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Abstract

Long-run variance estimation can typically be viewed as the problem of estimat-

ing the scale of a limiting continuous time Gaussian process on the unit interval.

A natural benchmark model is given by a sample that consists of equally spaced

observations of this limiting process. The paper analyzes the asymptotic robust-

ness of long-run variance estimators to contaminations of this benchmark model.

It is shown that any equivariant long-run variance estimator that is consistent in

the benchmark model is highly fragile: there always exists a sequence of contami-

nated models with the same limiting behavior as the benchmark model for which

the estimator converges in probability to an arbitrary positive value. A class of

robust inconsistent long-run variance estimators is derived that optimally trades

off asymptotic variance in the benchmark model against the largest asymptotic

bias in a specific set of contaminated models.
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1 Introduction

The long-run variance ω2 plays a major role in much of time series inference, such as

in regression inference with autocorrelated disturbances, unit root testing or inference

with fractional time series. Usually, for second-order stationary processes, the long-run

variance is defined as the sum of all autocovariances, or, equivalently, in terms of the

spectrum at frequency zero. This paper takes on a different perspective: the starting

point is the observable (double-array) scalar sequence {uT,t}Tt=1, which satisfies

uT,[·T ] ⇒ ωG(·), (1)

where [·] is the greatest lesser integer function, ’⇒’ denotes weak convergence as T →∞
and G(·) is a mean zero, almost surely continuous Gaussian process on the unit interval
with known continuous and non-degenerate covariance kernel k(r, s) = E[G(r)G(s)].

Long-run variance estimation can then be understood as estimation of the (asymptotic)

scale of the process uT,[·T ]. In the context of the OLS regression yt = X 0
tβ + νt with

β = (β1, · · · , βq)0, for instance, assume that T−1
P[sT ]

t=1 XtX
0
t

p→ sΣX uniformly in s ∈
[0, 1] for some positive definite q × q matrix ΣX and that {Xtνt} satisfies a Functional
Central Limit Theorem (where ’

p→’ indicates convergence in probability and all limits
are takes as T → ∞, if not indicated otherwise). Then T 1/2(β̂1 − β1) ⇒ N (0, ω2), and
the first element of (T−1

PT
t=1XtX

0
t)
−1/2T−1/2

P[·T ]
t=1Xtν̂t with ν̂t = yt −X 0

tβ̂ converges

weakly to a Brownian Bridge of scale ω. If instead the regressors contain a time trend or

other slowly varying deterministic terms, such as a dummy for a structural break that

occurs at a known fixed fraction of the sample, then G is no longer a Brownian Bridge

in general, but its covariance kernel is still known.

This paper studies the robustness of long-run variance estimators ω̂2T of ω
2 that are

functions of the T × 1 vector uT = (uT,1, · · · , uT,T )0 in an asymptotic framework. We
focus on scale equivariant estimators, i.e. on estimators satisfying ω̂2T (cuT ) = c2ω̂2T (uT )

for all uT . Since the units of economic data are typically arbitrary, a restriction to scale

equivariant estimators makes sense to ensure coherent results, and all standard long-run

variance estimators are scale equivariant. The benchmark model for these estimators is

where uT,t ∼ G(t/T ) for t = 1, · · · , T , i.e. uT ∼ N (0,ΣT ) with ΣT = [k(s/T, t/T )]s,t.

1



We consider the asymptotic robustness of long-run variance estimators ω̂2T in con-

taminated models ũT = (ũT,1, · · · , ũT,T )0, ũT ∼ N (0, Σ̃T ) with Σ̃T in some sense close to

ΣT for all (large enough) T. As a motivating example, suppose G is a standard Wiener

process W , so that the scaled first differences T 1/2∆uT,t in (1) satisfy a Functional Cen-

tral Limit Theorem, and the benchmark model uT ∼ N (0,ΣT ) has T
1/2∆uT,t distributed

as Gaussian White Noise of unit variance. Now consider the contaminated model where

T 1/2∆ũT,t follows a Gaussian first order autoregressive process of unit long-run variance,

with a root ρT that is local-to-unity, i.e. ρT = 1 − γ/T for fixed γ > 0. If γ is large

(say, γ = 50), then T 1/2∆ũT,t exhibits strong mean reversion, Σ̃T is close to ΣT , and (1)

provides a reasonable approximation also for the contaminated model. The asymptotic

robustness of a long-run variance estimator would ensure that accordingly, the estimation

of the scale of the processes uT,[·T ] and ũT,[·T ] yield similar results, at least for T large.

By the usual asymptotic motivation of small sample inference, this in turn suggests that

the robust estimator has reasonable properties in a sample of, say, T = 250 observa-

tions with ρT = 0.8. In many empirical applications, little is known about the dynamic

properties of T 1/2∆uT,t in (1). It therefore makes sense to require asymptotic robustness

over a large set of contaminated models that are close to satisfying ũT,[·T ] ⇒ ωG(·), in
the hope that the set contains one element which provides a good approximation to the

actual small sample dynamics.

In Section 2, we establish that any scale equivariant long-run variance estimator that

is consistent for ω2 in the benchmark model is highly fragile to contaminations of this

kind. In particular, there exists a sequence of contaminated covariance matrices Σ̃T such

that ũT ∼ N (0, Σ̃T ) satisfies ũT,[·T ] ⇒ ωG(·), yet ω̂2T (ũT ) converges in probability to an
arbitrary positive value. In Section 3, we derive the form of long-run variance estimators

that optimally trade off bias control in a specific set of contaminated models against the

variance of the estimator at the benchmark model in the class of all long-run variance

estimators that can be written as quadratic forms in uT . These optimal long-run variance

estimators are inconsistent, with a nondegenerate limiting distribution proportional to

ω2 even in the benchmark model. Section 4 presents Monte Carlo evidence on the

small sample performance of various long-run variance estimators for two standard data
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generating processes. Proofs are collected in an appendix.

Most papers that consider robust (in the sense of Huber) inference in time series

models are concerned with contaminating outliers, rather than contaminating autocor-

relations this paper focusses on. Kleiner, Martin, and Thomson (1979) and Bhansali

(1997), for instance, develop spectral density estimators that are robust against contam-

inating outliers. The general approaches to robust time series inference developed in

Künsch (1984) and Martin and Yohai (1986) could in principle be employed to consider

robust long-run variance estimation; but they are based on benchmark models with a

parametrized dependence structure, and the contaminations these authors consider are

substantially different from those analyzed here. The ’nonparametric’ starting point (1)

of this paper makes it more akin to the work of Hosoya (1978) and Samarov (1987),

who consider robust time series forecasting and linear regression inference where con-

taminated models have spectral density functions that are close to the spectral density

function of a known benchmark model.

The large majority of the numerous papers on robust long-run variance estimators

use the term ’robustness’ in the nonparametric/adaptive sense: They show how to con-

sistently estimate the long-run variance with minimal conditions on moments and de-

pendence properties of the underlying process. See, for instance, Hannan (1957) and

Berk (1974) for early contributions, or Newey and West (1987) and Andrews (1991) for

popular implementations and Robinson and Velasco (1997) for a survey. Typically, the

assumptions in these papers imply a Functional Central Limit Theorem to hold for the

underlying disturbances, such that the partial sums of the observed residuals satisfy (1)

with G a Brownian Bridge. Robinson (1994, 2005) applies similar methods to fractional

time series, such that G based on the residuals becomes a fractional Brownian Bridge.

The covariance kernel k of G then depends on the self-similarity index, which is typically

unknown. With k unknown, the results of Section 2 concerning the lack of robustness

of consistent long-run variance estimators hold a fortiori; the robust long-run variance

estimators derived in Section 3, however, crucially depend on knowledge of k.

A large body of work has demonstrated that inference based on consistent long-

run variance estimators performs poorly in small samples with strong dependence and
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heterogeneity, see den Haan and Levin (1997) for a survey. Kiefer, Vogelsang, and Bunzel

(2000) have pointed out that it is possible to conduct asymptotically justified inference in

a linear time series regression based long-run variance estimators with a nondegenerate

limiting distribution, and find that the resulting approximation of the distribution of test

statistics leads to better small sample size control in some models. These results were

extended to the class of kernel estimators with a bandwidth that is a fixed fraction of the

sample size in Kiefer and Vogelsang (2002, 2005). One way to analytically understand

these results is to consider higher order expansions of the distribution of test statistics

and rejection probabilities; Jansson (2004) and Sun, Phillips, and Jin (2006) find that

indeed, in a Gaussian location model, a certain class of quadratic long-run variance

estimators leads to an order of magnitude smaller errors in rejection probability than

certain consistent long-run variance estimators.

This paper provides a framework to study first order properties of long-run variance

estimators in a set of contaminated models. The result of Section 2 shows the fragility of

consistent long-run variance estimators in the class of processes that satisfy (1), exposing

an inherent limitation of a strategy of adaptive consistent long-run variance estimation.

One contribution of this paper is thus an alternative analytical justification for consider-

ing time series inference procedures based on inconsistent long-run variance estimators,

and the argument presented here is applicable to all equivariant consistent long-run

variance estimators.

The analysis in Section 3 considers the problem of robust estimation of the long-run

variance. This is of immediate interest in contexts where the value of the long-run vari-

ance itself is important; the long-run variance of the first differences of an integrated time

series describes, for instance, the uncertainty of long-range forecasts. Also the intra-day

volatility of the price of financial assets corresponds to the long-run variance of their re-

turns, which at very high frequencies are contaminated by micro-marketstructure noise;

see Andersen, Bollerslev, and Diebold (2005) for a survey. In other contexts, the long-run

variance estimator is only one element of the inference procedure; think of test statistics

concerning the value β1 in the linear regression example above, unit root tests or param-

eter stability tests. The validity of these inference procedures depends on the long-run
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variance estimator to have reasonable properties. The lack of qualitative robustness of

consistent long-run variance estimators established in Section 2 hence typically trans-

lates into lack of robustness of these procedures–see Müller (2004) for related results on

unit root and stationarity tests. Also, it is plausible that such procedures benefit from

’plugging-in’ the robust long-run variance estimators determined in Section 3, but the

issue is not pursued further. The derivation of robust methods for more general inference

problems than the estimation of the long-run variance is an interesting question and is

left to future research.

2 The Lack of Qualitative Robustness of Consistent

Long-Run Variance Estimators

The deviation of the contaminated model ũT ∼ N (0, Σ̃T ) from the benchmark model

uT ∼ N (0,ΣT ) is wholly determined by the difference between the two covariance matri-

ces Σ̃T and ΣT . We measure the extent of the difference by two norms on the vector space

of T × T matrices: on the one hand ||A||∆ = maxi,j |ai,j| and on the other hand ||A||2,
the square root of the largest eigenvalue of A0A. These norms induce two neighborhoods

of contaminated models, identified by their covariance matrix

C2T (δ) = {Σ̃T : T
−1||Σ̃T − ΣT ||2 ≤ δ}

C∆T (δ) = {Σ̃T : ||Σ̃T − ΣT ||∆ ≤ δ}.

Since ||A||2 ≤ T ||A||∆, C∆T (δ) ⊂ C2T (δ) for any δ ≥ 0.
A leading case for long-run variance estimation occurs where G in (1) is a standard

Wiener processW , so that k(r, s) = r∧s. Set-ups that lead to this case include instances
where a time series is modelled as being integrated, or instances where a Functional

Central Limit Theorem applies to some data {aT,t}Tt=1, such that T−1/2
P[·T ]

t=1 aT,t ⇒
ωW (·). For the latter case, the contamination neighborhoods {C∆T (δ)}T≥1 include the
following double-array processes for all large T :

1. A local-to-unity Gaussian AR(1) process in the sense of Chan and Wei (1987)

and Phillips (1987), i.e. aT,0 = 0, aT,t = ρTaT,t−1 + (1 − ρT )εt for εt ∼i.i.d.N (0, 1)
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and T (1 − ρT ) = γ for a fixed γ > 0. With ũT,t = T−1/2
Pt

s=1 aT,s, the [rT ],[sT ]th

element of Σ̃T for r ≤ s then converges uniformly to r − γ−1(1 + e−γ(s−r))(1 − e−γr) +

(2γ)−1e−γ(s−r)(1− e−2γr) as T →∞, which in turn converges to r uniformly as γ →∞.
2. Gaussian White Noise with a relatively low frequency seasonal component, i.e.

aT,t = ZσZT
−1/2 sin(2πζt/T ) + εt for Z, εt ∼i.i.d.N (0, 1) and fixed ζ > 0. For r ≤ s, the

[rT ],[sT ]th element of Σ̃T then converges uniformly to r+σ
2
Z(ζπ)

−2(sin(ζπr))2(sin(ζπs))2

as T →∞, which in turn converges to r uniformly as ζ →∞ for any fixed σZ (and also

as σZ → 0 for fixed ζ).

3. Gaussian White Noise with a Gaussian outlier at date t = [τT ] for fixed 0 < τ < 1,

i.e. aT,t = ZσZT
1/21(t = [τT ]) + εt, where 1(·) is the indicator function. For r ≤ s, the

[rT ],[sT ]th element of Σ̃T then converges uniformly to r + σ2Z1(r ≥ τ)(r − τ)(s− τ) as

T →∞, which converges to r uniformly as σZ → 0.

For fixed δ, the partial sums of all of these processes are hence elements of C∆T (δ)

for sufficiently large γ and ζ and sufficiently small σZ , respectively, at least for large

enough T . Inference for ω2 that remains robust to all contaminations C∆T (δ) therefore

guards against the impact of strong autocorrelation (example 1), a large peak in spectral

density close to the origin (example 2) and outliers (example 3).

Given that C∆T (δ) ⊂ C2T (δ), all the examples are also elements of C2T (δ). An interesting
element of C2T (δ) that is not an element of C

∆
T (δ) for fixed δ uniformly in T arises from an

integrated almost non-invertible MA(1) process, i.e. aT,t = Th−1(εt−θT εt−1) with ε0 = 0
and T (1 − θT ) = h for fixed h > 0. Then ũT,t = T−1/2

Pt−1
s=1 εs + T 1/2h−1εt, such that

the [rT ],[sT ]th element of Σ̃T converges uniformly to (r ∧ s) + h−1 for [rT ] 6= [sT ] and
to r + Th−2 for [rT ] = [sT ] as T →∞. For large enough h and T , the process is hence

element of C2T (δ). The problem of estimating the scale of the permanent component in

{ũT,t}Tt=1 in such a model arises, for instance, when assessing the extent of instabilities
of linear regression models–see Stock and Watson (1998).

Given these examples, it seems desirable that long-run variance estimators are not

too fragile in the neighborhood C2T (δ), or at least C
∆
T (δ), for small enough δ and large T .

But no long-run variance estimator that is consistent in the benchmark model possesses

this feature.
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Theorem 1 If a scale equivariant long-run variance estimator ω̂2T satisfies ω̂
2
T (uT )

p→ 1

when uT ∼ N (0,ΣT ), then for any c > 0 there exists a sequence ũT ∼ N (0, Σ̃T ),

Σ̃T ∈ C∆T (δT ) with δT → 0 satisfying sup1≤t≤T |uT,t − ũT,t|→ 0 a.s., yet ω̂2T (ũT )
p→ c2.

For any δ > 0, long-run variance estimators that are consistent in the benchmark

model necessarily lack robustness in {C∆T (δ)}T≥1 (and hence {C2T (δ)}T≥1) for T large.

Even highly nonparametric estimators of the long-run variance fail to reasonably estimate

the scale of ũT,[·T ] for some contaminated model Σ̃T , despite the fact that ||Σ̃T−ΣT ||∆ →
0 and sup1≤t≤T |uT,t − ũT,t| → 0 a.s. Given the extreme extent of the fragility, this

typically implies a corresponding fragility of more general inference procedures that rely

on consistent long-run variance estimators. In particular, stationarity tests, unit root

tests or Wald tests of linear regression coefficients that are based on consistent long-run

variance estimators have arbitrarily bad asymptotic size control in the contamination

neighborhoods {C∆T (δ)}T≥1 for any δ > 0.
Theorem 1 does not imply that consistent long-run variance estimators yield arbitrary

results for all specific contaminations in C∆T (δ) and C
2
T (δ), such as the four examples

discussed above. Rather, it asserts the existence of one arbitrarily small contamination

(as measured by ||ΣT − Σ̃T ||∆) that induces arbitrary properties. To gain some insight
into the nature of this contamination, consider the special case where G is a Brownian

Bridge, so that in the benchmark model, T 1/2∆uT,t (with uT,0 = 0) is demeaned Gaussian

White Noise of unit variance.

A Brownian Bridge of scale c > 0, B0(s) ∼ cW (s)−csW (1), admits the representation
(see, for instance, Phillips (1998))

B0(s) = c
∞X
l=1

√
2 sin(πls)

lπ
ξl (2)

where ξl ∼i.i.d.N (0, 1) and the right hand side converges almost surely and uniformly
on s ∈ [0, 1]. For n ≥ 1, define

Bn(s) =
nX
l=1

√
2 sin(πls)

lπ
ξl + c

∞X
l=n+1

√
2 sin(πls)

lπ
ξl.

By the consistency of ω̂2T in the benchmark model and scale equivariance, ω̂
2
T (u

0
T )

p→ c2

when u0T,t ∼ B0(t/T ), t ≤ T , T ≥ 1. The difference between the processes Bn and
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B0 is that the first n components of Bn are of relative scale 1/c, which may be cast as

a difference in the variance of n scalar independent Gaussian variables. The measure

of Bn is thus absolutely continuous with respect to the measure of B0 for any fixed n,

which implies that ω̂2T (u
0
T )

p→ c2 entails ω̂2T (u
n
T )

p→ c2, too, where unT,t ∼ Bn(t/T ), t ≤ T ,

T ≥ 1. One can therefore construct a sequence nT →∞ satisfying ω̂2T (ũT )
p→ c2, where

ũT,t ∼ BnT (t/T ), t ≤ T , T ≥ 1. By the convergence of the right-hand side of (2), BnT (s)

converges to a Brownian Bridge B∞ of unit scale uniformly on s ∈ [0, 1] almost surely,
so that with uT,t ∼ B∞(t/T ) for t ≤ T , T ≥ 1, sup1≤t≤T |uT,t − ũT,t| → 0 a.s., and also

Σ̃T ∈ C∆T (δT ) with δT → 0.

Since T 1/2∆uT,t is distributed as demeaned Gaussian White Noise of unit variance,

and {p2/T cos(πl(t− 1/2)/T )}Tt=1, l = 1, · · · , T − 1 are the last T − 1 elements of the
orthonormal type II discrete cosine transform, one can deduce1 that for c < 1 and n ≤ T

T 1/2∆unT,t ∼
r
2

T

nX
l=1

αl cos(πl(t− 1/2)/T )ξl + c

r
2

T

TX
l=n+1

cos(πl(t− 1/2)/T )ξl (3)

where α2l = c2+(1−c2)(2T sin(πl/2T )/lπ)2 → 1 for any fixed l. While {T 1/2∆unT,t}Tt=1 is
not stationary, one might usefully think of {T 1/2∆unT,t}Tt=1 as a demeaned, approximately
stationary Gaussian series with a piece-wise constant spectral density that equals 1/2π

for frequencies of absolute value smaller than nπ/T (so that the long-run variance is

unity) and c2/2π for frequencies of absolute value larger than nπ/T . For c¿ 1, such a

spectral density is a very rough approximation of the typical spectral shape of economic

time series as estimated by Granger (1966), with substantially more spectral mass at low

frequencies compared to higher frequencies.

Table 1 describes the behavior of Andrews’ (1991) quadratic spectral long-run vari-

ance estimator ω̂2QA with automatic bandwidth selection based on an AR(1) model for

disturbances with distribution (3) for c = 1/2 and various n and T , where n = ∞ de-

notes the benchmark model. Along with the 10th and 90th percentile of the empirical

1With ξ̃l ∼i.i.d.N (0, 1) independent of {ξl}∞l=1, write Bn(s) ∼ B0(s) +√
1− c2

Pn
l=1

√
2 sin(lπs)ξ̃l/(lπ), and note that {p2/TPT

l=1 cos(πl(t − 1/2)/T )ξl}Tt=1 is dis-

tributed as demeaned Gaussian White Noise of unit variance. The result now follows from

sin(lπt/T )− sin(lπ(t− 1)/T ) = 2 cos(πl(t− 1/2)/T ) sin(πl/2T ) and some rearranging.
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Table 1: Behaviour of a Consistent Long-Run Variance under Contamination

T = 120 T = 240

n 5 10 20 ∞ 5 10 20 ∞
10th perc ω̂2QA(u

n
T ) 0.233 0.278 0.425 0.773 0.233 0.257 0.323 0.840

90th perc ω̂2QA(u
n
T ) 0.499 0.761 1.206 1.218 0.369 0.476 0.731 1.156

10th perc sup |uT,t − unT,t| 0.138 0.107 0.080 0 0.146 0.115 0.087 0

90th perc sup |uT,t − unT,t| 0.222 0.163 0.117 0 0.229 0.170 0.123 0

||ΣT − ΣnT ||∆ 0.019 0.010 0.005 0 0.019 0.010 0.005 0

T = 480 T = 960

n 5 10 20 ∞ 5 10 20 ∞
10th perc ω̂2QA(u

n
T ) 0.235 0.247 0.277 0.886 0.237 0.244 0.258 0.920

90th perc ω̂2QA(u
n
T )) 0.311 0.355 0.461 1.112 0.284 0.302 0.346 1.081

10th perc sup |uT,t − unT,t| 0.151 0.120 0.092 0 0.155 0.124 0.095 0

90th perc sup |uT,t − unT,t| 0.235 0.175 0.128 0 0.239 0.179 0.132 0

||ΣT − ΣnT ||∆ 0.019 0.010 0.005 0 0.019 0.010 0.005 0

cumulative distribution function of ω̂2QA(u
n
T ), the table contains the 10th and 90th per-

centile of the cumulative distribution function of sup1≤t≤T |uT,t − unT,t|, based on 50,000
replications, and ||ΣT −Σn

T ||∆, where Σn
T denotes the covariance matrix of u

n
T . Theorem

1 and the above discussion implies that for any consistent long-run variance estimator,

which of course includes ω̂2QA, for large enough T there exists n that make ω̂
2
T (u

n
T )

p→ c2,

sup1≤t≤T |uT,t − unT,t| → 0 a.s and ||ΣT − Σn
T ||∆ → 0 accurate approximations. One

might say that this is achieved to the greatest extent by T = 960 and n = 10. More

generally, though, ω̂2QA has a substantial negative bias for many n and T that are of

potential empirical relevance: With 40 years of monthly data (so that T = 480), for

instance, a value of n = 10 approximates a stationary series with twice as much varia-

tion below business cycle frequencies (periods larger than 8 years) compared to higher

frequency variation. Results not reported here show that for the values of n and T

in Table 1, the properties of ω̂2QA are essentially the same when the underlying distur-

bances are exactly stationary and Gaussian with piece-wise constant spectral density

f∆u(λ) = 1[|λ| < nπ/T ]/2π + 1[|λ| ≥ nπ/T ]c2/2π.
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From sup1≤t≤T |uT,t − ũT,t| → 0 a.s. and ω̂2T (ũT )
p→ c2, it follows from Theorem 1

that any consistent long-run variance estimator is necessarily a discontinuous function

of uT,[·T ], i.e. sample paths {uT,t}Tt=1 and {ũT,t}Tt=1 that are close in the sup norm do

not in general lead to similar long-run variance estimates. Consistent long-run vari-

ance estimators might therefore be called ’qualitatively fragile’, in analogy to Hampel’s

(1971) definition that requires qualitatively robust estimators in an i.i.d. setting to be

continuous functionals of the empirical cumulative distribution function.

Inadequate behavior of estimators of the spectral density at a given point under

certain circumstances has been established before–see, for instance, Sims (1971), Faust

(1999) or Pötscher (2002). These papers show the impossibility of obtaining correct

confidence intervals for the spectral density at a given point for any sample size when

the underlying parametric structure of a time series model is too rich in some sense.

Loosely speaking, this literature demonstrates that meaningful inference is impossible in

too generously parametrized models, as the relevant convergences do not hold uniformly

over the parameter space.

Theorem 1 is different, since it only shows the fragility of long-run variance estima-

tors that are consistent in the benchmark model. Given that sup1≤t≤T |uT,t − ũT,t| → 0

a.s. implies ũT,[·T ] ⇒ G(·), any long-run variance estimator that can be written as a
continuous functional of the set of continuous functions on the unit interval is ’qualita-

tively robust’. What is more, Theorem 2 below demonstrates that it is possible to derive

long-run variance estimators that are asymptotically robust in C2T (δ) (and hence C
∆
T (δ))

for small enough δ. Rather than being a statement about the impossibility of valid in-

ference, Theorem 1 shows that a certain class of estimators (those that are consistent in

the benchmark model) are necessarily highly fragile.

In the special case where G ∼ W , the double array of the scaled first differences

of {uT,t}Tt=1 and {ũT,t}Tt=1 of Theorem 1, {T 1/2∆uT,t}Tt=1 and {T 1/2∆ũT,t}Tt=1, satisfy a
Functional Central Limit Theorem. Advances in the literature have continuously dimin-

ished the wedge between the primitive (on the underlying disturbances) assumptions

for Functional Central Limit Theorems and the primitive assumptions for consistent

long-run variance estimation (see, for instance, de Jong and Davidson (2000) for a re-
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cent contribution). But Theorem 1 reveals that this wedge is of substance: The set of

all (double array) processes that satisfy a Functional Central Limit Theorem is strictly

larger than the set of all processes that in addition allow consistent estimation of the

scale of the limiting Wiener process.

3 Quantitatively Robust Long-Run Variance Esti-

mators

This section derives long-run variance estimators that are asymptotically robust to small

contaminations of the form described by C∆T (δ) and C
2
T (δ). As in much of the robustness

literature, we focus on the largest asymptotic bias

γ2(δ) = limT→∞ sup
ũT∼N (0,Σ̃T ),Σ̃T∈C2T (δ)

¯̄
E[ω̂2T (ũT )]− 1

¯̄
γ∆(δ) = limT→∞ sup

ũT∼N (0,Σ̃T ),Σ̃T∈C∆T (δ)

¯̄
E[ω̂2T (ũT )]− 1

¯̄
as the quantitative measures of robustness. Since for any given δ, C∆T (δ) ⊂ C2T (δ), a finite
γ2(δ) also implies bounded γ∆(δ). Note that these measures are relative to the scale of

ũT : for ũT ∼ N (0, ω2Σ̃T ), the largest asymptotic biases of ω̂
2
T are given by ω

2γ2(δ) and

ω2γ∆(δ).

From Theorem 1, it immediately follows that any non-negative consistent long-run

variance estimator has infinite γ∆(δ) and γ2(δ). The aim of this section is hence to

identify robust inconsistent long-run variance estimators.

For this purpose, we consider the class of quadratic long-run variance estimators,

defined as estimators of the form

ω̂2T (uT ) = u0TATuT

for some positive semi-definite and data independent T ×T matrix AT with s, t element

aT (s, t) that satisfies limT→∞ tr(ΣTAT ) = 1. The normalization ensures asymptotic

unbiasedness of this scale equivariant estimator when uT ∼ N (0, ω2ΣT ). Note that

(possibly after an additional scale normalization) the class of quadratic long-run variance

11



estimators includes the popular kernel estimators

ω̂2κ =
T−1X

l=−T+1
κ(l/bT )γ̂(l) (4)

where γ̂(l) is the sample autocovariance of T 1/2∆uT,t, i.e. γ̂(l) =
PT−|l|

t=1 ∆uT,t+|l|∆uT,t,

κ is a symmetric kernel with κ(0) = 1 and nonnegative corresponding spectral window

generator and bT is a data independent bandwidth. A popular choice for κ is the Bartlett

kernel κ(x) = 1[|x| < 1](1−x)–see Newey and West (1987). Andrews (1991) has shown
that, if bT → ∞ and bT = o(T ), kernel estimators are consistent for a wide range of

underlying disturbances. Theorem 1 implies that all these estimators lack qualitative

robustness and have unbounded largest asymptotic bias. In fact, as demonstrated by

Müller (2005), these estimators consistently estimate a long-run variance of zero in the

local-to-unity example in Section 2 above for any amount of mean reversion γ > 0.

We thus focus in the following on kernel estimators with a bandwidth that is a fixed

fraction of the sample size, bT = bT for some b ∈ (0, 1]. These ’fixed-b’ estimators ω̂2κ(b)
have been studied by Kiefer and Vogelsang (2002, 2005) for the special case where G is

a Brownian Bridge G(s) ∼ W (s) − sW (1). In order to satisfy limT→∞ tr(ΣTAT ) = 1,

fixed-b estimators require an additional scale normalization: with κ twice continuously

differentiable, define

ω̂22d(b) =
ω̂2κ

k(1, 1) + 2b−1
R
κ0((1− s)/b)k(1, s)ds− b−2

R R
κ00((r − s)/b)k(r, s)drds

where here and in the following, the limits of integration are zero and one, if not indicated

otherwise, and for the fixed-b Bartlett estimator ω̂2BT (b)

ω̂2BT (b) =
ω̂2κ

k(1, 1) + 2b−1(
R 1
0
k(s, s)ds− R 1

b
k(s, s− b)ds− R b

0
k(1, 1− s)ds)

.

See the appendix for details.

For quadratic long-run variance estimators, the bias in a contaminated model with

covariance matrix Σ̃T is given by tr((ΣT − Σ̃)AT ) + o(1), so that it is easy to see that

sup
ũT∼N (0,Σ̃T ),Σ̃T∈C2T (δ)

¯̄
E[ω̂2T (ũT )]− 1

¯̄
= δT trAT + o(1)

12



where the worst case contamination in C2T (δ) is given by Σ̃T = ΣT + δTIT . Quadratic

long-run variance estimators with finite γ2(δ) thus in particular limit the distortionary

effect of severe classical measurement error in ũT , a feature with potential appeal for,

say, the estimation of the volatility of asset returns over short periods of time in the

presence of micro-marketstructure noise. For contaminations in C∆T (δ), we obtain

sup
ũT∼N (0,Σ̃T ),Σ̃T∈C∆T (δ)

¯̄
E[ω̂2T (ũT )]− 1

¯̄ ≤ δ
TX
s=1

TX
t=1

|aT (s, t)|+ o(1).

Typically, the maximal bias is achieved by the worst case contamination Σ̃T = ΣT +

δST ∈ C∆T (δ), where ST has elements ST (s, t) = sign(aT (s, t)), although ST might not be
positive semi-definite, in which case γ∆(δ) depends on ΣT and δ. The following results

abstract from these complications and focus on the ’generic’ asymptotic maximal bias

γ̄∆(δ) = δlimT→∞
PT

s=1

PT
t=1 |aT (s, t)|.

Theorem 2 (i) Let ϕl and rl with r1 ≥ r2 ≥ . . ., l = 1, 2, . . . be a set of con-

tinuous eigenfunctions and eigenvalues of k(r, s) = E[G(r)G(s)], and define ξ̂l =

r
−1/2
l T−1

PT
t=1 ϕl(t/T )ũT,t. Among all quadratic long-run variance estimators, the class

of estimators indexed by a real number λ > r−11

ω̂2RE(λ) =

p(λ)X
l=1

wl(λ)ξ̂
2

l

with p(λ) the largest l such that λ > r−1l and wl(λ) = (λ − r−1l )/
Pp(λ)

j=1 (λ −
r−1j ) minimizes γ2(δ) subject to an efficiency constraint limT→∞E[(ω̂2T (uT ) − 1)2] ≤
ς for uT ∼ N (0,ΣT ), and achieves γ2(δ) = δ

Pp(λ)
l=1 wl(λ)r

−1
l and γ̄∆(δ) =

δ
R R |Pp(λ)

l=1 wl(λ)r
−1
l ϕl(s)ϕl(r)|dsdr.

(ii) Let τ ∈ argmaxs∈[0,1] k(s, s). Then

ω̂2R∆ =
ũ2T,[τT ]
k(τ , τ)

minimizes γ̄∆(δ) over all quadratic long-run variance estimators, and achieves γ̄∆(δ) =

δ/k(τ , τ) and γ2(δ) =∞.

13



(iii) Let ũT be any sequence T = 1, 2, . . . of contaminated models that can be written

as ũT + η̃T = uT + ηT a.s., where uT ∼ N (0,ΣT ), η̃T ∼ (0, ṼT ), ηT ∼ (0, VT ), η̃T is

independent of ũT , ηT is independent of uT , and T−1||ṼT ||2 ≤ δ and T−1||VT ||2 ≤ δ

uniformly in T . Then for any quadratic long-run variance estimator ω̂2T

limT→∞E[|ω̂2T (ũT )− ω̂2T (uT )|] ≤ 2(γ2(δ) +
p
γ2(δ) +

p
γ2(δ) + γ2(δ)

2).

(iv) For fixed-b kernel estimators with twice differentiable kernel κ,γ2(δ) =∞ and

γ̄∆(δ) = δ
b2 + 2b

R |κ0((1− s)/b)|ds+ R R |κ00((r − s)/b)|drds
b2k(1, 1) + 2b

R
κ0((1− s)/b)k(1, s)ds− R R κ00((r − s)/b)k(r, s)drds

and for the Bartlett fixed-b estimator, γ2(δ) =∞ and

γ̄∆(δ) =
b+ 4

k(1, 1)b+ 2
R 1
0
k(s, s)ds− 2 R 1

b
k(s, s− b)ds− 2 R b

0
k(1, 1− s)ds

Part (i) of Theorem 2 follows a strategy initially suggested by Hampel (1968) as

described in Huber (1996), and used by Künsch (1984) and Martin and Zamar (1993),

among others: In a class of estimators and for a given contamination neighborhood, the

maximal asymptotic bias is minimized subject to a bound on the asymptotic variance

in the benchmark model. Just as the bias measure, this (imperfect) measure of asymp-

totic efficiency is relative to the scale of uT : E[(ω̂
2
T (uT ) − 1)2] ≤ ς for uT ∼ N (0,ΣT )

corresponds to E[(ω̂2T (uT )/ω
2 − 1)2] ≤ ς for uT ∼ N (0, ω2ΣT ). When r−11 < λ ≤ r−12 ,

one obtains the most robust long-run variance estimator ω̂2R2 = ξ̂
2

1, with asymptotic bias

γ2(δ) = δr−11 . As λ increases, more weight is put on the efficiency of the estimator in the

benchmark model, leading to estimators that are a weighted average of a finite number

of ξ̂
2

l , l = 1, · · · , p(λ), with less weight on ξ̂
2

l for l large. These efficient long-run variance

estimators cannot be written as kernel estimators (4).

The intuition for the result in part (i) is as follows: Among all square-integrable

functions f on the unit interval that satisfy
R
f(s)G(s)ds ∼ N (0, 1), f = r

−1/2
1 ϕ1 min-

imizes
R
f(s)2ds. This property makes ξ̂1 least susceptible to contaminations described

by C2T (δ) asymptotically, as the differences in the covariance matrices are as little am-

plified as possible. A requirement of a lower variance in the benchmark model forces

exploitation of an additional weighted average of {ũT,t}, and among all square integrable

14



functions f on the unit interval that satisfy
R
f(s)G(s)ds ∼ N (0, 1) independent of

r
−1/2
1

R
ϕ1(s)G(s)ds, f = r

−1/2
2 ϕ2 minimizes

R
f(s)2ds, and so forth.

Part (ii) of Theorem 2 identifies the quadratic long-run variance estimator that min-

imizes the generic maximal bias γ̄∆(δ) under C
∆
T (δ) contaminations. The derivation

of quadratic long run variance estimators that efficiently trade off γ̄∆(δ) against the

asymptotic variance in the benchmark model seems difficult and is not attempted here.

Part (iii) of Theorem 2 shows that controlling the largest asymptotic bias γ2(δ) of

quadratic long-run variance estimators ω̂2T (uT ) in the set of contaminated models with

ũT = uT + ηT − η̃T implies an asymptotic uniform upper bound on the amount of

distortion in the distribution of ω̂2T (ũT ) compared to the benchmark model. Note that

this set of contaminated models contains ũT ∼ N (0, Σ̃T ) with Σ̃T ∈ C2T (δ): let PΛP 0 be

the spectral decomposition of Σ̃T−ΣT , and write Λ = Λ++Λ−, where Λ+ and Λ− contain

only nonnegative and nonpositive elements, respectively. Letting ηT ∼ N (0, PΛ+P 0) and

η̃T ∼ N (0, PΛ−P 0) yields EũT ũ0T = ΣT + P (Λ+ − Λ−)P 0 = Σ̃T , and the claim follows.

Also, this distributional robustness allows for some departure from Gaussianity in the

contaminated model, as ηT and η̃T are only assumed to have the specified first and second

moments.

Noting that r
−1/2
l

R
ϕl(s)G(s)ds ∼i.i.d.N (0, 1), the application of the Continuous

Mapping Theorem yields that the asymptotic distribution of ω̂2RE(λ) is given by a

weighted average of independent chi-squared random variables, scaled by ω2, whenever

ũT,[·T ] ⇒ ω2G(·). Applying Theorem 2 (iii) further shows that inference for ω2 based

on ω̂2RE(λ) using this distributional assumption remains asymptotically accurate for the

examples of contaminated models given above Theorem 1 for δ small, that is for large

enough γ, ζ and h and small enough σZ .

Part (iv) of Theorem 2 show that fixed-b kernel estimators are not robust to C2T (δ),

just as ω̂2R∆. In terms of the first differences T
1/2∆ũT,t, the worst case contamination in

C2T (δ), Σ̃T = ΣT + δTIT , corresponds to the addition of a non-invertible MA(1) error of

variance δT 2 to the first differences T 1/2∆uT,t. Lack of robustness of kernel estimators

thus suggests relatively poor performance in underlying models for T 1/2∆ũT,t that are

close approximations to a noninvertible MA(1) process.
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As one might expect, long-run variance estimators have different robustness proper-

ties in different contamination neighborhoods. Ideally, the contamination neighborhood

should reflect uncertainty over potential models in a given application. At the same time,

Theorem 2 points to ω̂2RE(λ) as an attractive default class of estimators: The robustness

of ω̂2RE(λ) extends over a very large neighborhood (that includes C
∆
T (δ)), and it is not

limited to the first moment of its asymptotic distribution.

4 Monte Carlo Evidence

We now turn to a numerical analysis of the performance of various long-run variance

estimators in small samples for two standard data generating processes. Specifically, we

consider the estimation of the long-run variance of Gaussian first order autoregressive

and moving average processes

AR(1) : at = ρat−1 + (1− ρ)εt

MA(1) : at = (1− θ)−1(εt − θεt−1)

with a0 = ε0 = 0 and εt ∼i.i.d.N (0, 1), such that ω2 = 1. Under standard asymptotics
with ρ and θ fixed, the partial sum process T−1/2

P[·T ]
t=1 at converges weakly to a standard

Wiener process W , such that G in (1) corresponds to G ∼ W . The benchmark model

is thus uT,t = T−1/2
Pt

s=1 εs with εt ∼i.i.d.N (0, 1), and ũT,t = T−1/2
Pt

s=1 as may be

regarded as a contamination of this benchmark model. Note that the eigenvalues and

eigenfunctions of k(r, s) = E[W (r)W (s)] = r ∧ s are given by rl = π−2(l − 1/2)−2 and
ϕl(s) =

√
2 sin(π(l − 1/2)s), l = 1, 2, . . . (see Phillips (1998)).

For the numerical analysis, we consider the performance of the two most robust long-

run variance estimators ω̂2R2 = ξ̂
2

1 =
³
r
−1/2
1 T−1

PT
t=1 ϕ1(t/T )ũT,t

´2
and ω̂2R∆ = ũ2T,T in

C2T (δ) and C
∆
T (δ), respectively, and the class of estimators ω̂

2
RE(λ) that efficiently trade off

maximal asymptotic bias γ2(δ) and variance in the benchmark model of Theorem 2. In

addition, we consider estimators ω̂2UA(p) that are an unweighted average of ξ̂
2

l as defined

in Theorem 2 (i), i.e. ω̂2UA(p) = p−1
Pp

l=1 ξ̂
2

l . This modification of the efficient estimators

have central chi-squared asymptotic distributions with p degrees of freedom, scaled by
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ω2/p, whenever ũT,[·T ] ⇒ ω2G(·). The estimator ω̂2UA(p) achieves γ2(δ) = δp−2
Pp

l=1 r
−1
l

(and γ̄∆(δ) = δ
R R |Pp

l=1 r
−1
l ϕl(s)ϕl(r)|dsdr), so Theorem 2 (iii) is applicable and the

scaled central chi-squared asymptotic distribution is an accurate asymptotic approxima-

tion for all contaminated models in C2T (δ) for small δ.

We also include two fixed-b kernel estimators. Just as ω̂2RE(λ) and ω̂2UA(p), also

these estimators follow a nondegenerate asymptotic distribution in the benchmark model,

and the following small sample results are based on this non-degenerate asymptotic

approximation. Specifically, we consider the Quadratic Spectral kernel long-run variance

estimator ω̂2QS(b), and the Bartlett kernel estimator ω̂
2
BT (b) (see Kiefer and Vogelsang

(2005) for details). For each class of estimators ω̂2RE(λ), ω̂
2
UA(p), ω̂

2
QS(b) and ω̂2BT (b),

we report results for three specific members, where the values of λ, p and b are chosen

such that the asymptotic variance in the benchmark model is given by 1, 1/4 and 1/8,

respectively.

For comparison, we also consider the quadratic spectral estimator ω̂2QA with an auto-

matic bandwidth selection based on an AR(1) model for the bandwidth determination as

suggested by Andrews (1991), and Andrews and Monahan’s (1992) AR(1) prewhitened

long-run variance estimator ω̂2PW with a second stage quadratic spectral kernel estimator

with automatic bandwidth selection based on an AR(1) model. Both ω̂2QA and ω̂
2
PW are,

of course, consistent in the benchmark model, and the small sample results are based on

the asymptotic approximation of these estimators having point mass at ω2. This is the

approximation typically employed when the long-run variance is a nuisance parameter.

Alternatively, one might base inference for ω2 on the asymptotic Gaussianity of ω̂2QA−ω2
and ω̂2PW−ω2 suitably scaled–see, for instance, Andrews (1991) for some general results.
But the mean of this Gaussian approximation depends on unknown quantities that can

be estimated in numerous ways, so that for brevity, no such results are presented.

Tables 2 and 3 describe the performance of these long-run variance estimators in

the AR(1) and MA(1) for various values of ρ and θ and a sample size of T = 100,

based on 50,000 replications. For each data generating process and long-run variance

estimator, we report the bias, the root mean square error, the largest difference in the

cumulative distribution function between the asymptotic distribution F and the small
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sample distribution FT , supx |FT (x) − F (x)|, and the small sample coverage rate of a
two-sided asymptotically justified 90% confidence interval, which is equally likely not to

include a too small or too large value of ω2 asymptotically. Given the lack of symmetry of

the asymptotic distributions of the inconsistent long-run variance estimators, this is not

the shortest 90% confidence interval for ω2. For comparison, Tables 2 and 3 also report

the asymptotic variance and asymptotic average length of this 90% confidence interval

for each estimator, as well as the analytical robustness measures γ2(δ) and γ̄∆(δ).

The numerical results underline the poor quality of approximations of small sam-

ple distributions based on consistent long-run variance estimators: in the presence of

strong autocorrelations, ω̂2QA and ω̂2PW exhibit considerable biases and large root mean

square errors. This is true even for ω̂2PW in the AR(1) model, despite the fact that it is

prewhitened based on the correct model of autocorrelation. At the same time, the most

robust long-run variance estimator ω̂2R2 in C
2
T (δ) displays remarkable resilience even in

the face of very strong autocorrelations, with relatively little bias and empirical coverage

rates of the 90% confidence interval never more than two percentage points off the nomi-

nal value. The estimator ω̂2R∆ comes close to this robustness, but it does somewhat worse

in the MA(1) model with θ large. These performances, however, come at the cost of ω̂2R2

and ω̂2R∆ being strikingly inaccurate estimators, with an asymptotic average length of

the 90% confidence interval of 254.

The relative small sample performance of the various long-run variance estimators is

not particularly well explained by γ2(δ) or γ̄∆(δ). The measure γ̄∆(δ) successfully ranks

the small sample robustness as described by Tables 2 and 3 within the same class of

estimators, but not really across: The fixed-b Bartlett estimators ω̂2BT (b), for instance,

have relatively small γ̄∆(δ) compared to ω̂
2
RE(λ), ω̂

2
UA(p) and ω̂

2
QS(b), but perform about

equally well in the AR(1) model and worse than these in the MA(1) model. Maybe this

should not be too surprising: γ2(δ) and γ̄∆(δ) are defined with respect to worst case con-

taminations, and relative performance at these extremes does not necessarily translate

into similar relative performance for less extreme contaminations, even asymptotically.

As noted in Section 3, the worst case contamination in C2T (δ) corresponds to an almost

non-invertible MA(1) in the underlying disturbances. Table 3 indeed shows that estima-
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tors with small γ2(δ) do somewhat better in the MA(1) model with θ = 0.9 compared to

those with large or infinite γ2(δ), and unreported simulations for T = 400 and θ = 0.95,

for instance, reveal much sharper differences.

Overall, these small sample results show competitive performance of ω̂2RE(λ) and

ω̂2UA(p) compared to previously studied inconsistent long-run variance estimators, with

only minor gains of ω̂2RE(λ) over ω̂
2
UA(p) conditional on the asymptotic variance in the

benchmark model. The convenient standard asymptotic distribution of ω̂2UA(p), in com-

bination with its attractive theoretical properties, thus makes ω̂2UA(p) a potentially ap-

pealing choice for applied work.

5 Conclusion

For consistent estimators to work, any given data has to satisfy relatively strong regu-

larity conditions. For the problem of long-run variance estimation, many real world time

series do not seem to exhibit enough regularity such that a substitution of the unknown

population value with a consistent estimator yields reliable approximations.

In order to address this issue, this paper develops a framework to analytically investi-

gate the robustness of long-run variance estimators. The starting point is the assumption

that the data {uT,t}Tt=1 satisfies uT,[·T ] ⇒ ωG(·) for some mean-zero Gaussian process G
with known covariance kernel, where the scalar ω is the square root of the long-run vari-

ance. It is found that all equivariant long-run variance estimators that are consistent in

the benchmark model {uT,t}Tt=1 ∼ {G(t/T )}Tt=1 lack qualitative robustness: There always
exists a sequence of contaminated disturbances {ũT,t}Tt=1 satisfying ũT,[·T ] ⇒ G(·), yet
the long-run variance estimator converges in probability to an arbitrary positive value in

this contaminated model. This result may serve as an analytical motivation for consid-

ering inconsistent long-run variance estimators that remain robust in the whole class of

models satisfying uT,[·T ] ⇒ ωG(·), such as those derived in Kiefer, Vogelsang and Bunzel
(2000) and Kiefer and Vogelsang (2002, 2005).

Furthermore, we determine the form of optimal inconsistent long-run variance es-

timators that, among all estimators that can be written as a quadratic form in uT ,
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efficiently trade off bias in a class of contaminated models against variance in the uncon-

taminated benchmark model. A minor modification of these efficient estimators yields

ω̂2UA(p), which conveniently is asymptotically distributed chi-squared with p degrees of

freedom, scaled by ω2/p, whenever uT,[·T ] ⇒ ωG(·). Also, this distributional approxi-
mation is shown to be uniformly asymptotically accurate in a set of models with small

contaminations.

In a Monte Carlo analysis there emerges a stark trade-off between the robustness and

efficiency of inconsistent long-run variance estimators, as governed by the parameter p

for ω̂2UA(p). This raises the important question of how to pick an appropriate value

in practice. While a detailed discussion is beyond the scope of this paper, the results

obtained here provide an inherent limit to data dependent strategies: Whenever a data

dependent choice of p leads to the efficient choice of an unbounded p with probability

one in the benchmark model, then the resulting long-run variance estimator is consistent

in the benchmark model, and hence qualitatively fragile.

A fruitful approach to the choice of p might result from a spectral perspective. When

uT,[·T ] ⇒ ωG(·) with G a Brownian Bridge G(s) ∼ W (s) − sW (1), an asymptotically

equivalent representation of ω̂2UA(p) is given by

ω̂2UA(p) = p−1
pX
l=1

Ã√
2

TX
t=1

cos(πl(t− 1/2)/T )∆uT,t

!2
+ op(1).

The choice of pmay hence be interpreted as the size of the neighborhood of zero for which

the spectrum of {T 1/2∆uT,t}, as described by the low frequencies of the discrete cosine
transform type II, is required to be flat. Knowledge about the form of the spectrum of

{T 1/2∆uT,t} then suggests appropriate values for p; for macroeconomic time series, for
instance, one might want to pick p small enough not to dip into business cycle frequencies.

Under the standard convention of the lowest business cycle frequency corresponding to

a 8 year period, this would suggest letting p = [Y/4], where Y is the span of the data

measured in years. Even if such knowledge about the spectrum of {T 1/2∆uT,t} is elusive,
any given choice between robustness and efficiency as embodied by p might be easier to

interpret from a spectral perspective.
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6 Appendix

Proof of Theorem 1:

Since k(r, s) = E[G(r)G(s)] is continuous, the eigenfunctions ϕ1, ϕ2, . . . of k corre-

sponding to the eigenvalues r1 ≥ r2 ≥ . . . are continuous and
P∞

l=1 rlϕl(r)ϕl(s) con-

verges uniformly to k(r, s) by Mercer’s Theorem–see Hochstadt (1973), p. 90. Let

ξl ∼i.i.d.N (0, 1), l = 1, 2, . . ., and denote with C the set of continuous functions on the
unit interval, equipped with the sup norm. Since k is continuous and the sample paths of

G are continuous a.s., G can be constructed as G(s) =
P∞

l=1 r
1/2
l ϕl(s)ξl, since the r.h.s.

converges a.s. on C, i.e. uniformly in s ∈ [0, 1]–see Gilsing and Sottinen (2003).
Let G0(s) = cG(s) = c

P∞
l=1 r

1/2
l ϕl(s)ξl, and define Gn(s) =

Pn
l=1 r

1/2
l ϕl(s)ξl +

c
P∞

l=n+1 r
1/2
l ϕl(s)ξl for n ≥ 1. We first show that the measures of G0 and Gn on

C are equivalent: For x ∈ C, let ψl(x) =
R 1
0
x(s)ϕl(s)ds. Consider the continuous

functions h : C 7→ C × Rn and g : C × Rn 7→ C with h(x) = (h1(x), h2(x)) =

(x −Pn
l=1 ϕlψl(x), (ψ1(x), · · · , ψn(x))

0) and g(x, (v1, · · · , vn)0) = x +
Pn

l=1 ϕlvl (where

the metric on C × Rn is chosen as the sum of the sup norm in C and the Euclidian
norm in Rn). Since {ϕl}∞l=1 are orthonormal, h1(x) and h2(x) are the residual and co-

efficient vector of a continuous time regression of x on {ϕl}nl=1, respectively. Clearly,
g(h(x)) = x for any x ∈ C. For any measurable A ⊂ C, we thus have P (Gj ∈ A) =
P (h(Gj) ∈ g−1(A)) for j ∈ {0, n}, where g−1(A) = (A−1 ,A−2 ) is the inverse image of
A under g. It thus suffices to show equivalence of the measures of h(G0) and h(Gn).

Since {ξl}∞l=1 are i.i.d, P (h(Gj) ∈ (A−1 ,A−2 )) = P (h1(Gj) ∈ A−1 )P (h2(Gj) ∈ A−2 ), and
P (h1(G0) ∈ A−1 ) = P (h1(Gn) ∈ A−1 ) because h1(G0) = h1(Gn) = c

P∞
l=n+1 r

1/2
l ϕl(s)ξl.

But h2(Gn) = c−1h2(G0) = (r
1/2
1 ξ1, · · · , r1/2n ξn)

0 ∼ N (0, diag(r1, · · · , rn)), so that
P (h2(Gn) ∈ A−2 ) = 0 if and only if P (h2(G0) ∈ A−2 ) = 0, and therefore P (Gn ∈ A) = 0
if and only if P (G0 ∈ A) = 0.
For n ≥ 0, let the T × 1 vector unT have elements Gn(1/T ), · · · , Gn(T/T ), and let

uT = c−1u0T . For any � > 0, the event |ω̂2T (ujT ) − c2| > � can be equivalently expressed

as Gj ∈ AT (�) ⊂ C, because ujT is a continuous function of Gj for j ∈ {0, n}. Since
u0T = cuT , scale equivariance of ω̂

2
T and ω̂2T (uT )

p→ 1 imply ω̂2T (u
0
T )

p→ c2, so that

P (G0 ∈ AT (�)) → 0. It follows from the equivalence of the measures of G0 and Gn
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that also P (Gn ∈ AT (�)) → 0 (see Pollard (2002), p. 55). But � was arbitrary, so that

ω̂2T (u
n
T )

p→ c2.

There hence exists for any n a finite number Tn such that P (|ω̂2T (unT )− c2| > n−1) <

n−1 for all T ≥ Tn. For any T , let nT be the largest n
∗ such that maxn≤n∗ Tn < T . Note

that nT → ∞ as T → ∞, as Tn is finite for any n. Let ũT = unTT . By construction,

P (|ω̂2T (ũT )− c2| > n−1T ) < n−1T , such that ω̂
2
T (ũT )

p→ c2. Now

ũT,t =

nTX
l=1

r
1/2
l ϕl(t/T )ξl + c

∞X
l=nT+1

r
1/2
l ϕl(t/T )ξl,

and hence

sup
1≤t≤T

|ũT,t − uT,t| ≤ sup
0≤s≤1

|(c− 1)
∞X

l=nT+1

r
1/2
l ϕl(s)ξl|→ 0 a.s.

because of nT → ∞ and the a.s. convergence of
P∞

l=1 r
1/2
l ϕl(·)ξl on C. Also, the co-

variance kernel of the process GnT is given by E[GnT (r)GnT (s)] =
PnT

l=1 rlϕl(r)ϕl(s) +

c2
P∞

l=nT+1
rlϕl(r)ϕl(s), which converges uniformly to k(s, r) as nT → ∞, so that

||E[ũT ũ0T ]− ΣT ||∆ → 0, as claimed.

Scale Normalizations of fixed-b estimators:

Let ĀT be the matrix of the unnormalized kernel estimator, that is the s, t element of

the symmetric matrix ĀT is āT (s, t) = 2κ((s−t)/bT )−κ((s−t−1)/bT )−κ((s−t+1)/bT )
for s, t < T , āT (s, t) = κ((s − t)/bT ) − κ((s − t − 1)/bT ) for s = T and t < T

and āT (T, T ) = κ(0) = 1. If κ is twice differentiable, by exact first and second or-

der Taylor expansions, T 2āT (s, t) = −b−2κ00((s − t)/bT ) + RT (s, t) for s, t < T and

T āT (T, t) = b−1κ0((T − t)/bT ) + RT (T, t) for t < T , where sup1≤s,t≤T |RT (s, t)| ≤
max(b−2 supr,s∈[0,b−1],|r−s|≤2/bT |κ00(r)−κ00(s)|, b−1 supr,s∈[0,b−1],|r−s|≤2/bT |κ0(r)−κ0(s)|)→ 0

since κ0 and κ00 are continuous (and hence uniformly continuous) on [0, b−1]. By a di-

rect calculation, tr(ĀTΣT ) =
PT

s=1

PT
t=1 k(s/T, t/T )āT (s, t) → k(1, 1) + 2b−1

R
κ0((1 −

s)/b)k(1, s)ds − b−2
R R

κ00((r − s)/b)k(r, s)drds, since k, κ0 and κ00 are continuous and

therefore Riemann integrable. The result for the Bartlett fixed-b estimator follows simi-

larly.

Proof of Theorem 2:
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(i) For each T sufficiently large to make the efficiency constraint feasible, we will

first derive the quadratic long-run variance estimator that minimizes δT trAT subject to

E[(ω̂2T (uT )− 1)2] = 2 tr(ΣTATΣTAT ) ≤ ς and tr(ΣTAT ) = 1.

Let QTDTQ
0
T be the spectral decomposition of ΣT , and write AT =

Q0
T (D

+
T )
1/2ÃT (D

+
T )
1/2QT for some positive definite matrix ÃT , where D+

T =

diag(d+1 (1), · · · , d+T (T )) is the Moore-Penrose inverse of DT = diag(dT (1), · · · , dT (T )),
and dT (1) ≥ dT (2) ≥ · · · ≥ dT (T ). This leaves AT unrestricted on the space spanned by

ΣT , and it is optimal to restrict AT to be zero on the null-space of ΣT : changing AT on

the null-space of ΣT leaves the variance tr(ΣTATΣTAT ) and the constraint tr(ΣTAT ) = 1

unaltered while it increases the maximal bias δT trAT .

Let μT (1) ≥ μT (2) ≥ · · · ≥ μT (T ) ≥ 0 be the eigenvalues of ÃT . Then

tr(ATΣT ) = tr ÃT =
PT

l=1 μT (l), tr(ΣTATΣTAT ) = tr(ÃT ÃT ) =
PT

l=1 μT (l)
2 and

trAT = tr(D+ÃT ) ≥
PT

l=1 d
+
T (l)μT (l), where the last inequality follows from Theo-

rem H.1.h., page 249, of Marshall and Olkin (1979). So among all matrixes ÃT with the

same set of eigenvalues, we may always choose ÃT = diag(μT (1), · · · , μT (T )) to minimize
tr(D+ÃT ). It is straightforward to see that the program

min{μT (l)}Tl=1 T
PT

l=1 d
+
T (l)μT (l)

s.t.
PT

l=1 μT (l) = 1,
PT

l=1 μT (l)
2 ≤ ς/2 and μT (l) ≥ 0 for l = 1, · · · , T

is solved by

μ∗T (l) =
(λT − Td+T (l)) ∨ 0PT

j=1((λT − Td+T (j)) ∨ 0)
with λT determined by

PT
l=1 μ

∗
T (l)

2 ≤ ς/2, and the resulting maximal bias is given by

δT
PT

l=1 μ
∗
T (l)d

+
T (l).

Now it is known that the largest N eigenvalues of T−1ΣT converge to the largest N

eigenvalues of k, for any finite N (Hochstadt (1973), chapter 6). Thus λT and {μ∗T (l)}Nl=1
converge to limits λ and {wl(λ)}Nl=1, respectively, and the limit maximal bias and variance
of the small sample estimator is given by δ

Pp(λ)
l=1 r

−1
l wl(λ) and 2

Pp(λ)
l=1 wl(λ)

2, respec-

tively. As an implication of the small sample efficiency of this estimator, no quadratic

long-run variance estimator can exist with a better trade-off between γ2(δ) and the limit

superior of the variance in the benchmark model.
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It hence suffices to show that ω̂2RE is asymptotically unbiased in the benchmark model

and achieves the same limiting maximal bias and variance as this sequence of efficient

small sample estimators. Denote with ARE the T × T matrix such that ω̂2RE(ũT ) =

ũ0TAREũT , i.e. [ARE]s,t = T−2
Pp(λ)

l=1 wlr
−1
l ϕl(s/T )ϕl(t/T ). Then

tr(AREΣT ) = T−2
p(λ)X
l=1

wl(λ)r
−1
l

TX
s=1

TX
t=1

ϕl(t/T )k(s/T, t/T )ϕl(s/T )

→
p(λ)X
l=1

wl(λ)r
−1
l

Z Z
ϕl(r)k(r, s)ϕl(s)dsdr

=

p(λ)X
l=1

wl(λ) = 1

T trARE = T

p(λ)X
l=1

wl(λ)r
−1
l T−2

TX
t=1

ϕl(t/T )
2 →

p(λ)X
l=1

r−1l wl(λ)

tr(AREΣTAREΣT ) =

p(λ)X
l=1

p(λ)X
m=1

wl(λ)wm(λ)r
−1
l r−1m (T

−2
TX
s=1

TX
t=1

ϕl(t/T )k(s/T, t/T )ϕl(s/T ))
2

→
p(λ)X
l=1

p(λ)X
m=1

wl(λ)wmr
−1
l r−1m

µZ Z
ϕl(r)k(r, s)ϕm(s)dsdr

¶2

=

p(λ)X
l=1

wl(λ)
2

since ϕl(r)k(r, s)ϕm(s) is continuous in (r, s), and therefore Riemann integrable.

Similarly, the result for γ2(δ) is an immediate consequence the continuity and thus

Riemann integrability of the [0, 1]2 7→ R function defined by
Pp(λ)

l=1 wlr
−1
l ϕl(r)ϕl(s).

(ii) By the continuity of k, it is obvious that ω̂2R∆ achieves γ̄∆(δ) = δ/k(τ , τ) (and

also γ2(δ) =∞).
Similar to the proof of part (i), consider the optimal quadratic estimator with

matrix A∗T = [a∗T (s, t)]s,t that minimizes
PT

s=1

PT
t=1 |aT (s, t)| subject to tr(ATΣT ) =

1. Let τT ∈ argmax1≤t≤T k(t/T, t/T ), and a∗T (s, t) = 1/k(τT , τT ) if s = t =

τT and a∗T (s, t) = 0 otherwise, so that
PT

s=1

PT
t=1 |a∗T (s, t)| = 1/k(τT , τT ). This

choice is optimal, since 1 = tr(ATΣT ) ≤
PT

s=1

PT
t=1 |k(s/T, t/T )||aT (s, t)| ≤
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max1≤s,t≤T |k(s/T, t/T )|
PT

s=1

PT
t=1 |aT (s, t)|, and |k(r, s)| ≤ p

k(r, r)k(s, s) ≤
k(r, r) ∨ k(s, s) for all r, s ∈ [0, 1]. Since k(τT , τT ) ≤ k(τ , τ) for all T ,

limT→∞
PT

s=1

PT
t=1 |a∗T (s, t)| ≥ 1/k(τ , τ), and the result follows.

(iii) We compute

E|ω̂2T (ũT )− ω̂2T (uT )| = E|η0TATηT − η̃0TAT η̃T + 2η
0
TATuT − 2η̃0TAT ũT |

≤ 2E|η̃0TAT ũT |+ 2E|η0TATuT |+Eη̃0TAT η̃T +Eη0TATηT .

Now

Eη̃0TAT η̃T = tr(AT ṼT ) ≤ Tδ trAT

Eη0TATηT = tr(ATVT ) ≤ Tδ trAT

and

(E|η0TATuT |)2 ≤ E(η0TATuT )
2

= tr(ATVTATΣT ) ≤ Tδ tr(ATΣTAT )

and with EũT ũ
0
T = ΣT + VT − ṼT , also

(E|η̃0TAT ũT |)2 ≤ E(η̃0TAT ũT )
2

= tr(AT ṼTAT (ΣT + VT − ṼT ))

≤ Tδ tr(ATΣTAT ) + T 2δ2 tr(ATAT )

≤ Tδ tr(ATΣTAT ) + (Tδ trAT )
2.

Since tr(ATΣT ) → 1 and AT is positive semi-definite, the largest eigenvalue of ATΣT

has a limit superior bounded by unity, so that limT→∞(Tδ trAT −Tδ tr(ATΣTAT )) ≥ 0.
The result now follows from γ2(δ) = limT→∞Tδ trAT .

(iv) Let ĀT as in the derivation of the scale normalization of fixed-b estimators above.

The results concerning γ̄∆(δ) follow from the same Taylor expansion result derived there

for twice continuously differentiable kernels, and from a straightforward computation

in the case of the fixed-b Bartlett estimator. The result γ2(δ) = ∞ is an immediate

consequence of āT (T, T ) = 1.
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