Forecasts in a Slightly Misspecified Finite Order VAR

Ulrich K. Müller Princeton University James H. Stock Harvard University

June 2011

Introduction

• Benchmark approach for statistical forecasting: Forecast from AR(p)

$$y_t = \beta_1 y_{t-1} + \dots + \beta_p y_{t-p} + e_t$$

with AR parameters estimated by OLS and $p = \hat{p}_{BIC}$ determined by Bayesian Information Criterion (BIC).

- Perfectly reasonable (=admissible up to $o_p(T^{-1/2})$ error) if true DGP is Gaussian AR(p_0), as $\hat{p}_{BIC} \xrightarrow{p} p_0$, and OLS is equal to MLE.
- But not otherwise.
- AIC selects larger p, $\hat{p}_{AIC} > \hat{p}_{BIC}$:
 - $\hat{p}_{AIC} > p_0$ with positive asymptotic probability under AR(p_0)
 - AIC has some asymptotic optimality in class of AR(p) forecasts when DGP is $AR(\infty)$ (Shibata (1980), Schorfheide (2005), Ing and Wei (2005)), but might well be inadmissible overall

Are Macroeconomic Time Series $AR(p_0)$'s?

Consider difference $\hat{p}_{AIC} - \hat{p}_{BIC}$ in the 132 Stock and Watson (2005) monthly macro U.S. postwar time series, and compare to asymptotics under AR(p_0)

$\hat{p}_{AIC} - \hat{p}_{BIC}$	Empirical	Asymptotic
0	0.205	0.713
1	0.098	0.113
2	0.083	0.055
3	0.098	0.033
4	0.068	0.023
5	0.030	0.016
6	0.038	0.011
7	0.045	0.008
8	0.045	0.006
9	0.030	0.005
10	0.015	0.003
11	0.053	0.003
>12	0.189	0.010

Local-To-Flat Spectral Density of e_t

Model Gaussian errors e_t in baseline AR(p_0) model $\beta(L)y_t = e_t$ as slightly predictable: Spectral density is

$$f_e(\omega) = rac{1}{2\pi} e^{G(\omega)/\sqrt{T}}$$

for some non-constant function G satisfying $\int_{-\pi}^{\pi} G(\omega) d\omega = 0$.

•
$$\int_{-\pi}^{\pi} G(\omega) d\omega = 0$$
 implies $V[e_t | e_{t-1}, e_{t-2}, \ldots] = 1$.

• But unconditional variance is

$$V[e_t] = \int_{-\pi}^{\pi} f_e(\omega) d\omega \approx \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(1 + G(\omega)/\sqrt{T} + \frac{1}{2}G(\omega)^2/T \right) d\omega$$
$$= 1 + T^{-1} \frac{1}{4\pi} \int_{-\pi}^{\pi} G(\omega)^2 d\omega.$$

 \Rightarrow Ignoring predictability in e_t leads to $O_p(T^{-1/2})$ error in forecast, same order of magnitude as parameter uncertainty about β .

Inference in Slightly Misspecified AR(p)

- AR(p_0) model with local-to-flat $f_e(\omega)$ is *contiguous* to model "pure" AR(p_0) model with $f_e(\omega) = 1/2\pi$: Impossible to consistently estimate G
- \bullet Bayesian approach: Treat G as realization of a demeaned Gaussian process

$$G(\omega) = J(\omega) - \frac{1}{\pi} \int_0^{\pi} J(r) dr.$$

• Example I: Let

 $J\sim cW$

where W is standard Wiener process and scalar c determines the degree of non-flatness.

• Example II: Let

$$J(\omega) = cW_{\bar{\omega}}(\omega) = \begin{cases} \frac{c}{\sqrt{\bar{\omega}}}W(\omega) & \text{for } 0 \le \omega < \bar{\omega} \\ \frac{c}{\sqrt{\bar{\omega}}}W(\bar{\omega}) & \text{otherwise} \end{cases}$$

AIC and BIC in Model with $J\sim cW$

		Asymptotic			
$\hat{p}_{AIC} - \hat{p}_{BIC}$	Empirical	c = 0	$p_0 = 0$	$p_{0} = 3$	
			c = 20	c = 40	
0	0.205	0.713	0.185	0.165	
1	0.098	0.113	0.174	0.115	
2	0.083	0.055	0.153	0.107	
3	0.098	0.033	0.123	0.096	
4	0.068	0.023	0.092	0.088	
5	0.030	0.016	0.068	0.074	
6	0.038	0.011	0.051	0.065	
7	0.045	0.008	0.037	0.053	
8	0.045	0.006	0.027	0.044	
9	0.030	0.005	0.021	0.037	
10	0.015	0.003	0.015	0.029	
11	0.053	0.003	0.012	0.025	
>12	0.189	0.010	0.041	0.102	

Forecasts with Gaussian Process Prior on ${\cal G}$

- Under squared loss, best forecast of e_{T+1} is posterior mean.
- Literature on Bayesian estimation of time series models with priors in spectral domain: Carter and Kohn (1997), etc.
 - Computationally intensive
 - Posterior samplers are based on Whittle approximation to likelihood \Rightarrow induces $O_p(T^{-1/2})$ error in posterior mean
- Main contribution of the paper: Computationally convenient, closed-form and to order $o_p(T^{-1/2})$ accurate approximation to posterior mean

Heuristics of Approximation

• With $f_e(\omega) = \frac{1}{2\pi} e^{G(\omega)/\sqrt{T}}$, $\gamma_j(G) = \sqrt{T} E[e_t e_{t-j}]$ is approx. linear in G

$$\gamma_j(G) = 2\sqrt{T} \int_0^{\pi} \cos(\omega k) f_e(\omega) d\omega \approx \frac{1}{\pi} \int_0^{\pi} \cos(\omega k) G(\omega) d\omega$$

so Gaussian prior on G implies approximately Gaussian prior on $\{\gamma_j(G)\}_{j=1}^T$.

• Local flatness allows for accurate quadratic approximation to log-likelihood in $\{\gamma_j\}_{j=1}^T$, with mean $\hat{\gamma}_j = T^{-1/2} \sum_{t=1}^T e_t e_{t-j}$, so that likelihood information about $\gamma_j(G)$ is also approximately Gaussian.

• Let
$$e = (e_T, e_{T-1}, \dots, e_1)'$$
. Then
 $\sqrt{T}E[e_{T+1}|G, e] = \sqrt{T}E[e_{T+1}e'|G]V[e|G]^{-1}e$
 $\approx (\gamma_1(G), \gamma_2(G), \dots, \gamma_{T+1}(G))e$

 \Rightarrow optimal forecast of e_{T+1} given $\{e_t\}_{t=1}^T$ is approximately equal to mean of posterior in a Gaussian–Gaussian prior–likelihood problem.

Details on Quadratic Log-Likelihood in $\gamma(G)$

• With
$$e \sim \mathcal{N}(0, V(G))$$
, $V(G) = I + T^{-1/2} \Gamma(G)$
 $l(G) = -\frac{1}{2} \ln \det V(G) - \frac{1}{2} e' V(G)^{-1} e$

• But
$$V(G)^{-1} \approx I - T^{-1/2} \Gamma(G) + T^{-1} \Gamma(G)^2$$
, so that
 $-\frac{1}{2} e' V(G)^{-1} e \approx -\frac{1}{2} e' e + \frac{1}{2} T^{-1/2} e' \Gamma(G) e - \frac{1}{2} T^{-1} e' \Gamma(G)^2 e$
 $\approx C + \hat{\gamma}' \gamma(G) - \frac{1}{2} T^{-1} \operatorname{tr} \Gamma(G)^2$

and since $\ln(1+x) \approx x - \frac{1}{2}x^2$

$$\begin{aligned} -\frac{1}{2} \ln \det V(G) &= -\frac{1}{2} \sum_{i=1}^{T} \ln(1 + \lambda_{T,i}(G)) \\ &\approx -\frac{1}{2} T^{-1/2} \operatorname{tr} \Gamma(G) + \frac{1}{4} T^{-1} \operatorname{tr} \Gamma(G)^2 \end{aligned}$$

so that with $T^{-1/2} \operatorname{tr} \Gamma(G) \approx \frac{1}{\pi} \int_0^{\pi} G(\omega) d\omega = 0$, $l(G) \approx \hat{\gamma}' \gamma(G) - \frac{1}{4} T^{-1} \operatorname{tr} \Gamma(G)^2 \approx \hat{\gamma}' \gamma(G) - \frac{1}{2} \gamma(G)' \gamma(G)$.

Approximation with AR(p) Baseline

- The OLS estimates $\{\hat{\beta}_j\}_{j=1}^p$ are large sample equivalent to posterior mean of $\{\beta_j\}_{j=1}^p$ under any non-dogmatic prior.
- But spectral density of

$$\hat{e}_t = \hat{\beta}(L)y_t = \hat{\beta}(L)\beta(L)^{-1}e_t$$

is not the same as that of e_t up to order $O_p(T^{-1/2})$.

- Adjustment for the presence of $\hat{\beta}(L)\beta(L)^{-1}$ to obtain approximately optimal forecast of \hat{e}_{T+1} given $\{\hat{e}_t\}_{t=1}^T$.
- Approximate forecast of $y_{T+\ell}$ is simply obtained by iterating $\hat{\beta}(L)y_t = \hat{e}_t$ forward with future \hat{e}_t set to their approximate posterior means.

Formal Result

 $k \times 1$ VAR generalization

$$y_t = \alpha + \beta_1 y_{t-1} + \ldots + \beta_p y_{t-p} + Pe_t$$
$$f_e(\omega) = \frac{1}{2\pi} \exp[T^{-1/2} G(\omega)]$$

Theorem:

- (a) For a wide class of Gaussian process priors on G, and a non-dogmatic prior on (α, β) , the approximation error of the approximate forecast of $y_{T+\ell}$ is $o_p(T^{-1/2})$ for any fixed forecast horizon ℓ .
- (b) Computationally straightforward approximation to Bayesian model averaging (BMA) weights for prior that is a discrete mixture of different G processes are consistent for the exact BMA weights (so that posterior mean approximation error remains $o_p(T^{-1/2})$ under mixture prior).

Small Sample Results

- $\bullet\,$ Three questions for forecasting rules constructed from $J\sim cW$
 - 1. How good is the approximation relative to exact posterior mean forecast?
 - 2. How well does the approximate BMA do?
 - 3. How good are the approximate forecasts when true model is MA(1)?
- Report numbers in terms of

$$\frac{T(\mathsf{MSFE} - \mathsf{MSFE}_{\mathsf{AR}(p)})}{\mathsf{MSFE}_{\mathsf{AR}(p)}}$$

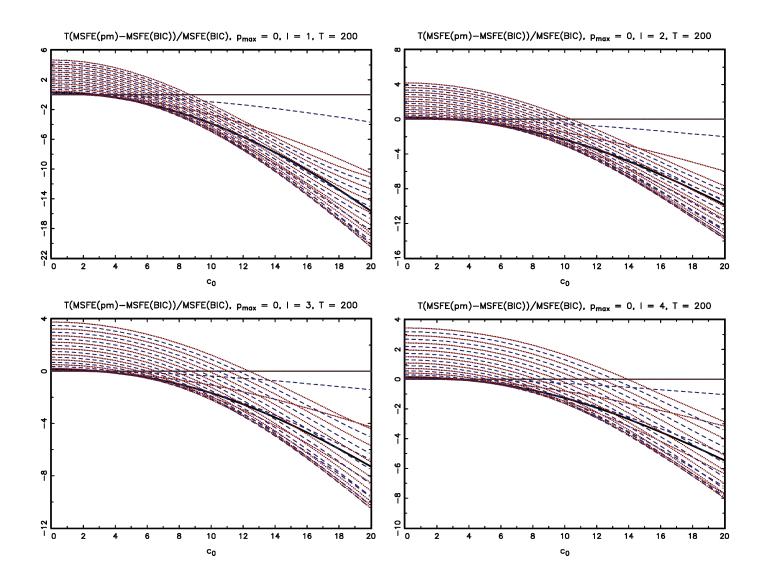
 \Rightarrow Forecasting an AR(p_0) with an OLS estimate of AR(p) with $p > p_0$ instead of OLS estimate of AR(p_0) induces deterioration of $p - p_0$ in this rescaled MSFE measure

Small Sample Approximation Quality

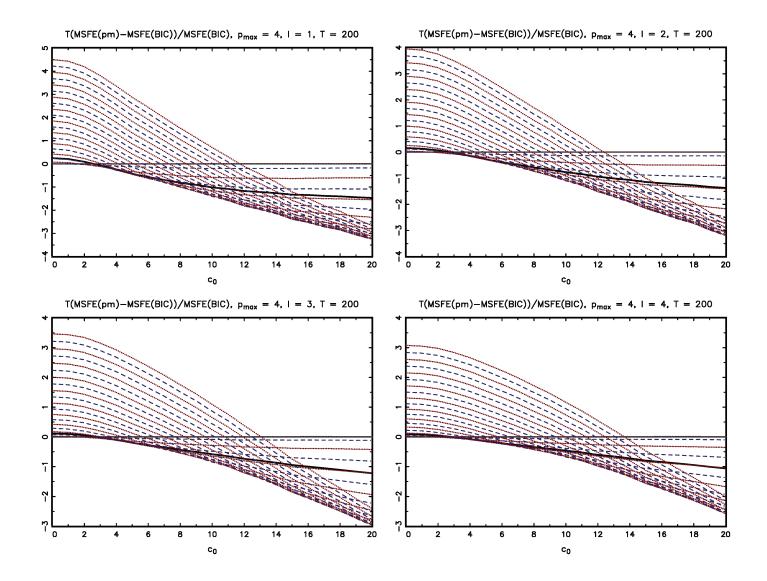
DGP and prior have $J\sim cW$

$\frac{T(MSFE-MSFE_{AR(p)})}{MSFE_{AR(p)}}$	c = 10				c = 30		
	p = 0	p = 1	p = 3	p = 0	p = 1	p = 3	
T = 100							
Exact	-4.6	-1.0	-0.4	-49.1	-22.6	-6.6	
Approximate	-4.1	-1.0	-0.2	31.9	-8.6	-4.9	
Difference	-0.6	0.0	-0.2	-81.1	-13.9	-1.7	
T = 200							
Exact	-5.4	-0.9	-0.4	-55.7	-21	-6.8	
Approximate	-5.2	-0.9	-0.3	-14.6	-14.2	-6.0	
Difference	-0.2	0.0	0.0	-41.1	-6.8	-0.8	
T = 400							
Exact	-6.2	-1.0	0.0	-64.8	-20.9	-6.4	
Approximate	-6.1	-1.0	0.0	-39.9	-17.5	-6.3	
Difference	-0.1	0.0	0.0	-24.9	-3.3	-0.2	

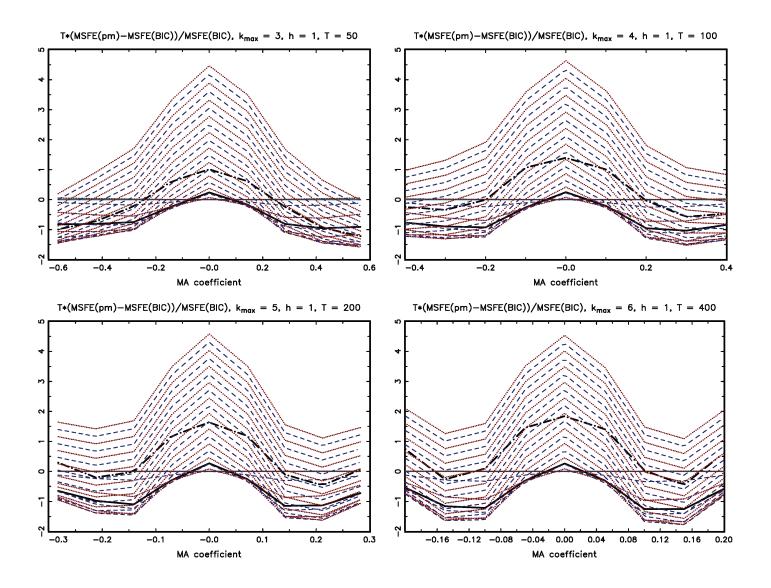
Envelope and BMA, AR(0) Imposed



Envelope and BMA, AR(p_{BIC} **),** $p_{max} = 4$



Performance in MA(1) Model



Empirical Performance

MSFE relative to BIC in pseudo out-of-sample recursive AR estimates in 132 monthly post war series from Stock and Watson (2005)

		$J \sim cW$			$J \sim cW + 20W_{2\pi/96}$			
Horizon ℓ	AIC	<i>c</i> = 20	c = 30	BMA		c = 30	ВŃА	
Mean								
1	1.025	0.988	0.988	0.989	0.987	0.988	0.988	
6	0.982	0.968	0.963	0.97	0.963	0.958	0.966	
Median								
1	1.002	0.988	0.988	0.989	0.987	0.987	0.988	
6	0.997	0.98	0.976	0.982	0.974	0.969	0.976	
10% Percentile								
1	0.956	0.964	0.953	0.964	0.960	0.951	0.962	
6	0.858	0.909	0.888	0.925	0.900	0.880	0.913	
90% Percentile								
1	1.135	1.014	1.023	1.011	1.012	1.020	1.012	
6	1.091	1.008	1.015	1.006	1.015	1.023	1.016	

Conclusion

- Convenient method to exploit residual predictability in disturbances of parsimonious VARs
- Could use local-to-flat spectral framework for purposes other than forecasting
 - Approximate BMA weights can be used as asymptotic weighted average power maximizing specification tests for VAR(p)
 - Study effect of local misspecification in spectral domain for inference about VAR parameters, impulse responses, etc.