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Introduction

• Benchmark approach for statistical forecasting: Forecast from AR(p)

yt = β1yt−1 + · · ·+ βpyt−p + et

with AR parameters estimated by OLS and p = p̂BIC determined by
Bayesian Information Criterion (BIC).

• Perfectly reasonable (=admissible up to op(T−1/2) error) if true DGP is
Gaussian AR(p0), as p̂BIC

p→ p0, and OLS is equal to MLE.

• But not otherwise.

• AIC selects larger p, p̂AIC > p̂BIC:

— p̂AIC > p0 with positive asymptotic probability under AR(p0)

— AIC has some asymptotic optimality in class of AR(p) forecasts when
DGP is AR(∞) (Shibata (1980), Schorfheide (2005), Ing and Wei
(2005)), but might well be inadmissible overall
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Are Macroeconomic Time Series AR(p0)’s?

Consider difference p̂AIC − p̂BIC in the 132 Stock and Watson (2005) monthly
macro U.S. postwar time series, and compare to asymptotics under AR(p0)

p̂AIC − p̂BIC Empirical Asymptotic
0 0.205 0.713
1 0.098 0.113
2 0.083 0.055
3 0.098 0.033
4 0.068 0.023
5 0.030 0.016
6 0.038 0.011
7 0.045 0.008
8 0.045 0.006
9 0.030 0.005
10 0.015 0.003
11 0.053 0.003
>12 0.189 0.010
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Local-To-Flat Spectral Density of et

Model Gaussian errors et in baseline AR(p0) model β(L)yt = et as slightly
predictable: Spectral density is

fe(ω) =
1

2π
eG(ω)/

√
T

for some non-constant function G satisfying
R π
−π G(ω)dω = 0.

•
R π
−π G(ω)dω = 0 implies V [et|et−1, et−2, . . .] = 1.

• But unconditional variance is

V [et] =
Z π

−π
fe(ω)dω ≈

1

2π

Z π

−π

µ
1 +G(ω)/

√
T +

1

2
G(ω)2/T

¶
dω

= 1 + T−1
1

4π

Z π

−π
G(ω)2dω.

⇒ Ignoring predictability in et leads to Op(T−1/2) error in forecast, same order
of magnitude as parameter uncertainty about β.
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Inference in Slightly Misspecified AR(p)

• AR(p0) model with local-to-flat fe(ω) is contiguous to model "pure" AR(p0)
model with fe(ω) = 1/2π: Impossible to consistently estimate G

• Bayesian approach: Treat G as realization of a demeaned Gaussian process

G(ω) = J(ω)− 1

π

Z π

0
J(r)dr.

• Example I: Let

J ∼ cW

where W is standard Wiener process and scalar c determines the degree of
non-flatness.

• Example II: Let

J(ω) = cWω̄(ω) =

⎧⎨⎩
c√
ω̄
W (ω) for 0 ≤ ω < ω̄

c√
ω̄
W (ω̄) otherwise
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AIC and BIC in Model with J ∼ cW

Asymptotic
p̂AIC − p̂BIC Empirical c = 0 p0 = 0 p0 = 3

c = 20 c = 40
0 0.205 0.713 0.185 0.165
1 0.098 0.113 0.174 0.115
2 0.083 0.055 0.153 0.107
3 0.098 0.033 0.123 0.096
4 0.068 0.023 0.092 0.088
5 0.030 0.016 0.068 0.074
6 0.038 0.011 0.051 0.065
7 0.045 0.008 0.037 0.053
8 0.045 0.006 0.027 0.044
9 0.030 0.005 0.021 0.037
10 0.015 0.003 0.015 0.029
11 0.053 0.003 0.012 0.025
>12 0.189 0.010 0.041 0.102
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Forecasts with Gaussian Process Prior on G

• Under squared loss, best forecast of eT+1 is posterior mean.

• Literature on Bayesian estimation of time series models with priors in spectral
domain: Carter and Kohn (1997), etc.

— Computationally intensive

— Posterior samplers are based on Whittle approximation to likelihood

⇒ induces Op(T−1/2) error in posterior mean

• Main contribution of the paper: Computationally convenient, closed-form
and to order op(T−1/2) accurate approximation to posterior mean
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Heuristics of Approximation

• With fe(ω) = 1
2πe

G(ω)/
√
T , γj(G) =

√
TE[etet−j] is approx. linear in G

γj(G) = 2
√
T
Z π

0
cos(ωk)fe(ω)dω ≈

1

π

Z π

0
cos(ωk)G(ω)dω

so Gaussian prior onG implies approximately Gaussian prior on {γj(G)}Tj=1.

• Local flatness allows for accurate quadratic approximation to log-likelihood
in {γj}Tj=1, with mean γ̂j = T−1/2

PT
t=1 etet−j, so that likelihood infor-

mation about γj(G) is also approximately Gaussian.

• Let e = (eT , eT−1, · · · , e1)0. Then
√
TE[eT+1|G, e] =

√
TE[eT+1e

0|G]V [e|G]−1e
≈ (γ1(G), γ2(G), · · · , γT+1(G))e

⇒ optimal forecast of eT+1 given {et}Tt=1 is approximately equal to mean of
posterior in a Gaussian—Gaussian prior—likelihood problem.
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Details on Quadratic Log-Likelihood in γ(G)

• With e ∼ N (0, V (G)), V (G) = I + T−1/2Γ(G)

l(G) = −12 ln detV (G)−
1
2e
0V (G)−1e

• But V (G)−1 ≈ I − T−1/2Γ(G) + T−1Γ(G)2, so that

−12e
0V (G)−1e ≈ −12e

0e+ 1
2T
−1/2e0Γ(G)e− 1

2T
−1e0Γ(G)2e

≈ C + γ̂0γ(G)− 1
2T
−1 tr Γ(G)2

and since ln(1 + x) ≈ x− 1
2x
2

−12 ln detV (G) = −12
TX
i=1

ln(1 + λT,i(G))

≈ −12T
−1/2 tr Γ(G) + 1

4T
−1 tr Γ(G)2

so that with T−1/2 tr Γ(G) ≈ 1
π

R π
0 G(ω)dω = 0,

l(G) ≈ γ̂0γ(G)− 1
4T
−1 tr Γ(G)2 ≈ γ̂0γ(G)− 1

2γ(G)
0γ(G).
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Approximation with AR(p) Baseline

• The OLS estimates {β̂j}
p
j=1 are large sample equivalent to posterior mean

of {βj}
p
j=1 under any non-dogmatic prior.

• But spectral density of

êt = β̂(L)yt = β̂(L)β(L)−1et

is not the same as that of et up to order Op(T−1/2).

• Adjustment for the presence of β̂(L)β(L)−1 to obtain approximately opti-
mal forecast of êT+1 given {êt}Tt=1.

• Approximate forecast of yT+c is simply obtained by iterating β̂(L)yt = êt
forward with future êt set to their approximate posterior means.
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Formal Result

k × 1 VAR generalization

yt = α+ β1yt−1 + . . .+ βpyt−p + Pet

fe(ω) =
1

2π
exp[T−1/2G(ω)]

Theorem:

(a) For a wide class of Gaussian process priors on G, and a non-dogmatic prior
on (α, β), the approximation error of the approximate forecast of yT+c is
op(T−1/2) for any fixed forecast horizon c.

(b) Computationally straightforward approximation to Bayesian model averaging
(BMA) weights for prior that is a discrete mixture of differentG processes are
consistent for the exact BMA weights (so that posterior mean approximation
error remains op(T−1/2) under mixture prior).
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Small Sample Results

• Three questions for forecasting rules constructed from J ∼ cW

1. How good is the approximation relative to exact posterior mean forecast?

2. How well does the approximate BMA do?

3. How good are the approximate forecasts when true model is MA(1)?

• Report numbers in terms of
T (MSFE−MSFEAR(p))

MSFEAR(p)

⇒ Forecasting an AR(p0) with an OLS estimate of AR(p) with p > p0
instead of OLS estimate of AR(p0) induces deterioration of p − p0 in this
rescaled MSFE measure
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Small Sample Approximation Quality

DGP and prior have J ∼ cW

T (MSFE−MSFEAR(p))
MSFEAR(p)

c = 10 c = 30

p = 0 p = 1 p = 3 p = 0 p = 1 p = 3
T = 100

Exact -4.6 -1.0 -0.4 -49.1 -22.6 -6.6
Approximate -4.1 -1.0 -0.2 31.9 -8.6 -4.9
Difference -0.6 0.0 -0.2 -81.1 -13.9 -1.7

T = 200
Exact -5.4 -0.9 -0.4 -55.7 -21 -6.8

Approximate -5.2 -0.9 -0.3 -14.6 -14.2 -6.0
Difference -0.2 0.0 0.0 -41.1 -6.8 -0.8

T = 400
Exact -6.2 -1.0 0.0 -64.8 -20.9 -6.4

Approximate -6.1 -1.0 0.0 -39.9 -17.5 -6.3
Difference -0.1 0.0 0.0 -24.9 -3.3 -0.2
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Envelope and BMA, AR(0) Imposed
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Envelope and BMA, AR(pBIC), pmax = 4
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Performance in MA(1) Model
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Empirical Performance

MSFE relative to BIC in pseudo out-of-sample recursive AR estimates in 132
monthly post war series from Stock and Watson (2005)

J ∼ cW J ∼ cW + 20W2π/96
Horizon c AIC c = 20 c = 30 BMA c = 20 c = 30 BMA

Mean
1 1.025 0.988 0.988 0.989 0.987 0.988 0.988
6 0.982 0.968 0.963 0.97 0.963 0.958 0.966

Median
1 1.002 0.988 0.988 0.989 0.987 0.987 0.988
6 0.997 0.98 0.976 0.982 0.974 0.969 0.976

10% Percentile
1 0.956 0.964 0.953 0.964 0.960 0.951 0.962
6 0.858 0.909 0.888 0.925 0.900 0.880 0.913

90% Percentile
1 1.135 1.014 1.023 1.011 1.012 1.020 1.012
6 1.091 1.008 1.015 1.006 1.015 1.023 1.016
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Conclusion

• Convenient method to exploit residual predictability in disturbances of par-
simonious VARs

• Could use local-to-flat spectral framework for purposes other than forecasting

— Approximate BMA weights can be used as asymptotic weighted average
power maximizing specification tests for VAR(p)

— Study effect of local misspecification in spectral domain for inference
about VAR parameters, impulse responses, etc.
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