A Appendix to "Measuring Prior Sensitivity and Prior In-

formativness in Large Bayesian Models"

A.1 Derivation of PI from Axiomatic Requirements

Consider functions fj that map the triple (v, J,3,) to the unit interval, fi(v,J,%,) € [0,1]. Under
a linear reparamterization §* = H@, the parameter of interest v’ becomes v'0 = (H Yv)'0* = v¥0*
with v* = H~Yv. Denote the implied prior and posterior of 0* by p*(6*) = |H|'p(H~16*) and 7*,
respectively, so that Ep-[0"] = p,. = HE,[0] and X5 = HY,H'. Let p;(a*) be the posterior mean
of 0" under the prior (10), where a* = Ha. By a change of variables and the chain rule, we obtain
o)
aa*/

Thus, invariance to linear reparametrizations formally corresponds to

J*

woo=HIH = HS, S H (36)

Condition 1 fi(v,J,%,) = fe(v*, J*, Xy ) = fu(H v, HE X P H™Y HY,H') for all full rank ma-
trices H.

As a special case, let H = DQ'P, were P' is the Choleksy decomposition of ¥ ! the columns of
@ are the normalized eigenvectors of PY.;P’, and D is the diagonal matrix with diagonal elements
equal to —1 if the corresponding element in ' P~v is negative, and equal to one otherwise. Then
Y« = Ij, J* is diagonal with J* = diag(\,- -+ , A¢), and v* has nonnegative elements. The problem
is thus effectively reduced to identifying a suitable function g : R — [0, 1] that maps

(60 )

with v* = (w1, -+ ,wy)’ to the unit interval. Note that Condition 1 also implies that gy is invariant
to permutations of the k bivariate vectors (w?, \;)’, i = 1,--- , k, as the order of the eigenvectors in
(@ can be chosen arbitrarily. The diagonal elements of J* are recognized as the eigenvalues of the
matrix J, since J* = HJH ! implies that J* and .J are similar.

The second and third set of constraints of the main text now corresponds to the following

conditions on gy.

Condition 2 For any integers k and m < k, and any values of {{w;, \i}_}:
2
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(c) gk <(;\}1 R O;k has range [0,1], is weakly increasing in \;, and, for w? > 0 and
1 k

max;<x A; < 1, is continuous in (w?, \1) and strictly increasing and differentiable in \y;
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Condition 3 For A\ <1, ¢» <</\1>7 <0>> ~ 9 _1)\1'

The main theoretical result is formally stated as follows:

Theorem 2 Under Conditions 1-3,

if (max;<p w?1[\; > 1]) >0

2 2
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The expression (17) for PI in the main text now follows by substituting v* = H Vv and J* =
HJH.
Proof. By Condition 2 (b) and the permutation invariance noted below Condition 1, we

can restrict attention to the case where w? > 0 for all « = 1,--- k. Consider first the
case of overall limited prior informativeness in the sense of Definition 1, that is \; < 1 for
i = 1,--- k. We start by showing that Conditions 1 and 2 imply the four Axioms of Kita-
gawa (1934), with g, k& and (w?,)\;) playing the role of M,, n and (w;, z;) in Kitagawa’s no-

tation. As noted, Axiom 1 follows from Condition 1. Condition 2 (d) implies Axiom 2. Re-

2 2 2 k 2
peated application of Condition 2 (d) yields g “1 , “2 coe Yk = ¢ 2z @i ,
Me) \ Ak Ak Ak

which equals min()\;,1) = A; by Condition 2 (a). This shows that Axiom 3 is satisfied. Fi-
nally, for Axiom 4, note that applying the permutation invariance and Condition 2 (e) and

OJ2 w2 w2 0.12 (A)2 w
b tdl .ld 1 ... k = ,1 e _m m+1 PPN k —
(b) (repeatedly) yields g <<>\1)’ ’ ()\,)) g <<)\m)’ ’ <)\m)’ <>\m+1)’ </\k

2 2 m 9
o — ((C;m:) e <(';:), <Zi)\1 w’”) >, so that Axiom 4 follows from another application of

Condition 2 (b), with Kitagawa’s w; equal to w} =>""_, w;.
Thus, Kitagawa’s results are applicable and imply that g, is of the form

(D@ E) e

where ¢ : [0,1) — R is a strictly monotone increasing, continuous function with strictly monotone

increasing and continuous inverse ¢! (the continuity is not asserted by Kitagawa, but follows from



Kolmogorov’s (1930) Theorem invoked in Kitagawa’s proof). Without loss of generality, normalize
4(0) = 1.

We now show that ¢ is differentiable at 0. Recall that every strictly monotone function is
Lebesgue almost everywhere differentiable. Thus, the two [0, 1) — R functions x(A) = 36(0)+3¢(A)
and ¢ '(x(\)) are almost everywhere differentiable. Pick Ao > 0 such that both are differentiable
at A = Ag. We first argue that this implies that ¢! is differentiable at zo = X(Xo). Let h,, be
arbitrary nonzero numbers converging to zero as n — oo. By continuity and monotonicity of y,
there exists, for all large enough n, h!, # 0 such that h,, = x(Xo + h,,) — x(Xo), and R/, — 0. Thus

A - lim ¢>1(330+h;)—¢1(930)
I De+ ) — 67 ()
B ”h—{{’lo X(Ao + ) = x(Xo)

N

¢~ (X(Mo + 1)) — ¢ (X (M) b,

= lim .
n—o0 hi, X(Xo + hy) — x(Ao)

_ 00, )

(39)

| A=Xo

by the product rule for limits, so that ¢! is differentiable at 2o = x(\o). Furthermore, by the
continuity of ¢ at 0,

¢ (36(hn) + 30(N0)) — & (36(0) + 10(No)) 10(ha) — 30(0)
hn hn

(40)

1 1
where A, — A as n — oo. By Condition 2 (¢), go <()\ ), </\ >> = ¢ (30(M) + 20(No)) is
1 0
differentiable in A\; at A\; = 0. Thus, the limit of (40) as n — oo exists and doesn’t depend on h,,,
which implies differentiability of ¢ at 0.
Now by Condition 3,

w((1)(5)) =" ot + o) = 52+ (a1)

Define the continuous and strictly monotone increasing function ¢ : [0,1) — R as p(A) = 1/(1 = \),
and let h : [1,00) — R be the monotone increasing function such that ¢(\) = h(p(A)). The
monotonicity and differentiability of ¢ at zero then implies that h(x) has a positive derivative at
x = 1. Furthermore, h(1) = 1 by the normalization ¢(0) = 1, and using (41), we have ¢(\;)+¢(0) =
20(A\1/(2 = \y)) for all A\; € [0,1), so that

1 2—M
h(l_)\1>+1_2h (2_%). (42)




With \; = 1 — 1/z, we obtain h(z) + 1 = 2h((x 4+ 1)/2) for all = € [1,00). Repeated substitution
yields h(x) —1=2/h(279x + 1 —277) — 27 for all integer j, so that for z;, x5 € (1,00)

h(zy) -1 x1—-1 _h(1+22_1](zw11 11))) - ~xy—ldh(v)/dr|p—y w1 —1 (43)
h(xg) — 1 ap— 1hA+20 @)1 5y — 1 dh(7)/d2|,ey @2 — 1

2= 3(322 1)

Thus h is linear function, so that ¢(A) = () =1/(1 — \), and the result follows.
Finally, consider the case where )\; > 1 for some i. Let Xz(n) =1—~h,if \; >1and ;\,(n) =\
otherwise, where h,, is a positive sequence converging to zero. Applying the result for the overall

2
identified case, we obtain lim,, ., g << Wy ), s <~wk )) = 1. Furthermore, by permutation
2\1(71) 2 Q) 2 2
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invariance and Condition 2 (c), 1>7--- ) ( k)) > (( ! ) cee <~ F )) for all n,
(), o (()\1 Ak P\ M) Ai(n)

so that the result follows from the range upper bound in Condition 2 (c). ®

A.2 Proof of Inequalities of Section 3.1

Note that with H = DQ'P (as discussed below Condition 1 above), for any vector v* = H v, we
have v'¥,v = v*'v* = Zk LW 'S = v Rt = O Wi, VELN N = oM TPt = S w2
and, for A\pax < 1, PI = (Z:Z 1w 20(\ )/2:Z Lw?) with p(\) =1/(1 = \).

Inequality (18) follows from Z L WIA? < A ZZ LW

(19) follows from 3% w22/ S8 w? > (308 w2/ S8 w?)? by convexity;

(20) follows from 3% w2o(N)/ S5 w? > o308 w2,/ SOF | w?) by convexity of ¢;

(21) follows from ZZ Jwio(N) < EZ L w20(Amax) for Amax < 1, and the inequality is trivial
otherwise;

for (22), note that PS/\/v'S,0 = ¢ps (> b wlops(A )/Z:Z Lw?) with @pg(z) = 2. Both PI
and PS/ \/Tpv can thus be considered the certainty equivalence of an expected utility maximizer
with utility function ¢ and @pg, respectively, facing a lottery with payoff’s {\;}¥_, with probabilities
{w?/ Z?Zl w5 ¥ . The result now follows from Pratt’s (1964) Theorem 1, since a calculation shows
that ¢ has a weakly larger (negative) coefficient of absolute risk aversion than ppg on the interval
[0,1/3].

Inequality (23) follows from v*'(I), — J*)tv* = 0¥ 32 (J*)'v* > v¥(I + J* + J*2)v*, so that
PI=1—v"v*/v* (I — J*)7o* > v¥(J* + J2)o* fo¥ (I + J* 4 J2)v* > 207 20" Jur'v*.



