(0) = 1.

We now show that  is differentiable at 0. Recall that every strictly monotone function is

Lebesgue almost everywhere differentiable. Thus, the two [0 1) 7→ R functions () = 1
2
(0)+ 1

2
()

and −1(()) are almost everywhere differentiable. Pick 0  0 such that both are differentiable

at  = 0. We first argue that this implies that 
−1 is differentiable at 0 = (0). Let  be

arbitrary nonzero numbers converging to zero as  → ∞. By continuity and monotonicity of ,
there exists, for all large enough , 0 6= 0 such that  = (0 + 0)− (0), and 0 → 0. Thus

∆ = lim
→∞

−1(0 + )− −1(0)


(39)

= lim
→∞

−1((0 + 0))− −1((0))
(0 + 0)− (0)

= lim
→∞

−1((0 + 0))− −1((0))
0

· 0
(0 + 0)− (0)

=
−1(())


|=0

()


|=0

by the product rule for limits, so that −1 is differentiable at 0 = (0). Furthermore, by the

continuity of  at 0,

−1
¡
1
2
() +

1
2
(0)

¢− −1(1
2
(0) + 1

2
(0))


= ∆

1
2
()− 1

2
(0)


(40)

where ∆ → ∆ as  → ∞. By Condition 2 (c), 2
µµ

1

1

¶


µ
1

0

¶¶
= −1

¡
1
2
(1) +

1
2
(0)

¢
is

differentiable in 1 at 1 = 0. Thus, the limit of (40) as  →∞ exists and doesn’t depend on ,

which implies differentiability of  at 0.

Now by Condition 3,

2

µµ
1

1

¶


µ
1

0

¶¶
= −1

¡
1
2
(1) +

1
2
(0)

¢
=

1
2− 1

 (41)

Define the continuous and strictly monotone increasing function  : [0 1) 7→ R as () = 1(1−),

and let  : [1∞) 7→ R be the monotone increasing function such that () = (()). The

monotonicity and differentiability of  at zero then implies that () has a positive derivative at

 = 1. Furthermore, (1) = 1 by the normalization (0) = 1, and using (41), we have (1)+(0) =

2(1(2− 1)) for all 1 ∈ [0 1), so that



µ
1

1− 1

¶
+ 1 = 2

µ
2− 1
2− 21

¶
 (42)
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With 1 = 1− 1, we obtain () + 1 = 2(( + 1)2) for all  ∈ [1∞). Repeated substitution
yields ()− 1 = 2(2−+ 1− 2−)− 2 for all integer , so that for 1 2 ∈ (1∞)

(1)− 1
(2)− 1 =

1 − 1
2 − 1

(1+2−(1−1))−1
2−(1−1)

(1+2−(2−1))−1
2−(2−1)

=
1 − 1
2 − 1

()|=1
()|=1 =

1 − 1
2 − 1  (43)

Thus  is linear function, so that () = () = 1(1− ), and the result follows.

Finally, consider the case where  ≥ 1 for some . Let ̃() = 1−  if  ≥ 1 and ̃() = 

otherwise, where  is a positive sequence converging to zero. Applying the result for the overall

identified case, we obtain lim→∞ 

µµ
21

̃1()

¶
 · · · 

µ
2

̃()

¶¶
= 1. Furthermore, by permutation

invariance and Condition 2 (c), 

µµ
21
1

¶
 · · · 

µ
2


¶¶
≥ 

µµ
21

̃1()

¶
 · · · 

µ
2

̃()

¶¶
for all ,

so that the result follows from the range upper bound in Condition 2 (c).

A.2 Proof of Inequalities of Section 3.1

Note that with  = 0 (as discussed below Condition 1 above), for any vector ∗ = −10, we
have 0Σ = ∗0∗ =

P
=1 

2
 , 

0Σ = ∗0∗∗ =
P

=1 
2
, 

0ΣΣ
−1
 Σ = ∗0∗2∗ =

P
=1 

2

2


and, for max  1, PI = −1(
P

=1 
2
()

P
=1 

2
 ) with () = 1(1− ).

Inequality (18) follows from
P

=1 
2

2
 ≤ max

P
=1 

2
;

(19) follows from
P

=1 
2

2
 
P

=1 
2
 ≥ (

P
=1 

2


P
=1 

2
 )
2 by convexity;

(20) follows from
P

=1 
2
()

P
=1 

2
 ≥ (

P
=1 

2


P
=1 

2
 ) by convexity of ;

(21) follows from
P

=1 
2
() ≤

P
=1 

2
(max) for max  1, and the inequality is trivial

otherwise;

for (22), note that PS 
p
0Σ = −1PS(

P
=1 

2
PS()

P
=1 

2
 ) with PS() = 2. Both PI

and PS 
p
0Σ can thus be considered the certainty equivalence of an expected utility maximizer

with utility function  and PS, respectively, facing a lottery with payoff’s {}=1 with probabilities
{2 

P
=1 

2
}=1. The result now follows from Pratt’s (1964) Theorem 1, since a calculation shows

that  has a weakly larger (negative) coefficient of absolute risk aversion than PS on the interval

[0 13].

Inequality (23) follows from ∗0( − ∗)−1∗ = ∗0
P∞

=0(
∗)∗ ≥ ∗0( + ∗ + ∗2)∗, so that

PI = 1− ∗0∗∗0( − ∗)−1∗ ≥ ∗0(∗ + ∗2)∗∗0( + ∗ + ∗2)∗ ≥ 2
3
∗0∗2∗∗0∗
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