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II. NOISE ISN’T NEGLIGIBLE

The great poetic images of classical physics are those
of determinism and clockwork. In a clock, not only the
output but also the internal mechanisms are models of
precision. Strikingly, life seems very different. Interac-
tions between molecules involve energies of just a few
times the thermal energy. Biological motors, including
the molecular components of our muscles, move in ele-
mentary steps that are on the nanometer scale, driven
forward by energies that are larger than the thermal en-
ergies of Brownian motion, but not much larger. Crucial
signals inside cells often are carried by just a handful
of molecules, and these molecules inevitably arrive ran-
domly at their targets. Human perception can be limited
by noise in the detector elements of our sensory systems,
and individual elements in the brain, such as the synapses
that pass signals from one neuron to the next, are sur-
prisingly noisy. How do the obviously reliable functions
of life emerge from under this cloud of noise? Are there
principles at work that select, out of all possible mech-
anisms, the ones that maximize reliability and precision
in the presence of noise?

In this Chapter, we will take a tour of various prob-
lems involving noise in biological systems. I should admit
up front that this is a topic that always has fascinated
me, and I firmly believe that there is something deep to
be found in exploration of these issues. we will see the
problems of noise in systems ranging from the behavior
of individual molecules to our subjective, conscious expe-
rience of the world. In order to address these questions,
we will need a fair bit of mathematical apparatus, rooted
in the ideas of statistical physics. I hope that, armed
with this apparatus, you will have a deeper view of many
beautiful phenomena, and a deeper appreciation for the
problems that organisms have to solve.

A. Molecular fluctuations and chemical reactions

In order to survive, living organisms must control the
rates of many chemical reactions. Fundamentally, all re-
actions happen because of fluctuations. More strongly,
chemical reactions are a non–perturbative consequence
of molecular fluctuations. You all learned, perhaps even
in high school, that the rates of chemical reactions obey
the Arrhenius law, k ∝ e−Eact/kBT , where Eact is the ac-
tivation energy. We also know that kBT measures the
mean square amplitude of fluctuations, for example in
the velocities of atoms. Thus, chemical reaction rates
are ∼ e−1/g, where g is the strength of the fluctuations.
If we start by imagining a world in which there are no
fluctuations, we can add them in piece by piece, but there
is no way to get a chemical reaction rate as a perturbative
series in g. Chemical reactions are so commonplace that
we sometimes forget just how nontrivial they are from a
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FIG. 32 The simplest model of a chemical reaction. Along
some molecular coordinate x, the potential energy V (x) has
two minima separated by a barrier. The height of the bar-
rier is the “activation energy” Eact, which we expect will de-
termine the rate of the reaction through the Arrhenius law,
k ∝ e−Eact/kBT .

theoretical point of view. Indeed, as I verify every year,
few of the students in my course have ever seen an hon-
est calculation that gives the Arrhenius law as a result,
although they have all heard vague arguments about the
Boltzmann probability of being on top of the barrier. So,
our first order of business is to see how the Arrhenius law
emerges, as an asymptotic result, for some real dynamical
model. Only once we have this more solid understanding
will we be ready to look at what might be special regard-
ing the control of chemical reaction rates in biological
systems.
Let us consider the simplest case, shown in Fig 32.

Here the molecules of interest are described by a single
coordinate x, and the potential energy V (x) as a function
of this coordinate has two wells that we can identify as
reactant and product structures. Let’s assume that mo-
tions along this coordinate are overdamped, so inertia is
negligible.30 Since the molecule is surrounded by an en-
vironment at temperature T , we really want to describe
Brownian motion in this potential. So, the equation of
motion is31

γ
dx

dt
= −dV (x)

dx
+ ζ(t), (224)

30 This really is just a simplifying assumption. We can also do
everything in the case where inertia is significant, and none of
the main results will be different. More precisely, we are going to
go far enough to show that the Arrhenius law k = Ae−Eact/kBT

is true, and that the activation energy Eact corresponds to our
intuition. The neglect of inertia would only change the prefactor
A, which is in any case much more difficult to calculate.

31 For background on the description of random functions of time,
see Appendix A.2.
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where γ is the friction or drag coefficient, and the ran-
dom or Langevin force ζ(t) reflects the random influences
of all the other degrees of freedom in the system; to in-
sure that the system eventually comes to equilibrium at
temperature T we must have

〈ζ(t)ζ(t′)〉 = 2γkBT δ(t− t′). (225)

The challenge is to see if we can extract from these dy-
namics some approximate result which corresponds to
our intuition about chemical reactions, and in particular
gives us the exponential dependence of the rate on the
temperature.

[Perhaps should add some discussion of the “reaction
coordinate” concept. On the other hand, one could say
that we are just doing the simplest case, which is one
dimensional, in which case there is no need for apologies,
just generalization later. Advice welcome.]

When we solve Eq (224), what we get is the coordinate
as a function of time. What features of this trajectory
correspond to the reaction rate k? If there really are
only two states in the sense of chemical kinetics, then
trajectories should look like those in Fig 33. Specifically,
we should see that trajectories spend most of their time
in one potential well or the other, punctuated by rapid
jumps between the wells. More precisely, there should
be a clear separation of time scales between the dynam-
ics within each well and the typical time between jumps.
Further, if we look at the times spent in each well, be-
tween jumps, these times should be drawn from an expo-
nential distribution, P (t) = ke−kt, and then k is the rate
constant for the chemical reaction leading out of that well
into the other state.

Problem 38: What’s the alternative? You should think a
bit about what was just said. Suppose for example, that you don’t
know the potential and I just give you samples of the trajectory
x(t). What would it mean if the trajectories paused at some in-
termediate point between reactants and products? How would you
interpret non–exponential distributions of the time spent in each
well?

Problem 39: Numerical experiments on activation over
a barrier. Perhaps before launching into the long calculation that
follows, you should get a feeling for the problem by doing a small
simulation. Consider a particle at position x moving in a potential
V (x) = V0[1− (x/x0)2]2. Notice that this is double well, with min-
ima at x = ±x0 and a barrier of height V0 between these minima.
Let’s consider the overdamped limit of Brownian motion in this
potential, as in Eq (224),

γ
dx(t)

dt
=

4V0

x0

(
x

x0

)[
1−

(
x

x0

)2
]
+ ζ(t), (226)

We want to simulate these dynamics. The simplest approach is the
naive one, in which we use discrete time steps separated by ∆t and
we approximate

dx(t)

dt
→

x(n+ 1)− x(n)

∆t
. (227)

(a.) To use this discretization we have to deal with the Langevin
force. One (moderately) systematic approach is to integrate the
Langevin equation over a small window of time ∆t:

γ

∫ t+∆t

t
dt

dx(t)

dt
= −

∫ t+∆t

t
dt

∂V (x)

∂x
+

∫ t+∆t

t
dt δF (t),(228)

γ [x(t+∆t)− x(t)] ≈ −∆t
∂V (x)

∂x

∣∣∣∣∣
x=x(t)

+ z(t), (229)

where

z(t) =

∫ t+∆t

t
dt ζF (t). (230)

Using the correlation function of the Langevin force from Eq (225),
compute the variance of z(t). Show also that the values of z at
different times—separated at least by one discrete step ∆t—are
uncorrelated.

(b.) Combine your results in [a] with the equations above to
show that this simple discretization is equivalent to

y(n+ 1) = y(n) + αE† · y(n) · [1− y2(n)] +

√
α

2
ζ(n), (231)

where y = x/x0, the parameter α = 4kBT∆t/(γx2
0) should be

small, E† = V0/(kBT ) is the normalized “activation energy” for
escape over the barrier, and ζ(n) is a Gaussian random number
with zero mean, unit variance, and no correlations among different
time steps n.

(c.) Implement Eq (231), for example in MATLAB. Note that
MATLAB has a command randn that generates Gaussian random
numbers.32 You might start with a small value of E†, and experi-
ment to see how small you need to make α before the results start
to make sense. What do you check to see if α is small enough?
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FIG. 33 Example of the trajectories we expect to see in solv-
ing the Langevin Eq (224). Long sojourns in the reactant or
product state are interrupted by rapid jumps from one po-
tential well to the other. If we look at the times tr spent
in the reactant state, these should come from a probability
distribution Pr(tr) = k+e

−k+tr , where k+ is the rate of the
chemical reaction from reactants to products. Similarly we
should have Pp(tp) = k−e

−k−tp , where k− is the rate of the
reverse reaction.

32 More precisely, MATLAB claims that randn generates Gaussian
random numbers that are independent. Maybe you should check
this?
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(d.) Explore what happens as you change the value of E†. For
each value of E†, check that your simulation runs long enough so
that the distribution of x actually is given by the Boltzmann dis-
tribution, P (x) ∝ exp[−V (x)/kBT ]. As E† increases, can you see
that there are isolated discrete events corresponding to the “chemi-
cal reaction” in which the system jumps from one well to the other?
Use your simulation to estimate the rate of these jumps, and plot
the rate as a function of the activation energy E†. Can you verify
the Arrhenius law?

Problem 40: Effective potentials. We are discussing, for
simplicity, a one dimensional problem. Suppose that there are re-
ally many dimensions, not just x but also y1, y2, · · · , yN ≡ {yj}.
Then we have, again in the overdamped limit,

γ
dx

dt
= −

∂V (x; {yj})
∂x

+ ζ(t) (232)

γi
dyi
dt

= −
∂V (x; {yj})

∂yi
+ ξi(t), (233)

where, as usual

〈ξi(t)ξj(t′)〉 = 2kBTγiδijδ(t− t′). (234)

Imagine now that x moves much more slowly than all the {yi}.
(a.) Verify that, from Eq (233), the stationary distribution of

{yi} at fixed x is the Boltzmann distribution,

P ({yj}|x) =
1

Z(x)
exp

[
−
V (x; {yj})

kBT

]
. (235)

(b.) If x is slow compared with all the {yj}, it is plausible that we
should average the dynamics of x in Eq (232) over the stationary
distribution P ({yj}|x). Show that this generates an equation in
which x moves in an effective potential,

γ
dx

dt
= −

∂Veff(x)

∂x
+ ζF (t), (236)

and this effective potential is the free energy, Veff(x) =
−kBT lnZ(x).

(c.) Equations (232) and (233) still aren’t completely general,
since we have taken the mobility tensor to be diagonal, so that
forces on coordinate yi lead to velocities only along this direction.
Does the more general case presents any new difficulties for the
problem posed here?

This picture of trajectories that hover around one well
and then jump to another should remind you of some-
thing you learned in quantum mechanics. In particular,
if you take the path integral view of quantum mechanics,
then tunneling in a double well potential is dominated by
these sorts of trajectories. In fact, if Planck’s constant is
small, so that tunneling is rare, there is a semi–classical
approximation to the path integral which reproduces the
WKB approximation to Schrödinger’s equation, and in
this approximation the path integral is dominated by spe-
cific trajectories, which have come to be called “instan-
tons.” These instantons are precisely the jumps from one
well to another, analogous to what we have drawn for the
classical case in Fig 33.

There are three seemingly different but equivalent ways
of doing quantum mechanics. Most elementary courses
focus on Schrödinger’s equation, which describes the am-
plitude for a particle to be at position x at time t. But
you can also look at Heisenberg’s equations of motion for

the position (and momentum) operator, and finally one
can use path integrals. How do these different approaches
to quantum mechanics connect with the description of
Brownian motion?
The Langevin equation is a bit like Heisenberg’s equa-

tion for the position operator. It seems to give us some-
thing most closely related to the equations of motion in
classical (noiseless) mechanics, but it requires some in-
terpretation. In the case of the Langevin equation, be-
cause ζ(t) is random, when we solve for the trajectory
x(t) we get something different for every realization of ζ,
so “solve” should be used carefully. More precisely what
we get, for example, from one simulation of the Langevin
equation is a sample drawn out of the distribution of tra-
jectories.
When we pass from Heisenberg’s equations of motion

to the Schrödinger equation, we shift from trying to fol-
low the time dependence of coordinates to trying to see
the whole distribution of coordinates at each time, as en-
coded in the wave function. Similarly, we can pass from
the Langevin equation to the diffusion equation, which
governs the probability P (x, t) that we will find the par-
ticle at position x at time t. It is useful to remember that
the diffusion equation is an equation for the conservation
of probability,

∂P (x, t)

∂t
= − ∂

∂x
J(x, t), (237)

where J(x) is the probability current.33 Fick’s law tells
us that diffusion contributes a current that tends to re-
duce gradients in the concentration of particles, or equiv-
alently gradients in the probability of finding one particle,
so that

Jdiff(x, t) = −D
∂P (x, t)

∂x
. (238)

But if there is some force F (x) = −dV (x)/dx acting
on the particle, it will move with an average velocity
v = F (x)/γ, and hence there is a ‘drift’ current

Jdrift(x, t) = vP (x, t) = − 1

γ

dV (x)

dx
P (x, t). (239)

33 A note about units. Often when discussing diffusion it is natural
to think about the concentration of particles, which has units
of particles per unit volume. The current of particles then has
units of particles per are per time. What we are doing here is
slightly different. First, we are talking about the probability of
finding one particle at point x. Second, we are in one dimension,
and so this probability distribution has units of 1/(length), not
1/(volume). Then the current has the units of a rate, 1/(time).
Check that this make the units come out right in Eq’s (??) and
(238).
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Putting these terms together, J = Jdiff + Jdrift, we have

∂P (x, t)

∂t
= − ∂

∂x

[
−D

∂P (x, t)

∂x
− 1

γ

dV (x)

dx
P (x, t)

]

= D
∂

∂x

[
∂P (x, t)

∂x
+

1

γD

dV (x)

dx
P (x, t)

]

= D
∂

∂x

[
∂P (x, t)

∂x
+

1

kBT

dV (x)

dx
P (x, t)

]
,

(240)

where in the last step we use the Einstein relation D =
kBT/γ. This way of writing the diffusion equation makes
clear that the Boltzmann distribution P ∝ e−V (x)/kBT is
an equilibrium (∂P/∂t = 0) solution.
We have said that, in looking at solutions of the

Langevin equation, the signature of a “chemical reaction”
with rate k is that the trajectories x(t) will look like they
do in Fig 33. What is the corresponding signature in the
solutions of the diffusion equation? More precisely, even
if we solve the diffusion equation to get the full P (x, t)
from some initial condition, what is it about this solution
that corresponds to the rate constant k? In the same way
that Schrödinger’s equation is a linear equation for the
wave function, the diffusion equation is a linear equation
for the probability, which we can write as

∂P (x, t)

∂t
= L̂P (x, t). (241)

All the dynamics are determined by the eigenvalues of
the linear operator L̂:

P (x, t) =
∑

n

ane
λntun(x) (242)

L̂un(x) = λnun(x). (243)

We know that one of the eigenvalues has to be zero, since
if P (x, t) is the Boltzmann distribution, P ∝ e−V (x)/kBT ,
it won’t change in time. Deviations from the Boltzmann
distribution should decay in time, so all the nonzero
eigenvalues should be negative.

Problem 41: Positive decay rates. We know that P ∝
exp[−V (x)/kBT ] is a stationary solution of the diffusion Eq (240).
To study the dynamics of how this equilibrium is approached, write

P (x, t) = exp

[
−

V (x)

2kBT

]
Q(x, t). (244)

(a.) Derive the equation governing Q(x, t). Show that (by in-
troducing factors of i in the right place) this can be written as

∂Q(x, t)

∂t
= −A†AQ(x, t), (245)

where the combination A†A is a Hermitian operator. This gives an
explicit version of Eq (241); explain why this implies that all the
eigenvalues λn ≤ 0.

(b.) For the case of the harmonic potential, V (x) = κx2/2,
show that the operators A† and A are the familiar creation and

annihilation operators from the quantum harmonic oscillator. Use
this mapping to find all the eigenvalues λn. How do these relate
to the time constant for exponential decay that you get from the
noiseless dynamics [Eq (224) with ζ(t) = 0]?

If we place the molecule in some configuration that is
far from the local minima in each potential well, it will
‘slide’ relatively quickly into its relaxed configuration,
and execute some Brownian motion around this sliding
trajectory so that it samples the Boltzmann distribution
within the well. This relaxation should be be described
by some of the eigenvalues λn, and these should be large
and negative, corresponding to fast relaxation. In prac-
tice, we know that molecules in solution achieve this sort
of ‘vibrational relaxation’ within nanoseconds if not pi-
coseconds.
The statement that there is a chemical reaction at

rate k means that, as a population of molecules comes
to equilibrium, all the equilibration within the reactant
or product states is fast, corresponding to time scales
much shorter than 1/k. On the much longer time scale
1/k, there is equilibration between the reactant and prod-
uct states. Thus, if we look at the whole spectrum of
eigenvalues λn for the diffusion equation, one eigenvalue
should be zero (as noted above), almost all the others
should be very large and negative, while there should be
one isolated eigenvalue that is small and negative—and
this will be the reaction rate k, or more precisely the sum
of the rates for the forward (reactants → products) and
backward (products → reactants) reactions.
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FIG. 34 Decay rates in diffusion compared with energy levels
in quantum mechanics. In both cases there is a small split-
ting between the first two eigenvalues. For the diffusive case,
this splitting is the rate of thermally activated hopping over
the barrier—a chemical reaction. For the quantum case this
splitting is the tunneling frequency between the two wells.
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We arrive, then, at a picture of the eigenvalue spec-
trum in which there is a small splitting (between λ0 = 0
and λ1 = −k) relative to the next highest eigenvalue,
as shown in Fig 34. This should remind you of what
happens in quantum mechanical tunneling between two
potential wells. The basic spacing of energy levels is
set by the vibrational quanta within each well, but the
states—and, in particular, the ground state—is split by a
small amount corresponding to the frequency of tunnel-
ing between the two wells. It is the size of the barrier, or
equivalently the smallness of !, which makes this split-
ting small. In the diffusion problem, it is presumably the
smallness of the temperature relative to the activation
energy which enforces λ0 − λ1 ' λ1 − λ2. We know how
to solve Schrödinger’s equation using the WKB approxi-
mation to extract the small tunneling amplitude, and so
there should be a similar approximation to the diffusion
equation that allows us to calculate the reaction rate.

The WKB approximation has a natural formulation in
the path integral approach—in the limit ! → 0, the path
integral describing the amplitude for any quantum pro-
cess is dominated by particular trajectories that are so-
lutions of the classical equations of motion, although for
classically forbidden processes (as with tunneling) these
equations have to be continued to imaginary time. This
idea of a dominant trajectory should be even clearer in
the case of Brownian motion, since we won’t have to deal
with the continuation to imaginary time. To see how
this works—and, finally, to derive the Arrhenius law—we
need to construct the probability distribution functional
for the trajectories x(t) that solve the Langevin Eq (224).

The probability that we observe a trajectory x(t) can
be calculated by finding the random force ζ(t) which was
needed to generate this trajectory, and then calculating
the probability of this force. We know that the random
forces come from a Gaussian distribution, and we know
the correlation function [Eq (225)], so we have

P [ζ(t)] ∝ exp

[
− 1

4γkBT

∫
dt ζ2(t)

]
. (246)

The Langevin equation, Eq (224), can be rewritten as

ζ(t) = γ
dx

dt
+

dV (x)

dx
, (247)

so it is tempting to say that the probability of observing
the trajectory x(t) is given by

P [x(t)] ∼ exp

[
− 1

4γkBT

∫
dt

(
γ
dx

dt
+

dV (x)

dx

)2
]
,

(248)

and this is almost correct. To see what’s missing, con-
sider the simpler case where we just have one variable x
[instead of a function x(t)] that obeys an equation

f(x) = y, (249)
and y is random, drawn from a distribution Py(y). It is
tempting to write

Px(x) = Py(y = f(x)), (250)

but this can’t be right—x and y can have different units,
and hence Px and Py must have different units. As you
have probably seen many times before, in this simple one
dimensional example, the correct statement is that the
probability mass within some small region dx must be
equal to the mass found in the corresponding dy,

Px(x)dx = Py(y = f(x))dy (251)

⇒ Px(x) = Py(y = f(x))

∣∣∣∣
dy

dx

∣∣∣∣ (252)

= Py(y = f(x))

∣∣∣∣
df(x)

dx

∣∣∣∣. (253)

More generally, in order to equate probability distribu-
tions, we need a Jacobian for the transformation between
variables. Thus, instead of Eq (248), we really want to
write

P [x(t)] ∝ exp

[
− 1

4γkBT

∫
dt

(
γ
dx

dt
+

dV (x)

dx

)2
]
J ,

(254)
where J is the Jacobian of the transformation between
x(t) and δF (t). Importantly, the Jacobian doesn’t de-
pend on temperature. In contrast, the exponential term
that we have written out is ∼ e−1/T , so at low tempera-
tures this will dominate. So, for this discussion, we won’t
worry about the Jacobian.

Problem 42: Jacobians. [Give a problem that walks through
the derivation of the Jacobian, as in Zinn–Justin.]

To make use of Eq (254), it’s useful to look more closely
at the integral which appears in the exponential. Let’s
be careful to let time run from some initial time ti up to
some final time tf :
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∫ tf

ti

dt

(
γ
dx

dt
+

dV (x)

dx

)2

=

∫ tf

ti

dt

[(
γ
dx

dt

)2

+ 2γ
dx

dt

dV (x)

dx
+

(
dV (x)

dx

)2
]

(255)

=

∫ tf

ti

dt

[(
γ
dx

dt

)2

+

(
dV (x)

dx

)2
]
+ 2γ

∫ tf

ti

dt
dx

dt

dV (x)

dx
(256)

=

∫ tf

ti

dt

[(
γ
dx

dt

)2

+

(
dV (x)

dx

)2
]
+ 2γ

∫ tf

ti

dt
dV (x)

dt
, (257)

=

∫ tf

ti

dt

[(
γ
dx

dt

)2

+

(
dV (x)

dx

)2
]
+ 2γ[V (xf)− V (xi)], (258)

where in the last steps we recognize one term as a total
derivative; as usual xi = x(ti) is the initial position, and
similarly xf = x(tf) is the final position. Substituting,
we can write the probability of a trajectory x(t) as

P [x(t)] ∝ J e−S/kBT , (259)

where the ‘action’ takes the form

S =
V (xf)− V (xi)

2
+

∫ tf

ti

dt

[
γ

4

(
dx

dt

)2

+
1

4γ

(
dV (x)

dx

)2
]
.

(260)
This is a good time to remember that, for the simplest

problems of classical mechanics, the action is

Scm =

∫ tf

ti

dt

[
m

2

(
dx

dt

)2

− U(x(t))
]
, (261)

where m is the mass and U(x) is the potential energy.
Except for a constant, the effective action for our problem
is exactly that of a simple mechanics problem of a particle
with mass m moving in a effective potential U(x),

m =
γ

2
(262)

U(x) = − 1

4γ

(
dV (x)

dx

)2

. (263)

Figure 35 shows how this effective potential relates to the
original double well.

At low temperatures, the distribution of trajectories
will be dominated by those which minimize the action
S. Clearly, one way to make the action minimal (zero,
in fact) is to have the position be constant at one of the
minima of the potential well. This describes a situation
in which nothing happens. To have a chemical reaction,
we need a trajectory that starts in the well correspond-
ing to the reactants state, climbs up to the ‘transition
state’ at the top of the barrier, and then slides down the
other side. Let’s start with the first part of this problem,
finding a trajectory that climbs the barrier. The domi-
nant trajectory of this form will be one that minimizes
the action, and from Fig 35 we see that this is equivalent
to finding the solution to an ordinary mechanics problem

in which a particle starts on top of one hill, slides down
and then gently comes to rest at the top of the next hill.

Problem 43: Zero energy? What we have just described
are trajectories in the effective potential that have zero energy.
There are, of course, trajectories that minimize the action but have
nonzero energy. Why don’t we consider these?

Taking the details of Fig 35 seriously, if we start at
rest on top of one hill, this means that we start with zero
energy. But energy is conserved along the trajectory, so
that

m

2

(
dx

dt

)2

+ U(x(t)) = E = 0. (264)
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FIG. 35 Potentials and forces in a double well. Top panel
show the true potential, middle panel the force, and bottom
panel the effective potential that enters the probability dis-
tribution of trajectories. Notice that each extremum of the
potential, both maxima and minima, becomes a maximum of
the effective potential, and all these maxima are degenerate
at U = 0.
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This means that

U(x(t)) = −m

2

(
dx

dt

)2

(265)

dx

dt
= ±

√
− 2

m
U(x(t)); (266)

we are interested in trajectories that move from left to
right, so we should choose the upper sign, so that dx/dt >
0. But now we can substitute into the action,

Scm =

∫ tf

ti

dt

[
m

2

(
dx

dt

)2

− U(x(t))
]

=

∫ tf

ti

dt

[
m

2

(
dx

dt

)2

+
m

2

(
dx

dt

)2
]

(267)

= m

∫ tf

ti

dt

(
dx

dt

)2

(268)

= m

∫ tf

ti

dt
dx

dt

√
− 2

m
U(x(t)), (269)

so that finally we have

Scm =

∫ xf

xi

dx
√
−2mU(x), (270)

where you should recognize the connection to the WKB
formula for tunneling. In our case, the effective potential
and mass are defined by Eq’s (262) and (263), so that

−2mU(x) = −2
γ

2

[
− 1

4γ

(
dV (x)

dx

)2
]
=

1

4

(
dV (x)

dx

)2

.

(271)

It is quite nice how the factors of γ cancel. Substituting
into Eq (270), we find

Scm =
1

2

∫ xf

xi

dx

√(
dV (x)

dx

)2

(272)

= ±1

2

∫ xf

xi

dx
dV (x)

dx
(273)

=
1

2

∣∣∣∣V (xf)− V (xi)

∣∣∣∣, (274)

where we choose the sign in taking the root so that the
action comes out positive, as it must from Eq (268).

Problem 44: Extracting the dominant paths. We have
seen that, in the low temperature limit, the reaction is dominated
by trajectories that lead from one well to the other and minimize
the action. Look through your simulation results from Problem
28, and collect as many examples as you can of the ‘jumping’ tra-
jectories. How do these examples compare with the theoretical
prediction that comes from minimizing the action? Can you align
the sample trajectories well enough to compute an average that
might be more directly comparable to the theory?

To finish the calculation, we need to put some of these
pieces together. The action that determines the proba-
bility of a trajectory is, from Eq (260),

S =
V (xf)− V (xi)

2
+

∫ tf

ti

dt

[
γ

4

(
dx

dt

)2

+
1

4γ

(
dV (x)

dx

)2
]

=
V (xf)− V (xi)

2
+ Scm (275)

=
V (xf)− V (xi)

2
+

1

2

∣∣∣∣V (xf)− V (xi)

∣∣∣∣. (276)

This is a remarkably simple result. If we are looking at
a trajectory that climbs from the bottom of a potential
well to the top of the barrier, we have V (xf) > V (xi) and
hence the action is

Sclimb = V (xf)− V (xi) = Eact, (277)

which is the “activation energy” for going over the bar-
rier. On the other hand, if we look at a trajectory that
slides down from the barrier into the other well, we have

V (xf) < V (xi) and hence

Sslide = 0. (278)

So, what we have shown is that paths which take us from
reactants to products, climbing the barrier and sliding
down the other side, have a minimal action Sreact =
Sclimb + Sslide = Eact. Thus, the probability of seeing
such a trajectory is

P [xreact(t)] ∝ J e−Sreact/kBT ∼ e−Eact/kBT , (279)
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and this is the essence of the Arrhenius law (at last).
One could legitimately complain that we haven’t really

solved our problem. All we have done is to show that,
in some window of time, trajectories that jump from re-
actants to products are suppressed in probability by a
factor e−Eact/kBT . This is the basic idea of the Arrhenius
law, but we haven’t actually calculated a rate constant.
In truth, this last step requires rather more technical ap-
paratus, in the same way that getting the tunneling rate
in the WKB approximation is harder than getting the
exponential suppression, so I will leave it aside for now.

So far, we have given a fairly general discussion, and
perhaps it’s not obvious whether there is anything spe-
cial about how these ideas will play out in the case of
biological molecules. If we try to draw the picture in Fig
32, we usually associate the “reaction coordinate,” that
is the molecular coordinate along which we see the double
well potential, with the motions that are involved in the
chemical events themselves. Thus, if we are looking at
the transfer of a hydrogen atom, breaking one bond and
forming another, we might think that the relevant molec-
ular coordinate is given by the position of the hydrogen
atom itself.

Biological molecules—such as the proteins which act as
enzymes, catalyzing specific chemical reactions of impor-
tance in the cell—are large, and hence flexible. Certainly
they can change reaction rates by holding the reactants
in place. But because of their flexibility, there is also
the possibility that, as they flex, the effective barrier for
the reaction changes. In this case, the dominant path
for the reaction might be for the protein to fluctuate into
a favorable configuration, and then for the more local
coordinates (e.g., the position of the hydrogen atom) to
make their jump. In this way, the observed activation en-
ergy comes to have two components, the usual one that
we measure along the reaction coordinate, which presum-
ably is reduced by waiting for the protein to arrange itself
properly, and then the energy of distorting the protein it-
self.

To be a little more formal, imagine that for every con-
figuration Q of the protein, there is a different activation
energy for the reaction, Eact(Q). Of course there must
also be some (free) energy of the protein once it is in the
structure described by Q, and this determines the prob-
ability distribution P (Q). Then if the fluctuations in Q
are fast, we expect to see an average rate constant

k = A

∫
dQP (Q) exp

[
−Eact(Q)

kBT

]
. (280)

If we fix Q at its equilibrium position, we could find
that Eact(Q = Qeq) is large, which might make us think
that the reaction will be slow. But by sampling non–
equilibrium configurations, the protein can speed up the
reaction.

Obviously this general picture depends on many de-
tails, but before proceeding one could ask if there is any

evidence for such coupling of protein structural fluctu-
ations to the modulations of chemical reaction rates. I
think the strongest evidence is from the mid 1970s, in a
beautiful series of experiments by Austin and colleagues.
The idea is very simple. Suppose that we really do have
the activation energy varying with the configuration of
the protein. If we could stop the motion of the protein,
then each molecule would be stuck with a different acti-
vation energy and hence a different reaction rate. Then,
instead of seeing an average rate, each molecule reacts
at its own rate, and if we count the total number of
molecules that have not yet reacted we should see

N(t) =

∫
dQP (Q) exp

[
−Ae−Eact(Q)/kBT t

]
, (281)

which definitely is not an exponential decay. In fact if
the fluctuations in Q generate very large variations in
the activation energy, then this is very far from being an
exponential decay.

Problem 45: Power law decays. Suppose that the effect
of the fluctuations in Q is to generate a distribution of activation
energies

P (Eact) =
1

n!E0
(E/E0)

ne−E/E0 . (282)

Then we should have

N(t) =

∫ ∞

0

dE

n!E0
(E/E0)

ne−E/E0 exp
[
−Ae−E/kBT t

]
. (283)

(a.) Show that, at large t, there is a saddle point approximation
to this integral, and that this predicts a decay N(t) ∼ t−α. What
determines the power α? Are there corrections to this formula?

(b.) Calculate the average rate constant, as in Eq (280),

k̄ = A

∫ ∞

0

dE

n!E0
(E/E0)

ne−E/E0 exp

[
−

E

kBT

]
. (284)

Does this mean rate obey the Arrhenius law? How large are the
deviations? Is there a limit in which the Arrhenius law is recovered?

Problem 46: A more sophisticated model. The discussion
above concerns either the limit in which fluctuations are very fast,
so we see an average rate constant, or very slow, so that we see a
distribution of rate constants. It would be nice to have a simple
model that interpolates between these limits. [give a problem that
goes through the essence of the Agmon & Hopfield papers ...]

So, we have the dramatic prediction that if we would
freeze the motion of the protein, we’d see something very
far from the usual exponential decays. In order to test
this we need the right model system. In particular, if we
are literally going to freeze things, then molecules can’t
diffuse relative to one another, and most what we usually
think of as chemistry will stop. We need an example of a
reaction that happens among molecules that are already
“together” and ready to react. If things are frozen, then
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FIG. 36 The heme group at the center of myoglobin,
hemoglobin, and other heme proteins. Recall the convention
(Fig 15) that carbon atoms are at unmarked nodes of the
skeleton, and hydrogen atoms which complete the four bonds
needed for each carbon are not shown. The iron atom at the
center is also coordinated from below by a nitrogen from the
protein, and oxygen or carbon monoxide can bind to the iron
from above the plane. The large conjugated structure of the
heme group endows the molecule with a strong absorption
cross section in the visible and ultraviolet range of the spec-
trum. Because the electronic states of the heme mix with the
d orbitals of the iron, the absorption spectrum shifts upon
oxygen binding.

the usual trick of suddenly mixing the reactants together
to start the reaction also isn’t going to work.

In many organisms, including us, oxygen is essential
for a wide variety of processes. We take in oxygen by
breathing, and need to distribute it to all of our tissues.
The way we do this is to have specific proteins to which
oxygen binds, and then the proteins are transported,
starting in the blood. The major such oxygen trans-
port protein in our blood is called hemoglobin, which
is described in more detail in Appendix A.4 because it
provides the classic example of cooperativity in protein
function. Hemoglobin has four protein subunits, each of
which can bind a single oxygen molecule. In our mus-
cles we find a simpler protein, with just one subunit,
called myoglobin. Myoglobin, hemoglobin, and the cy-
tochromes that we will discuss below all are members of
the “heme protein” family, which are defined by the fact
that they bind a rather large planar organic molecule
called heme, with an iron atom at its center, as shown in
Fig 36. This iron is held in the plane by nitrogens from
the heme and from below by a nitrogen from the protein.
Oxygen can bind to the iron from above the plane.

The iron atom, and hence the oxygen binding site is
buried deep inside the protein, as shown in Fig 37. This
is interesting in part because it tells us that the full pro-
cess of binding and unbinding must involve some motion

or “breathing” of the protein structure. Further, once
oxygen binds, if we freeze the protein it will be trapped,
unable to escape. The conjugated electronic structure
of the heme generates a strong optical absorption band,
and because the electronic states of the heme mix with
the orbitals of the iron, the absorption shifts when oxygen
binds to the iron. Further, when a photon is absorbed by
myoglobin with oxygen bound, there is some probability
that the energy of the absorbed photon will be channeled
into breaking the bond between the iron and the oxygen.
Thus, if we let oxygen bind to myoglobin and then freeze
the solution, we can knock the oxygen off the iron atom
with a flash of light, and then we can watch the oxygen
rebind after rattling around in the “pocket” formed by
the protein.
In principle, motion of the oxygen molecule from the

pocket to the iron atom needn’t be coupled to motions of
the protein. But if this coupling does occur, we expect,
from the discussion above, that the kinetics of the rebind-
ing after a light flash will deviate strongly from an expo-
nential decay. We can follow the kinetics by looking at
the absorption spectrum, and this is what is shown in Fig
?? for both oxygen and carbon monoxide binding to myo-
globin. We see that once the solution is truly frozen solid
(below ∼ 160K in the glycerol–water mixtures used for
these experiments), the fraction of molecules that have
not reacted decays more nearly as a power law than an
exponential. This suggests that we have frozen in a very

heme 

group

histidine 

side 

chain

water

FIG. 37 A slice through the electron density map of the
myoglogin molecule, as inferred from X–ray diffraction data
(Kendrew 1964). This map is made from data at 1.4 Å res-
olution. In the center we see the heme group edge on. The
histidine side chain from the protein coordinates the iron atom
from below the plane of the heme, and in the crystals used in
these experiments a water molecule binds to the iron atom in
the position that would be taken by oxygen. Note that there
is not much empty space in the structure, so that the protein
actually has to “breathe” in order for oxygen to have access
to the iron, or to escape once bound.
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broad distribution of rate constants.

FIG. 38 Rebinding of oxygen and carbon monoxide to myo-
globin at low temperatures, following a flash of light to break
the bond (Austin et al 1975). Circle are data points, obtained
by monitoring the absorption spectrum. Note that this is a
logarithmic plot on both axes, so that we see an enormous
range of times. Lines are fits to the phenomenological power
law decay N(t) = 1/[1 + (t/t0)]

n. The dashed line shows, for
contrast, an exponential decay, N(t) = e−kt, with k = 1 s−1.

So far our discussion of chemical reactions has treated
motion along the reaction coordinate as being completely
classical. Is it possible that quantum effects could be rel-
evant? Notice in Fig 38 that as we lower the temper-
ature, the kinetics remain consistently non–exponential,
but the typical time scale (e.g., the time required for the
reach to reach 90% completion) is slowing down. If we
keep lowering the temperature, eventually this slowing
stops, and we see temperature independent kinetics. Al-
most certainly this arises because the reaction proceed by
quantum mechanical tunneling through the effective bar-
rier rather than by thermal activation over the barrier.
The observation of quantum mechanical effects in a bio-
logical system always triggers excitement, although this
is tempered somewhat by the fact that, in this case, to see
tunneling one has to go to very low temperatures (below
10K) indeed. In fact, well before the work on myoglobin,
there had been observations of temperature independent
kinetics in the photon–triggered electron transfer reac-
tions in photosynthesis. Although our immediate experi-
ence of photosynthesis involved plants, many of the key
experiments on the dynamics of electron transfer were
done in photosynthetic bacteria.
The basic business of photosynthesis is carried out

by the reaction center, a huge complex of proteins that
holds a collection of medium sized, organic molecules—
chlorophylls, pheophytins (chlorophylls without the mag-
nesium), and quinones. [Need some schematics of these
molecules, plus the reaction center structure.] Two of the
chlorophylls are held in a special pair (P), and the elec-

tronic states of these two molecules are strongly mixed.
If one purifies the reaction center away from all the ac-
cessory structures, the photochemistry is triggered when
the special pair absorbs a photon.
From the excited state of the special pair, an electron

hops to states localized on the pheophytin (I) and then
the quinone (Q), as shown in Fig 39. Because P and Q
are held, by the protein scaffold, on opposite sides of a
membrane, the net effect is to transfer charge across the
membrane, capturing the energy of the absorbed pho-
ton. Quinones [point back to the structure!] exist in
multiple protonation states, so that the electron transfer
can couple to proton transfer, and in this way the reac-
tion center serves to drive protons across the membrane.
The difference in electrochemical potential for protons
provides a universal energy source that is used by other
transmembrane protein, for example to synthesize ATP,
which all cells use in powering other processes (includ-
ing movement). In more complex organisms, including
green plants, there are two kinds of reaction centers, one
of which couples photon–driven electron transfer to the
splitting of water to make all the oxygen in our atmo-
sphere.
To complete the cycle and “reset” the reaction center

for the arrival of the next photon, the hole on the special
pair needs to be filled in, and this happens by electron
transfer from another protein, cytochrome c, which can
also diffuse away from the membrane and interact with
the rest of the cell’s chemistry. It is this reaction that
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FIG. 39 Schematic of the electron transfer reactions in the
reaction center of photosynthetic bacteria. The “pigment
molecule” P absorbs a photon, and transfers an electron from
the excited state to an intermediate acceptor I, which then
passes the electron to a quinone molecule Q; there is a second
quinone, not shown. The hole on P is filled in by electron
transfer from another protein, cytochrome c, and the kinetics
of the reaction CP+ → C+P provided the first evidence for
quantum tunneling in a biological system, as shown (redrawn
from DeVault & Chance 1966).
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provided the first evidence for tunneling in a biological
system. If the cytochrome is absent, as in purified reac-
tion centers, one can observe the recombination reaction
P+Q− → PQ, which also has an anomalous tempera-
ture dependence, as discussed below. To connect with
the discussion of myoglobin, this recombination reaction
also exhibits non–exponential kinetics under some con-
ditions, suggesting that it is possible to freeze some of
the fluctuations in structure that normally provide rapid
modulations of the reaction rate.

The key to experiments on the kinetics of photosyn-
thetic electron transfer is that all of the molecules in-
volved change their absorption spectra significantly when
they gain or lose an electron; not coincidentally, these
spectra overlap with the spectrum of the solar radiation,
and are concentrated in a range of wavelengths surround-
ing the ‘visible,’ from the near infrared to the near ul-
traviolet. We can trigger the reactions with a pulsed
laser tuned to the absorption band of P, and we can then
monitor different spectral features that track the different
components. This started in the 1950s and 60s with time
resolution in the microsecond range, and evolved—with
successive revolutions in the techniques for generating
short laser pulses—down to picoseconds and femtosec-
onds; this development parallels the exploration of the
visual pigments described in Section I.B.

One key point about the photosynthetic reaction center
is that all the electron transfer processes work even when
the system is frozen, which tells us that there is no need
for the different components to diffuse in order to find one
another—all of the donor and acceptor sites are held in
place by the protein scaffolding. This allows for investi-
gation of the electron transfer reactions over a wide range
of temperatures, and this was done to dramatic effect by
DeVault and Chance in the mid 1960s, with the result
shown in Fig 39. Near room temperature, the electron
transfer from cyctochrome c back to the special pair ex-
hibits a normal, Arrhenius temperature dependence with
an activation energy Eact ∼ 0.18 eV. Importantly, the
temperature dependence is continuous as the system is
cooled through the solvent’s freezing point. But some-
where around T ∼ 100K, the temperature dependence
stops, and the reaction rate remains the same down to
liquid helium temperatures (T ∼ 4K). This strongly
suggests that the reaction proceeds by tunneling at low
temperatures.

Problem 47: A wrong model. If a reaction proceeds by
activation over a barrier of height E, the rate is k ∝ exp(−E/kBT ),
If it proceeds by tunneling through the barrier, we expect k ∝
exp(−2

√
2mE)/!), where ) is the width of the barrier and m is the

effective mass of the tunneling particle. For the DeVault–Chance
reaction, there is a direct measurement of the activation energy
E ∼ 0.18 eV. If you imagine that it is the electron which has
to go over or through this barrier, what value of ) is needed to

explain that the crossover from Arrhenius behavior to temperature
independence occurs near T ∼ 100K? Does this result make any
sense?

After roughly a decade of confusion (including discus-
sions of the model in the previous problem), a clearer
understanding of tunneling in electron transfer emerged
in the mid to late 1970s.34 The basic idea is schema-
tized in Fig 40. We have an electron donor D and an
acceptor A; the reaction is DA → D+A−. The states DA
and D+A− are different electronic states of the system.
From the Born–Oppenheimer approximation, we know
that when a molecule shifts to a new electronic state,
the nuclei move on a new potential surface. We usually
describe these nuclear or atomic motions as molecular
vibrations, so we’ll refer to the relevant coordinates as
vibrational coordinates. The simplest scheme, as in Fig
40, is one in which the vibrations are approximately har-
monic. Then when we change electronic states, we can
imagine changes in the structure of the normal modes,
changes in the frequencies of these modes, and shifts in
the equilibrium positions along the modes; barring sym-
metries, the last effect should be the leading one, and
certainly it is the simplest.
In the state DA, an electron is localized on the donor.

In the state D+A−, this electron is localized on the ac-
ceptor. If the donor and acceptor sites are far apart, as
is often the case in large, biological molecules, then the
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FIG. 40 Electron transfer is coupled to vibrational motion.
...

34 The relevant physics here is essentially the same as in the discus-
sion of absorption spectra in large molecules. See Chapter One
and the Appendix on electronic transitions in large molecules;
give pointer to arXiv version.
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wave functions of the electrons in these localized state
will overlap only deep in their tails; any matrix element
that connects these two states then must be very small.
But if we want to have a transition between two states
that are connected by only a small matrix element, then
by Fermi’s golden rule we need these states to be of the
same energy. As shown in Fig 40, this happens only at
special points, where the two potential energy surfaces
for vibrational motion cross. The rate of the reaction
should then be proportional to the probability of finding
the system at this crossing point. The key point, then, is
that at high temperatures this probability is controlled by
the thermal fluctuations in the vibrational coordinates,
while at low temperatures the system can still reach the
crossing point, but now the fluctuations are dominated by
quantum zero–point motion. If the activation energy—
the energy required to distort the molecule from its equi-
librium structure in state DA to the crossing point—is
large compared to the relevant vibrational quanta, then

a zero–point fluctuation that carries the system to the
crossing point necessarily involves sampling the tails of
the ground state wavefunction, and this means that the
system moves into a region that would be forbidden to
a classical particle, even granting that it has the zero–
point energy to work with. Thus, at low temperatures,
the reaction is controlled by tunneling of the vibrational
degrees of freedom, while at high temperatures these de-
grees of freedom move classically over the barrier.
To make all this a bit more precise, let’s write the

Hamiltonian corresponding to Fig 40. We have two elec-
tronic states, which we can take as the up and down
states of a spin one–half. There is an energy difference
between these states, which we’ll call ε, and a weak ma-
trix element ∆ that mixes these states. There is a vi-
brational coordinate Q, and this coordinate moves in a
potential that depends on the electronic state. Thus we
have

H =
ε

2
σz +∆σx +

1

2
Q̇2 +

1 + σz

2
V↑(Q) +

1− σz

2
V↓(Q), (285)

If we think semi–classically, then the vibrational coordinates move hardly at all during the electronic transition, and
so from the golden rule we should have the reaction rate

k ∼ 1

!∆
2

〈
δ(E↑ − E↓)

〉
=

1

!∆
2

〈
δ [ε+ V↑(Q)− V↓(Q)]

〉
, (286)

where we have to average over the fluctuations ofQ in the
initial state DA. In the simplest case, where the potential
surfaces are harmonic, differing only in their equilibrium
positions,

V↑(Q) =
κ

2
Q2 (287)

V↓(Q) =
κ

2
(Q−Q0)

2, (288)

and hence V↑(Q)− V↓(Q) = κ(Q0Q−Q2
0/2), so that

k ∼ 1

!∆
2

〈
δ
(
ε− κ

2
Q2

0 + κQ0Q
)〉

(289)

=
∆2

!κQ0
P

(
Q =

Q0

2
− ε

κQ0

)
. (290)

If we have a particle moving in a harmonic potential with
frequency ω, then in thermal equilibrium the distribution
of Q is Gaussian. The variance is 〈(δQ)2〉 = kBTeff/κ,
where

kBTeff = !ω
[
1

2
+

1

e!ω/kBT − 1

]
; (291)

notice that as T → 0, kBTeff approaches the zero–point

energy !ω/2. Putting all the terms together, we find

k ∼ ∆2

!
√
4πλkBTeff

exp

[
− (ε− λ)2

4λkBTeff

]
, (292)

where λ = κQ2
0/2 is the “reorganization energy” that

would be required to distort the molecule from its equi-
librium configuration in DA into the equilibrium configu-
ration appropriate to D+A− if we didn’t actually transfer
the electron.
In Figure 41 we see the predicted dependence of the

electron transfer rate on temperature in a parameter
regime chosen to match the DeVault–Chance reaction.
In order to have the transition between Arrhenius and
tunneling behavior at the right temperature, we need a
vibrational frequency ω/2π ∼ 200 cm−1.35 If we look at
the Raman spectra of cytochrome c or related molecules,

35 Molecular vibrations contribute to the absorption of radiation
in the infrared, and it is conventional to measure frequency in
“wavenumbers” or inverse cm. To convert to the more usual
Hz, just multiply by the speed of light, 3 × 1010 cm/s. Note
that this is a convention about units, and not a reference to the
inverse wavelength in the medium used for the experiment, so
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FIG. 41 Temperature dependence of the electron transfer
rate, from Eq (292). Parameters are chosen, as described in
the text, to match the behavior of the DeVault–Chance reac-
tion in Fig 39. Circles are values of the rate computed at 20K
intervals, and dashed lines indicate the asymptotic behavior
at high (activated) and low (tunneling) temperatures.

there is a vibrational mode near this frequency that cor-
responds to motions of the iron atom perpendicular to
the plane of the heme group [obviously need a structural
schematic!]. This makes sense, since when we add or sub-
tract an electron from the molecule, this charge is shared
between the iron and the heme, and on average the iron is
displaced relative to the heme when the molecule changes
its oxidation state. The energy difference between reac-
tants and products can be measured directly by separate
electrochemical experiments, and then to get the acti-
vation energy right we must have λ ∼ 0.14 eV. If the
relevant vibrational mode really is (mostly) the motion
of the iron relative to the rest of the protein, then we
know the mass associated the mode and hence the stiff-
ness κ = mω2, so we can determine Q0 ∼ 0.2 Å, and this
is consistent with the displacements found upon compar-
ing the oxidized and reduced structures of cytochrome
c. So, this account of vibrational motion as controlling
the temperature dependence of the reaction rate seems
to make sense in light of everything else we know about
these molecules, although admittedly it is a rough com-
parison. [Say something about the charge transfer band

there is no correction for the index of refraction. Once you start
reading about molecular spectroscopy and chemical reactions (re-
plete with calories and moles), you’ll have to get some practice
at changing units!

as a direct test?]

Problem 48: Getting numbers out. Convince yourself that
the numbers in the preceding paragraph make sense. In particular,
extract the estimate Q0 ∼ 0.2 Å for the motion of the iron atom
relative to the protein.

There are many loose ends here. To begin, we have
given a description in terms of one vibrational mode, but
we have found an expression for the reaction rate that
shows no sign of resonances when the energy difference
ε between reactants and products in an integer multiple
of the vibrational quantum !ω. Presumably the solution
to the problem is the same as in our discussion of the
absorption spectra of rhodopsin: individual modes are
damped, so that resonances are broadened, and there
are many modes, so the broadened resonances overlap
and smear into a continuum.
The second problem concerns the significance of all

this for biological function. It’s very impressive to see
quantum tunneling in a biological molecule, but our ex-
citement should be tempered by the fact that we see
this only at temperatures below 100K, far out of the
range where life actually happens. Measurements on the
(much faster) initial steps of electron transfer, however,
show that approximately temperature independent reac-
tion rates persist up to room temperature. Indeed if we
look closely at the rates of P∗I → P+I− and I−Q → IQ−,
we see a slightly inverse temperature dependence, with
the rate slowing by a factor of two or three as we increase
the temperature from 4 to 300K [should have a figure for
this!]. In fact the theory as we have sketched it provides a
possible explanation for this: if we tune the energy differ-
ence between reactants and products so as to maximize
the reaction rate, we have ε = λ and the exponential de-
pendence of the reaction rate on Teff disappears; all we
have left is k ∝ 1/

√
Teff , which indeed is a weak, inverse

temperature dependence. This sort of fine tuning might
make sense—perhaps evolution has selected for molecular
parameters that maximize the electron transfer rates.
The structure if the reaction center is such that one

can take out the quinone molecules and replace them
with analogs that have different electron affinities, and
in this way manipulate the value of ε. Perhaps surpris-
ingly, increases in ε have very little effect on the rate
constant for the recombination reaction P+Q− → PQ,
or on the forward reaction I−Q → IQ−, and for all the
values of ε probed one sees an approximately temperature
independent rate. This argues strongly against tuning of
ε = λ as an explanation for the observed “activationless”
behavior.
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FIG. 42 Electron transfer coupled to high frequency vibra-
tions, from Eq’s (293) and (294). Dashed lines show contri-
butions to the rate constant at T = 300K from processes
that leave behind n = 0, 1, 2, . . . quanta in the high frequency
mode. The total rate k(T = 300K) is shown in the solid blue
line, and k(T = 30K) in green. The high frequency mode has
!Ω = 0.1 eV and S = 1.

Suppose that instead of one vibrational mode, we have
two—one at a low frequency ω, which we can treat by
the semi–classical argument given above, and one at a
high frequency Ω that really needs a proper quantum
mechanical description. The initial state of the high fre-
quency mode is the ground state (since kBT ' !Ω), but
in the final state we can excite one or more vibrational
quanta, and the overall reaction rate will be a sum over
terms corresponding to each of these possible final states.
From the point of view of the low frequency mode, if
the system transitions into a state with n high frequency
quanta, this renormalizes the matrix element ∆ → ∆n

and reduces the energy gap ε → ε− n!Ω. Thus the rate
constant becomes

k =
∞∑

n=0

∆2
n

!
√
4πλkBTeff

exp

[
− (ε− n!Ω− λ)2

4λkBTeff

]
, (293)

where now λ refers only to the reorganization energy of
the low frequency mode. Results are shown in Fig 42.

Problem 49: Renormalized matrix elements. To complete
the calculation in Eq (293), we need to understand how the matrix
elements are renormalized by coupling to the high frequency modes.
Get the students to derive ...

∆2
n = e−S Sn

n!
∆2, (294)

and explain the meaning of S.

We see that the possibility of exciting different num-
bers of vibrational quanta greatly broadens the depen-
dence of the rate constant on the energy gap ε, and pro-
vides a huge widening of the region over which we see
very little (or even inverted) temperature dependence.
This seems a more plausible and robust explanation of
the observed activationless kinetics in the photosynthetic
reaction center. Importantly, it relies in an essential way
on the quantum behavior of the high frequency vibra-
tional motions that are coupled to the electron transfer,
and this is true even at room temperature. There is no
shortage of such high frequency modes in the quinones,
chlorophylls and pheophytins; what is interesting is the
way in which the interplay of these quantum modes with
the lower frequency classical modes (including, presum-
ably, modes of the protein scaffolding itself) shapes the
observed functional behavior.
A third issue is that, although we are talking about

electron transfer reactions, we have said relatively lit-
tle about the electrons themselves—there are two states,
localized on the donor and acceptor sites, and there is
a matrix element that connects these states, but that
seems to be all. In fact we can say a bit more. First,
our use of perturbation theory obviously depends on the
matrix element not being too large. If we go back to our
simple model of the DeVault–Chance reaction and try to
fit the absolute rate constants as well as the tempera-
ture dependence, we find ∆ ∼ 10−4 eV. Certainly this is
small compared with the other energies in the problem
(λ, !ω, kBT , ε), which indicates that our use of perturba-
tion theory is consistent. [Finish the discussion of matrix
elements!]
[Do we want to say anything about coherence and the

very first, fastest steps??]
All other things being equal, quantum effects are

stronger for lighter particles. As we have seen, electrons
essentially always tunnel—there are almost no chemical
or biochemical reactions involving thermal activation of
an electron over a barrier. Since the early days of quan-
tum mechanics, people have wondered if chemical reac-
tions involving the next lightest particle, a proton or hy-
drogen atom, might also involve tunneling in a signifi-
cant way. To be concrete, consider the situation in Fig
43, where the reaction coordinate is the position of the H
atom itself, moving from donor to acceptor atom. But,
while still attached to the donor atom (e.g., a carbon) we
can observe vibrations of the D–H bond, and for C–H we
know that the frequencies of these vibrations can be as
high as ν ∼ 2500 − 3000 cm−1. The vibrational quanta
thus are hν ∼ 1/4− 1/3 eV. In fact the activation ener-
gies of many chemical reactions are not that much larger
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FIG. 43 Transfer of a hydrogen atom from a donor D to an
acceptor A. The reaction coordinate is the position of the
H atom, but we expect that quantization effects are non–
negligible.

than this, perhaps 0.5− 1 eV. This means that, as indi-
cated in the crude sketch, climbing up to the top of the
barrier between reactants and products involves adding
just two or three vibrational quanta. What this means
is that the reaction can’t really be completely classical,
if the reaction coordinate really is the stretching of the
bond itself.
If we make the crude approximation that the barrier

is rectangular, with height E, then the rate of going over
the barrier should be k ∝ e−E/kBT , as before, while the

rate of tunneling through the barrier is k ∝ e−2
√
2mE#/!,

where , is the width of the barrier and m is the mass of
tunneling particle. Although we could worry about the
prefactors, the exponentials are probably the dominant
effects, and so we might guess (as in the problem above)
that tunneling is more important that classical thermal
activation only if

e−E/kBT < e−2
√
2mE#/!, (295)

or

T < T0 ∼ !
kB

√
E

2m,
. (296)

If the width of the barrier is , ∼ 1 Å, and its height is
E ∼ 50 kJ/mole, then with m the mass of the proton we
find T0 ∼ 190K, well below room temperature. Thus,
although it might be difficult to see the transfer of a pro-
ton as being completely classical, it’s also true that the
transfer reaction is unlikely to be dominated by tunneling
at room temperature if the barrier is static.
In the interior of a protein, we can imagine that the

donor and acceptor are held by different parts of the large
molecule, and as the protein flexes and breathes, these
sites will move. Effectively this means that the width
of the barrier will fluctuate. On average, this increases
the probability of tunneling through the barrier. If the
fluctuations in , are Gaussian, the tunneling probability
becomes

e−2
√
2mE#/! →

〈
e−2

√
2mE#/!

〉
= exp

[
−2

√
2mE,̄/!+ 4mE〈(δ,)2〉/!2

]
, (297)

where ,̄ is the average width of the barrier and 〈(δ,)2〉
is the variance of the this width. With the parameters
as before, the enhancement of the tunneling probability
involves the term

4mE〈(δ,)2〉/!2 ∼ 6

〈(
δ,

0.1 Å

)2
〉
. (298)

As described in Appendix A.5, measurements of Debye–
Waller factors in X–ray diffraction from protein crystals
provide estimates of the fluctuations in structure, and
these structural fluctuations in are easily several tenths
of an Ångström. Thus this term, which appears in the
exponential, can be huge. This completely shifts the bal-
ance between tunneling and classical, thermal activation,
so that in the presence of fluctuations it becomes plausi-
ble that tunneling is dominant at room temperature.

Notice that the role of protein vibrational motions here
is very different than in the case of electron transfer. In
electron transfer, there is a small matrix element that
couples the two relevant states, and protein motions serve
to bring these two states into degeneracy with one an-
other. This effect presumably could happen in the case
of proton transfer as well, but we have focused on the
coupling of fluctuations to the tunneling matrix element.
This coupling is especially interesting because it gener-
ates exponential terms in the reaction rate that have a
dependence on mass (ln k ∝ m) that is very different from
the naive tunneling exponent (ln k ∝ −

√
m) or the zero–

point corrections to the activation energy (ln k ∝ 1/
√
m;

see next problem); because this mass–dependent term
also depends on the variance of structural fluctuations, it
is also temperature dependent. Indeed, it was the discov-
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ery of anomalous, temperature dependent isotope effects
in enzymatic proton transfer reactions that prompted re-
newed discussion of these dynamical effects on tunneling.

Problem 50: Isotope effects. Chemical reaction rates change
when we substitute one isotope for another. There is a “semiclas-
sical” theory of these isotope effects, which says that the reaction
proceeds by conventional thermal activation, but the activation
energy is reduced by the zero–point energy of vibrations along the
reaction coordinate, k ∝ exp [−(Eact − !ω)/kBT ].

(a.) Vibrational frequencies are proportional to 1/
√
m, with

m the (effective) mass of the particle(s) moving along the mode
with frequency ω. In the simple picture where all of the motion
along the reaction coordinate is dominated by the motion of the
proton, derive a relationship between the ratios of rate constants
for hydrogen, deuterium and tritium transfer.

(b.) If the reaction coordinate involves motion of atoms other
than transferred hydrogen, what happens to the predicted mag-
nitude of the isotope effects? What about the relationship you
derived in [a.]?

(c.) [Let’s do something with averaging over fluctuating barriers
to see how isotope effects come out ...]

I hope that you take a few lessons away from this (long)
discussion. First, chemical reactions are the result of
fluctuations at the molecular level. We can describe the
nature of these fluctuations in some detail, since rare
events such as escape over a high barrier are dominated
by specific trajectories. In large biological molecules, the
flexibility of the molecule means that there is another
way for fluctuations to be important, as the variations in
protein structure, for example, couple to changes in the
barrier for the relevant chemical rearrangements or bring
weakly coupled electronic states into degeneracy. Finally,
these fluctuations in protein structure can completely re-
vise our view of whether the reaction itself proceeds via
classical ‘over the barrier’ motion or by quantum tunnel-
ing. These theoretical observations, and the experiments
to which they connect, suggest that Nature exploits not
just the structure of biological molecules, but also the
fluctuations in these structures, to control the rates of
chemical reactions.

If you need a review of the Langevin equation, I like the treatment
in the little book by Kittel (1958), as well as the somewhat longer
discussion by Pathria (1972). Every physics student should under-
stand the basic instanton calculation of tunneling, as an illustration
of the power of path integrals. There is no better treatment than
that given by Coleman in his justly famous Erice lectures. If you
read Coleman you’ll not only get a deeper view of what we have
covered here, you’ll get all the missing pieces about the prefactor
of the rate constant, and much more. For more general background
on path integrals, including some discussion of how to use them for
classical stochastic processes, the standard reference is Feynman &

Hibbs (1965). For more rigorous accounts of many of these issues
(e.g., getting the Jacobian right in constructing the path integral),
see Zinn–Justin (1989). The original discussion of diffusion (even
with inertia) over a barrier is due to Kramers (1940); for a modern
perspective see Hänggi et al (1990).

Coleman 1988: Aspects of Symmetry S Coleman (Cambridge
University Press, Cambridge, 1988).

Feynman & Hibbs 1965: Quantum Mechanics and Path Inte-
grals RP Feynman & AR Hibbs (McGraw–Hill, New York,
1965).

Hänggi et al 1990: Reaction–rate theory: Fifty years after
Kramers. P Hänggi, P Talkner & M Borkovec, Revs Mod
Phys 62, 251–341 (1990).

Kittel 1958: Elementary Statistical Physics C Kittel (Wiley, New
York, 1958).

Kramers 1940: Brownian motion in a field of force and the dif-
fusion model of chemical reactions. HA Kramers Physica 7,
284–304 (1940).

Pathria 1972: Statistical Mechanics RK Pathria (Pergamon
Press, Oxford, 1972).

Zinn–Justin 1989: Quantum Field Theory and Critical Phe-
nomena J Zinn–Justin (Oxford University Press, Oxford,
1989).

Myoglobin was the first protein whose structure was solved by X–
ray diffraction. Aspects of X–ray analysis are described in Ap-
pendix A.5. For a perspective on myoglobin, see Kendrew (1964).
The experiments on myoglobin are by Austin et al (1975), which
touched off a huge followup literature. A clear discussion of the in-
terplay between the a reaction coordinate and a protein coordinate
was given by Agmon and Hopfield (1983). The demonstration of
tunneling in this system is by Alberding et al (1976).

Agmon & Hopfield 1983: Transient kinetics of chemical reac-
tions with bounded diffusion perpendicular to the reaction
coordinate. N Agmon & JJ Hopfield, J Chem Phys 78,
6947–6959 (1983).

Alberding et al 1976: Tunneling in ligand binding to heme pro-
teins. N Alberding, RH Austin, KW Beeson, SS Chan, L
Eisenstein, H Frauenfelder & TM Nordlund, Science 192,
1002–1004 (1976).

Austin et al 1975: Dynamics of ligand binding to myoglobin.
RH Austin, KW Beeson, L Eisenstein, H Frauenfelder &
IC Gunsalus, Biochemistry 14, 5355–5373 (1975).

Kendrew 1964: Myoglobin and the structure of pro-
teins. JC Kendrew, in Nobel Lectures in Chemistry
1942–1962 (Elsevier, Amsterdam, 1964). See also
http://www.nobelprize.org.

Classical overviews of the photosynthetic reaction center are pro-
vided by Feher & Okamura (1978) and Okamura et al (1982). As
with many biological molecules, many questions about the reaction
center were sharpened once the structure was determined at atomic
resolution (Deisenhoffer et al 1984); this work was important also
as a demonstration that one could use the classical methods of
X–ray crystallography (cf Appendix A.5) for proteins that are nor-
mally embedded in membranes. It should be emphasized, however,
that the electron transfer reactions leave an enormous variety of
spectroscopic signatures—separating charges not only changes op-
tical properties of the molecules, it generates unpaired spins that
can be seen using electron paramagnetic resonance (EPR), and the
distribution of the spin across multiple atoms at the donor and
acceptor sites can be mapped using electron–nuclear double reso-
nance (ENDOR). An early view of the uses of EPR and ENDOR in
biological systems is given by Feher (1970); this article appears in
the proceedings of the first Les Houches physics summer school to
be devoted to questions at the interface with biology [check this!].
For a synthesis of structural and spectroscopic data in relation to
function, see Feher et al (1989).
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DeVault & Chance 1966: Studies of photosynthesis using a
pulsed laser. I. Temperature dependence of cytochrome ox-
idation in Chromatium. Evidence for tunneling. D DeVault
& B Chance, Biophys J 6, 825–847 (1966).

Deisenhoffer et al 1984: X–ray structure analysis of a mem-
brane protein complex: Electron density map at 3 Å resolu-
tion and a model of the chromophores of the photosynthetic
reaction center from Rhodopseudomonas viridis. J Deisen-
hoffer, O Epp, K Miki, R Huber & H Michel, J Mol Biol
180, 385–398 (1984).

Feher 1970: Electron paramagnetic resonance with applications
to selected problems in biology. G Feher, in Physical Prob-
lems in Biological Systems, C DeWitt & J Matricon, eds,
pp 251–365 (Gordon & Breach, Paris, 1970).

Feher & Okamura 1978: Chemical composition and properties
of reaction centers. G Feher & MY Okamura, in The Pho-
tosynthetic Bacteria, RK Clayton & WR Sistrom, eds, pp
349–386 (Plenum Press, New York, 1978).

Feher et al 1989: Primary processes in bacterial photosynthe-
sis: structure and function of reaction centers. G Feher,
JP Allen, MY Okamura & DC Rees, Nature 339, 111–116
(1989).

Okamura et al 1982: Reaction centers. MY Okamura, G Fe-
her & N Nelson, in Photosynthesis: Energy Conversion by
Plants and Bacteria, Volume 1, Govindjee, ed, pp 195–272
(Academic Press, New York, 1982).

The original experiments that provided evidence for tunneling in
photosynthetic electron transfer were done by DeVault and Chance
(1966) on samples that were a bit messier than the purified reac-
tion centers that emerged in subsequent years. The kinetics of the
initial charge separation reactions were described by [fill in refs!].
The modern view of biological electron transfer reactions, includ-
ing the role of tunneling in the vibrational degrees of freedom, is
due to Hopfield (1974). Exploration of the energy gap dependence
of reaction rates was pioneered by Gunner et al (1986), and the
evidence for frozen distributions of electron transfer rates was pro-
vided by Kleinfeld et al (1984). For a review of efforts to calculate
electronic matrix elements in real protein structures, see Onuchic
et al (1992). [Maybe we need more here? Depends also on what
happens in the text.]

DeVault & Chance 1966: Studies of photosynthesis using a
pulsed laser. I. Temperature dependence of cytochrome ox-
idation in Chromatium. Evidence for tunneling. D DeVault
& B Chance, Biophys J 6, 825–847 (1966).

Gunner et al 1986: Kinetic studies on the reaction center pro-
tein from Rhodopseudomonas sphaeroides: the temperature
and free energy dependence of electron transfer between var-
ious quinones in the QA site and the oxidized bacteriochloro-
phyll dimer. MR Gunner, DE Robertson & PL Dutton, J
Phys Chem 90, 3783–3795 (1986).

Hopfield 1974: Electron transfer between biological molecules by
thermally activated tunneling. JJ Hopfield, Proc Nat’l Acad
Sci (USA) 71, 3640–3644 (1974).

Kleinfeld et al 1984: Electron–transfer kinetics in photosyn-
thetic reaction centers cooled to cryogenic temperatures in
charge–separated state: evidence for light–induced struc-
tural changes. D Kleinfeld, MY Okamura & G Feher, Bio-
chemistry 23, 5780–5786 (1984).

Onuchic et al 1992: Pathway analysis of protein electron–
transfer reactions. JN Onuchic, DN Beratan, JR Winkler
& HB Gray, Annu Rev Biophys Biomol Struct 21, 349–377
(1992).

The papers that reignited interest in proton tunneling in enzymes
were Cha et al (1989) and Grant & Klinman (1989). The idea
that these experiments should be understood in terms of coupling

between quantum motion of the proton and classical motion of the
protein was developed by Bruno & Bialek (1992). It took roughly a
decade for these ideas to solidify, as described in reviews by Sutcliffe
& Scrutton (2002) and Knapp & Klinman (2002). [add refs to Nori
et al in cytochrome oxidase?]

Bruno & Bialek 1992: Vibrationally enhanced tunneling as a
mechanism for enzymatic hydrogen transfer. WJ Bruno &
W Bialek, Biophys J 63, 689–699 (1992).

Cha et al 1989: Hydrogen tunneling in enzyme reactions. Y
Cha, CJ Murray & JP Klinman, Science 243, 1325–1330
(1989).

Grant & Klinman 1989: Evidence that both protium and deu-
terium undergo significant tunneling in the reaction cat-
alyzed by bovine serum amine oxidase. KL Grant & JP
Klinman, Biochemistry 28, 6597–6695 (1989).

Knapp & Klinman 2002: Environmentally coupled hydrogen
tunneling: Linking catalysis to dynamics. MJ Knapp & JP
Klinman, Eur J Biochem 269, 3113–3121 (2002).

Sutcliffe & Scrutton 2002: A new conceptual framework for
enzyme catalysis: Hydrogen tunneling coupled to enzyme
dynamics in flavoprotein and qunioprotein enzymes. MJ
Sutcliffe & NS Scrutton, Eur J Biochem 269, 3096–3102
(2002).

B. Molecule counting

Many of the crucial signals in biological systems—
signals that are internal to cells, signals that cells use
to communicate with one another, even signals that or-
ganisms exchange—are carried by changes in the concen-
tration of specific molecules. The molecules range in size
from single ions (e.g., calcium) to whole proteins. Such
chemical signals act by binding to specific targets, whose
synthesis and accessibility can also be controlled by the
cell. A key point is that individual molecules move ran-
domly, and so the arrival of signals at their targets has
some minimum level of noise. As we shall see, several
different systems operate with a reliability close to this
physical limit: in essence, these systems are counting ev-
ery molecule, and making every molecule count.
In what follows we will see examples of chemical sig-

naling in the decisions that cells make about whether to
read out the information encoded in particular genes, in
the trajectories that axons take toward their targets in
the developing brain, in the control signals that bacteria
use to regulate their movement, and in the development
of spatial patterns in a developing embryo. But much
of our thinking about precision, reliability and noise in
chemical signaling has been shaped by the phenomena of
chemotaxis in bacteria, so this is where we will start.
Although our experience with other animals makes it

clear that we are not alone in our ability to sense the
world, it still seems remarkable that single celled organ-
isms such as bacteria are endowed with sensory systems
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that allow them to move in response to a variety of sig-
nals from the environment, including the concentrations
of various chemicals. A classical observation (from the
19th century) is that some bacteria, swimming in water
on a microscope slide, under a cover slip, will collect at
the center of cover slip, while others will collect at the
edges. Those with more refined tastes will form a tight
band that traces the outlines of the square cover slip.
Oxygen diffuses into the water through the edges of the
cover skip, and by collecting along a square the bacte-
ria have migrated to a place of constant (not maximal
or minimal) oxygen concentration. It is plausible that
this happens because they can sense the oxygen concen-
tration and “know” the most comfortable value of this
concentration, much as we might move to be the most
comfortable distance from a fireplace in an otherwise un-
heated room.

That bacteria collect at nontrivial concentrations of
different molecules really doesn’t demonstrate that they
sense the concentration. They might instead sense some
internal consequences of the external variables, such as
the accumulation of metabolic intermediates. In the
1960s Adler found mutants of E coli which cannot metab-
olize certain sugars or amino acids but will nevertheless
migrate toward the sources of these molecules; also there
are mutants that metabolize but can’t migrate. This is
convincing evidence that metabolism and sensing are sep-
arate systems, and thus begins the fruitful exploration of
the sensory mechanisms of bacteria and the connection
of these sensory mechanisms to motor output. This phe-
nomenon is called chemotaxis.
I’ll skip lots of the truly classical stuff and proceed with

the modern biophysical approach, which begins ∼ 1970.
To a large extent this modern approach rests on the work
of Howard Berg and collaborators. The first key step
taken by Berg and Brown was to observe the behavior of
individual bacteria. E coli are ∼ 1µm in size, and can
be seen relatively easily under the light microscope, but
since the bacteria swim at ∼ 20 body lengths per second
they easily leave the field of view or the plane of focus;
the solution is to build a tracking microscope.

Observations in the tracking microscope, as in Fig 44,
showed that the trajectories of individual bacteria con-
sist of relatively straight segments interrupted by short
intervals of erratic “motion in place.” These have come
to be called runs and tumbles, respectively. Tumbles last
∼ 0.1 seconds, but the erratic motion during this brief
time is sufficient to cause successive runs to be in almost
random relative directions. Thus the bacterium runs in
one direction, then tumbles and chooses a new direction
at random, and so on. Runs themselves are distributed
in length, as if the termination of a run is itself a random
process.

Closer examination of the runs shows how it is possible
for this seemingly random motion to generate progress
up the gradient of attractive chemicals. When the bac-

FIG. 44 Paths of E coli as seen in the original tracking mi-
croscope experiments, from Berg & Brown (1972). The three
panels in each case are projections of the path onto the three
orthogonal planes (imagine folding the paper into a cube along
the dashed lines). At left, wild type bacteria, showing the
characteristic runs and tumbles. At right, a non–chemotactic
mutant that never manages to tumble.

terium runs up the gradient, the mean duration of the
runs becomes longer, biasing the otherwise random walk.
Interestingly, when bacteria swim down the gradient (of
an attractant, or up the gradient of a repellent) the is
relatively little change in the mean run length. Berg has
described this as a form of optimism: If things are get-
ting better, keep going, but if things are getting worse,
don’t worry. [Need to look at the notion of optimism
once more in relation to all the data.]
Since runs get longer when bacteria swim along a pos-

itive gradient, it is natural to ask whether the cell is re-
sponding to the spatial gradient itself or to the change in
concentration with time along the path. As we will see,
the spatial gradients to which the cell can respond are
very small, and searching for a systematic difference (for
example) between the front and back of the bacterium
is unlikely to be effective just on physical grounds, in-
dependent of biological mechanisms. Indeed, this is the
reason why chemotaxis is such an important example of
the issues in this section. To search for a time domain
mechanism one can expose the bacteria to concentrations
which are spatially uniform but varying in time; if the
sign of the change corresponds to swimming up a posi-
tive gradient, runs should be prolonged. The first such
experiment used very large, sudden changes in concentra-
tion, and found that cells were trapped in extremely long
runs. A more sophisticated experiment used enzymes
to synthesize attractants from inert precursors, exposing
the cells to gradual changes more typical of those en-
countered while swimming. Purely time domain stimuli
were sufficient to generate modulations of run length that
agree quantitatively with those observed for bacteria ex-
periencing spatial gradients.
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Problem 51: Chemotaxis in one dimension. To make the
intuition of the previous paragraphs more rigorous, consider a sim-
plified problem of chemotaxis in one dimension. There are then
two populations of bacteria, the + population that moves to the
right and the − population that moves to the left, each at speed
v. Let the probability of finding a + [−] bacterium at position x

be P+(x, t) [P−(x, t)]. Assume that the rate of tumbling depends
on the time derivative of the concentration along the bacterial tra-
jectory as some function r(ċ), where for the ± bacteria we have
ċ = ±vdc/dx, and that cells emerge from a tumble going randomly
left or right.

(a.) Show that the dynamics of the two probabilities obey

∂P+(x, t)

∂t
+ v

∂P+(x, t)

∂x
= −r

(
v
dc

dx

)
P+(x, t) +

1

2

[
r

(
v
dc

dx

)
P+(x, t) + r

(
−v

dc

dx

)
P−(x, t)

]
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∂P−(x, t)
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∂P−(x, t)

∂x
= −r

(
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dc
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)
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1

2

[
r

(
v
dc

dx

)
P+(x, t) + r

(
−v

dc
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)
P−(x, t)

]
. (300)

Explain the meaning of each of the terms in terms of what happens
as cells enter into and emerge from tumbles. Note that in this
approximation tumbles themselves are instantaneous, which isn’t
so bad (0.1 s vs the ∼ 1− 10 s for typical runs).

(b.) To see if the bacteria really migrate toward high concentra-
tions, look for the steady state of these equations. If we simplify
and assume that the rate of tumbling is modulated linearly by the
time derivative of the concentration,

r(ċ) ≈ r(0) +
∂r

∂ċ
ċ+ · · · , (301)

show that

P (x) =
1

Z
exp

[
−
∂r

∂ċ
c(x)

]
. (302)

Thus, in these approximations, chemotaxis leads to a Boltzmann
distribution of bacteria, in which the concentration acts as a po-
tential. If the molecules are attractive then ∂r/∂ċ < 0 and hence
maxima of concentration are minima of the potential, conversely
for repellents. The stronger the modulation of the tumbling rate
(as long as we stay in our linear approximation) the lower the ef-
fective temperature and the tighter the concentration of bacteria
around the local maxima of concentration.

Problem 52: Nonlinearities. Within this simplified one di-
mensional world, can you make progress without the approximation
that r(ċ) is linear? More specifically, what is the form of the sta-
tionary distribution P (x) that solves Eq (??) for nonlinear r(ċ)?
Can you show that there still is an effective potential with minima
located at places where the concentration is maximal?

Problem 53: A little more about the effectiveness of
chemotaxis.

(a.) Within the one dimensional model, what happens if the
tumbling rate is modulated not just by the time derivative, but
also by the absolute concentration, so that the bacterium confuses
“currently good” for “getting better”?

(b.) Can you generalize this discussion to three dimensions?
Instead of having just two groups + and −, one now needs a con-
tinuous distribution P (Ω, x, t), where Ω denotes the direction of
swimming. Derive an equation for the dynamics of P (Ω, x, t) in
the same approximations used above, and see if the Boltzmann–
like solution obtains in this more realistic case.

All of this description so far is about the phenomenol-
ogy of swimming. But how does it actually work? The
basic problem is that bacteria are too small to take ad-
vantage of inertia. When we swim, we can push off the
wall of the pool and glide for some distance, even without
moving our arms or legs; this gliding distance is on the

order of one or two meters, roughly the length of our bod-
ies. In contrast, if a bacterium stops running its motors,
it will glide for a distance comparable not to its body
length (∼ 1µm) but to the diameter of an atom. To see
this, think about a small particle moving through a fluid,
subject only to drag forces (the motors are off). If the ve-
locities are small, we know the drag will be proportional
to the velocity, so Newton’s equation is just

m
dv

dt
= −γv. (303)

For a spherical object or radius r, Stokes’ law tells us
that γ = 6πηr, where η is the viscosity of the fluid, and
we also know that m = 4πρr3/3, where ρ is the density
of the object. The result is that

v(t) = v(0) exp(−t/τ), (304)

where

τ =
m

γ
=

2ρr2

9η
. (305)

If we assume that the density of bacteria is roughly that
of water, then it is useful to recall that η/ρ has units of a
diffusion constant, and for water η/ρ = 0.01 cm2/s. With
r ∼ 1µm = 10−4 cm, this gives τ ∼ 5 × 10−7 s. If the
initial velocity is v(0) ∼ 20µm/s, the net displacement
during this coasting is ∆x = v(0)τ ∼ 10−11 m; recall that
a hydrogen atom has a diameter of ∼ 1 Å = 10−10 m.
The conclusion from such simple estimates is that bac-

teria can’t coast. More generally, mechanics on the scale
of bacteria is such that inertia is negligible, as if Aristo-
tle (rather than Galileo and Newton) were right. This
really about the nature of fluid flow on this scale.36 For
an incompressible fluid (which is a good approximation
here—surely the bacteria don’t generate sound waves as

36 My experience is that most physics students don’t know too much
fluid mechanics, so although this is elementary I put it here. For
a more thorough discussion, see, as usual, Landau and Lifshitz.
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they swim), the Navier–Stokes equations are

ρ

[
∂v

∂t
+ v·∇v

]
= −∇p+ η∇2v, (306)

where v is the local velocity of the fluid, p is the pressure,
and as usual ρ is the density and η is the viscosity. The
pressure isn’t really an independent variable, but needs
to be there so we can enforce the condition of incompress-
ibility,

∇·v = 0. (307)

These equations need to be supplemented by boundary
conditions, in particular that the fluid moves with the
same velocity as any object at the points where it touches
that object. Thus the velocity should be zero at a sta-
tionary wall, and should be equal to the velocity of a
swimmer at the swimmer’s surface.

Problem 54: Understanding Navier–Stokes. This isn’t
a fluid mechanics course, but you should be sure you understand
what Eq (306) is saying. In particular, this is nothing but Newton’s
F = ma. Explain.

Dimensional analysis is an enormously powerful tool
in fluid mechanics. We are free to choose new units for
length (,) and time (t0), and hence for velocity (v0 =
,/t0), as well as for pressure p0, and this gives us

ρ

[
v0
t0

∂ṽ

∂ t̃
+

v20
,
ṽ·∇̃ṽ

]
= −p0

,
∇̃p̃+ η

v0
,2

∇̃2ṽ, (308)

ρ,v0
η

[
∂ṽ

∂ t̃
+ ṽ·∇̃ṽ

]
= − p0,

ηv0
∇̃p̃+ ∇̃2ṽ, (309)

where t̃ = t/t0, ṽ = v/v0, and p̃ = p/p0. Now we can set
p0,/ηv0 = 1, which gets rid of all the units, except we
are left with a dimensionless combination

Re ≡ ρ,v0
η

(310)

which is called the Reynolds’ number. Notice that if
we choose the unit of length to be the size of the ob-
jects that we are interested in, and v0 to be the speed
at which they are moving, then even the boundary con-
ditions don’t have any units, nor do they introduce any
dimensionless factors that are far from unity. The con-
clusion is that all fluid mechanics problems with the same
geometry (shapes) are the same if they have they have

the same Reynolds’ number. In this sense, being smaller
(reducing ,) is the same as living at increased viscosity.37

To make a long story short, we live at high Reynolds’
number, and bacteria live at low Reynolds’ number
(Fig 45). Turbulence is a high Reynolds’ number phe-
nomenon, as is the more mundane gliding through the
pool after we push off the wall. At low Reynolds’ num-
ber, life is very different. Inertia is absent, and so forces
must balance at every instant of time. To say this more
startlingly, if Re → 0 then time doesn’t actually appear
in the equations. This means that, as you swim, the dis-
tance that you move depends on the sequence of motions
that you go through, but not on the dynamics with which
you execute them.
To use Purcell’s evocative example, at high Reynolds’

number a scallop can propel itself by snapping shut, ex-
pelling a jet of water, and then opening slowly.38 The jet
will propel the scallop forward, and the drag of reopening
can be made small by moving slowly. At low Reynolds’
number this doesn’t work, and the forward displacement
generated by snapping shut will be exactly compensated
by the drag on reopening. To have net movement from
a cycle, the sequence of shapes that the swimmer goes
through in the cycle must break time reversal invariance,

FIG. 45 Purcell’s delightful sketch, illustrating the range of
Reynolds’ numbers relevant for swimming in humans, fish,
and bacteria. From Purcell (1977).

37 It is worth reflecting on the level of universality that we have
here. We could imagine starting with a molecular description of
fluids, then figuring out that, on the relevant length and time
scales, all we need to know are the density and viscosity. Now
we see that even these quantities are tied up with our choice of
units. If we want to know what happens in natural units (i.e.,
scaling to the size and speed of the objects we are looking at),
then all that matters is a single dimensionless combination, Re.

38 There is an interesting issue about what real scallops do. Check
Rob’s note about this!
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not just the trajectory.
So, how do bacteria evade the “scallop theorem”? If

you watch them swimming, you can see that the have
long filaments sticking out, and these seem to be waving.
I emphasize that “see” is tough here. [This needs pic-
tures; check with Berg.] These filaments are very small,
∼ 20 nm in diameter, much thinner than the wavelength
of light. To see them, the easiest thing is to use dark
field microscopy, in which the sample is illuminated from
the side and what you see is the light scattered by ∼ 90◦.
These apparently waving appendages are called flagella,
and remind us of what we see on other small swimming
cells, such as sperm. The difference is that the flagella
in these other cases are huge by comparison with the
bacterial flagella. If you slice through the tail of a sperm
and take an electron micrograph, you find an enormously
complex structure, and if you try to analyze the system
biochemically you find it is made from many different
proteins. Importantly, some of these proteins act as en-
zymes and eat ATP, which we know is a source of energy,
for example in our muscles. In contrast, the bacterial
flagellum is small, with a relatively simple structure, and
the biochemistry suggests that it is little more than a
very long polymer made from one kind of protein; this
protein is not an enzyme. How can this simple structure,
with no ATPase activity, generate motions?

In experiments that aimed at better ways to see the
flagella, one can attach “flags” to them using viruses
that would stick to the flagella via antibodies. Once in a
while, a virus with antibodies on both ends would stick to
two flagella from different bacteria. When this happened,
you could see the bacterial cells rotating, which one can
imagine was a huge surprise. Eventually people figured
out how to break off the flagella and stick the bacteria
to a glass slide by the remaining stump, and then the
bacterium rotates. Rotation can look like a wave if the
flagellum is shaped like a corkscrew, and it is. Rotating
a corkscrew obviously violates time reversal invariance.
If you have several corkscrews and you rotate them with
the correct handedness, they can fit together into a bun-
dle. If you rotate the other way, the corkscrews clash,
and any bundle will be blown apart by this clashing. So,
with many flagella projecting from their surface, we can
imagine that by switching the direction of rotation, the
bacterium switches between a bundle that can smoothly
propel the cell forward, and many independently moving
flagella that would cause the cell to tumble in place—runs
and tumbles correspond to counterclockwise and clock-
wise flagellar rotation.39 If you find mutants that never
tumble, and stick them down by their stumps, then they

39 This association goes of course depends on our convention for
defining the handedness of rotation; it doesn’t matter (and I
have trouble remembering it!) as long as you are consistent.

all rotate one way; similarly, mutants that tumble too
often rotate the other way.
There is much more to say about the rotary engine it-

self, sitting at the base of the flagella. It is powered not
by ATP but by a difference in chemical potential for hy-
drogen ions between the inside and the outside of the cell.
This is an energy source that all cells use, albeit in differ-
ent ways, because it allows chemical events at very differ-
ent spatial locations to be coupled. Thus, as described in
the preceding section, photosynthetic organisms use the
energy of the absorbed photons to move electrons across a
membrane, and then compensate the charges by moving
protons; the resulting difference in chemical potential can
be used by other membrane–spanning enzymes to make
ATP, without being anywhere near the molecules that
absorb the photon.40 In fact, these enzymes that synthe-
size ATP also rotate as they let protons move down the
gradient in their chemical potential, and these same en-
zymes are responsible for ATP synthesis in all cells. So,
proton driven rotary motors are at the heart of energy
conversion in all organisms.
There is also more to say about mechanics at low

Reynolds’ number. Swimming involves changing shape,
and this provides the boundary conditions on the Navier–
Stokes equations. A cycle of changing boundary condi-
tions should lead to a net displacement. There is some
subtlety here, since the space of shapes is not so easy to
parameterize. If we think, for example, about a closed
surface, “shape” is defined by three dimensional position
as a function of the two coordinates on the surface (e.g.,
latitude and longitude), but there is an arbitrariness in
how we choose these coordinates; of course any physi-
cal quantity, such as the amount by which the swimmer
moves forward, must be invariant to this choice. Looking
more closely, the freedom to choose coordinates means
that the natural formulation of the problem includes a
gauge symmetry. Reluctantly, let’s leave all this and go
back to the problem of chemotaxis itself.

Problem 55: Switching in tethered bacteria. As noted
above, one way of studying bacterial motility and chemotaxis is
to “tether” a bacterium by the stump of one flagellum, observing
the rotation of the whole cell rather than the rotation of the flag-
ellum. The file omega.txt contains a very long time series of the
angular velocity from such an experiment done by WS Ryu, now
at the University of Toronto.41 The samples are taken sixty times
per second, and the units of velocity are not quite arbitrary but

40 You can imagine how confusing this was before people figured it
out! It looked like a mysterious action at a distance.

41 Data that you need can be found at
http://www.princeton.edu/∼wbialek/PHY562/data.html.
[What is the permanent way of dealing with this??]
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not really important either; you should be able to load this into
MATLAB (load omega.txt).

(a.) You should see that the velocity switches between positive
and negative values, but these values are fairly constant. This is
consistent with swimming by switching between runs and tumbles,
with little or no modulation of the swimming speed. What is the
distribution of times spent with during each segment of positive or
negative (clockwise or counterclockwise) velocity?

(b.) It usually is said that switching is a Poisson process, so
that (as you remember from the discussion of photon counting) the
distribution of intervals between switches should be exponential.
Are your results in [a] consistent with this prediction?

(c.) Look carefully at the velocity vs. time in the data set. Are
the data statistically stationary (time–translation invariant)? If
you focus on segments of the data that are more clearly stationary,
does that change your conclusions in [b]?

(d.) Sometimes the angular velocity makes a “partial switch,”
a brief excursion away from the typical positive or negative value
but not quite a full switch to the opposite direction of rotation.
Qualitatively, what is happening in these cases? What would be
the simplest model to describe the velocity vs. time during such
an event? Can you give a quantitative analysis of the data, fitting
to your model? This is a bit open ended.

We are interested in the question of how sensitively the
bacterium can respond to small concentration gradients.
We suspect that, since individual molecular motions are
random, there must be a limit, analogous to the shot
noise in counting photons. In a classic paper, Berg and
Purcell provided a clear intuitive picture of the noise in
‘measuring’ chemical concentrations. Their argument,
schematized in Fig 46, was that if we have a sensor with
linear dimensions a, then effectively the sensor samples a
volume a3. In this volume we expect to count an average
of N ∼ ca3 molecules when the concentration is c. Each

a

concentration
c

random walks 

with diffusion 

constant

D

equilibration time
τc = a2/D

mean # of molecules

N = ca3

FIG. 46 A schematic of concentration measurements. A re-
ceptor of linear dimension a samples a volume a3 and hence
sees a mean number of molecules N = ca3, where c is the con-
centration. These molecules random walk in and out of the
sensitive volume with a diffusion constant D, corresponding
to an equilibration or correlation time τc = a2/D.

such measurement, however, is associated with a noise
δN1 ∼

√
N . Since the count of molecules is proportional

to our estimate of the concentration, the fractional error
will be the same, so from one observation we obtain a
precision

δc

c

∣∣∣∣
1

=
δN1

N
=

1√
N

=
1√
ca3

. (311)

We can make more accurate measurements by averaging
over time, although this is a bit tricky—we won’t get a
better estimate of the concentration around us by count-
ing the same molecules over and over again. Thus if we
are willing to average over a time τavg, we can make K
independent measurements, where K ∼ τavg/τc, and the
correlation time τc is the time we have to wait in order
to get an independent sample of molecules.
How do we get independent samples? If we look in

a small volume, the molecules that we are looking at
exchange with the surroundings through diffusion. Thus
the time required to get an independent collection of mol-
ecules is the time required for molecules to diffuse in and
out of the volume, τc ∼ a2/D. Putting everything to-
gether we have

δc

c
=

1√
K

· δc
c

∣∣∣∣
1

(312)

=
√

τc
τavg

· 1√
ca3

(313)

=

√
a2

Dτavg
· 1√

ca3
(314)

=
1√

Dacτavg
. (315)

This is a lovely result. It says that the limit to the accu-
racy of measurements depends on the absolute concen-
tration (more molecules → more accuracy), on the size
the detector (bigger detectors → more accuracy), on the
time over which we are willing to average (more time →
more accuracy), and finally on the diffusion constant of
the molecules we are sensing, because faster diffusion lets
us see more independent samples in the same amount of
time. All these parameters combine simply, essentially in
the only way allowed by dimensional analysis.
One way of understanding this result on the limits to

precision is to think about the rate at which molecules
find their target. For molecules at concentration c
moving with diffusion constant D, the rate (number of
molecules per second) that arrive at a target of size a
should be proportional both to c and to D, and then
by dimensional analysis we need one factor of length, so
the rate is ∼ Dac molecules per second. This result is
used most often to talk about the “diffusion limited rate
constant” for a chemical reaction; if we have

A+B
k+→ C, (316)
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then the second order rate constant k+ can never be big-
ger than ∼ Da, where D is the diffusion constant of the
molecules and a is their size, or more precisely the size of
the region where they have to hit in order to react. But if
the rate of molecular arrivals is ∼ Dac, in a time τavg we
will count ∼ Dacτavg molecules, and if these molecules
are arriving at random then there will be the usual square
root fluctuations, which leads us to Eq (315). In this
view, the Berg–Purcell limit is nothing but shot noise
in molecular arrivals, and thus is completely analogous
to shot noise in photon arrivals. Photons propagate and
molecules diffuse, but under most conditions they both
arrive at random, hence there is shot noise in counting.

Problem 56: Diffusion limited rates, more carefully. One
can try a more careful calculation of the rate at which molecules
find their target by diffusion. Image a sphere of radius a such that
all molecules which hit the surface are immediately absorbed. Out-
side the sphere, the concentration profile must obey the diffusion
equation, and the absorbtion means that on the spherical surface
the concentration will be zero. Far from the sphere, the concentra-
tion should be equal to c. Thus we have

∂c(x, t)

∂t
= D∇2c(x, t); (317)

c(|x| = a, t) = 0, (318)

c(x → ∞, t) = c. (319)

The number of molecules arriving per second at the surface of the
sphere is given by an integral of the diffusive flux over the surface

rate =

∫
d2s n̂· [−D∇c(x, t)]

∣∣∣∣
|x|=a

, (320)

where d2s is an element of the surface area on the sphere, and n̂ is
the unit vector normal to the sphere.

(a.) Solve Eq (317), with the boundary conditions in Eqs (318)
& (319), in steady state. Note that as a first step you should go to
spherical coordinates; recall that in three dimensions the Laplacian
can be written as

∇2 =
1

r2
∂

∂r

(
r2

∂

∂r

)
+

1

r2

[
1

sin2 φ

∂2

∂θ2
+

1

sinφ

∂

∂φ

(
sinφ

∂

∂φ

)]
,

(321)
where as usual r is the radius and θ and φ are the polar and az-
imuthal angles, respectively.

(b.) Use your steady state solution to evaluate the rate at which
molecules arrive at the sphere, using Eq (320). Also, explain why
simple dimensional analysis of these equations yields rate ∼ Dac.

(c.) What happens if you try to give a dimensional analysis
argument for the rate in one or two dimensions? If there are prob-
lems, can you explain how these problems either go away or are
made more precise by trying to solve the diffusion equation with
appropriate boundary conditions? As a hint, the two dimensional
case is a bit delicate; focus first on one dimension.

Bacteria such as E coli have been observed to perform
chemotaxis in environments where ambient concentra-
tions of attractants such as sugars or amino acids are
as low as ∼ 1 nM, which is ∼ 10−9 × (6 × 1023)/103 =

6 × 1011 molecules per cm3. These small molecules dif-
fuse through aqueous solution with D ∼ 10−5 cm2/s, and
the most generous assumption would be that the rele-
vant size of the detector is the size of the whole bac-
terium, a ∼ 1µm. Putting these factor together, we
have Dac ∼ 600 s−1. Thus, if the bacterium integrates
for τavg ∼ 1.5 s, the smallest concentration changes it can
detect are δc/c ∼ 1/30. If the cells were to detect the
difference in concentrations across the ∼ 1µm length of
their body, this would mean that the concentration was
varying significantly on the scale of 30µm, which is very
short indeed. In real experiments (and, presumably, in
the natural environment) the length scales of concentra-
tion gradients are one to two orders of magnitude longer.
Thus, it’s impossible—without integrating for minutes or
hours—for bacteria to perform as they do by measuring
a spatial gradient. The only possibility is to measure the
concentration variation in time, along the trajectory that
the bacterium takes through the gradient. Since the cells
move at v = 10− 20µm/s, on times scales of τavg ∼ 1.5 s
this increases the signal by a factor of ten to thirty, and
brings the signal above the background of noise, allowing
for reliable detection.
[Maybe add remarks that this argument still works at

higher concentrations, if the length scales of gradients are
even longer? Perhaps this could be put into a problem?]
Although the comparisons are a bit rough,42 we can

draw several conclusions. First, real bacteria perform
chemotaxis in response to small signals with a reliability
close to the limits set by the physics of diffusion. Second,
this is possible only if the cell measures the derivative of
concentration vs. time as it moves, not spatial gradients
across its body. Finally, to reach a reasonable signal–to–
noise ratio requires that the cell average over time for
more than one second.
Why don’t the bacteria integrate for longer, and reduce

the noise further? If you look closely at the trajectories
of the bacteria, you can see that the longer runs curve a
bit. In fact, the bacteria are sufficiently small that their
own rotational Brownian motion disorients them on a
time scale of ten or fifteen seconds. So, if you integrate
for longer than this, you are no longer integrating some-
thing related to the gradient in a particular direction,
or even your current direction of motion. This suggests
that there is a physical limit setting the longest useful
integration time.
Berg and Purcell also argued that there is a minimum

42 I think there is an opportunity for a better experiment here. One
could imagine analyzing the moments of transition from run to
tumble (and back) in the same way that we analyze the action
potentials from sensory neurons (see Section II.C), measuring the
reliability of discrimination between small differences in concen-
tration or reconstructing the concentration vs. time along the
trajectory of a freely swimming bacterium.
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useful integration time. Recall that molecules moving via
diffusion traverse a distance xdiff ∼

√
Dt in a time t; in

contrast, swimming at velocity v moves the bacterium by
a distance xswim ∼ vt. For short times, diffusion, with
its square root dependence on time, goes farther than
ballistic swimming motion. This means that on short
time scales, the molecules that the bacterium sees along
its path are the same molecules, and hence it really isn’t
combining statistically independent measurements. So,
there is a minimum useful integration time (assuming you
want to improve the signal–to–noise ratio by integrating)
of τ ∼ D/v2, and this works out to be about one second.
Put in a pointer to a problem in the next section.

So, the strategy of E coli for measuring gradients is
incredibly constrained by physics. To reach the observed
performance, it has to count nearly every molecule that
arrives at its surface. Even with this near ideal behav-
ior, it can work only by making comparsions across time,
not space, and estimates of time derivatives have to be
averaged for a few seconds, not more and not less. This
set of predictions about chemotactic strategy is almost
parameter free, even if not precisely quantitative.

What do real bacteria do? We have already seen that
they make temporal comparisons. Does the detailed form
of these comparisons agree with the Berg–Purcell pre-
dictions? Although one could probably do better with
modern experimental techniques, the best test was done
in the early 1980s. In these experiments, bacteria were
tethered to a glass slide and exposed to changing concen-
trations of attractants or repellents; a long series of such

FIG. 47 Impulse responses in bacterial chemotaxis, from
Block et al (1982). At left, changes in the probability of coun-
terclockwise rotation of the motor, corresponding to running,
as a function of time in response to a pulse of attractant (top)
or repellent (bottom). We see that the form of the response
is equivalent to integrating the time derivative of the input
over a window or severa seconds. At right, the response to a
step of attractant again has the form expected if we integrate
the derivative over a short window. The real data are com-
pared with a prediction based on integrating the response to
impulses shown at left, and the agreement is good, as if the
system were linear.

observations is then combined to measure the probabil-
ity that the flagellar motor is rotating counterclockwise
(corresponding to running) as function of time relative to
the changing concentration. A summary of these exper-
iments is shown in Fig 47. We see that the probability
of running is modulated by the time derivative of the
concentration, averaged over a window of a few seconds,
exactly as predicted by the Berg–Purcell argument.
Being sensitive to a derivative means that the response

to a step comes back almost exactly to the baseline before
the step, as seen at right in Fig 47, so that the constant
signal is ignored at times long after it was turned on. This
gradual ‘forgetting’ of a constant signal is common in bi-
ological systems, and such phenomena are called ‘adap-
tation.’ All of our sensory systems exhibit adaptation,
the most familar being the experience of stepping into
a dark movie theater or out into the bright sunlight; at
first we are acutely aware of the large difference in overall
light intensity, but after a while everything looks normal
and we are insensitive to the absolute photon flux. The
case of bacteria is interesting because it seems that the
adaptation is nearly perfect.
Experiments of the sort pictured in Fig 47 also make

it possible to estimate the absolute sensitivity of the sys-
tem in perhaps more compelling units. [should put the
numbers here, maybe reproduce a figure] We now know
how many receptors there are on the cell’s surface, and
so we can convert changes in concentration into changes
in the number of occupied receptors. Indeed, one ex-
tra occupied receptor leads to a significant change in the
probability of running vs tumbling. So, as expected, the
bacterium is responding to individual molecular events.
This all seems a great success: much of bacterial behav-

ior is understandable, semi–quantitatively, as a response
to the physical constraints posed by life at low Reynolds’
number and the noise in molecular counting; one can go
further and say that bacterial behavior is near optimal in
relation to this noise. On the other hand, many questions
are left hanging.
First, can we turn the ideas about maximum and min-

imum useful integration times into a theory of optimal
filtering that would predict, quantitatively, the form of
the impulse responses in Fig 47? We should be able to
do this, but I don’t think anyone has really managed to
get it right. There have been some serious attempts, but
I think the issue still is open. One might also wonder
whether it even makes sense to formulate this problem
for individual bacteria, as opposed to looking at com-
petition or cooperation in a population; this is related
to the question of what, precisely, one thinks is being
optimized by the behavior. It seems likely that any the-
ory of optimal strategies will predict that this optimum
is context dependent; here we should note that quanti-
tative characterization of chemotactic behavior has not
been pursued under a very wide range of stimulus con-
ditions, so we may be missing the data we need to test
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FIG. 48 Biochemical amplification in the chemotactic re-
sponse. [Redraw this to make it more obvious that there
is a cascade, as in rod photoreceptors.] At left, binding of
chemoattractants to their receptors shifts the equilibrium be-
tween active and inactive forms of the kinase CheA. At right,
the active kinase phosphorylates CheY, and this is balanced
by the action of the phosphatase CheZ. CheY∼P binds to the
flagellar motor and promotes clockwise rotation, which drives
tumbling. The motor is extremely sensitive to small changes
in the CheY∼P concentration; data redrawn from Cluzel et
al (2001).

such theories when they emerge.
The second question is about the mechanisms that

make possible the extreme sensitivity of chemotaxis.
Much progress has been made, although again some is-
sues are open. As with the rod cell, there is a cascade of
biochemical events that leads from input (here, binding
to receptors on the cell surface) to output (direction of
motor rotation). Since input and output are spatialy sep-
arated, it is not surprising to find that there is an inter-
nal signaling molecule that diffuses through the cell. In
rods, this is a small molecule (cGMP), but for bacterial
chemotaxis it is a protein called CheY. More precisely,
this protein can be phosophorylated, and in its phospho-
rylated form CheY∼P it binds to the motor and favors
clockwise rotation. The receptor molecules on the cell
surface are coupled almost directly to the kinase CheA
that phosphorylates CheY, as shown schematically in Fig
48. Working backward from the output, we would like
to know how the rotational bias of the motor depends on
the concentration of CheY∼P.

To measure the bias vs CheY∼P, one has to do many
tricks. It’s relatively easy to measure the bias of the
motor, either in experiments where the cell is tethered or
where it is laying on a slide and one motor stump is stick-
ing up with a bead attached. To know the concentration
of a protein in a single cell, we need to make the protein
visible, and so this is done by genetic engineering, replac-
ing the normal CheY with a fusion between this protein

and the green fluorescent protein [put clear discussion
of GFP in the first place where it comes up—perhaps
here?], and arranging for the expression of this fusion
protein to be controlled by signals that can be applied
externally. Finally, we need to know the concentration of
the phosphorylated form of the protein, and this is very
difficult. But once phosphate groups are attached to a
protein, they stay there until removed by another enzyme
(the phosphotase). So, if we genetically engineer the bac-
terium to remove the phosphotase, we will surely screw
up the overall chemotactic response, but we can then be
sure that all the CheY will be in its phosphorylated state.
The result of all this is shown in Fig 48.

Problem 57: Absolute concentration measurements. In
this problem you should try to understand how Cluzel et al were
able to put the CheY∼Pconcentration on an absolute scale. Bacte-
ria can be engineered to make a fluorescent version of many natu-
rally occurring proteins. While the fluorescence signal that we then
see under a microscope is proportional to the number of molecules
under illumination, it can be difficult to measure the proportion-
ality constant in an independent experiment. One can circumvent
this problem by watching small numbers of molecules diffusing ran-
domly in and out of an illuminated volume inside an individual cell
and using the variance in the fluorescence intensity, along with its
mean value, to make an absolute measurement of the concentration
of the molecules.43

(a.) Explain (qualitatively) how this measurement might work.
What do you gain by using both the variance and the mean of this
signal? How can the fluctuating fluorescence signal be analyzed
further to give an estimate of the protein diffusion constant?

(b.) Now let’s convert the above intuition into a quantitative
framework for analysis of the data. Consider the concentration
c(-x, t) of fluorescent molecules at different points in space and time.
It fluctuates and the deviation δc of the concentration from its
average value c̄ is uncorrelated between different points in space
(but the same instant of time). Show that the analytic statement

〈δc(-x, t)δc(-x′, t)〉 = c̄δ(-x− -x′) (322)

of this fact is equivalent to the ‘intuitive’ remark that the vari-
ance of the number of molecules in a volume is equal to the mean
number.

(c.) If the system starts with some fluctuation in the concen-
tration c(-x, 0) = c̄ + δc(-x, 0), this profile will relax according to
the diffusion equation. Since the diffusion equation is linear, this
means that the profile of fluctuations at time t, δc(-x, t), can be
written as a linear operator acting on the initial condition δc(-x, 0).
Show that this linear relationship can be written as

δc(-x, t) =

∫
d3y

(
1

√
4πDt

)3

exp(−|-x− -y|2/4Dt) δc(-y, 0) (323)

where D is the diffusion constant.

43 Some of the ideas in this problem will, admittedly, be clearer
after the discussion in the next section. Still, this should be
workable now, and may provide a useful introduction to what
comes next. This problem was originally designed as part of a
general examination for Physics PhD students, written together
with Curt Callan.
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FIG. 49 A model for the modulation of rotor bias by bind-
ing of CheY∼P. CheY∼P molecules bind independently to
multiple sites around a ring. When all sites are empty the
equilibrium favors the counterclockwise rotating state. Bind-
ing is stronger to the clockwise state, however, so that as more
sites are occupied the equilibrium shifts.

(d.) When we bring light to a focus under the microscope,
we effectively weight the points around the focus with a Gaussian
function, so that the light intensity collected from the fluorescent
molecules will be proportional to

s(t) =

∫
d3x c(-x, t) exp(−|-x|2/)2) (324)

where ) is the size of the focal region (roughly the size of the wave-
length of light). Using the results above, show that the temporal
correlation function of this signal is given by

〈δs(t)δs(0)〉 ∝ (|t|+ τ)−3/2, (325)

and relate the correlation time τ to the diffusion constant D and
the size of the focal region ). As a hint, note that in doing the
multidimensional Gaussian convolution integrals that show up in
the last step of this computation, it is a good idea to do them
Cartesian coordinate by Cartesian coordinate. This gives a precise
method for extracting the diffusion constant from the fluctuating
fluorescence signal.

What we see most clearly from Fig 48 is that the motor
is remarkably sensitive to small changes in concentration
of CheY∼P. One can fit a function of the form

Pcw =
cn

cn +Kn
, (326)

withK ∼ 3µM and n ∼ 10, although the data are almost
within errors of being a step function. “Hill functions” of
this form often are interpreted to mean that n molecules
bind together and trigger the output that we are measur-
ing; these and other ideas about the cooperative response
of biological molecules are reviewed in Appendix A.4.

In this case it might make more sense to think about a
model as in Fig 49, which is a version of the Monod–
Wyman–Changeux model for cooperativity. Here we

imagine multiple binding sites arrayed around a ring.
CheY∼P molecules bind independently to each site, but
the strength of the binding depends on whether the whole
structure is rotating clockwise or counterclockwise. Qual-
itatively, if binding is stronger in the clockwise state, then
increasing the concentration of CheY∼P will shift the
equilibrium toward the clockwise state.
Quantitatively, we can work out the predictions of the

model in Fig 49 using statistical mechanics, on the hy-
pothesis that all the binding events and the structural
transitions of the motor between clockwise and counter-
clockwise states come to equilibrium. One might worry
about the latter assumption—after all, if the motor were
truly at equilibrium it wouldn’t be rotating and generat-
ing force—but let’s proceed. Consider one possible state
of the system, say clockwise rotation with m out of the
n sites filled by CheY∼P molecules. We need to assign
this state a weight in the Boltzmann distribution. We can
assume that the clockwise state has an intrinsic (free) en-
ergy Ecw. With k molecules bound, the energy is lowered
by mFcw, where Fcw is the binding energy in the clock-
wise state, but we also had to take these k molecules out
of solution, and this shifts the free energy by m times the
chemical potential, mµ = mkBT ln(c/c0), where c is the
concentration of CheY∼P and c0 is a reference concen-
tration. Finally, since the m occupied sites could chosen
out of the n possibilities in many ways, there is a combi-
natorial factor. Putting these terms together we have

(
n

m

)
exp

[
− 1

kBT
(Ecw −mFcw −mkBT ln(c/c0))

]

=

(
n

m

)(
c

Kcw

)m

e−Ecw/kBT ,

where Kcw = c0e−Fcw/kBT . To compute the probability
of being in the clockwise state we have to sum over all
the different occupancies, and normalize by the partition
function, which includes a sum over the counterclockwise
states:

Pcw =
1

Z

n∑

m=0

(
n

m

)(
c

Kcw

)m

e−Ecw/kBT (327)

=
1

Z
e−Ecw/kBT (1 + c/Kcw)

n, (328)

where

Z = e−Ecw/kBT (1+ c/Kcw)
n+ e−Eccw/kBT (1+ c/Kccw)

n.
(329)

We can put this result in a more compact form,

Pcw =
1

1 + exp [θ − g(c)]
(330)

θ = (Ecw − Eccw)/kBT (331)

g(c) = n ln

(
1 + c/Kcw

1 + c/Kccw

)
. (332)

Notice that if Kcw ' c ' Kccw, then this becomes the
Hill function in Eq (326).
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Problem 58: MWC model of rotor bias. Explore the pa-
rameter space of the model we have just described. Are there
regimes, other than Kcw . c . Kccw, where one can reproduce
the steep dependence of Pcw on c observed by Cluzel et al (2001)?
Keep in mind that the actual number of binding sites n could be
very large.

So part of the answer to how the the bacterium is so
sensitive to small changes in the external concentration
of attractants or repellents is that the motor is very sen-
sitive to small changes in the concentration of CheY∼P.
This is not implausible, since the structure of the motor
(which is complicated) suggests locations for as many as
n = 34 sites where CheY∼P could bind around a ring of
radius R ∼ 45 nm.

Having such strong sensitivity to the CheY∼P concen-
tration means that, in roughly the one second it takes
for the motor to switch once, one can be sure whether
the concentration was δc/c ∼ 1/n ∼ 10% above or be-
low the critical value c = K. But from Berg and Purcell
we might expect that there is a limit on this precision
set by random arrival of the CheY∼P molecules at the
motor, and this should be δc/c ∼ 1/

√
DRcτavg, treating

the whole motor ring as one big receptor. With diffusion
constants for proteins, including CheY, in the range of
D ∼ 1µm2/s, this suggests that the limit with one second
of integration is not much smaller than 10% (see more de-
tails in the next lecture). So, cooperative action of many
signaling molecules generates a steep slope, but the sys-
tem still has to suppress other sources of noise since even
this last step in the cascade of events is operating close
to the fundamental limits set by noise considerations.

The observations on the sensitivity of the motor tell
us that the bacterium can generate a significant response
even from a small fractional change in the concentration
of CheY∼P. Still, we need to understand the biochemi-
cal processes that lead from essentially single molecular
events to these quasi–macroscopic changes in molecule
number.44 [Probably want to say a few words about the
sources of gain: activity of CheA*, and the cooperativ-
ity among receptors that allows one ligand to activate
many CheAs. Need to learn more about the numbers
here. Might be nice to compare MWC–style model of
motor with MWC–style model of receptors. At the end
of the day, is this similar to the rod cell or not? Can we
conclude that we understand the gain?]

44 At c ∼ 3µM, a cell with volume ∼ 1µm3 has ∼ 2000 molecules of
CheY∼P, so even a ten percent change in concentration involves
hundreds of molecules.

Even if we consider the origins of gain to be under-
stood, there is a major problem. Figure 48 shows that
extreme sensitivity must coexist with a very tight regula-
tion, since if the concentration of CheY∼P drifts far away
from c ∼ K, the cell loses all sensitivity to changes. This
combination of sensitivity to small changes without ac-
cumulation of large variations poses significant problems,
which we will take up in the next Chapter.
The last of the major questions left open by the Berg–

Purcell analysis is whether we do a full, honest calcu-
lation that leads to the their limit on the precision of
concentration sensing? What Berg and Purcell wrote
down makes absolutely no reference to the messy de-
tails of what actually happens to molecules as they are
counted. This could be wonderful, because it would mean
that can say something about the limits to precision in
all biochemical signaling systems, regardless of details.
Alternatively, the absence of details might be a disaster,
a clue that we have simply missed the point.
As mentioned at the start of this section, chemical sig-

naling in ubiquitous in biological systems, and chemo-
taxis provided us with one clear example where we could
think about the limits to counting molecules. We would
like to know if these limits can be made rigorous, and
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FIG. 50 Control of gene expression by transcription factors.
Synthesis of a protein involves transcription of the DNA cod-
ing for that particular protein, and translation of the resulting
mRNA. An important component of control in these systems
is the binding of transcription factors to the DNA, at spe-
cific sites near the start of transcription, in the promoter or
enhancer region. Transcription factors are themselves pro-
teins, so this regulatory process naturally leads to a network
of interactions; here we focus, for simplicity, on one input (the
concentration of the transcription factor) and one output (the
concentration of protein #1). Note that in bacteria all of this
happens in one compartment, while in eukaryotic cells the
DNA is in the nucleus and mRNA is transported out to the
cytoplasm, where translation occurs. Nothing in this figure is
to scale. [redraw figure to get rid of the network, which here
is a distraction]
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if they can be applied to processes that occur inside of
cells, rather than just to the sensing of external signals
as in chemotaxis. To see what is at stake, let’s think
about the regulation of gene expression (Fig 50). We
recall that every cell in our bodies has the same DNA.
What makes a liver cell different from a neuron in your
brain is that it reads out or “expresses” different genes,
making different proteins. Importantly, this is not just
a discrete choice made once in your lifetime. Given that
certain proteins are being made, the numbers of these
molecules are constantly adjusted to match the needs of
the cell. This happens also in bacteria, which adjust,
for example, the concentrations of the enzymes needed
to metabolize different nutrients that might or might not
be present in the environment; much of what we know
about the regulation of gene expression has its roots in
work on this sort of metabolic control in bacteria.

There are many ways in which gene expression is con-
trolled. As a simple example, note that if we want to
regulate the number of proteins in the cell we can change
either the rate at which they are made or the rate at
which they are degraded, and both of these things hap-
pen. The synthesis of a protein involves two very dif-
ferent steps, transcription from DNA to messenger RNA
and translation from mRNA to protein, and again there
is regulation of both processes. All this being said, we
will focus our attention on the regulation of transcrip-
tion, that is the reading of the DNA template to make
mRNA.45

In order to make mRNA, a complex of proteins (in-
cluding the RNA polymerase) must bind to the DNA
and ‘walk’ along it, spewing out the mRNA polymer as
it walks. In order for all of this to happen, the RNA
polymerase has to find the right starting point. One can
imagine that this can be inhibited simply by having other
proteins bind to nearby sites along the DNA. Alterna-
tively, binding of proteins to slightly different positions
near the starting point could help the RNA polymerase
to find its way. Both of these things happen: proteins
called transcription factors can act both as repressors and
as activators of mRNA synthesis. The key step in this
regulation is thought to be the binding of the transcrip-
tion factors to specific sites near the RNA polymerase
start site, as schematized in Fig 50; the whole segment of
DNA involved in the control and initiation of transcrip-
tion is called the “promoter.” In higher organisms, the
regions involved in regulation can be very large indeed,
and usually are called “enhancers” to avoid conjuring
the simplified image in Fig 50, which is more literally
applicable in bacteria. Binding sites are specific because
the transcription factor protein is selective for particular
DNA sequences, and much can be said about the na-

45 For a bit about the basics of DNA structure, see Appendix A.5.

ture of this specificity. For now the important point is
that such regulatory systems are, in effect, sensors of the
transcription factor concentration.

Problem 59: Autoregulation. Perhaps the simplest model
of transcriptional regulation is one in which a gene regulates its
own expression. Let the concentration (or number of molecules)
of the protein be g, and assume that n of these molecules bind
cooperatively to the promoter region of the gene. If the binding
activates expression, and proteins are degraded in a simple first
order process with lifetime τ , then it is plausible that the dynamics
of g are given by

dg

dt
= rmax

gn

gn + gn1/2
−

g

τ
. (333)

(a.) Explain the significance of the parameters rmax, n and g1/2.
Show that there is a range of these parameters in which the system
is bistable. More precisely, show that you can find three steady
states, and that two of these are stable and one is unstable. What
are the time constants for relaxation to these steady states? How
do these times compare with the lifetime τ of the protein?

(b.) Really the protein binding regulates the synthesis of mRNA,
which in turn is translated by the ribosomes into protein. If m is
the mRNA concentration (or number of molecules), then a plausible
set of equations is

dm

dt
= emax

gn

gn + gn1/2
−

m

τm
(334)

dg

dt
= rtransm−

g

τp
, (335)

where emax is the maximal transcription (“expression”) rate, rtrans
is the rate at which mRNA molecules are translated into protein,
and the lifetimes of protein and mRNA are τp and τm, respectively.
Under what conditions will this more complete model be well ap-
proximated by the simpler model above? Are the steady states of
the two models actually different? What about their stability?

(c.) Suppose that instead of activating its own expression, the
protein acts as a repressor of its own expression. Find the analog of
Eq (333) in this case and show that there is only one steady state,
and that this state is stable.

(d.) Expand your discussion of the auto–repressor to include
the mRNA concentration, as in Eq’s (334, 335). Find the steady
state and linearize the equations around this point. Do you find
exponential relaxation toward the steady state for all values of the
parameters? Is it possible for the steady state to become unstable?
Explain qualitatively what is happening, and go as far as you can
in analyzing the situation analytically.

The binding sites along DNA for the transcription fac-
tors have linear dimensions measured in nanometers, per-
haps a ∼ 3 nm. The diffusion constants of proteins in the
interior of cells is in the range of D ∼ 1µm2/s. Many
transcription factors act at nanoMolar concentrations,
and it is useful to note that 1 nM = 0.6molecules/µm3.
Putting these together we have Dac ∼ 1.8 × 10−3 s−1.
Thus, the Berg–Purcell limit predicts that the smallest
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changes in transcription factor that can be reliably de-
tected are

δc

c
∼ 1√

Dacτavg
∼

√
10min

τavg
. (336)

Taken at face value, this suggests that truly quantitative
responses—say, to 10% changes in transcription factor
concentration—would require hours of integration. This
is seldom plausible.

One should not take this rough estimate too literally.
I think the message is not the exact value of the limiting
precision, but rather that once concentrations fall to the
nM range, small changes will be very hard to detect. If
cells do detect these small changes, then almost certainly
they will be bumping up against the physical limits set
by counting molecules, assuming that Berg and Purcell
give us a good estimate of these limits. So, this is what
we need to check.

In Appendix A.6, we look in detail at how to make the
Berg–Purcell limit more rigorous. The key idea is that
fluctuations in concentration, and in many examples of
binding to receptor sites, represent fluctuations in ther-
mal equilibrium, and thus are susceptible to the same
analyses as Brownian motion, Johnson noise, and other
examples of thermal noise. These analyses show how
one can separate the limiting noise level from the extra
noise that is associated with all the biochemical complex-
ities which Berg and Purcell ignored. The result, then is
that the Berg–Purcell argument can be made rigorous,
both for single receptors and for arrays of receptors, and
their simple formula gives us a lower bound on the noise
in biochemical signaling. This is important because, as
noted at the start of this discussion, the Berg–Purcell
limit doesn’t make reference to any of the detailed bio-
chemistry of what happens when the signaling molecules
bind to their targets. Rather, the limit depends on the
physical nature of the signal itself. The fact that we can
make the Berg–Purcell argument rigorous encourages us
to look more broadly and see if there are other cases in
which biological systems approach these physical limits
to their signaling performance.

Would like to discuss chemotaxis in larger cells—
neutrophils, Dictyostelium, ... .

Another important example of chemotaxis occurs dur-
ing the development of the brain. Individual neurons
start as relatively compact cells, and then extend their
axons to find the other cells with which they must make
synapses. This processes is guided by gradients in a va-
riety of signaling molecules. Although there are many
beautiful observations on these phenomena in vivo, it
is not so easy to do a controlled experiment where one
allows cells to migrate in well defined gradients. One ap-
proach to this is shown in Fig [reproduce figures from
Rosoff et al], where cells grow in a collagen matrix that
is “printed” with droplets of growth factor at varying

densities. Relatively quickly, diffusion acts to smear the
rows of drops into a continuous gradient, which can be
directly observed when the molecules are labelled with
fluorophores. These measurements also allow an infer-
ence of the diffusion constant in this medium, D ∼
8× 10−7 cm2/s. The growth cones which guide the axon
have linear dimensions a ∼ 10µm, and these experiments
found that sensitivity to gradients is actually maximal
in a concentration range near c ∼ 1 nM. Under these
conditions, then, we have Dac ∼ 500 s−1. Quite aston-
ishingly, however, the cells seem to grow differentially in
the direction of gradients that correspond to concentra-
tion differences of order one part in one thousand across
the diameter of the growth cone. In order for this sig-
nal to be above the Berg–Purcell limit on the noise level,
the cell must integrate for τavg ∼ 2000 s, a reasonable
fraction of an hour.
In truth, we don’t know the time scale over which

growth cones are integrating as they decide which way
to turn, even in the more controlled in vitro experi-
ments. We do know that the pace of neural development
is slow—hours to days rather than minutes. Qualitative
aspects of axonal behavior are consistent with the idea
that the time scales of their movements are determined
by the need to integrate long enough to generate reli-
able directional signals, from the rapid “exploration” by
cellular appendages to the dramatic slowing down near
critical decision points, such as the optic chiasm where
the axons of ganglion cells emerging from the retina must
decide whether to go toward the right or left half of the
brain.46 It is attractive to think that the reliability with
which cells in our brain find their targets is set by such
basic physical principles, but we don’t quite have enough
data to say this with certainty.
Let us return to the problem that motivated our search

for generality, the transcriptional regulation of gene ex-
pression. Until the last decade, there were essentially no
direct measurements on the reliability of such regulatory
mechanisms. Before we look at the new data, though, we
need one more set of theoretical ideas.
Proteins are synthesized and degraded, and the sim-

plest assumption is that these are single kinetic steps.
Suppose we start just with synthesis, at some rate s
molecules per second. We have seen that rate constants
should be interpreted as the probability per unit time
for individual molecular events. Thus, if we ask about
the probability of finding exactly N molecules in the sys-
tem at time t, this probability P (N ; t) obeys the “master

46 At these decision points it seems likely that the cells must reach
rather high signal–to–noise ratios, since the error probabilities
are small. [can we say something quantitative here?]
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equation”

∂P (N ; t)

∂t
= sP (N − 1; t)− sP (N ; t), (337)

except of course at N = 0 where we have

∂P (0; t)

∂t
= −sP (0; t). (338)

We can solve these equations iteratively. We start with
no molecules, so P (0, 0) = 1, while P (N -= 0, 0) = 0.
Then Eq (338) tells us that

P (0, t) = e−st. (339)

If we substitute into Eq (337) for P (1, t), we have

∂P (1; t)

∂t
= −sP (1; t) + sP (0; t) (340)

⇒ P (1, t) =

∫ t

0
dt′e−s(t−t′)sP (0; t) (341)

=

∫ t

0
dt′e−s(t−t′)se−st (342)

= se−st

∫ t

0
dt′ = e−st(st). (343)

We can go through the same calculation for P (2; t):

P (2; t) =

∫ t

0
dt′e−s(t−t′)sP (1; t′) (344)

= e−st

∫ t

0
dt′s2t′ (345)

= e−st (st)
2

2
. (346)

This suggests that, for all N ,

P (N ; t) = e−st (st)
N

N !
(347)

Problem 60: Checking the Poisson solution. Verify that
Eq (347) solves the master equation describing a single synthesis
reaction at rate s, Eq (337).

Equation (347) is telling us that, as the synthesis re-
action proceeds, the number of molecules that has been
synthesized obeys the Poisson distribution. From what
we have said about the Poisson distribution in the discus-
sion of photon counting (Section I.A and Appendix A.1),
you should recognize that the mean number of molecules
is

〈N〉 ≡
∞∑

N=0

NP (N ; t) = st, (348)

which makes perfect sense. Further, the variance in the
number of molecules is equal to the mean, at all times.
[This discussion is written without any figures. Maybe

we need some schematics?]
What happens when we add degradation to this pic-

ture? Now the state of the system can change in several
ways, all of which will modify the probability that there
are exactly N molecules. First, synthesis can cause the N
molecules to become N+1, reducing P (N, t). Second, we
can have the transition from N−1 to N molecules, which
increases P (N, t). Note that these first two terms were
already present in our simpler model. The third process
is where degradation takes N molecules and eliminates
one, resulting in N − 1 molecules. Since each molecule
makes its transitions independently, the rate of this pro-
cess must be proportional to N , and this reduces P (N, t).
Finally, if there were N+1 molecules, degradation results
in N , increasing P (N, t); again because each molecule is
independent, the rate of this process must be propor-
tional to N + 1. Putting the terms together we have

∂P (N ; t)

∂t
= −sP (N ; t) + sP (N − 1; t)− kNP (N ; t) + k(N + 1)P (N + 1; t), (349)

where k is the probability per unit time for the decay of
one molecule.

Now it is possible for the synthesis and degradation
reactions to balance, generating a steady state. In this
steady state the distribution of the number of molecules
must obey

0 = sP (N−1)−(s+kN)P (N)+k(N+1)P (N+1). (350)

To solve this equation it is useful to regroup the terms,

−sP (N − 1)+kNP (N) = −sP (N)+k(N +1)P (N +1).
(351)

where the left hand side now refers to the forward
and backward rates between states with N − 1 and N
molecules, while the right hand side refers to the transi-
tions betweenN andN+1. All that we require is that the
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two sides be equal, but suppose we try to set each side
separately to zero, which corresponds to “detailed bal-
ance” among the transitions into and out of each state.
Then from the left hand side we have

P (N)

P (N − 1)
=

s

kN
, (352)

while from the right we have

P (N + 1)

P (N)
=

s

k(N + 1)
. (353)

But except for N → N +1, these are the same equation.
Thus, the steady state of this system does obey detailed
balance, and we can solve by iterating Eq (352):

P (1) =
s

k
P (0) (354)

P (2) =
s

2k
P (1) =

(s/k)2

2
P (0) (355)

P (3) =
s

3k
P (2) =

(s/k)3

3!
P (0), (356)

and, in general,

P (N) =
(s/k)N

N !
P (0). (357)

Finally we can fix the value of P (0) by insisting that the
distribution be normalized, and we find

P (N) = e−M MN

N !
, (358)

which again is the Poisson distribution, with mean M =
s/k.

Problem 61: The diffusion approximation. If N is not too
small we expect that P (N ; t) and P (N ± 1; t) are not too different.
Thus we should be able to approximate using a Taylor series,

P (N ± 1; t) ≈ P (N ; t)±
∂P (N ; t)

∂N
+

1

2

∂2P (N ; t)

∂N2
. (359)

(a.) Show that this approximation turns the master equation in
Eq (349) into something that looks more like the diffusion equa-
tion. What is the effective potential in which the “coordinate” N
is diffusing?

(b.) Why does it make sense to stop the Taylor series after two
derivatives? What happens if we stop after one?

(c.) How does the steady state solution that you obtain in the
diffusion approximation compare with the exact solution (the Pois-
son distribution)?

Problem 62: Langevin equations for chemical kinetics.
We know, as reviewed in Section II.A, that we can describe Brow-
nian motion by either a diffusion equation or a Langevin equation.
In more detail, we started with kinetics that, in the macroscopic
limit, correspond to the dynamics

dN(t)

dt
= s− kN(t). (360)

We would like to describe the noisy version of these dynamics as

dN(t)

dt
= s− kN(t) + ζ(t), (361)

where—inspired by the Brownian motion example—we expect that
the noise ζ(t) is white, but the strength might depend on the state
of the system, so that

〈ζ(t)ζ(t′)〉 = Teff [N(t)]δ(t− t′), (362)

where to remind us of the analogy to Brownian motion we can refer
to the noise strength as an effective temperature Teff .

(a.) Find the effective temperature that will reproduce the dif-
fusion equation that you derived in the preceding problem.

(b.) If we integrate Eq (361) over a very small time interval ∆τ ,
we obtain

∆N ≡ N(t+∆τ)−N(t) (363)

= [s− kN(t)]∆τ +

∫ ∆τ

0
dt′ζ(t+ t′). (364)

But if ∆τ is small enough, we know that the changes in the number
of molecules should be ∆N = 0 or ∆N = ±1. Going back to the
master equation [Eq 349], identify these transition probabilities.
From these probabilities, show that the mean change in the number
of molecules is the first term in Eq (364), 〈∆N〉 = [s− kN(t)]∆τ .
Continuing, show that the variance in ∆N is given by 〈(δ∆N)2〉 =
[s+ kN(t)]∆τ .

(c.) To reproduce the variance in ∆N , we must have

〈(∫ ∆τ

0
dt′ζ(t+ t′)

)2 〉
= [s+ kN(t)]∆τ. (365)

Use this, together with Eq (362), to show that

Teff [N(t)] = s+ kN(t). (366)

Does this agree with your result in (a.)?

So, these simplest of kinetic schemes for the synthesis
and degradation of molecules predict that the distribu-
tion of the number of molecules (“copy numbers”) should
be Poisson. Certainly we can imagine kinetic schemes
for which the fluctuations in copy number will be larger
than Poisson. For example, if the simple picture of syn-
thesis and degradation were correct for messenger RNA,
but each mRNA leads to the synthesis of b proteins,
then the mean number of proteins will be larger than
the mean number of mRNA molecules by this factor b,
〈Np〉 = b〈NmRNA〉, but the variance will be larger by
a factor of b2, 〈(δNp)2〉 = b〈(δNmRNA)2〉. Thus, if we
count protein molecules, the variance will be larger than
the mean, 〈(δNp)2〉 = b〈Np〉, and hence the protein copy
numbers are more variable than expected from the Pois-
son distribution. Notice that this is true even though we
have assumed that the translation from mRNA to protein
is completely noiseless, with each mRNA making exactly
b proteins. Variance beyond the Poisson expectation here
arises simply from amplification. This is exactly the same
argument made about photons and spikes from ganglion
cells in the retina, in Section I.D.
With this background, what can we measure? Count-

ing protein molecules is not easy. Over the last decades,
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FIG. 51 Noise in the regulation of gene expression, from
Elowitz et al (2002). A population of E coli express two
fluorescent proteins of different colors, CFP and YFP, both
under the control of the lac repressor. At left, expression
is repressed, copy numbers are low, and color variations are
substantial. Thus, although the two genes see the same reg-
ulatory signals, there is intrinsic variation in the output. At
right, repression is relieved, expression levels are higher, and
color variations are substantially smaller.

we have seen a huge improvement in the methods of op-
tical microscopy, to the point where we can literally see
the light emitted from a single fluorescent molecule. But
most biological molecules, and most proteins in particu-
lar, are not fluorescent. Indeed, until relatively recently
the only proteins with interesting spectroscopic signa-
tures in the visible part of the spectrum (e.g., the vi-
sual pigments and the heme proteins) involved a smaller
molecular cofactor bound to the protein (retinal, heme).
These cofactors are synthesized by separate, often com-
plex pathways. Thus while it might be possible to en-
gineer a cell to make a pigment protein just by splicing
the relevant gene into its genome, it would be almost im-
possible to introduce the entire synthetic machinery for
the cofactor. This is why the discovery of the green flu-
orescent protein in a species of jellyfish turned out to be
so important. In contrast to the proteins which require
cofactors for their fluorescence, these molecules are in-
trinsically fluorescent [Need a figure showing structure,
point to why this is possible, etc.. Maybe this discussion
should come earlier?] Since the isolation of the original
GFP, many variants have been synthesized, in a variety
of colors.

The simplest experiment to probe noise in the ex-
pression of a gene would be to introduce the gene for
GFP into a bacterium, and just look at the levels of
fluorescence—the brightness will be proportional to the
number of molecules, and with luck we can even cali-
brate the proportionality factor. But expression levels
could vary for uninteresting reasons. Cells vary in size

as they grow and divide. There can be variations in the
number of ribosomes, which will change the efficiency of
translation but it probably doesn’t make sense to call
these variations “noise.” How do we separate all these
different sources of variation from genuine stochasticity
in the processes of transcription and translation?
If we go back to Fig 50, we see that the transcrip-

tion of a gene into RNA is controlled by the binding of
transcription factor proteins to a segment of DNA called
the promoter or (in higher organisms) enhancer region.
Suppose that we make two copies of the same promoter,
put one next to the gene for a green fluorescent protein
and one next to the gene for a red fluorescent protein,
and then reinsert both of these into the genome. Now
all variations in the state of the cell that affect the over-
all efficiency of transcription and translation will change
the levels of green and red proteins equally. If the regula-
tory signals were noiseless, and the independent processes
of transcription and translation of the two proteins were
similarly deterministic, then every cell would be perfectly
yellow, having made equal amounts of green and red pro-
tein; cells might differ in their total brightness, but the
balance of red and green would be perfect. On the other
hand, if there really is noise in transcription and trans-
lation, or their regulation, then the balance of red and
green will be imperfect, and if we look a population of
genetically identical cells they will vary in color as well
as in brightness.
Figure 51 shows that our qualitative expectations for a

“two color” experiment are borne out in real experiments
on E coli, although “red” and “green” are actually yel-
low and cyan. In this experiment, the two fluorescent
proteins are under the control of the lac promoter. In
the native bacterium, this promoter controls the expres-
sion of enzymes needed for the metabolism of lactose,
and if there is a better source of carbon available (or if
lactose itself is absent) the bacteria don’t want to make
these enzymes. There is a transcription factor protein
called lac repressor which binds to the lac promoter and
blocks transcription. By changing environmental condi-
tions, one can tap into the signals that normally tell the
bacterium that it is time to turn on the lac–related en-
zymes, and turn off the repression by inactivating the
repressor proteins. Thus, not only can we get E coli to
make two colors of fluorescent protein, we can even ar-
range things so that we have control over the mean num-
ber of proteins that will be made. Everything that we
have said thus far about noise in synthesis and degrada-
tion reactions predicts that if the cell makes more protein
on average, then the fractional variance in how much pro-
tein is made should be reduced, and this is exactly what
we see in Fig 51.
More quantitatively, in Fig 52 we see the decompo-

sition of the variations into an “extrinsic” part that
changes the two colors equally and an “intrinsic” part
that corresponds to relative variations in the expression
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of the two proteins that are under nominally identical
control. If synthesis and degradation of proteins were a
Poisson process, then we expect from above that the vari-
ance would be equal to the mean; amplification of Pois-
son fluctuations in mRNA count would leave the variance
proportional to the mean. Even if the Poisson model is
exact, if we can’t calibrate the fluorescence intensity to
literally count the molecules, again all we could say the
that the variance of what we measure will be proportional
to the mean. In fact, the data are described well by

〈(δF )2〉
〈F 〉 =

A

〈F 〉 +B, (367)

where the fluorescence is normalized so that the mean
under conditions of maximal expression is one, and A =
7× 10−4 and B = 3× 10−3. If B → 0, this is exactly the
prediction of the Poisson model, and indeed B is small.
Importantly, we can see the decrease in the fractional
noise level with the increase in the mean. The absolute
numbers also are interesting, since they tell us that cells
can—at least under some conditions—set the expression
level of a protein to an accuracy of better than 10%.

It has been appreciated for decades that the initial
steps in the development of embryos provides an excel-
lent laboratory in which to study the regulation of gene
expression. As we have mentioned several times, what
makes the different cells in our body different is, funda-
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FIG. 52 Separating intrinsic and extrinsic noise, from Elowitz
et al (2002). At left, a scatter plot of the fluorescence from the
two different proteins show the decomposition into variations
in the overall efficiency of transcription and translation (“ex-
trinsic” noise) and fluctuations that change the two expres-
sion levels independently (“intrinsic” noise). At right, while
the total variance has no simple dependence on the mean ex-
pression level, the intrinsic noise goes down systematically as
the mean expression level goes up. Quantitatively, we plot
the standard deviation σ in fluorescence level, divided by the
mean m, as a function of the mean. The dotted line is from
Eq (367).

mentally, that they express different proteins. These dif-
ferences in expression have a multitude of consequences,
but the first step in making a cell commit to being one
type or another is to turn on (and off) the expression
of the correct set of genes. At the start, an embryo
is just one cell, and through the first several rounds of
cell division it is plausible that the daughter cells remain
identical. At some point, however, differences arise, and
these are the first steps on the path to differentiation, or
specialization of the cells for different tasks in the adult
organism.
A much studied example of embryonic development is

the fruit fly Drosophila melanogaster. We will learn much
more about this system in Section III.C, but for now
the key point is that in making the egg, the mother sets
the initial conditions for development in part by plac-
ing the mRNA for key proteins—referred to as the “pri-
mary morphogens”—at cardinal points in the embryo.
As these messages are translated, the resulting proteins
diffuse through the embryo, and act as transcription fac-
tors, activating the expression of other genes. An ex-
ample is Bicoid, for which the mRNA is localized at the
(eventual) head; the diffusion and degradation of the Bi-
coid (Bcd) protein leads to a spatial gradient in its con-
centration, and we can visualize this by fixing and stain-
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FIG. 53 Bicoid (Bcd) and Hunchback (Hb) in the early
Drosophila embryo. At top, an electron micrograph of the
embryo in cell cycle fourteen, with thousands of cells in a sin-
gle layer at the surface (image courtesy of EF Wieschaus).
At the bottom left, the embryo has been exposed to antibod-
ies against the proteins Bcd and Hb, and these antibodies in
turn have been labelled by green and red fluorophores, re-
spectively; the fluorescence intensity should be proportional
to the protein concentration, perhaps with some background.
Bicoid is a transcription factor that activates the expression
of Hunchback, and at the bottom right we see a scatter plot of
the output (Hb) vs input (Bcd), where each point represents
the state of one nucleus from the images at left; from Gregor
et al (2007b).
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ing the embryo with fluorescent antibodies, as shown in
Fig 53. A more modern approach is to fuse the gene for
Bcd with a fluorescent protein and substitute this for the
original gene; if one can verify that the fusion protein
replaces the function of the original, quantitatively, then
we can measure the spatial profile of Bcd in a live embryo.
Among other things, this approach makes it possible to
demonstrate that the fluorescence signal from antibody
staining really is proportional to the protein concentra-
tion, so we can interpret the data from images such as
those in Fig 53 quantitatively.

From our point of view, in constructing the embryo,
the mother has created an ideal experimental chamber.
After just a few hours, there are thousands of cells in a
controlled environment, exposed to a range of input tran-
scription factor concentrations that we can literally read
out along the embryo. We can also measure the response
to these inputs, for example the expression of the protein
Hunchback shown in Fig 53. In fact the targets of Bcd
are themselves transcription factors, so conveniently they
localize back to the nucleus, and hence each nucleus gives
us one data point for characterizing the input/output re-
lation. Taking seriously the linearity of antibody staining
we can plot the input/output relation between Bcd and
Hb in appropriately normalized coordinates, as in Fig 54,
and we can measure the noise in expression by comput-
ing the variance across the many nuclei that experience
essentially the same input Bcd level.

The first thing we see from Fig 54 is that, consistent
with the results from bacteria in Fig 52, the embryo can
regulate the expression of Hunchback to ∼ 10% accu-
racy or better across much of the relevant dynamic range.
How does this compare with the physical limits? To mea-
sure the reliability of Hunchback’s response to Bicoid, we
should refer the noise in expression back to the input—if
we want to change the output by an amount that is equal
to one standard deviation in the noise, how much do we
have to change the input? The answer is given by propa-
gating the variance backwards through the input/output
relation,

〈(δHb)2〉 =
∣∣∣∣
d〈Hb〉
d ln c

∣∣∣∣
2 (δc

c

)2

eff

, (368)

where c is the concentration of Bcd, and (δc/c)eff defined
in this way should be comparable to the Berg–Purcell
limit. In Fig 54 we see that this effective noise level
drops down to (δc/c)eff ∼ 0.1, so the system seems able
to respond reliable to ∼ 10% differences in concentration
of the input transcription factor.

We have seen, in Eq (336) and the surrounding dis-
cussion, that responding reliably to 10% differences in
transcription factor concentrations would be very diffi-
cult to detect, requiring hours of integration to push the
noise level down to manageable levels. This seems gen-
erally implausible, but in the fly embryo it is impossible,

FIG. 54 Input/output and noise in the transformation from
Bcd to Hb, from Gregor et al (2007b). (A) The input/output
relation can be obtained starting from the scatter plot in Fig
53, normalizing the fluorescence intensities as relative concen-
trations, and then averaging the output Hb expression level
across all nuclei that have essentially the same input Bcd level.
Blue curves show results for several individual embryos, and
red circles with error bars show the mean and standard devi-
ation of Hb expression level vs Bcd input for a single embryo.
The inset shows that these data are well fit by a Hill relation
[see the discussion around Eq (326)] with n = 5 (in red), and
substantially less well fit by n = 3 or n = 7 (in green). (B)
The standard deviation of Hb output, measured across the
multiple nuclei with the same Bcd input in single embryos;
different curves correspond to different individual embryos.
(C) Combining the input/output relation and noise levels, we
obtain the effective noise level referred to the input, as in Eq
(368); blue points are raw data, green line is an estimate of
measurement noise, and red circles are the results of subtract-
ing the measurement noise variance, with error bars computed
across nine embryos. (D) Correlations in Hb expression noise
in different nuclei, as a function of distance.

since the whole process from laying the egg to the estab-
lishment of the basic body plan (several steps beyond the
expression of Hunchback) is complete within three hours
or less. This apparent paradox depends on estimating
some key parameters, but in the Bcd/Hb system these
can be measured, and the solution to the problem does
not seem to lie here.

Problem 63: Effective diffusion constants. Add a problem
about the renormalization of diffusion constants by transient bind-
ing ... connect to noise levels, in a somewhat open ended second
part.

On the other hand, the fly embryo is unusual in that,
for much of its early development there are no walls be-
tween the cells. Thus, Hunchback mRNA synthesized



97

in one nucleus will be exported to the neighboring cyto-
plasm, and the translated protein should be free to diffuse
to other nuclei. Thus the Hunchback level in one nucleus
should reflect an average over the Bcd signals from many
cells in the neighborhood. If Hb has a diffusion con-
stant similar to that of Bcd, then in a few minutes the
molecules can cover a region which includes ∼ 50 nuclei,
and averaging over 50 independent Bcd signals is enough
to convert the required integration time from hours to
minutes. If this scenario is correct, there should be cor-
relations among the Hb expression noise in nearby nuclei,
and this is what we see in Fig 54D. Indeed, the correlation
length of the fluctuations is just what we need in order
to span the minutes/hours discrepancy. These results
suggest strongly that the reliability of the Hunchback re-
sponse to Bicoid is barely consistent with the physical
limits, but only because of spatial averaging.

Can we give a fuller analysis of noise in the Bcd/Hb
system? In particular, we see from Fig 54B that the
noise level has a very characteristic dependence on the
input concentration, which we can also replot vs the mean
output, as in Fig 55. This is an interesting way to look
at the data, because in the limit where the Poisson noise
of synthesis and degradation is dominant we should have

〈(δHb)2〉Poisson = α〈Hb〉, (369)

where the constant α depends on the units in which we
measure expression, but reflects the absolute number of
independent molecules that are being made. On the
other hand, if the random arrival of transcription fac-
tors at their target is dominant, we should have Eq (368)
with the effective noise given by the Berg–Purcell limit,

mean expression level

√
〈(δHb)2〉standard deviation

〈Hb〉

Berg-Purcell + Poisson

Poisson + “bursting”

n → ∞

FIG. 55 Noise in Hunchback expression as a function of the
mean expression level, from Tkačik et al (2008). This is a
replotting of the data from Fig 54, compared with several
models as described in the text. Error bars are standard de-
viations across multiple individual embryos.

so that

〈(δHb)2〉BP =

∣∣∣∣
d〈Hb〉
d ln c

∣∣∣∣
2

· 1

NcellsDacτavg
, (370)

where we have added a factor to include, as above, the
idea that Hb expression levels at one cell depend on an
average over Ncells nearby cells. Empircally, the mean
expression level is well approximated by a Hill function,

〈Hb〉 = cn

cn1/2 + cn
, (371)

where now we choose units where the maximum mean
expression level is one, and the data are fit best by n = 5.
Then we have

d〈Hb〉
d ln c

= n〈Hb〉 (1− 〈Hb〉) , (372)

and hence, after some algebra,

〈(δHb)2〉BP = β〈Hb〉2−1/n (1− 〈Hb〉)2+1/n , (373)

β =
n2

NcellsDac1/2τavg
. (374)

If we have both the Berg–Purcell noise at the input to
transcriptional control, and the Poisson noise at the out-
put, then we expect the variances to add, so that

〈(δHb)2〉 = 〈(δHb)2〉BP + 〈(δHb)2〉Poisson (375)

= β〈Hb〉2−1/n (1− 〈Hb〉)2+1/n + α〈Hb〉.
(376)

In Figure 55 we see how this prediction compares with
experiment. Since n = 5 is known from the input/output
relation, we have to set the parameters α and β. At max-
imal mean expression, 〈Hb〉 = 1 and Eq (376) predicts
〈(δHb)2〉 = α, so we can read this parameter directly
from the behavior at the right hand edge of the graph
(α2 ∼ 0.05). We have just one parameter β left to fit,
but this will determine the height, shape and position of
the peak in the noise level vs mean, so it is not at all
guaranteed that we will get a reasonable fit. In fact the
fit is very good, and we find β ∼ 0.5. It is interesting
that the dependence of the variance on the mean seems
very sensitive, since if we let the Hill coefficient become
large, even the best fit of Eq (376) systematically misses
the data, as shown by the n → ∞ curve in Fig 55. Other
subtly different models also fail, as you can see in Prob-
lem 65 [careful with number!].

Problem 64: Details of Hunchback noise. Discuss the
meaning of the parameters α and β. Can you relate these to mean-
ingful physical quantities? Do we have independent data to see if
these numbers make sense?
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Problem 65: Transcriptional bursting?. The key point
about noise in synthesis and degradation is that we expect the
variance to be monotonic as a function of the mean (as in the Pois-
son model), and this is not what we see in Fig 55. An alternative
model that could explain the peak of noise at intermediate expres-
sion levels is that the transcription site switches between active and
inactive states, generating a “burst” of mRNA molecules while in
the active state. You should be able to go back to our discussion
of noise in binding and unbinding without diffusion [leading up to
Eq (A322)], and build up the predictions of this model.

(a.) Suppose that switching into the active state occurs at a
rate kon, and the switch back to the inactive state occurs at a rate
koff . These rates must vary with the concentration of the input
transcription factor, since it is only by switching between active
and inactive states that the system can modulate the mean output.
It seems plausible that the mean output is proportional to the
probability of being in the active state. Are there any conditions
under which this would not be true?

(b.) Show that if the mean output is proportional to the prob-
ability of being in the active state, then the random switching will
contribute to the output variance a term

〈(δHb)2〉burst = 〈Hb〉 (1− 〈Hb〉) ·
τc
τavg

, (377)

where the correlation time τc = 1/(kon + koff), the output is mea-
sured in units such that the maximal mean value is 〈Hb〉 = 1, as
above, and we assume that the averaging time is long compared
with τc.

(c.) Switching into the active state is associated with transcrip-
tion factor binding. In contrast, switching back to the inactive
state doesn’t require any additional binding events. Thus it is
plausible that the rate koff is independent of the input concentra-
tion c. What is the dependence of kon required to reproduce the
mean input/output relation in Eq (371)? Is there a mechanistic
interpretation of this dependence?

(d.) As an aside, can you give an alternative description based on
the MWC model, as in our discussion of the bacterial rotary motor
above? Notice that now you need to think about the kinetics of
the transitions between the two states, not just the free energies.
See also the Appendix A.4. This is deliberately open ended.

(e.) Combine your results in [b.] and [c.] to show that the
analog of Eq (376) in this model is

〈(δHb)2〉 = 〈(δHb)2〉burst + 〈(δHb)2〉Poisson (378)

= γ〈Hb〉 (1− 〈Hb〉)2 + α〈Hb〉.
(379)

Give an expression for γ in terms of the original parameters of the
model. Explain why the steepness of the Hill function (that is, the
parameter n) doesn’t appear directly in determining the shape of
the relation between variance and mean.

(f.) In Fig 55, we see the best fit of Eq (379) to the data, which
is not very good. Without doing a fit, you should be able to show
that the model predicts a relation between the point at which the
noise is maximal, and the height of this maximum. Show that this
is inconsistent with the data.

To summarize, we can now observe directly the noise in
gene expression. While one could emphasize that these
fluctuations are, under some conditions, quite large, it
seems more surprising that there are conditions where
they are quite small. Cells can set the output of their
genetic control machinery with a precision of ∼ 10% or
better, thus doing much more than switching genes on

and off—intermediate levels of expression are meaning-
ful. This means, in particular, that we have make mea-
surements with an accuracy of better than 10%, and this
isn’t always easy to do. More fundamentally, the preci-
sion with which cells can control expression levels is not
far from the limits set by the random arrival of the rel-
evant signaling molecules (transcription factors) at their
targets. Of course, we could imagine cells which use more
copies of all the transcription factors, and thus could
achieve greater precision—or be sloppier, and reach the
same precision—but this doesn’t seem to be what hap-
pens. I don’t think we understand why evolution has
pushed cells into this particular corner.
So far we have discussed noise as a small fluctuation

around the mean. It is also possible that, in the same
way that thermal noise can result in a nonzero rate for
chemical reactions, noise in chemical kinetics can gener-
ate spontaneous switching among otherwise stable states.
Much has been written about this. I am less certain that
we really understand any particular system. There is,
however, some elegant physics here, so I would like to
come back and discuss this.

The following two problems are concerned with a newly discov-
ered bacterium that responds to a chemical signal by emitting light.
The bacteria are roughly spherical, with diameter d ∼ 2µm, and
hence are clearly visible under the microscope. The chemical signal
is shown to be a small protein, presumably secreted by other bac-
teria; the protein diffuses through the extracellular medium with
a diffusion constant D ∼ 10µm2/s. Very careful experiments es-
tablish that each individual bacterium either emits light at full in-
tensity or is essentially dark, and that changing the concentration
c of the signaling protein changes the probability of being in the
two states. Larger values of c correspond to higher probabilities of
being in the light emitting state, so that plight(c) is monotonically
increasing.

Problem 66: Extreme sensitivity, but slowly. There is
a specific concentration c = c1/2 of the signaling protein such
plight(c1/2) = pdark(c1/2) = 0.5. When poised at c = c1/2 the sys-
tem switches back and forth between the two states spontaneously
at a rate of ∼ 1/hour. Remarkably, a change in c by just 10% is
sufficient to shift the probabilities from plight = 0.5 to plight = 0.9
or plight = 0.1 when the concentration is increased or decreased,
respectively.

(a.) After some confusion in early experiments, it is found that
everything said above is true, but the half–maximal concentration
c1/2 = 10−12 M. Is this possible? Justify your answer clearly and
quantitatively.

(b.) One group proposes that this extreme sensitivity is not at
all surprising, since after all proteins can bind to other proteins
with dissociation constants as small as KD ∼ 10−15 M. Does this
observation of very tight binding have anything to do with the
physical limits on sensitivity? Why or why not?

(c.) Another group notes that 10−12 M corresponds to ∼ 10−3

molecules in the volume of the bacterium. They argue that this
provides evidence for homeopathy, in which drugs are claimed to
retain their effectiveness at extreme dilution, perhaps even to the
point where the doses contain less than one molecule on average.
Can you resolve their confusion?

Problem 67: How simple can it be? Further studies of this
new light emitting bacterium aim at identifying the molecules in-
volved. The first such experiment shows that if you block protein
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synthesis, the system cannot switch between the dark and light
states, indicating that the switch involves a change in gene ex-
pression rather than (for example) a change in phosphorylation or
methylation states of existing proteins as in chemotaxis. A system-
atic search which knocks out individual genes, looking for effects
on the behavior, finds only one gene that codes for a DNA–binding
protein. When this gene is knocked out, all bacteria are perma-
nently dark. More detailed experiments show that these bacteria
not only are dark, they actually are not expressing the proteins
required for generating light.

(a.) Draw the simplest schematic model suggested by these re-
sults. Be sure that your model explains why there are two rela-
tively stable states (light and dark) rather than a continuum of
intermediates, and that your model is consistent with the knock
out experiments.

(b.) Assume that the signaling protein binds to some receptor on
the surface of the cell and that this triggers a cascade of biochemical
events. For simplicity you can imagine that the output of this
cascade is some molecule, the concentration of which is proportional
to the average occupancy of the receptors over some window of
time. Explain how this molecule can couple to your model in [a]
to influence the probability of the cell being in the dark or light
states.

(c.) Formalize your models from [a] and [b] by writing differ-
ential equations for the concentrations of all the relevant species.
Show how these equations imply the existence of discrete light/dark
states. Can you see directly from the equations why changing the
receptor occupancy will shift the balance between these states? It
might be hard to explain the behavior near the midpoint (c = c1/2),
but it should be possible to explain the dominance of the dark state
as c → 0 and the light state as c → ∞.

(d.) Describe qualitatively all the sources of noise that could
enter your model. Do you have any guidance from experiment
about which sources are dominant?

(e.) Consider the point where c = c1/2. Explain qualitatively
what features of your model are responsible for determining the
∼ 1 hour time scale for jumping back and forth between the light
and dark states.

(f.) See how far you can go in turning your remarks in [e] into
an honest calculation!

There are several messages which I hoped to convey in
this section. First, bacterial chemotaxis provides us with
an example of chemical sensing which is interesting, not
just in itself but as an example of a vastly more general
phenomenon. Importantly, experiments on chemotaxis
set a quantitative standard that should be emulated in
the exploration of other chemical signaling systems, from
the embryo to the brain. Second, as explained in Ap-
pendix A.6, the intuitive argument of Berg and Purcell
can be made rigorous. What they identified is a limit to
chemical signaling which is very much analogous to the
photon shot noise limit in vision or imaging more gener-
ally. While molecules do many complicated things, they
have to reach their targets in order to do them, and this
is a random process, so this randomness sets a limit to
the precision of almost everything that cells do.47 Fi-
nally, real cells operate close to this limit, not just in

47 It is possible to produce light that does not obey Poisson statis-

specialized tasks such as chemotaxis but in the everyday
business of regulating gene expression. While other noise
sources are clearly present, the “noise floor” that results
from the Berg–Purcell limit never seems far away, and in
some cases cells may push all the way to the point where
this is the dominant noise source.

The study of chemotaxis has a long history. From a biologist’s
point of view, the modern era starts when Adler (1965, 1969)
demonstrates, using mutants, that chemosensing is independent of
metabolism. From a physicist’s point of view, the modern era starts
when Berg builds his tracking microscope and observes, quantita-
tively, the paths of individual bacteria (Berg 1971, Berg & Brown
1972). The experiments which demonstrated the temporal char-
acter of the computations involved in chemotaxis were done by
Macnab & Koshland (1972) and by Brown & Berg (1974). A nice
discussion of how these temporal comparisons translate into mobil-
ity up the gradient of attractive chemical is given by Schnitzer et
al (1990).

Adler 1965: Chemotaxis in Escherichia coli. Cold Spring Harbor
Symp Quant Biol 30, 289–292 (1965).

Adler 1969: Chemoreceptors in bacteria. J Adler, Science 166,
1588–1597 (1969).

Berg 1971: How to track bacteria. HC Berg, Rev Sci Instrum
42, 868–871 (1971).

Berg & Brown 1972: Chemotaxis in Escherichia coli analyzed
by three–dimensional tracking. Nature 239, 500–504 (1972).

Brown & Berg 1974: Temporal stimulation of chemotaxis in
Escherichia coli Proc Nat’l Acad Sci (USA) 71, 1388–1392
(1974).

Macnab & Koshland 1972: R Macnab & DE Koshland, The
gradient–sensing mechanism in chemotaxis. Proc Nat’l Acad
Sci (USA) 69, 2509–2512 (1972).

Schnitzer et al 1990: Strategies for chemotaxis. M Schnitzer,
SM Block, HC Berg & EM Purcell, Symp Soc Gen Microbiol
46, 15–34 (1990).

For fluid mechanics in general, see Landau and Lifshitz (1987). The
fact that bacteria live at low Reynolds number, and that this must
matter for their lifetsyle, was surely was known to many people, for
many years. But Berg’s experiments on E coli provided a stimulus
to think about this, and it resulted in a beautiful exposition by
Purcell (1977), which has been hugely influential. The appreciation
that self–propulsion at low Reynolds number has a gauge theory

tics for the photon counts, and this raises the question of whether
we could generate comparable noise reductions in chemical pro-
cesses. I think the answer is yes—for example, one could trans-
port molecules to their targets by an active process that is more
orderly than diffusion—but this seems enormously costly, as first
emphasized by Berg and Purcell themselves. It is, however,
worth thinking about. More subtly, some chemical reactions
involve enormous numbers of steps, so that the fractional vari-
ance in the time required for completion of the reaction by one
molecule becomes very small, as in the discussion of rhodopsin
shutoff in Section I.C. Indeed, transcription itself can be seen
as an example, where it is possible for the time required to syn-
thesize a single mRNA molecule—once transcription has been
initiated—to be nearly deterministic, so that this process does
not contribute a significant amount of noise.
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description is due to Shapere & Wilczek (1987). The dramatic
discovery that bacteria swim by rotating their flagella was made
by Berg & Anderson (1973), and then Silverman & Simon (1974)
succeeded in tethering cells by their flagella to see the rotation of
the cell body.

Berg & Anderson 1973: Bacteria swim by rotating their flagel-
lar filaments. Nature 245, 380–382 (1973).

Landau & Lifshitz 1987: Fluid Mechanics. LD Landau & EM
Lifshitz (Pergamon, Oxford, 1987).

Purcell 1977: EM Purcell, Life at low Reynolds’ number, Am J
Phys 45, 3–11 (1977).

Shapere & Wilczek 1987: Self–propulsion at low Reynolds
number. Phys Rev Lett 58, 2051–2054 (1987).

Silverman & Simon 1974: Flagellar rotation and the mecha-
nism of bacterial motility. M Silverman & M Simon, Nature
249, 73–74 (1974).

Should add some references about rotation of the mitochondrial
ATPase, and more recent work on flagellar motor ... .

:

The classic, intuitive account of the physical limits to chemcial
sensing is by Berg and Purcell (1977). [Do we want to dig into
the papers that they reference, in relation to sensitivity?] Mea-
surements on the impulse response of the system were reported by
Block et al (1982), and these experiments, along with Segall et al
(1986) provide a more compelling demonstration that bacterium
is sensitive to single molecular events. Another interesting paper
from this period is Block et al (1983) [should tell the story about
the Appendix as an example of models/theories in biology]. The
idea of deriving the impulse response as the solution to an opti-
mization problem, in the spirit of the Berg–Purcell discussion but
more rigorously, has been explored by several groups: Strong et al
(1998), Andrews et al (2006), and most recently Celani & Vergas-
sola (2010), who introduced a novel game theoretic approach [check
other refs].

Andrews et al 2006: Optimal noise filtering in the chemotactic
response of Escherichia coli. BW Andrews, T–M Yi & PA
Iglesias, PLoS Comp Bio 2, e154 (2006).

Berg & Purcell 1977: Physics of chemoreception. HC Berg &
EM Purcell, Biophys J 20, 193–219 (1977).

Block et al 1982: Impulse responses in bacterial chemotaxis.
SM Block, JE Segall & HC Berg, Cell 31, 215–226 (1982).

Block et al 1983: Adaptation kinetics in bacterial chemotaxis.
SM Block, JE Segall & HC Berg, J Bateriol 154, 312–323
(1983).

Celani & Vergassola 2010: Bacterial strategies for chemotaxis.
A Celani & M Vergassola, Proc Nat’l Acad Sci (USA) 107,
1391–1396 (2010).

Segall et al 1986: Temporal comparisons in bacterial chemo-
taxis. JE Segall, SM Block & HC Berg, Proc Nat’l Acad
Sci (USA) 83, 8987–8991 (1986).

Strong et al 1998: Adaptation and optimal chemotactic strat-
egy in E coli. SP Strong, B Freedman, W Bialek & R
Koberle, Phys Rev E 57, 5604–5617 (1998).

The experiments on the response of the flagellar motor to the
CheY∼P concentration are by Cluzel et al (2000). For measure-
ments on the diffusion constant of proteins in E coli see Elowitz
et al (1999), and for observations on the structure of the motor
in relation to its regulation by CheY∼P, see Thomas et al (1999).
The model in Fig 49 is based on give original refs for MWC–style
description of rotation. Give refs to models at the front end of the
transduction scheme, depending on what gets said in the text!

Cluzel et al 2000: An ultrasensitive bacterial motor revealed by
monitoring signaling proteins in single cells. P Cluzel, M
Surette & S Leibler, Science 287, 1652–1655 (2000).

Elowitz et al 1999: Protein mobility in the cytoplasm of Es-
cherichia coli. MB Elowitz, MG Surette, P–E Wolf, JB
Stock & S Leibler, J Bateriol 181, 197–203 (1999).

Thomas et al 1999: Rotational symmetry of the C ring and a
mechanism for the flagellar rotary motor. DR Thomas, DG
Morgan & DJ DeRoiser, Proc Nat’l Acad Sci (USA) 96,
10134–10139 (1999).

This seems to be the first place where GFP–based methods have
come up, so need to give a guide ot the literature here!

:

In thinking about transcriptional regulation, it is useful to review
some basic facts about molecular biology, for which the classic ref-
erence is Watson’s Molecular Biology of the Gene. This has been
through many editions, and at times flirted with being more of
an encyclopedia than a textbook. I’ll reference the current edition
here, which seems a bit more compact than some of the interme-
diate editions, but I also encourage you to look back at earlier
editions, written by Watson alone. A beautiful account of gene
regulation, using the bacteriophage λ as an example, was given by
Ptashne (1986), which has also evolved with time (Ptashne 1992);
see also Ptashne (2001).

Ptashne 1986: A Genetic Switch: Gene Control and Phage λ.
M Ptashne (Cell Press, Cambridge MA, 1986).

Ptashne 1992: A Genetic Switch, Second Edition: Phage λ and
Higher Organisms. M Ptashne (Cell Press, Cambridge MA,
1992).

Ptashne 2001: Genes and Signals. M Ptashne (Cold Spring Har-
bor Laboratory Press, New York, 2001).

Watson et al 2008: Molecular Biology of the Gene, Sixth Edi-
tion. JD Watson, TA Baker, SP Bell, A Gann, M Levine
&R Losick (Benjamin Cummings, 2008).

In order to make our discussion quantitative, we need to know
the absolute concentration at which transcription factors act.
Ptashne’s books give some discussion of this, although the esti-
mates were a bit indirect. Several groups have made measurements
on the binding of transcription factors to DNA, trying to measure
the concentration at which binding sites are half occupied; some-
times this is done by direct physical–chemical methods in vitro,
and sometimes by less direct methods in vivo. Examples include
Oehler et al (1994), Ma et al (1996), Pedone et al (1996), Burz et
al (1998), and Winston et al (1999). A modern version of the in
vitro binding experiment examines the molecules one at a time, as
in the work by Wang et al (2009).

Burz et al 1998: Cooperative DNA binding by Bicoid provides
a mechanism for threshold dependent gene activation in the
Drosophila embryo. DS Burz, R Pivera–Pomar, H Jackle &
SD Hanes, EMBO J 17, 5998–6009 (1998).

Ma et al 1996: The Drosophila morphogenetic protein Bicoid
binds DNA cooperatively. X Ma, D Yuan, K Diepold, T
Scarborough, & J Ma, Development 122, 1195–1206 (1996).

Oehler et al 1994: Quality and position of the three lac oper-
ators of E coli define efficiency of repression. S Oehler,
M Amouyal, P Kolkhof, B von Wilcken–Bergmann & B
Müller–Hill, EMBO J 13, 3348–3355 (1994).

Pedone et al 1996: The single Cys2–His2 zinc finger domain of
the GAGA protein flanked by basic residues is sufficient
for high–affinity specific DNA binding. PV Pedone, R
Ghirlando, GM Clore, AM Gronenborn, G Felsenfeld &
JG Omichinski, Proc Nat’l Acad Sci (USA) 93, 2822–2826
(1996).

Wang et al 2009: Quantitative transcription factor binding ki-
netics at the single molecule level. Y Wang, L Guo, I Gold-
ing, EC Cox, NP Ong, Biophys J 96, 609–620 (2009).
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Winston et al 1999: Characterization of the DNA binding prop-
erties of the bHLH domain of Deadpan to single and tandem
sites. RL Winston, DP Millar, JM Gottesfeld, Gottesfeld &
SB Kent. Biochemistry 38, 5138–5146 (1999).

An important development in the field has been the construction
of fusion proteins, combining transcription factors with fluorescent
proteins, and the re–insertion of these fusions into the genome. For
more about these techniques in general, see the references at the
end of Section II.B. When cells divide, their contents are parti-
tioned, and one can observe the noise from the finite number of
molecules being assigned at random to one of the two daughter
cells. Rosenfeld et al (2005), and more recently Teng et al (2010)
has shown how this can be used to make very precise estimates of
the number of copies of the protein in the mother cell, and thus
providing a calibration that converts fluorescence intensity back
into copy number. Gregor et al (2007a) discuss a case where it
was possible to test in detail that the fusion construct replaces the
function of the original transcription factor, quantitatively, and in
the next paper they exploit this construct to analyze the noise in
one step of transcriptional regulation (see below), as well as making
estimates of absolute concentration by comparing the fluorescence
intensity to a purified standard (Gregor et al 2007b).

Gregor et al 2007a: Stability and nuclear dynamics of the Bi-
coid morphogen gradient. T Gregor, EF Wieschaus, AP
McGregor, W Bialek & DW Tank, Cell 130, 141–152 (2007).

Gregor et al 2007b: Probing the limits to positional informa-
tion. T Gregor, DW Tank, EF Wieschaus & W Bialek, Cell
130, 153–164 (2007).

Rosenfeld et al 2005: Gene regulation at the single cell level. N
Rosenfeld, JW Young, U Alon, PS Swain & MB Elowitz,
Science 307, 1962–1965 (2005).

Teng et al 2010: Measurement of the copy number of the master
quorum–sensing regulator of a bacterial cell. S–W Teng, Y
Wang, KC Tu, T Long, P Mehta, NS Wingreen, BL Bassler
& NP Ong, Biophys J 98, 2024–2031 (2010).

In contrast to bacteria, many eukaryotic cells are large enough, or
move slowly enough, that they can get a reliable signal by measur-
ing gradients across the length of their body; for a discussion of the
limits to these measurements and some of the relevant experiments,
see Endres & Wingreen (2009a,b). Need to digest data on chemo-
taxis in bigger cells ... . Find general reference on axon guidance,
growth cones etc.. The measurements on extreme precision of axon
guidance were reported by Rosoff et al (2004).

Endres & Wingreen 2009a: Accuracy of direct gradient sens-
ing by single cells. RG Endres & NS Wingreen, Proc Nat’l
Aca Sci (USA) 105, 15749–15754 (2008).

Endres & Wingreen 2009b: Accuracy of direct gradient sens-
ing by cell–surface receptors. RG Endres & NS Wingreen,
Prog Biophys Mol Biol 100, 33–39 (2009).

Gregor et al 2010: The onset of collective behavior in social
amoebae. T Gregor, K Fujimoto, N Masaki & S Sawai,
Science 328, 1021–1025 (2010).

Rossof et al 2004: A new chemotaxis assay shows the extreme
sensitivity of axons to molecular gradients. WJ Rosoff,
JS Urbach, MA Esrick, RG McAllister, LJ Richards & GJ
Goodhill, Nature Neurosci 7, 678–682 (2004).

Song et al 2006: Dictyostelium discoideum chemotaxis: Thresh-
old for directed motion. L Song, SM Nadkarnia, HU
Bödeker, C Beta, A Bae, C Franck, W-J Rappel, WF Loomis
& E Bodenschatz, Eur J Cell Bio 85, 981–989 (2006).

It is only in the last decade that it has been possible to make di-
rect measurements of the noise in gene expression, and even more
recently that it has been possible to focus on noise in the control
process itself. The initial experiment separating intrinsic from ex-
trinsic noise sources using the two color plasmid was by Elowitz et

al (2002), which touched off a series of experiments on both bacte-
rial (Ozbudak et al 2002, Pedraza & van Oudenaarden 2005) and
eukaryotic systems (Blake et al 2003, Raser & O’Shea 2004). The
experiments on noise in the Bcd/Hb system are by Gregor et al
(see above). A review of methods for measuring Bcd concentration
profiles is given by Morrison et al (2011), and in particular they
discuss the comparison of live GFP–based imaging with antibody
staining methods in fixed samples. A more detailed analysis of the
data on Bcd/Hb noise is given by Tkačik et al (2008), which also
provides a broader context on the role of different noise sources
in the control of gene expression. Models based on transcriptional
bursting are inspired by the direct observation of these bursts in E
coli by Golding et al (2005). It is worth thinking about whether
the observed bursts necessarily result from the kinetics of switching
between states of the transcriptional apparatus, or could be traced
to the binding and unbinding of transcription factors.

Blake et al 2003: Noise in eukaryotic gene expression. WJ
Blake, M Kaern, CR Cantor & JJ Collins, Nature 422, 633–
637 (2003).

Elowitz et al 2002: Stochastic gene expression in a single cell.
MB Elowitz, AJ Levine, ED Siggia & PD Swain, Science
297, 1183–1186 (2002).

Golding et al 2005: Real–time kinetics of gene activity in indi-
vidual bacteria. I Golding, J Paulsson, SM Zawilski & EC
Cox, Cell 123, 1025–1036 (2005).

Morrison et al 2011: Quantifying the Bicoid morphogen gradi-
ent in living embryos. AH Morrisson, M Scheeler, J Dubuis
& T Gregor, in Imaging in Developmental Biology: A Labo-
ratory Manual, J Sharpe & R Wong, eds (Cold Spring Har-
bor Press, Woodbury NY, 2011); arXiv.org:1003.5572 [q–
bio.QM] (2010).

Ozbudak et al 2002: Regulation of noise in the expression of a
single gene. E Ozbudak, M Thattai, I Kurtser, AD Gross-
man & A van Oudenaarden, Nature Gen 31, 69–73 (2002).

Pedraza & van Oudenaarden 2005: Noise propagation in
gene networks. J Pedraza & A van Oudenaarden, Science
307, 1965–1969 (2005).

Raser & O’Shea 2004: Control of stochasticity in eukaryotic
gene expression. JM Raser & EK OShea, Science 304, 1811–
1814 (2004).

Tkačik et al 2008: The role of input noise in transcriptional reg-
ulation. G Tkačik, T Gregor & W Bialek, PLoS One 3,
e2774 (2008).

Will need to add some references about bistability, noise induced
switching, and maybe path integral methods for noise .. depends
on what gets said in the text.

C. More about noise in perception

We have already said a bit about noise in visual percep-
tion, in the case where perception amounts to counting
photons. But this is just one corner of our perceptual
experience, and we’d like to know if some of the same
principles are relevant outside of this limit. In this sec-
tion we will look at a few instances, sampled from differ-
ent organisms and different sensory modalities. I think
one of the important ideas here is that considerations
of noise—and processing strategies for reaching reliable



102

conclusions in the presence of noise, perhaps even op-
timizing performance—cut across these many different
systems, which often are the subjects of quite isolated
literatures.

It has been known for some time that bats navigate by
generating ultrasonic calls and listening for the echoes,
forming an image of their world much as in modern sonar.
To get a feeling for the precision of this behavior, there
is a simple, qualitative experiment that is best explained
with a certain amount of (literal) hand waving [ask Jim
Simmons for original reference]. Some bats will happily
eat mealworms if you toss them into the air. Before toss-
ing them, however, you can dip them into a little bit of
flour. To eat the worm, the bat must “see” it, and then
maneuver its own body into position, finally sweeping the
worm up in its wing and bringing it to its mouth. But
if the worm has been dusted with flour, this will leave
a mark on the wing. Now repeat the experiment, many
times, with same bat (but, of course, different worms).
If you look at the bat’s wing, you might expect to see
many spots of flour, but in fact all the spots are on top of
one another. This suggests that the entire process—not
just identifying the location of the worm in the air, but
the acrobatic movements required to scoop it up—have
a precision of roughly one centimeter. In echolocation,
position estimates are based on the time delays of the
echoes, and with a sound speed of ∼ 340m/s, this cor-
responds to a timing precision of δt ∼ 30µs. This rough
estimate already is interesting, although maybe not too
shocking since we can detect a few microseconds of dif-
ference in the arrival times of sounds between our two
ears, and this is how we can localize the source of low
frequency sounds. Barn owls do even better, detecting
δτ ∼ 1µsec between their ears.

As an aside, it was Rayleigh who understood that our

FIG. 56 A schematic of the ‘Y’ apparatus for testing echo
timing discrimination performance in bats, from Simmons et
al (1990).
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FIG. 57 Performance of four different bats at echo jitter dis-
crimination, from Simmons et al (1990). Echoes can be re-
turned with no phase shift (circles), or with a phase shift of
π (squares); errors for the phase shifted echoes are measured
downward.We see that the phase shift itself is detectable with
almost no errors, that there is confusion around δτ ∼ 35µs,
and that this “confusion peak” shifts and splits with the in-
troduction of a phase shift.

brains need to use different cues for localization in differ-
ent frequency ranges, just because of the physics of sound
waves. At high frequencies (short wavelengths) our head
casts an acoustic shadow, and there is a difference in in-
tensity between out ears—the sound comes from the side
that gets the louder signal. But at low frequencies, the
wavelength is comparable to or larger than the size of our
head, and there is no shadow. There is, however, a time
or phase difference, but this is small. To demonstrate our
sensitivity to these small time differences directly, he sat
Lady Rayleigh in the gazebo behind their home, and ar-
ranged for tubes of slightly different length to lead from
a sound source to her two ears. A fabulous image.

Problem 68: Time differences and binaural hearing.
Show that when a sound source is far away, the difference in prop-
agation time to your two ears is independent of distance to the
source. What does determine this time difference? For your own
head, what is the time difference for a source at an angle of ∼ 10◦

to the right of the direction your nose is pointing?

To be more quantitative, one would like to get the bats
to report more directly on their estimates of echo delay, as
in Fig 56. In one class of experiments, bats stand at the
base of a Y with loudspeakers on the two arms. Their ul-
trasonic calls are monitored by microphones and returned
through the loudspeakers with programmable delays. In
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a typical experiment, the ‘artificial echoes’ produced by
one side of the Y are at a fixed delay τ , while the other
side alternately produces delays of τ ± δτ . The bat is
trained to take a step toward the side which alternates,
and the question is how small we can make δτ and still
have the bat make reliable decisions. Early experiments
suggested that delays differences of δτ ∼ 1µsec were de-
tectable, and perhaps more surprisingly that delays of
∼ 35µsec were less detectable, as shown in Fig 57. The
latter result might make sense if the bat were trying to
measure delays by matching the detailed waveforms of
the call and echo, since these sounds have most of their
power at frequencies near f ∼ 1/(35µsec)—the bat can
be confused by delay differences which correspond to an
integer number of periods in the acoustic waveform, and
one can even see the n = 2 ‘confusion resonance’ if one
is careful. One can also introduce a phase shift into the
artificial echo, and this shifts the confusion peak as ex-
pected.

Let’s think about this more formally. Suppose that we

are expecting a sound (or any signal) that has a time
dependence s0(t), but we don’t know when it will arrive,
so what we actually observe will be s0(t − τ) embedded
in some background of noise. That is,

s(t) = s0(t− τ) + η(t), (380)

where η(t) is the noise. Let’s assume, for simplicity, that
the noise is white, with some spectral density N . Then,
as explained in Appendix B, the probability density for
the function s(t) becomes

P [s(t)|τ ] = 1

Z
exp



− 1

2N

∫
dt

∣∣∣∣∣s(t)− s0(t− τ)

∣∣∣∣∣

2


 ,

(381)
where Z is a normalization constant and the notation
reminds us that this is the distribution if we know the
delay τ . If instead the delay is τ + δτ ,

P [s(t)|τ + δτ ] =
1

Z
exp



− 1

2N

∫
dt

∣∣∣∣∣s(t)− s0(t− τ − δτ)

∣∣∣∣∣

2


 . (382)

As in our previous discussions of discrimination between two alternatives [give specific pointer], when we are faced
with a particular signal s(t) and have to decide whether the delay was τ or τ + δτ , the relevant quantity is the (log)
likelihood ratio:

λ[s(t)] ≡ ln

(
P [s(t)|τ + δτ ]

P [s(t)|τ ]

)
(383)

= − 1

2N

∫
dt

∣∣∣∣∣s(t)− s0(t− τ − δτ)

∣∣∣∣∣

2

+
1

2N

∫
dt

∣∣∣∣∣s(t)− s0(t− τ)

∣∣∣∣∣

2

(384)

=
1

N

∫
dt s(t) [s0(t− τ − δτ)− s0(t− τ)] . (385)

If the delay really is τ , then

〈λ[s(t)]〉τ ≡
〈

1

N

∫
dt s(t) [s0(t− τ − δτ)− s0(t− τ)]

〉

τ

(386)

=

〈
1

N

∫
dt [s0(t− τ) + η(t)] [s0(t− τ − δτ)− s0(t− τ)]

〉

τ

(387)

=
1

N

∫
dt s0(t− τ) [s0(t− τ − δτ)− s0(t− τ)] (388)

=
1

N [C(δτ)− C(0)], (389)

where

C(t) =

∫
dt′ s0(t

′)s0(t
′ − t) (390)

is the autocorrelation function of the expected signal.

Similar calculations yield

〈λ[s(t)]〉τ+δτ =
1

N [C(0)− C(δτ)], (391)

〈(δλ[s(t)])2〉τ = 〈(δλ[s(t)])2〉τ+δτ (392)

=
2

N [C(0)− C(δτ)]. (393)
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It should also be clear that λ[s(t)] is a Gaussian random
variable (inherited from the Gaussian statistics of the
noise η), so these few moments provide a complete de-
scription of the problem of discriminating between delays
τ and τ + δτ . The end result is that the discrimination
problem is exactly that of a single Gaussian variable (λ),
with signal–to–noise ratio

SNR =
(〈λ[s(t)]〉τ+δτ − 〈λ[s(t)]〉τ )2

〈(δλ[s(t)])2〉
=

2

N [C(0)−C(δτ)].

(394)
Thus we see that the SNR is large as soon as the jitter δτ
is big enough to break the correlations in the waveform,
and conversely that the SNR falls if shifting by δτ brings
the waveform back into correlation with itself, as will
happen for an approximately periodic signal such as the
echolocation pulse.

Problem 69: Details of the SNR for detecting jitter in
echolocation. Fill in the details leading to Eq (394).

(a.) How does this result change if the discrimination involves
not just a time shift δτ but also a sign flip or π phase shift?

(b.) Recall the relationship between error probability and SNR
[point back to photon counting discussion]. Is it practical to try
and estimate the correlation function C(τ) by measuring the error
probability as a function of δτ? What if you also have access to
experiments with a sign flip, as in (a.)? If you have errors in the
measurement of the error probability, how do these propagate back
to estimates of the underlying C(τ)?

(c.) Compare your results in (b.) with the construction of “com-
pound jitter discrimination curves” by Simmons et al (1990). Could
you suggest improvements in their data analysis methods?

This argument about discriminability assumes that the
bat’s brain actually can compute using the entire acoustic
waveform s(t), rather some more limited features; in this
sense we are describing the best that the bat could pos-
sibly do. It is interesting that such a calculation predicts
confusion at delays where the autocorrelation function
of the bat’s call has a peak, and that such confusions
are observed. On the other hand, this calculation seems
hopelessly optimistic: “access to the acoustic waveform”
means, in particular, access to features that are varying
on the microsecond timescale. If we record the activity of
single neurons emerging from the ear as they respond to
pure tones, then we can see the action potentials “phase
lock” to the tone, but this effect is significant only up to
some maximum frequency. Beyond this high frequency
cutoff, the overall rate of spikes increases with the inten-
sity of the tone, but the timing of the spikes seems unre-
lated to the details of the acoustic waveform. Although
there is controversy about the precise value of the cutoff
frequency for phase locking, there seems to be no hint in

the literature that it could be as high at 30 kHz. Taking
all this at face value, it seems implausible that the audi-
tory nerve actually transmits to the brain anything like
a complete replica of the echo waveforms.
There is a second problem with this seemingly simple

calculation. If we expand the SNR for small δτ , we have

SNR =
2

N [C(0)− C(δτ)] ≈ C(0)

N ·
[
C ′′(0)

C(0)

]
(δτ)2.

(395)
We expect that the term in brackets, which has the units
of 1/(time)2, is determined by the time scale on which the
echolocation pulse is varying, something like ∼ 35µsec.
On the other hand, the first term, C(0)/N measures how
loud the echo is relative to the background noise, and
is dimensionless. We recall that in acoustics it is con-
ventional to measure in deciBels, where 10 dB represents
a factor of ten difference in acoustic power or energy.
A typical quiet conversation produces sounds ∼ 30 dB
above our threshold of hearing and hence above the lim-
iting internal noise sources in the ear, whatever these may
be. The bat’s echolocation pulses are enormously loud,
and although the echoes may be weak, it still is plausible
that (at least in the laboratory setting) they are ∼ 60 dB
above the background noise. This means that our cal-
culation predicts a signal–to–noise ratio of one when the
differences in delay δτ are measured in tens of nanosec-
onds, not microseconds. I think this was viewed as so
obviously absurd that it was grounds for throwing out
the whole idea that the bat uses detailed waveform in-
formation, even without reference to data on what the
auditory nerve can encode.
In an absolutely stunning development, however, Sim-

mons and colleagues went back to their experiments, pro-
duced delays in the appropriate range—convincing your-
self that you have control of acoustic and electronic delays
with nanosecond precision is not so simple—and found
that the bats could do what they should be able to do
as ideal detectors: they detect 10 nanosecond differences
in echo delay, as shown in Fig 58. Further, they added
noise in the background of the echoes and showed that
performance of the bats tracked the ideal performance
over a range of noise levels. This is a wonderful example
with which to start this section of our discussion, since
we have absolutely no idea how the bat manages this
amazing feat of signal processing.

The problem of echo delay discrimination has just
enough structure to emphasize an important point: when
we make perceptual decisions, we are not identifying sig-
nals, we are identifying the distribution out of which
these signals have been drawn. This becomes even more
important as we move toward more complex tasks, where
the randomness is intrinsic to the ‘signal’ rather than
just a result of added noise. As an example, a single
spoken word can generate a wide variety of sounds, all
the more varied when embedded in a sentence. Identi-
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FIG. 58 Bat echo discrimination performance at very small
delays, from Simmons et al (1990). Should add something
about dependence on background noise level.]

fying the word really means saying that the particular
sound we have heard comes from this distribution and
not another. Importantly, probability distributions can
overlap, and hence there are limits on the reliability of
discrimination.

Some years ago, Barlow and colleagues launched an
effort to use these ideas of discrimination among distri-
butions to study progressively more complex aspects of
visual perception, in some cases reaching into the psy-
chology literature for examples of gestalt phenomena—
where our perception is of the whole rather than its parts.
One such example is the recognition of symmetry in oth-
erwise random patterns. Suppose that we want to make
a random texture pattern. One way to do this is to draw
the contrast C(x) at each point x in the image from some
simple probability distribution that we can write down.
An example is to make a Gaussian random texture, which
corresponds to

P [C(x)] ∝ exp

[
−1

2

∫
d2x

∫
d2x′C(x)K(x− x′)C(x′)

]
,

(396)

whereK(x−x′) is the kernel or propagator that describes
the texture. By writing K as a function of the difference
between coordinates we guarantee that the texture is ho-
mogeneous; if we want the texture to be isotropic we
take K(x − x′) = K(|x − x′|). Using this scheme, how
do we make a texture with symmetry, say with respect
to reflection across an axis?

Problem 70: Texture discrimination. Show that Eq (396)
can be rewritten as

P [C(x)] ∝ exp

[
−
1

2

∫
d2k

(2π)2
|C̃(k)|2

SC(k)

]
, (397)

where SC(k) is the (now two dimensional) power spectrum, con-
nected as usual to the correlation function

〈C(x)C(x′)〉 =
∫

d2k

(2π)2
SC(k)eik·(x−x′). (398)

Suppose that you have the task of discrimination between images
drawn from distributions characterized by two different power spec-
tra, SC(k) and SC(k) + ∆SC(k). Show that, assuming one has
access to a large area of the image, the discrimination problem for
small ∆SC(k) is again like the discrimination of a single Gaus-
sian variable. Explain what role is played by the assumption of a
“large area,” and what defines large in this context. How does the
signal–to–noise ratio for discrimination depend on area?

The statement that texture has symmetry across an an
axis is that for each point x we can find the correspond-
ing reflected point R̂ · x, and that the contrasts at these
two points are very similar; this should be true for every
point. This can be accomplished by choosing

Pγ [C(x)] ∝ exp

[
−1

2

∫
d2x

∫
d2x′C(x)K(x− x′)C(x′) +

γ

2

∫
d2x|C(x)− C(R̂ · x)|2

]
, (399)

where γ measures the strength of the tendency toward
symmetry. Clearly as γ → ∞ we have an exactly sym-
metric pattern, quenching half of the degrees of freedom
in the original random texture. On the other hand, as
γ → 0, the weakly symmetric textures drawn from Pγ be-
come almost indistinguishable from a pure random tex-

ture (γ = 0). Given images of a certain size, and a known
kernel K, there is a limit to the smallest value of γ that
can be distinguished reliably from zero, and we can com-
pare this statistical limit to the performance of human
observers. This is more or less what Barlow did, although
he used blurred random dots rather than the Gaussian
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textures considered here; the idea is the same, and all
the details become the same in the limit of many dots.
The result is that human observers come within a factor
of two of the statistical limit for detecting γ or its analog
in the random dot patterns. [Show a 1D version of this
problem in a figure.]

One can use similar sorts of visual stimuli to think
about motion, where rather than having to recognize a
match between two halves of a possibly symmetric im-
age we have to match successive frames of a movie. Here
again human observers can approach the statistical lim-
its, as long as we stay in the right regime: we seem not to
make use of fine dot positioning (as would be generated
if the kernel K only contained low order derivatives) nor
can we integrate efficiently over many frames. These re-
sults are interesting because they show the potentialities
and limitations of optimal visual computation, but also
because the discrimination of motion in random movies
is one of the places where people have tried to make close
links between perception and neural activity in the (mon-
key) cortex.

Let us look in detail at the case of visual motion es-
timation, using not humans or monkeys, but a smaller
system which have met once before—the visual system of
the fly, which we have met already in Section I.A. If you
watch a fly flying around in a room or outdoors, you will
notice that flight paths tend to consist of rather straight
segments interrupted by sharp turns and acrobatic in-
terludes. These observations can be quantified through
the measurement of trajectories during free flight, and
in experiments where the fly is suspended from a tor-
sion balance or a fine tether. Given the aerodynamics
for an object of the fly’s dimensions, even flying straight
is tricky. In the torsion balance one can demonstrate di-
rectly that motion across the visual field drives the gener-
ation of torque, and the sign is such as to stabilize flight
against rigid body rotation of the fly. Indeed one can
close the feedback loop by measuring the torque which
the fly produces and using this torque to (counter)rotate
the visual stimulus, creating an imperfect ‘flight simula-
tor’ for the fly in which the only cues to guide the flight
are visual; under natural conditions the fly’s mechanical
sensors play a crucial role. Despite the imperfections of
the flight simulator, the tethered fly will fixate small ob-
jects, thereby stabilizing the appearance of straight flight.
Similarly, aspects of flight behavior under free flight con-
ditions can be understood if flies generate torques in re-
sponse to motion across the visual field, and that this
response is remarkably fast, with a latency of just ∼ 30
msec. The combination of free flight and torsion bal-
ance experiments strongly suggests that flies can estimate
their angular velocity from visual input alone, and then
produce motor outputs based on this estimate.

Voltage signals from the receptor cells are processed
by several layers of the brain, each layer having cells or-
ganized on a lattice which parallels the lattice of lenses

visible from the outside of the fly. As shown in Fig 59,
after passing through the lamina, the medulla, and the
lobula, signals arrive at the lobula plate. Here there is a
stack of about 50 cells which are are sensitive to differ-
ent components of motion. These cells have imaginative
names, such as H1 and V1, which respond to horizontal
and vertical components of motion, respectively. If one
kills individual cells in the lobula plate then the simple
experiment of moving a stimulus and recording the flight
torque no longer works, strongly suggesting that these
cells are an obligatory link in the pathway from the retina
to the flight motor. Taken together, these observations
support a picture in which the fly’s brain uses photore-
ceptor signals to estimate angular velocity, and encodes
this estimate in the activity of a few neurons.48 What
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FIG. 59 The visual system of a fly, from the retina to the
motion sensitive cells of the lobula plate. From de Ruyter
van Steveninck & Bialek (2002).

48 You should be skeptical of any claim about what the brain com-
putes, or more generally what problems an organism has to solve
in order to explain some observed behavior. The fact that flies
can stabilize their flight using visual cues, for example, does not
mean that they compute motion in any precise sense—they could
use a form of ‘bang–bang’ control that needs knowledge only of
the algebraic sign of the velocity, although I think that the tor-
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FIG. 60 The limits to motion detection. At top, a possible
pattern of contrast (normalized light intensity) vs. position
or angle in the visual world. Blue denotes the original pat-
tern, and green illustrates a shift by one tenth of the spac-
ing between photoreceptors. The second panel from the top
shows the blurring and sampling of the image, with Gaus-
sian apertures that provide a model for the optics of the fly’s
eye. Note that the spacing between photoreceptors is compa-
rable to width of the diffraction blur. The third panel shows
the signal arriving at each photoreceptor. We see that the
blurring reduces the contrast enormously. The bottom panel
illustrates the effect of adding noise, here with an amplitude
expected if each snapshot involves counting an average of 103

photons. Insets show the distribution of signals plus noise
in response to the original (blue) and shifted (green) images.
Despite the large differences between the two initial patterns,
only one of the five receptor cells shown here would be able to
come near to reliable detection. The experiments described
in the text are done under conditions of even smaller signal–
to–noise ratios.

can we say about the physical limits to the precision of
this computation?

Suppose that we look at a pattern of typical contrast C
and it moves by an angle δθ, as schematized in Fig 60. A
single photodetector element will see a change in contrast
of roughly δC ∼ C · (δθ/φ0), where φ0 is the angular
scale of blurring due to diffraction. If we can measure
for a time τ , we will count an average number of photons
Rτ , with R the counting rate per detector, and hence
the noise can be expressed as a fractional precision in
intensity of ∼ 1/

√
Rτ . But fractional intensity is what

we mean by contrast, so 1/
√
Rτ is really the contrast

sion balance experiments argue against such a model. It also
is a bit mysterious why we find neurons with such understand-
able properties: one could imagine connecting photoreceptors to
flight muscles via a network of neurons in which there is nothing
that we could recognize as a motion–sensitive cell. Thus it is not
obvious either that the fly must compute motion or that there
must be motion–sensitive neurons.

noise in one photodetector. To get the signal–to–noise
ratio we should compare the signal and noise in each of
the Ncells detectors, then add the squares if we assume
(as for photon shot noise) that noise is independent in
each detector while the signal is coherent:

SNR ∼ Ncells ·
(
δθ

φ0

)2

C2Rτ. (400)

Motion discrimination is hard for flies because they have
small lenses and hence blurry images (φ0 is large) and
because they have to respond quickly (τ is small); typi-
cal photon counting rates in a laboratory experiment are
R ∼ 104 s−1 and outside on a bright day one can get to
R ∼ 106 s−1. Under reasonable laboratory conditions—
and taking account of all the factors that go in front of
our rough Eq (400) in a more careful calculation—the
optimal estimator would reach SNR = 1 at an angular
displacement of δθ ∼ 0.05◦.
We can test the precision of motion estimation in two

very different ways. One is similar to the experiments
we have discussed already, where we are forced to choose
between two alternatives and measure the reliability of
this choice. A single neuron responds to sudden steps of
motion with a brief volley of action potentials which we

FIG. 61 Motion discrimination with the fly’s H1 neuron,
from de Ruyter van Steveninck & Bialek (1995). At left, a
schematic of the spikes in response to a transient stimulus,
such as a step of motion. We can describe the response by
the time until the first spike τ0, the time from the first spike
to the second τ1, ... . Alternatively we can just count the
spikes that have occurred up to a certain time after the stim-
ulus, or we could at some fixed time resolution describe the
whole pattern of spikes as a binary word. In each case we can
analyze the discriminability of different stimuli by accumulat-
ing, over many repeated presentations of each stimulus, the
distribution of responses. At right, an example of this analy-
sis, focusing on the single interspike interval τ1 in response to
steps that differ in size by 0.12◦. Long intervals correspond
to the weaker stimulus, and from the cumulative probability
distributions in the top panel we can read off the probabilities
of correct identification of each stimulus.
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can label as occurring at times t1, t2, · · · . We as observers
of the neuron can look at these times and try to decide
whether the motion had amplitude θ+ or θ−; the idea
is exactly the same as in earlier discussions of discrim-
ination of signal vs noise, but here we have to measure
the relevant probability distributions rather than making
assumptions about their form; see Fig 61. Doing the in-
tegrals, one finds that looking at spikes generated in the
first ∼ 30msec after the step (as in the fly’s behavior) we
can reach the reliability expected for SNR = 1 at a dis-
placement δθ = |θ+ − θ−| ∼ 0.12◦, within a factor of two
of the theoretical limit set by noise in the photodetectors.

It is worth noting a few more points that emerge from
Fig 61 and further analyses of this experiment. First, on
the ∼ 30msec time scale of relevance to behavior, there
are only a handful of spikes. This is partly what makes
it possible to do the analysis so completely, but it also
is a lesson for how we think about the neural represen-
tation of information in general. Second, we can dissect
the contributions of individual spikes to show that each
successive spike makes a nearly independent contribution
to the signal to noise ratio for discrimination, so there is
essentially no redundancy. Finally, the motions we are
discussing—motions close to the physical limits of de-
tectability, and motions that real neurons can represent
reliably—are much smaller than the lattice spacing on
the retina or the nominal “diffraction limit” of angular
resolution ∼ 1◦. Analogous phenomena have been known
in human vision for more than a century, and are called
hyperacuity.

The step discrimination experiment gives us a very
clear view of reliability in the neural response, but as with
the other discrimination experiments discussed above
it’s not a very natural task. An alternative is to ask
what happens when the motion signal (angular veloc-
ity θ̇(t)) is a complex function of time. Then we can
think of the signal to noise ratio in Eq. (400) as be-
ing equivalent to a spectral density of displacement noise
N eff

θ ∼ φ2
0/(NcellsC2R), or a generalization in which the

photon counting rate is replaced by an effective, fre-
quency dependent, rate related to the noise character-
istics of the photoreceptors, as in Fig 13. It seems likely,
as discussed above, that the fly’s visual system really
does make a continuous or running estimate of the an-
gular velocity, and that this estimate is encoded in the
sequence of discrete spikes produced by neurons like H1.
It is not clear that any piece of the brain ever “decodes”
this signal in an explicit way, but if we could do such a
decoding we could test directly whether the accuracy of
our decoding reaches the limiting noise level set by noise
in the photodetectors.

Decoding spike trains, at least under certain condi-
tions, is much easier than one might have expected. The
idea, shown in Fig 62, is that each spike contributes a
small transient blip to our estimate of the signal vs. time,
and to obtain the full estimate we add up all these small

FIG. 62 Decoding continuous motion signals from spikes gen-
erated by the H1 neuron, from Bialek et al (1991). At left,
dashed curve indicates the true stimulus, angular velocity as
a function of time; solid line is the result of the decoding pro-
cess, from Eq (403). Tick marks below the stimulus indicate
the spikes generated in a single presentation of this stimu-
lus (downward ticks) or its negative (upward ticks). This
consideration of a hypothetical neuron that sees the negative
stimulus is meant to restore symmetry between positive and
negative velocities and corresponds roughly to the response
of the H1 neuron on the other side of the fly’s head, which
has the opposite direction selectivity. At right is the spectral
density of errors in the reconstruction. The error is reported
as a displacement error, so the spectrum grows as 1/ω2 for
low frequencies. Also shown is the spectrum of the stimulus
(smooth line) and the limiting noise level computed from the
actual noise levels measured in fly photoreceptors under the
same conditions as for these experiments on H1. Reconstruc-
tion error and the physical limit to precision converge at high
frequencies, so that the fly approaches optimal performance.

contributions. Thus, if the signal we are interested in is
s(t), our estimate is

sest(t) =
∑

i

f(t− ti), (401)

where ti are the spike arrival times as before, and we can
choose the filter f(t) to minimize the errors

χ2 ≡
∫

dt

∣∣∣∣s(t)− sest(t)

∣∣∣∣
2

. (402)

Like most neurons, H1 has a sign preference for its
inputs—motion in one direction generate more spikes,
while motion in the opposite direction generates fewer
spikes. Thus, large negative velocities cause H1 to go
silent, and in these periods we would have no basis for
inferring the detailed waveform of velocity vs. time. For-
tunately, the fly has two H1 neurons, one on each side of
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the head, with opposite direction preferences. We could
record from both cells, or we could use the fact that the
two cells see opposite motions relative to their own pref-
erence, and look at the responses of one neuron to both a
stimulus and the opposite motion. If the spikes in these
two cases are {t+i } and {t−i }, we can make a more sym-
metric reconstruction

sest(t) =
∑

i

[
f(t− t+i )− f(t− t−i )

]
. (403)

Again, we choose the filter f(t) to minimize χ2.49

In Figure 62 we see that the reconstruction of the ve-
locity waveform in fact is quite accurate. More quanti-
tatively, the power spectrum of the errors in the recon-
structed signal approaches the limit set by noise in the
photoreceptor cells, within a factor of two at high fre-
quencies. Further, one can change, for example, the im-
age contrast and show that the resulting error spectrum
scales as expected from the theoretical limit.
To the extent that the fly’s brain can estimate motion

with a precision close to the theoretical limit, we know
that the act of processing itself does not add too much
noise. But being quiet is not enough: to make maximally
reliable estimates of nontrivial stimulus features like mo-
tion one must be sure to do the correct computation.
Making this idea precise is in the same spirit as the dis-
cussion, in Section I.D, of pooling single photon signals
from multiple rod cells at the level of bipolar cells. There
we saw how the different orders of nonlinearity and sum-
mation result in very different final signal–to–noise ratios,
even though all we are trying to do is add. Here the prob-
lem is more difficult, because the fly wants to estimate a
feature of the visual world which is not directly reflected
in the signals of any single receptor cell.

Problem 71: (Relatively) simple estimation problems.
Suppose that someone draws a random number x from a probability
distribution P (x). Rather than seeing x itself, you get to see only
a noisy version, y = x + η, where η is drawn from a Gaussian
distribution with variance σ2, so that

P (y|x) =
1

√
2πσ2

exp

[
−

1

2σ2
(y − x)2

]
. (404)

Having seen y, your job is to estimate x.
(a.) Show that everything you know about x by virtue of ob-

serving y can be written in a way that suggests an analogy with
statistical mechanics,

P (x|y) =
1

Z(y)
exp

[
−
Veff(x)

kBTeff
+

Feffx

kBTeff

]
, (405)

where

Veff(x)

kBTeff
= − lnP (x) +

x2

2σ2
(406)

kBTeff = σ2 (407)

Feff = y. (408)

(b.) From the discussion in Section I.D, we know that if we
define “best” to be the estimator that minimizes χ2, then the best
estimator is the conditional mean,

xest(y) =

∫
dx xP (x|y). (409)

Construct xest(y) in the case where P (x) is a Gaussian with unit
variance. Show that this estimate, although “best,” is systemat-
ically wrong. That is, if we average xest(y) over the distribution
P (y|x), we do not recover x itself. Explain why this can still be
the best estimate.

(c.) Now consider the case P (x) = (1/2) exp(−|x|). Show that,
even though the transformation from what we are interested in (x)
to what we measure (y) is linear, the optimal estimator is nonlinear.
In particular, if rather than asking for an estimator that minimizes
χ2, we ask for the most probable value of x given y, show that the
optimal estimator involves a threshold nonlinearity.

Motion estimation is an example of the more general
problem of perceptual estimation. The data to which the
brain has access are the responses of receptor cells, and
the goal is to estimate some feature of the world. The
first key step is to use Bayes’ rule, combining the noisy
data from the receptors with our prior knowledge that
some things are more likely than others. Schematically,

P (feature|receptor responses)

=
P (receptor responses|feature)P (feature)

P (receptor responses)
.(410)

The second key step is to note that receptors typically
don’t respond directly to the features of interest, but
rather to raw sensory signals such as light intensity, sound
pressure in the auditory system, the concentrations of
specific molecular species in complex odors, etc.. Con-
tinuing schematically, let’s denote the full spatiotempo-
ral pattern of light intensities falling on the retina by I.
Receptor responses really depend on I, which in turn
is correlated with the feature that we want to estimate.
Thus,

P (receptor responses|feature) =
∫

DI P (receptor responses|I)P (I|feature), (411)
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and putting all the terms together we have

P (feature|receptor responses) = 1

P (receptor responses)

∫
DI P (receptor responses|I)P (I, feature). (412)

If the lights are bright, and the noise level in the pho-
toreceptors is low, it is plausible that knowing the pat-
tern of receptor responses is almost equivalent to know-
ing the spatiotemporal pattern of light intensities I,
and hence viewed as a function of I the distribution
P (receptor responses|I) is very sharply peaked. Then
the entire structure of the optimal computation that
maps receptor responses to the desired feature is con-
trolled by P (I, feature), which is a property of the world
that we live in rather than of our eyes or brains. This
is perhaps our most important qualitative conclusion:
optimal estimates of sensory features involve computa-
tions determined by the structure of the world around
us. To the extent that our brains, and those of other an-
imals, make optimal estimates, this means that the way
in which we process the world is set by the physics of
our environment, not by peculiarities of our biological
hardware.

For the case of motion estimation, what is the struc-
ture of P (I, feature)? For simplicity let’s think about
a one–dimensional version of the problem, so that spa-
tiotemporal pattern of light intensity I ≡ I(x, t). Then if
a small piece of the visual world is moving rigidly relative
to us with a velocity v, we should have I(x, t) = I0(x−vt).
Then we can take derivates in space and time,

∂I(x, t)

∂x
= I ′0(x− vt) (413)

∂I(x, t)

∂t
= −vI ′0(x− vt). (414)

Thus, we can compute the velocity as a ratio of spatial
and temporal derivatives,

vest = − ∂I(x, t)/∂t

∂I(x, t)/∂x
. (415)

This is correct, but we have derived it by pushing to ex-
tremes. First we said that noise in the receptor responses
is negligible, so we can say that we are effectively com-
puting functions of the light intensity itself. Then we
assumed that the dynamics of the light intensity is de-
termined only by motion at the single velocity v. If either
of these assumptions breaks down, our “gradient based”
estimator of velocity, Eq (415) gets into serious trouble.

When we deal with noisy data we develop several in-
tuitions. First, the nature of our measurements is such
that there usually is relatively more noise at higher fre-
quencies, both in time and in space. Thus, to suppress
noise, we average. Conversely, if we differentiate, we ex-
pect that noise will be amplified, since differentiation en-
hances higher frequencies. Second, when we have a noisy

measurement, it is dangerous to put this in the denom-
inator of a ratio—there is a chance that we will divide
by zero, because of a fluctuation. The gradient based
estimator compounds these sins, differentiating and then
taking a ratio. We expect that this will be a disaster if
our low noise assumptions are violated.

Problem 72: Ratios of noisy numbers. Suppose that we
have two numbers that we try to measure, a and b. Our measure-
ments, which we can call â and b̂, give us the values of a and b but
with some added Gaussian noise, so that

P (â|a) =
1

√
2πσ2

e−(â−a)2/2σ2
; (416)

for simplicity we’ll assume that the noise level is the same for our
measurements of b, so that

P (b̂|b) =
1

√
2πσ2

e−(b̂−b)2/2σ2
. (417)

What we would like to do is to estimate the ratio r ≡ a/b from our

measurements â and b̂.
(a.) Suppose we make form a naive estimate just by taking the

ratio of our measurements, rnaiveest = â/b̂. Do a small simulation to
examine numerically the probability distribution of this estimate.
In particular, consider the case where a = b = 1, so the correct
answer is r = 1. If σ = 0.1, presumably rnaiveest stays close to
this correct answer, but what happens at σ = 0.2 or 0.5? How
does the variance of the estimator rnaiveest change as the noise level
σ increases? Be sure to check in your simulation that you have
enough samples to get a reliable measure of the variance. Is there
anything suspicious in this computation, especially at larger σ?

(b.) Look more closely at the right hand tail of the distribution
of rnaiveest , that is the behavior of P (rnaiveest / 1) in the case where
a = b = 1. Plot your numerical results on linear, semilog, and
log–log plots to see if you can recognize the shape of the tail. If
the shape changing with the noise level σ? Try to make a precise
statement based on your simulations. I have left this somewhat
open ended.

(c.) Try to derive analytically the regularities that you found in
[b].

(d.) Although we think of â and b̂ as measurements of the sep-
arate variables a and b, really all we want to know is the ratio
r ≡ a/b. Show that the best estimate can be written, using Bayes’
rule, as

rest(â, b̂) =

∫
dr

r

P (â, b̂)

∫
da

∫
db δ

(
r −

a

b

)
P (â|a)P (b̂|b)P (a, b).

(418)
Make as much progress as you can evaluating these integrals on the
hypothesis that the prior distribution P (a, b) is broad and feature-
less. If you want to proceed analytically, you may find it useful to
introduce a Fourier representation of the delta function, and look
for a saddle point approximation. Numerically, you could assume,
for example, that P (a, b) is uniform over some region of the a − b
plane, and just do the integrals for representative values of â and
b̂, mapping the function rest(â, b̂). Can you verify that rnaiveest is
close to optimal at very small values of σ? What happens at larger
values of σ? If σ is fixed, what happens as b → 0?
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The most obvious problem with the gradient motion
estimator in Eq (415) is simply that it is not well defined
when the spatial derivative becomes small. This prob-
lem exists even if noise in the photoreceptors is small.
To address the problem we have to understand what the
distribution P (I, feature) looks like. Conceptually, what
we want to do is simple. Imagine taking a walk on a
very still day, so that motions of the world relative to
our retina (or relative to the fly’s retina) are dominated
by our own motion. If we carry a camera as we walk, we
can take a movie, and we can also put a gyroscope on
the camera to monitor it’s motion. What emerges from
such an experiment, then, is a set of samples drawn out
of the distribution P (I, feature). In particular, pixel by
pixel and moment by moment, we can compute the spa-
tial and temporal derivatives in the movie, and measure
the velocity as well, so that we sample the distribution
P (∂I/∂t, ∂I/∂x, v).

If the gradient based estimate of motion were ex-
act, then the distribution P (∂I/∂t, ∂I/∂x, v) would
be very sharply peaks along a ridge where v =
−(∂I/∂t)/(∂I/∂x). To see if this is right, we can com-
pute directly the optimal estimator. We know that the
best estimate in the sense of χ2 is the conditional mean,
so should compute50

vest(∂tI, ∂xI) =

∫
dv v

P (∂tI, ∂xI, v)

P (v)
. (419)

The results of this computation, based on a walk in
the woods, are shown in Fig 63.51 We see that, when
the spatial gradients are large, the contours of con-
stant vest really are straight lines, as expected from the
gradient based estimator. But when the spatial gra-
dients are smaller, a new structure emerges, which is
more closely approximated by a product of derivatives,
vest ∝ (∂I/∂t) × (∂I/∂x), rather than a ratio. As you
can see in the following problem, the same product struc-
ture emerges if we go back to the general formulation and
take the limit of high noise levels.

Problem 73: Series expansion of the optimal estimator
at low signal–to–noise ratios. We know from Section I.A that

50 I need to make a segue between the notation ∂I/∂x and ∂xI.
51 Although conceptually simple, to generate Fig 63 requires mea-

suring light intensities with spatial and temporal resolution
matched to that of the retina, but collecting much more light
so that photon shot noise in these measurements will be less
than that in the retina and one can meaningfully claim to mea-
sure intensity at the input to the visual system. For details, as
always, see the references at the end of the section.
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FIG. 63 Optimal estimates of angular velocity as a function of
local spatial and temporal gradients of light intensity. Com-
puted from the theory described in the text, with the joint
distribution of movies and motion sampled experimentally.
Images are collected through an optical system that matches
the fly’s eye, and smoothed in time with a filter that optimizes
estimation performance. At small signals, near the center of
the plot, we see that moving along a line of constant physi-
cal velocity (in white; ∂tI + v∂xI = 0) results in a changing
estimate—a systematic error; only for large signals is the op-
timal estimate veridical. Experiments by SR Sinha & RR de
Ruyter van Steveninck.

photoreceptors in the fly respond linearly to changes in light inten-
sity or contrast [point back to specific equations; check consistency
of notation]. If the fly is rotating relative to the world along an an-
gular trajectory θ(t), then the spatiotemporal pattern of contrast
(again in a one–dimensional model) is C(x − θ(t), t). Individual
cells respond with voltages Vn(t) given by

Vn(t) =

∫
dt′ T (t− t′)

∫
dxM(x− xn)C(x− θ(t′), t′), (420)

where T (τ) is the temporal impulse response function and M(x−
xn) is an aperture function centered on a lattice point xn in the
retina.

(a.) Show that the distribution of all the voltages given the
trajectory can be written as

P [{Vn(t)}|θ(t)]

∝
∫

DC P [C] exp

[
−
1

2

∑

n

∫
dω

2π

|Ṽn(ω)− 〈Ṽn(ω)〉|2

NV (ω)

]
,(421)

where the mean voltages are, in the Fourier representation,

〈Ṽn(ω)〉 = T̃ (ω)

∫
dxM(x− xn)

∫
dt e+iωtC(x− θ(t), t), (422)

NV (ω) is the power spectrum of the voltage noise, and P [C] is the
distribution of contrast that the fly would observed if held at θ = 0.

(b.) The optimal estimator is the conditional mean,

θ̇est(t0) =

∫
Dθ θ̇(t0)P [θ(t)|{Vn(t)}] (423)

P [θ(t)|{Vn(t)}] =
P [{Vn(t)}|θ(t)]P [θ(t)]

P [{Vn(t)}]
. (424)

Evaluate all the integrals in a perturbation series, assuming that
the average voltage responses are small compared with the noise
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level. You should find that the leading term is

θ̇est(t) ≈
∑

nm

∫
dτ

∫
dτ ′Vn(t− τ)Knm(τ, τ ′)Vm(t− τ ′). (425)

Relate the kernel Knm(τ, τ ′) to expectation values in the distribu-
tions P [C(x, t)] and P [θ(t)].

(c.) Can you reformulate the expansion so that instead of ex-
panding for small overall signal–to–noise ratio (small R), you ex-
pand for small instantaneous signals, that is for small Vn(t)? What
happens to the kernels in this case? It seems obvious that there
shouldn’t be a linear term in this expansion. Can there be a third
order term? If such a term exists, what happens to the optimal
estimate of velocity when if we show the same movie, but with
inverted contrast (exchanging black for white)?

We can understand the low signal to noise ratio limit
by realizing that when something moves there are corre-
lations between what we see at the two space–time points
(x, t) and (x + vτ, t + τ). These correlations extend to
very high orders, but as the background noise level in-
creases the higher order correlations are corrupted first,
until finally the only reliable thing left is the two–point
function, and closer examination shows that near neigh-
bor correlations are the most significant: we can be sure
something is moving because signals in neighboring pho-
todetectors are correlated with a slight delay. This form
of “correlation based” motion computation, schematized
in Fig 64, was suggested long ago by Reichardt and Has-
senstein based on behavioral experiments with beetles.

There are two clear signatures of the correlation model.
First, since the receptor voltage is linear in response to
image contrast, the correlation model confounds contrast
with velocity: all things being equal, doubling the image
contrast causes our estimate of the velocity to increase
by a factor of four (!). This is an observed property of
the flight torque that flies generate in response to visual
motion, at least at low contrasts, and the same quadratic
behavior can be seen in the rate at which motion sensi-
tive neurons generate spikes, as shown in Fig 65. Even
humans experience the illusion of contrast dependent mo-
tion perception at very low contrast. Although this might
seem strange, it’s been known for decades.

The second signature of correlation computation is
that we can produce movies which have the right spa-
tiotemporal correlations to generate a nonzero estimate
θ̇est but don’t really have anything in them that we would
describe as “moving” objects or features. Consider a spa-
tiotemporal white noise movie ψ(x, t),

〈ψ(x, t)ψ(x′, t′)〉 = δ(x− x′)δ(t− t′), (426)

and then add the movie to itself with a weight and an
offset:

C(x, t) = ψ(x, t) + aψ(x+∆x, t+∆t). (427)

Composed of pure noise, there is nothing really moving
here. If you watch the movie, however, there is no ques-
tion that you think it’s moving, and the fly’s neurons
respond too (just like yours, presumably). Even more
impressive is that if you change the sign of the weight a,
then the direction of motion reverses, as predicted from
the correlation model.

Problem 74: Motion from correlations alone. Generate
the image sequences described in the previous paragraph, and verify
that you (and your friends) perceive them as moving.

(a.) Play with the amplitude and sign of the weight a to see
how it influences your perception. Can you find a regime in which
the speed of motion seems to depend on |a|? Can you verify the
reversal of motion when a → −a?

(b.) Compute the correlation function 〈C(x, t)C(x′, t′)〉; for sim-
plicity you might want to confine your attention to a one dimen-
sional example. Consider also the correlation function for a genuine
moving image, in which C(x, t) = C0(x− vt). If v = ∆x/∆t, how
do the two correlation functions compare?

contrast pattern, C(x,t) 
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FIG. 64 The correlator model of visual motion detection,
adapted from Reichardt (1961). A spatiotemporal contrast
pattern C(x, t) is blurred by the photoreceptor point spread
function, M(x), and sampled by an array of photoreceptors,
two of which (neighboring photoreceptors numbers n− 1 and
n) are shown here. After phototransduction, the signals in
each photoreceptor are filtered by two different linear filters,
f(t) and g(t). The outputs of these filters from the differ-
ent photoreceptors, s1(t) and s3(t) from photoreceptor n and
s2(t) and s4(t) from photoreceptor n − 1 are multiplied and
one of these products is subtracted from the other by the ad-
dition unit, yielding a direction selective response. Thanks to
Rob de Ruyter for this figure.
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FIG. 65 Responses of the H1 neuron to moving scenes with
varying contrast. Scenes consist of bars with random inten-
sities, moving at constant velocity. At left, at one particular
velocity we measure the rate at which H1 generates action po-
tentials, as a function of contrast. Lower panel expands the
region at low contrast, emphasizing the quadratic behavior.
At right, the responses at multiple velocities, showing that
the “saturated” response at high contrast still is sensitive to
the speed of movement. [does this appear in a paper? details
of stimuli?] Thanks to Rob de Ruyter for this figure.

The optimal motion estimator illustrates the general
tradeoff between systematic and random errors. If we
really are viewing an image that moves rigidly, so that
C(x, t) = C(x + vt), then there is no question that the
“right answer” is to compute v as the ratio of tempo-
ral and spatial derivatives. Any departure from this
involves making a systematic error. But, as discussed
above, taking derivatives and ratios are both operations
which are perilous in the presence of noise. To insulate
the estimate from random errors driven by such noise
(or, more generally, by aspects of the image dynamics
that are not related to motion), we must calculate some-
thing which, typically, will not give the “right answer”
even on average—we accept some systematic errors in
order to reduce the impact of random errors. In the con-
text of perception, systematic errors have a special name:
illusions.

Could the theory of optimal estimation be a quanti-
tative theory of illusions, grounded in physical princi-
ples? Colloquially, we say that “to err is human,” and it
is conventional to assume that cases in which biological
systems get the wrong answer to their signal processing
problems provide evidence regarding the inadequacies of
the biological hardware. Is it possible that, rather than
being uniquely human or biological, to err is the optimal
response to the limits imposed by the physical world?

The long history of the correlation model provides am-
ple testimony that insect visual systems make the kind
of systematic errors expected from the optimal estima-
tor, but precisely because of this long history it is hard
to view these are successful predictions. It would be more
compelling if we could show that the same system which
is well described by the correlator under some conditions
crosses over to something more like the ratio of deriva-
tives model at high signal–to–noise ratio, but this has
been elusive. The contrast dependence of the response
in the motion sensitive neurons saturates at high con-
trast, and this saturated response still varies with ve-
locity (Fig 65), as if the larger signals allow the system
to disentangle ambiguities and recover a veridical esti-
mate, but other experiments suggest that errors inherent
in the correlation model persist even with strong signals.
Humans easily see the illusion of motion with the noise
movies of Eq (427), as well as other motion illusions, but
at high signal–to–noise ratios our visual systems recover
estimates of velocity which are not systematically dis-
torted, suggesting that in primates there is some sort of
crossover between different limits of the motion compu-
tation, and there are efforts to make the correspondence
with the optimal estimator more quantitative. Exper-
iments under more natural, free flight conditions show
that both flies and bees have access to veridical estimates
of their translational velocity and can use this to control
their flight speed, in contrast to what one would have
expected from the correlator model, and it worth noting
that the responses of the motion–sensitive neurons are
also very different under more natural conditions.
[This needs to be clearer] In Figure 66 we see the re-

sponses of the H1 neuron to the rotation of a fly, out-
side under nearly natural conditions. During the course

FIG. 66 Responses of the H1 neuron s a fly is rotated outside,
over a period during which the mean light level is falling.
[fill in the caption. does this appear in a paper? details of
stimuli?] Thanks to Rob de Ruyter for this figure.



114

of the experiment, the sun was going down, and so the
mean light level varied by several orders of magnitude as
the same trajectory of angular velocity vs. time was re-
peated over and over. The integral of the trajectory was
not quite zero, however, so that on each repetition the
spatial pattern of light intensity was a bit different even
if the angular velocity was the same. At the start of the
experiment, the responses are extremely vigorous, and
insensitive to the variations in the spatial structure of
the visual environment. As the light level falls, responses
become weaker, but more dramatically we see that there
is a systematic variation from repetition to repetition,
which appears as a diagonal pattern of spikes across the
upper part of Fig 66. Thus, when signal–to–noise ra-
tios are high in the natural environment, H1 responds
to time dependent velocities and largely ignores the spa-
tial structure of its environment, while at lower signal–
to–noise ratios the confounding of spatial structure and
motion becomes more and more obvious. This pattern
is in agreement with the expectations from optimal esti-
mation theory, according to which such systematic errors
arise only from the need to insulate the computation from
random noise.

What we would really like is to have methods of dis-
secting the computation that has been done by a neuron,
simply by analyzing the relationship between visual in-
puts and spiking outputs under natural conditions. This
is a huge challenge, and obviously would be interesting
in many other contexts. Approaches to this problem are
discussed in Appendix A.7, where we also see results that
come closest to a smoking gun for the crossover between
correlator and gradient computations.

For visual signal processing, getting our hands on the
true distribution of signals in the natural environment is
a difficult experiment. For seemingly more complex “cog-
nitive” judgments, the situation, perhaps surprisingly, is
much simpler. To give an example, suppose that you are
told of a member of the United States Congress who has
served for t = 15 years. What is your prediction for how
long his total term will last? To keep things as simple as
possible, let’s assume you are not told anything about the
politics of this congressman or his district; all you have
to work with is t = 15 and your general knowledge of the
turnover of elected officials. Obviously your knowledge is
probabilistic, so we use Bayes’ rule to write

P (ttotal|t) ∝ P (t|ttotal)P (ttotal). (428)

If the moment at which the question is asked is not
somehow synchronized to the length of congressional
terms, then we have to assume that P (t|ttotal) is uniform,
P (t|ttotal) = 1/ttotal. Thus our inference is controlled by
the “prior” distribution P (ttotal), and we can look this up
in a database about the history of the congress. Finally,
if you must pick one value of ttotal, it makes sense in this
context to choose the median, the point at which the ac-
tual value of ttotal is equally likely to be longer or shorter

than your estimate. As an example, if P (ttotal) is a rea-
sonably narrow Gaussian distribution, then for t much
less than the mean 〈ttotal〉, our best estimate of ttotal is
just 〈ttotal〉 itself, while if the time t is much larger than
the mean then our best estimate is only slightly higher
than t, which makes sense. Other priors, of course, can
give qualitatively different results.

Problem 75: Estimating ttotal. Derive the results just stated
for the Gaussian prior. Consider also cases where P (ttotal) ∝ t−γ

total

or P (ttotal) ∝ tntotale
−ttotal/τ .

The example of congressional terms is not unique. We
could ask, as insurance companies do (albeit with more
input data), about human lifespans: if you meet some-
one of age t, what is your best guess about their life
expectancy? If you make a phone call and have been on
hold for t minutes, what is your best guess about the
total time you will have to wait? If you find yourself on
line t of a poem, what is your best guess about the total
length of text? Nor is the structure of the problem bound
to time, as such: suppose you learn that a movie has col-
lected t dollars in gross receipts; what is your bets guess
about what its total earnings will be? All these problems
have in common that we can look up the correct distribu-
tion P (ttotal). Another important feature is that we can
just go ask people what they think, and see how they do
relative to the predictions for optimal estimation based

FIG. 67 Estimation of totals based on one observation, from
Griffiths & Tenenbaum (2006). The top row shows the priors
P (ttotal) measured from real world data. The bottom panel
compares people’s predictions (points) based on one obser-
vation t with the optimal median estimator (solid lines) and
a naive “universal” estimate t̂total = 2t. For the reigns of
Pharaohs and the telephone waiting times, dashed lines show
optimal estimators for P (ttotal) ∝ ttotale

−ttotal/τ (τ = 17.9)
and P (ttotal) ∝ t−γ

total (γ = 2.43), respectively.
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on the priors appropriate to our real world. The results
from such an experiment are shown in Fig 67.

I found the results of Fig 67 quite astonishing when I
first saw them. The time it takes to bake a cake comes
from a very irregular distribution, but people seem to
know this distribution and estimate accordingly. They
are a bit confused about how long the Pharoahs reigned,
but their confusion is consistent: estimation of ttotal
behaves as if the subjects know the shape of P (ttotal)
but are off on the mean time scale, and if you ask an-
other group of subjects to guess the mean reign of the
Pharoahs, they deviate from the right answer by the
same factor. Important as the telephone problem may
be, this is one case where there is no convenient data to
which we can refer, so this case remains untested. In all
the other cases, however, spanning seemingly very differ-
ent domains of knowledge and very different shapes for
P (ttotal), people are performing close to the optimum.

If we trace through the details of optimal estimation
theory, one can see that construction of the correct es-
timator involves knowing not only the distribution of
signals, but also the distribution of noise. Perhaps the
simplest illustration of this is given by the problem of
combining two measurements. Suppose that we are in-
terested in x, but we observe

y1 = x+ η1 (429)

y2 = x+ η2, (430)

where the noise levels on the two measurements are gen-
erally different, 〈η21〉 = σ2

1 and 〈η22〉 = σ2
2 ; for simplicity

we will assume that the noise is Gaussian. Intuitively, we
should be able to do better by combining the two obser-
vations than we would do by looking just at one of them,
and we also expect that we should give greater weight to
the more accurate measurement. Quantitatively, if the
measurements are independent of one another, we have

P (x|y1, y2) =
P (y1, y2|x)P (x)

P (y1, y2)
(431)

∝ P (x)P (y1|x)P (y2|x) (432)

∝ P (x) exp

[
− 1

2σ2
1

(y1 − x)2 − 1

2σ2
2

(y2 − x)2
]
.

(433)

Then we can form the optimal estimator in the least
squares sense,

xest(y1, y2) ≡
∫

dx xP (x|y1, y2) (434)

=
σ2
2y1 + σ2

1y2
σ2
1 + σ2

2

, (435)

where in the last step we assume that the prior P (x) is
broad compared with the noise levels in our data. Thus,
as expected, the optimal estimate is a combination of the
data, and the weights are inverse to their relative noise
levels.

Problem 76: Cue combination. Fill in the details leading to
Eq (435). Can you work out the same problem but with additional
multiplicative noise, yn = egnx + ηn, where gn is also Gaussian?
In this case, it is possible to generate errors that are very large,
so presumably large disagreements between the data points y1 and
y2 should not be resolved by simple averaging. See how much
analytic progress you can make here, or do a simple simulation.
This is deliberately open ended.

There are many situations in which we give strongly
unequal weights to different data. A dramatic example
is ventriloquism, in which we trust our eyes not our ears,
and assign the source of speech to the person (or the
dummy) whose lips are visibly moving. To see whether
we are giving weights in relation to noise levels, as would
be optimal, we have to do an experiment in which we
can manipulate the effective noise levels. This was first
done convincingly in tasks that require subjects to com-
bine information from vision and touch, [add figure from
Ernst & Banks, with explanation]. Although under nor-
mal conditions we give strong preference to our visual
system, these data show convincingly that we do this
only because our visual system provides much more ac-
curate spatial information; if we can change their noise
levels, people will change the weights given to different
cues, as predicted by optimal estimation theory.
[loss functions, actions .. Maloney; Wolpert]
The examples of estimation that we have discussed

thus far have in common that the distribution of the fea-
ture we are interested in estimating has a single well de-
fined peak given the input sensory data. In many cases,
however, the data that we collect with our senses have
multiple interpretations, perhaps even multiple interpre-
tations that provide equally good explanations of what
we have seen or heard. These ‘ambiguous percepts’ arise
in many contexts. When we experience these stimuli, our
perceptions jump at random among the different possi-
bilities. Could these random jumps originate from the
same small noise sources that limit the reliability of our
senses? [give fuller discussion, both visual and auditory
examples ... alternative models ... maybe end with con-
nection to conscious perception?]
Need to give a summary/conclusion for the section.

While there were many precursors, reaching back across centuries,
the conclusive demonstration that bats navigate by echolocation,
with sounds beyond the range of human hearing, was by Griffin
& Galambos (1941). Griffin (1958) gives a beautiful presentation
of the history and basic facts about the system. [need original
ref for exp’t with dusted mealworms] The first suggestion of sub–
microsecond precision in this system was from Simmons (1979).
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Perhaps not surprisingly, these observations (and the provocative
title of the paper in which they were presented) touched off a flurry
of controversy; for different views, see Altes (1981) and Menne &
Hackbarth (1986). The astonishing results on nanosecond preci-
sion, and the optimality of performance in background noise, were
presented by Simmons et al (1990). For context, it is interesting to
look at examples of precise timing measurements in binaural hear-
ing [need ref, presumably to Konishi in barn owls] and in weakly
electric fish (Rose & Heiligenberg 1985).
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Since that formative year of having the office next door to Rob de
Ruyter van Steveninck when I was a postdoc in Groningen, the
fly visual system has seemed to me an ideal testing ground for
physicists’ ideas. On the other hand, if you think that brains are
interesting because you want to understand your own brain, you
might believe that insects are a bit of a side show relative to an-
imals that share more of our brain structures—monkeys, cats, or
even mice. There are obvious questions of strategy here, including
the fact that (perhaps paradoxically) it can be easier to control
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opportunities for certain kinds of quantitative experiments. There
also are questions about how much universality we should expect.
Are there things to be learned about brains in general, or is ev-
erything about our brain different from that of “lower” animals?
Can careful, quantitative analyses of “simpler” systems sharpen
the questions that we ask about bigger brains (even if the answers
are different), or does each case present such unique challenges?
I think it is fair to say that for several decades there has been a
strong consensus of the mainstream neuroscience community that
the answers to these questions point away from the study of insect
brains. Recently, however, there has been substantial growth in a
community of scientists interested in exploiting the tools of mod-
ern molecular biology to study the brain, and this group of course
is attracted to “model organisms” with well developed methods of
genetic manipulation, such as the fruit fly Drosophila melanogaster
and its close relatives. Thus, the coming years are likely to see a
resurgence of interest in insect brains, and this should create more
opportunities for physicists. It is early days, but here is a selection
of papers that may help you in your explorations.

: Find a selection of Drosophila articles that point toward quanti-
tative opportunities.

Seelig et al 2010: Two–photon calcium imaging from head–fixed
Drosophila during optomotor walking behavior. JD Seelig,
ME Chiappe, GK Lott, A Dutta, JE Osborne, MB Reiser &
V Jayaraman, Nature Methods 7, 535–540 (2010).

The rather astonishing results in Fig 67 are from Griffiths & Tenen-
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D. Proofreading and active noise reduction

Fluctuations are an essential part of being at thermal
equilibrium. Thus, the fact that life operates in a rela-
tively narrow range of temperatures around 300K means
that some level of noise is inevitable. But being alive
certainly is not being at thermal equilibrium. Can or-
ganisms use their non–equilibrium state to reduce the
impact of nominally thermal noise? More generally, can
we understand how to take a system in contact with an
environment at temperature T , and expend energy, driv-
ing it away from equilibrium, in such a way as to reduce
the effects of noise?

In his classic lecturesWhat is Life?, Schrödinger waxed
eloquent about the fidelity with which genetic informa-
tion is passed from generation to the next, conjuring the
image of a gallery with portraits of the Hapsburgs, their

oddly shaped lips reproduced across centuries of descen-
dants. Schrödinger was much impressed by the work of
Timoféef–Ressovsky, Zimmer and Delbrück, who had de-
termined the cross–section for ionizing radiation to gen-
erate mutations, and used this to argue that genes were
of the dimensions of single molecules. Thus, the extreme
stability of our genetic inheritance could not be based
on averaging over many molecules, as a “naive classical
physicist” might have thought. Now is a good time to set
aside our modern insouciance and allow our ourselves to
be astonished, as Schrödinger was, that so many of the
phenomena of life are the macroscopic consequences of
individual molecular events.
We now teach high school students that the key to the

transmission of genetic information is the pairing of bases
along the double helix—A pairs with T, C pairs with G,
as in Fig 68. This, of course, is the triumph of Wat-
son and Crick’s theory of DNA structure.52 The ideas of
templates and structural complementarity which are at
the heart of the double helix reappear many times—every
time, in fact, that the organism needs to make reliable
choices about which molecules to synthesize. But does
structural complementarity solve the problem of reliabil-

FIG. 68 Base pairing in the Watson–crick structure of DNA
[this just grabbed from Wikipedia; need to decide exactly
what to show, and redraw]. At left, we see the hydrogen
bonding between bases in the correct pairings, showing how
they “fit” to satisfy the opportunities for hydrogen bonding,
producing structures that are the same width and hence can
fit into the double helix, as shown at right. “R” denotes the
sugar and phosphate groups, identical for all bases, which
form the outer backbone(s) of the helix.

52 It would be almost silly to think you know something about
“biophysics” (whatever you think the word means!) and not
understand the interplay of theory and experiment that led to
this revolution in the middle of the twentieth century. For a brief
tour, see Appendix A.5.
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ity in biosynthesis?
The fact that A pairs with T is really the statement

that the (free) energy of a correct AT pair is much lower
than that of an incorrect AC or AG pair. We should recall
the energy scales for chemical bonding. A genuine cova-
lent bond, such as the carbon–carbon or carbon–nitrogen
bonds in the interior of the bases, results from the shar-
ing of electrons between the atoms, and the energies are
therefore on the scale of several electron volts.53 Making
the wrong base pairs wouldn’t require us to break any
covalent bonds, so the energy cost will not be this large.
If we tried to make an AG pair, it would be so big that
it wouldn’t fit inside the backbone of the double helix;
more precisely, we would have make large distortions of
the covalent bonds, and since these are stiff, the energy
cost would be very large. On the other hand, if we try to
make a CT pair, the backbone will hold the bases so far
apart that they can’t form hydrogen bonds. Thus, the
minimal energy for a “wrong” base pair is the energy of
two missing hydrogen bonds, and this is on the order of
10 kBT .

An energy difference of ∆F ∼ 10 kBT means that the
probability of an incorrect base pairing should be, accord-
ing to the Boltzmann distribution, e−∆F/kBT ∼ 10−4. A
typical protein is three hundred amino acids long, which
means that is encoded by nearly one thousand bases; if
the error probability is 10−4, then replication of the DNA
would introduce roughly one mutation in every tenth pro-
tein. For humans, with a billion base pairs in the genome,
every child would be born with hundreds of thousands of
bases different from his or her parents. If these predicted
error rates seem large, they are—real error rates in DNA
replication vary across organisms, but are in the range
of 10−8 − 10−12, so that entire genomes can be copied
almost without any mistakes.
The discrepancy between Boltzmann probabilities and

observed error rates is much more widespread. When
information encoded in the DNA is read out to make
proteins, there are several steps where errors can occur.
First is the synthesis of mRNA from the DNA template, a
process not unlike the replication of the DNA itself. The
“codebook” for translating from the language of bases
along the mRNA into amino acids is embodied in the
tRNA molecules, which at one end have a triplet of bases
(the anti–codon) that is complementary to a particular
triplet of bases along the mRNA (the codon), and at their
other end is the amino acid that the codon represents. To
make such molecules, there are specialized enzymes that
recognize the ‘bare’ tRNA and choose out of the cellular

53 Chemists prefer to think per mole rather than per molecule, and
they prefer joules to electron Volts (I won’t speak of calories). To
have some numbers at your fingertips, remember that at room
temperature, kBT = 1/40 eV = 2.5 kJ/mole.

soup the correct amino acid with which to ‘charge’ the
molecule. [the discussion of tRNA and charging could use
some sketches!] But some amino acids differ simply by
the replacement of a CH3 group with an H; it we imag-
ine the enzyme recognizing the first amino acid with a
binding pocket that is complementary to the CH3 group,
then the second amino acid will also fit, and the binding
energy will be weaker only by the loss of non–covalent
contacts with the methyl group; it is difficult to see how
this could be much more than ∼ 5 kBT , corresponding to
error rates ∼ 10−2. If the error rates in tRNA charging
were typically 10−2, almost all proteins would have at
least one wrong amino acid; in fact error rates are more
like 10−4, so that most proteins have no errors. There is
one more step, at the ribosome, where tRNA molecules
bind to their complementary sites along the mRNA and
the amino acids which they carry are stitched together
into proteins, and here too there is a discrepancy between
thermodynamics and the observed error probabilities.
Each of the events we have outlined—DNA replication,

mRNA synthesis, tRNA charging, and protein synthesis
on the ribosome—has its own bewildering array of bio-
chemical details, and is the subject of its own vast lit-
erature. As physicists we search for common theoretical
principles that can organize this biological complexity,
and I think that this problem of accuracy beyond the
thermodynamic limit provides a wonderful model for this
search. The key ideas go back to Hopfield and Ninio in
the 1970s. Their classic papers usually are remembered
for having contributed to the solution of the problem of
accuracy, a solution termed ‘kinetic proofreading,’ which
we will explore in a moment. But I think they should
also be remembered for having recognized that there is
a common physics problem that runs through this broad
range of different biochemical processes.
To understand the essence of kinetic proofreading, it is

useful to recall the problem of Maxwell’s demon. Imag-
ine a container partitioned into two chambers by a wall,
with a small door in the wall. [again, a sketch would
help!] Maxwell conjured the image of a small demon who
controls the door. If he54 see a molecule coming from the
right at high speed, he opens the door and allows it to go
into the left chamber. Conversely, if he sees a molecule
drifting slowly from the left, he opens the door and allows
it to enter the right chamber. After some time, all the
slow molecules are on the right, all the fast molecules are
on the left. But, since the average kinetic energy of the
molecules in a gas is proportional to the temperature, the
demon has created a temperature difference, hot on the
left, cold on the right. This temperature difference can be
used to do useful work (e.g., running a heat engine), and
thus the demon appears to have created something out

54 Why is it obvious that the demon is male?
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of nothing, violating the second law of thermodynamics.
There is nothing special about the demon’s choice of

molecular speed as the criterion for opening the door. It
is a simple choice, because the result is a temperature
difference, and we can imagine all sorts of appropriately
nineteenth century methods for extracting useful work
from temperature differences. But if there are two kinds
of molecules, A and B, and the demon arranges for the
A molecules to accumulate in the left chamber and B
molecules to accumulate in the right chamber, then there
will be differences in chemical potential between the two
chambers, and there must be some way of using this to do
work even if as physicists we don’t know enough chem-
istry to figure it out.

Problem 77: Pushing away from equilibrium. Consider
a polymer made from A and B monomers. Suppose we start with
pure poly–A, and use this as a template to construct a new poly-
mer, much as in DNA replication (but simpler!). Template directed
synthesis works because the A−A bond is stronger than the A−B
bond by some free energy difference ∆G; we’ll use the convention
that ∆G > 0. Then if we make a polymer of length N in which
a fraction f of the monomers are incorrectly made to be B rather
than A, the free energy of the system will have a contribution
Nf∆G relative to the perfectly copied poly–A. If the errors are
made at random, however, then there is a contribution to the en-
tropy of the polymer that comes from the sequence heterogeneity.

(a.) Evaluate the entropy that comes from the random substi-
tutions of A by B. What assumptions are you making in this cal-
culation? Can you imagine these being violated by real molecules?

(b.) Combine the entropy from [a.] with the “bonding” free
energy Nf∆G to give the total free energy of the polymer. Show
that this is minimized at feq ∝ exp(−∆G/kBT ), as expected.

(c.) How much free energy is stored in the polymer when f <
feq? Can you give simple expressions when the difference feq − f
is small? What happens if (as we will see below) f ≈ f2

eq?

The demon’s sin is to have generated a state of re-
duced entropy. We know that to enforce the second law,
this non–equilibrium state must be ‘paid for’ with enough
energy to balance the books—to avoid building a perpet-
ual motion machine, the demon must have dissipated an
amount of energy equal to or greater than the amount
of useful work that can be extracted from his reduc-
tion in the entropy of the system. The key insight of
Hopfield and Ninio was that the problem of accuracy or
low error rates was of this same kind: achieving low er-
ror rates, sorting molecular components with a precision
beyond that predicted by the Boltzmann distribution,
means that the cell is building and maintaining a non–
equilibrium state, and it must spend energy in order to
do this. Somewhere in the complexity of the biochem-
istry of these processes there must be steps which dissi-
pate energy, and this has to be harnessed to improve the
accuracy of synthesis.

A = “correct” substrate

B = “incorrect” substrate

E

EA

EB

E + correct product

E + incorrect product
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FIG. 69 The simplest kinetic scheme in which an enzyme can
choose correct or incorrect molecules out of solution, making
correct or incorrect products.

To see how this might work, let’s look at the simplest
model of a biochemical process catalyzed by an enzyme,
as in Fig 69. In essence, the chemical reaction of in-
terest involves choosing among two (or more) substrate
molecules, for example the correct and incorrect base at
a particular point along the strand of DNA that the cell
is trying to replicate or transcribe into mRNA. In order
to complete the reaction, the substrate has to bind to
the enzyme, and this enzyme–substrate complex can be
converted into the product; in order to have any possibil-
ity of correcting errors, it must be possible for the sub-
strate to unbind from the enzyme before the conversion
to product. With only this minimum number of steps,
the kinetics are described by

d[EA]

dt
= k+[A][E]− (k− + Vmax)[EA] (436)

d[EB]

dt
= k′+[B][E]− (k′− + V ′

max)[EB] (437)

[E]total = [EA] + [EB] + [E], (438)

where A is the correct substrate, B is the incorrect sub-
strate, and [E]total is the (fixed) total concentration of
enzyme molecules. The rate at which correct products
are made is given by Vmax[EA], and the rate of mak-
ing incorrect products is V ′

max[EB]. If the overall rate
of reactions is slow enough not to deplete the substrates
(and the cell typically is working hard to make sure this
is true!), then we can compute these rates in the steady
state approximation.
To compute the rate of errors we don’t even need to

solve the entire problem. From Eq (436) we can see that,
in steady state,

[EA] = [E]
k+[A]

k− + Vmax
; (439)
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similarly, from Eq (437),

[EB] = [E]
k′+[B]

k′− + V ′
max

. (440)

Thus the error probability, or relative rate at which in-
correct products are made, is given by

f ≡ rate of making incorrect product

rate of making correct product
(441)

=
V ′
max[EB]

Vmax[EA]
(442)

=

[
k′+[B]

k′− + V ′
max

]
×
[

k+[A]

k− + Vmax

]−1

×
[
V ′
max

Vmax

]
.(443)

To go further it is useful to notice that all the reactions
we are thinking about share one important feature: the
actual making and breaking of covalent bonds occurs on
‘the other side’ of the molecule from the structure that
defines correct vs. incorrect [definitely needs a sketch!].
In the case of DNA replication, for example, correctness
has to do with the pattern of hydrogen bonding between
the bases, on the inside of the helix, while the actual re-
action required to incorporate one base into the growing
polymer involves the phosphate backbone on the outside
of the helix. This makes it unlikely that the rate at which
these bonds are formed is sensitive to the correctness of
the substrate. Correspondingly, in the cases of interest,
it is likely that V ′

max ≈ Vmax, so this is not a source of
selectivity. More importantly, from Eq (443) it is clear
that, under these conditions, the error probability is min-
imized if the catalytic rate Vmax is slow compared with
the unbinding rates k−, k′−. This makes sense: if the
catalytic step itself has no selectivity, then to maximize
selectivity one must give the wrong substrate a chance to
fall off.

So, when the dust settles, in this simplest kinetic
scheme we have shown that the error probability is
bounded,

f >

(
k′+[B]

k′−

)/(
k+[A]

k−

)
. (444)

But this combination of rates and concentrations is ex-
actly what determines the equilibrium binding of A vs
B to the enzyme, and hence can be written in terms of
thermodynamic quantities,

f > exp

(
−FA − FB

kBT

)
, (445)

where FA is the free energy for taking a single molecule
of A out of solution and binding to the enzyme, and
similarly for B; here binding energies are positive, larger
for tighter binding. Thus, we are back where we started,
with an error probability determined by the Boltzmann
distribution!

E EA E + product
Vmax

k [A]+

k -

EA*

E

k -k [A*]+

r

FIG. 70 The simplest scheme for “kinetic proofreading.” As
described in the text, the key step is an irreversible transi-
tion from EA to EA∗, which gives a true second chance for
equilibration with the free A molecules.

But the Michaelis–Menten scheme has a natural gen-
eralization. Suppose that, after binding, there is an irre-
versible transition to a new state, at a rate r, and that in
this state the substrate can again be released from the en-
zyme, as in Fig 70. In the simplest case, the events which
determine binding and release of the (perhaps modified)
substrate are the same as in the initial step, with the
same rates. We can carry through the analysis of this
kinetic scheme as before, and with the same assumption
that catalytic steps (Vmax and r) have no selectivity, find
that

f > exp

(
−FA − FB

kBT

)
exp

(
−FA∗ − FB∗

kBT

)
. (446)

But if the molecular interactions that select A over B are
the same for A∗ vs B∗, we expect FA∗ −FB∗ ≈ FA−FB ,
and hence

f →
[
exp

(
−FA − FB

kBT

)]2
. (447)

This is the essence of kinetic proofreading: by introduc-
ing an irreversible step into the kinetic scheme, a step
which necessarily dissipates energy, it is possible to use
the equilibrium selectivity twice, and achieve an error
probability which is the square of the nominal limit set
by the Boltzmann distribution.

Problem 78: More on the basics of kinetic proofreading.
To begin, give the details needed to derive Eq (446). An even better
exercise is to go through Hopfield’s original paper (Hopfield 1974),
pen in hand, filling in all the missing steps. Then consider the
following:
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(a.) In the simplest scheme, we saw that maximum selectivity
occurs when Vmax is slow compared with k−. Is there a similar
condition in the proofreading scheme? What does this tell us about
the progress of the enzymatic cycle? More specifically, what is the
fate of the typical substrate which binds to the enzyme? Is it
converted to product, or ejected as A∗?

(b.) Consider a generalization of the kinetic scheme in Fig 70
such that the nominally irreversible step with rate r is in fact re-
versible, with the reverse reaction at rate r′. To be general, imag-
ine also the binding and unbinding of A∗ can occur with rates that
are different from the rates for A. Now there are detailed balance
conditions that connect these different rates. Write down these
conditions, and show how they effect the error probability. Can
you say something general here? In particular, can you show how
these conditions enforce the Boltzmann error rate in the absence of
energy dissipation, no matter how many times the enzyme ‘looks’
at the substrate?

How does this general idea of proofreading connect
with the real biochemistry of these systems? In some
sense the case of DNA replication (or transcription) is
most obvious, as shown in Fig 71. All of the nucleotides
which are incorporated into the growing strands of DNA
or RNA start as nucleotide triphosphates, but once the
final structure is formed only one phosphate is part of
the backbone. Thus, at some point in the process, the
‘high energy’ phosphate bond must be cleaved, releasing
roughly 20kBT of free energy. If this is the irreversible
step, then is must be possible for the enzyme which cat-
alyzes the growth of the polymer to release the nucleotide
after this cleavage, which means after it has been at-
tached to the backbone of the growing chain. Thus, to

replication of DNA, or
transcription of RNA
a =  DNA template

“charging” of tRNA
with amino acid aa

protein synthesis, at 
A-site of the 

ribosome, assisted 
by “elongation 

fator” Tu

FIG. 71 Connecting the proofreading scheme to specific bio-
chemical process, from Hopfield (1974). At the top, nu-
cleotide triphosphates are incorporated as monophosphates in
DNA replication or the transcription to mRNA. In the mid-
dle panel, the charging of tRNA molecules with amino acids,
involving an extra ATP. At bottom, a very simplified view of
protein synthesis, in which the GTP/exchange by the protein
Tu provides the energy for proofreading at the ribosome.

proofread, the enzyme must be not only a ‘polymerase’
(catalyzing the polymerization reaction) it must also be
an ‘exonuclease’ (catalyzing the removal of nucleotides
from the polymer). It had been known almost since the
discovery of the polymerase that it also had exonucle-
ase activity, but it took the idea of kinetic proofreading
to explain how this was connected, through energy dis-
sipation, to proofreading and error correction. In the
charging of tRNA, the process actually starts with an
ATP molecule being cleaved, leaving an AMP attached
to the amino acid before it reacts with the tRNA. In pro-
tein synthesis, the sequence of reactions is much more
complex, but again there is an obligatory cleavage of
a nucleotide triphosphate (in this case GTP → GDP).
All of these examples are qualitatively consistent with
the proofreading scenario,55 and especially in the case
of tRNA charging it has been possible to pursue a more
quantitative connection between theory and experiment
[do we want to say more about this?].
Kinetic proofreading not only solves a fundamental

problem—the problem which Schrödinger confronted in
the Hapsburg portraits—it also has been a source of new
questions and ideas. If the accuracy of DNA replica-
tion depends not only on intrinsic properties of the DNA
but also on the detailed kinetics of the enzymes involved
in replication, then the rate of mutations itself can be
changed by mutations. It has long been known that
there are ‘mutator strains’ of bacteria which have unusu-
ally high error rates, and we now know that that these
strains simply have aspects of the proofreading appara-
tus disabled. One could imagine subtler changes, so that
the mutation rate would become a quantitative trait; in
this case the dynamics of evolution would be very differ-
ent, since fluctuations along one “direction” in the space
of genomes would change the rate of movement along all
directions. Also, since accuracy depends on energy dissi-
pation, in an environment with limited nutrients there is
a tradeoff between the speed of growth and the fidelity
with which genetic information is passed to the next gen-
erations; there is an optimization problem to be solved
here, and ... [say something definite re Kurland, Ehren-
berg, ... maybe have a problem?]. In protein synthesis,
accuracy and even the overall kinetics will be affected by
the availability of the different charged tRNAs, and this
is under physiological control, so again there is the pos-

55 Hopfield has also emphasized that there are kinetic schemes
in which proofreading still proceeds through energy dissipating
steps, but if the enzymes have some memory for past events then
the synthesis and dissipation can be separated in time, erasing
some of the more obvious signatures from the simpler scheme.
This may be especially important in thinking about more com-
plex examples, such as protein synthesis on the ribosome or DNA
replication in higher eukaryotes. [is there a good problem to give
here?]
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sibility that, especially for fast growing bacteria where
the problems are most serious, there is some tuning or
optimization to be done.

Problem 79: Controlling the pace of evolution? [take the
students through a simple version of Magnasco & Thaler. Intro-
duces ideas of evolutionary landscape, connect back to discussion
of reaction rates ...]

Problem 80: Optimizing tRNA pools. There is a separate
tRNA complementary to each of the 60 codons which code for
amino acids (the remaining four codons stand for ‘start’ and ‘stop’).
The frequency with which these codons are used in the genome
varies widely, both because proteins do not use all 20 amino acids
equally and because different organisms use different synonymous
codons (that is, those which code for the same amino acid) with
different frequencies. But, when it comes time to make protein, the
cell needs access to the appropriate population of charged tRNAs.
Naively one might expect that, if the supply of tRNA is limiting
the rate at which a bacterium can make proteins and grow, then
it would be good to have a supply of tRNA in proportion to how
often the corresponding codon gets used. Let’s see if this is right.
Suppose that protein synthesis is limited by arrival of the tRNA
at the ribosome. Then the time required to incorporate one amino
acid coded by codon i is ti ∼ 1/k[tRNAi], where k is a second order
rate constant.

(a.) [try to sort out how rate of ribosome turnover compares
with diffusion limited rate of arrival of tRNAs]

(b.) The average time required to incorporate one amino acid is
t̄ =

∑
i pi/k[tRNAi], where pi is the probability of codon i appear-

ing in the cell’s mRNA. If the cell can only afford a limited amount
of tRNA, the natural constraint is on the total

∑
i[tRNAi]. How

should the individual concentrations be arranged to minimize the
mean incorporation time t̄? Is this surprising?

(c.) You might be tempted to say that, if the goal is to syn-
thesize proteins as rapidly as possible, and the rates are limited
by the arrival of tRNAs, then we should maximize the mean rate,∑

i pik[tRNAi]. Why is this wrong?

The ideas of kinetic proofreading may be even more
generally applicable than envisioned by Hopfield and
Ninio. There are many signal transduction processes that
start with a receptor binding event at the cell surface and
trigger a cascade of protein phosphorylation reactions;56

the phosphate groups are pulled from ATP, so phosphory-
lation is a prototypically irreversible, energy consuming
reaction. In the immune system [need a figure here!] it
has been suggested that this can provide multiple stages

56 [Should have said something about this already!] Many pro-
teins are activated by the covalent addition of phosphate groups,
a reaction termed phosphorylation. Enzymes that catalyze the
transfer of phosphate groups are called kinases, and these en-
zymes often are usually specific for their substrates, whether
these are smaller molecules or proteins. Importantly, come ki-
nases themselves are activated by phosphorylation, and the en-
zymes that carry out this activation step are termed kinase ki-
nases.

FIG. 72 Kinetic proofreading in the phosphorylation of a
kinase (K) by a kinase–kinase (KK), from Swain & Siggia
(2002). Activation of the kinase requires two steps of phos-
phorylation, and in this scheme the the kinase–kinase can
dissociate from its substrate after have transferred just one
phosphate group. K0, K1 and K2 denote the kinase with
zero, one and two attached phosphate groups, respectively.

of proofreading, contributing to self/non–self discrimina-
tion. More generally, as shown in Fig 72, if activation of
an enzyme requires two steps of phosphorylation, then
these steps can be arranged in a proofreading scheme.
Because there are many such pathways in the cell, proof-
reading this case could increase specificity and reduce
crosstalk.
Watson and Crick understood that the double heli-

cal structure of DNA, with its complementary strands,
suggested a mechanism for the copying of genetic infor-
mation from one generation to the next. But they also
realized that the helical structure creates a problem, since
the strands are entangled; the problem is most obvious in
bacteria, where the chromosomes close into circles, but
with very long molecules one couldn’t rely on sponta-
neous untangling even if there is no formal topological
obstruction. Eventually it was discovered that there is a
remarkable set of enzymes that catalyze changes in the
topology of circular DNA molecules, allowing the strands
to pass through one another. In the process of relieving
entanglement, these “topoisomerases” also reduce the en-
ergy stored in the supercoiling of these polymers [should
say more about this here—an excuse to talk about link,
writhe and twist, etc.; certainly needs a figure]. The
problem is that being truly unlinked is a global prop-
erty of the molecules, while the enzymes act locally. In
the simplest models, then, topoisomerases would remove
the obstacles to changing topology, but couldn’t shift the
probability of being unlinked from its equilibrium value.
Because making links or knots restricts the entropy of
the molecule, there is an equilibrium bias in favor of un-
linking, but this seems insufficient for cellular function.
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Indeed, as shown in Fig 73, topoisomerases seem to leave
fewer links than expected from the Boltzmann distribu-
tion even in test tube experiments, and if we look at the
details of the biochemical steps involved, we can identify
a series of steps that are equivalent to proofreading by
the topoisomerases [I’d like to explain this better!].

The ideas of proofreading have recently been revital-
ized by the opportunity to observe, more or less directly,
the individual molecular events responsible for error cor-
rection. The key to this new generation of experiments is
the realization that molecules such as RNA polymerase
are “molecular motors” that move along the DNA strand
as they function. Each step in this movement is presum-
ably on the scale of the distance between bases along
the DNA, d ∼ 3.4 Å. The energy to drive this motion
comes from breaking the phosphate bonds of the input
nucleotides, and is on the scale of ∼ 10kBT . Thus the
forces involved are F ∼ 10kBT/d ∼ 100 pN.

When a dielectric sphere sits in an electric field, it po-
larizes, and the direction of the polarization is such that
it lowers the energy. This means that the energy of the
sphere is lower in regions of high electric field. Since the
energy is proportional to the square of the field, this is
true even if the field is oscillating in time. In particular,
if we focus a light beam in a microscope, then the light
intensity is higher in the focus, and light intensity is just
the square of the electric field, so we expect that small
dielectric objects will be attracted to focal spots, and this

FIG. 73 Kinetic proofreading in DNA unlinking, from Yan
et al (1999). At left, experimental results redrawn from Ry-
benkov et al (1997), showing that topoisomerases reaching a
linking probability roughly equal to the square of the expected
equilibrium probability, suggesting a proofreading scheme. At
right, a kinetic scheme illustrating the possibility of proofread-
ing, Active topoisomerase molecules are shown in red, inactive
in blue; green arrows denote transitions that are insensitive
to the topology, while all sensitivity is contained in the red
arrows. This kinetic scheme is essentially a “folded” version
of Hopfield’s original Fig 70.

micron-sized beads

DNA

RNA 

polymerase

emerging 

mRNA

focused laser beams

FIG. 74 Schematic of an experiment to observe the function
of RNA polymerase with single base–pair resolution, from
Shaevitz et al (2003). A laser beam is split, and the two result-
ing beams are focused to make “optical traps” for two micron–
sized beads. Attached to one bead is a double stranded DNA
molecule, and attached to the other is an RNA polymerase
molecule. As the polymerase synthesizes mRNA, it “walks”
along the DNA and the tether between the two beads is short-
ened. The intensities of the two beams are set so that the left
hand trap was stiffer, insuring that most of the motion ap-
pears as a displacement of the right hand bead, which is mea-
sured by projecting scattered light onto a position–sensitive
detector.

is called “optical trapping.” Importantly, with realistic
light intensities, the forces on micron–sized particles as
they move in an optical trap indeed are on the scale of pi-
coNewtons, so it is possible to “hold” a molecular motor
in place.

Problem 81: Optical trapping. The key to the experiments
here is the fact that small, neutral particles can be trapped at the
focus of a laser beam, and that the forces generated in this way
are on the same scale as those generated by individual biological
motor molecules, such as the RNA polymerase. Take the students
through this!

In Figure 74 we see the schematic of an optical trapping
experiment on the RNA polymerase. Successive gener-
ations of technical improvements in these experiments
have made it possible to track the motion of the poly-
merase with a resolution fine enough to see it “step” from
one base pair to the next, as in Fig 75. Importantly, in
these experiments one can bathe the sample in a solution
containing different nucleotides. If we add ITP, which is
not one of the standard four bases, it will sometimes be
incorporated into the growing mRNA strand, but this is
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FIG. 75 Motion of the RNA polymerase along DNA. At left,
from Abbondanzieri et al (2005). Top, the position of the
right hand bead from Fig 74 as the trap is moved in 1 Å steps,
to show that these can be resolved. Bottom, the active mo-
tion of the bead as the RNA polymerase synthesizes rRNA,
showing the expected steps of 3.4 Å. [are the black lines me-
dian filtering?] At right, from Shaevitz et al (2005). Top,
the average trajectory of the RNA polymerase aligned on the
start and end of long pauses. Bottom, the mean duration of
pauses under different conditions, notably the addition of the
“wrong” nucleotide ITP.

always a mistake. Under these conditions we can observe
an increased frequency of “pauses” in the motion of the
polymerase, followed by backtracking of 1–10 base pairs
along a relatively stereotyped trajectory. If we remove
from RNA polymerase the subunits thought to be in-
volved in proofreading, then these error–induced pauses
become very long.

[Need a summary on kinetic proofreading, segue to ac-
tive filtering]

There is another broad class of examples in which there
seems to be a discrepancy between the noise expected
at thermal equilibrium and the performance of biolog-
ical systems, and this is in the measurement of small
displacements. In our inner ear, and in the ears of all
other vertebrate animals, motions are sensed by “hair
cells,” so named because of the tuft of “hairs” (more
properly, stereocilia) that project from their top surface
as in Fig 76. Although we usually think of ears as re-
sponding to airborne sounds, in fact there are multiple
chambers in the ear, some of which respond to sound,
and others of which respond to lower frequency motions
generated by rotation of our head, the largely constant
force of gravity or ground borne vibrations. The core of
all these systems, however, is the hair cell. When the
stereocilia are bent, channels in the cell membrane open
and close, and this modulates an ionic current, as in other
receptor cells that we have seen before. In a variety of
systems it has been possible to open these organs, or

even dissect out the hair cells, and to make direct me-
chanical measurements on the stereocilia. Typically, the
bundle of hairs moves as a unit, and the stiffness is in
the range of κ ∼ 10−3 N/m or less. This implies that the
Brownian motion of the bundle should have an amplitude
δxrms =

√
kBT/κ ∼ 2 nm. This seems small (remember

that the stereocilia have lengths measured in microns),
but ... .

FIG. 76 Hair cells of the vertebrate inner ear [find better
images, with scale bars!]. At left, in the bullfrog sacculus,
from http://www.hhmi.org/senses/c120.html. At right, in
the mammalian cochlea, three rows of “outer” hair cells and
one row of “inner” hair cells at top, from Dallos (1984).

There is a particular species of neotropical frog, for
example, that exhibits clear behavioral responses to vi-
brations of the ground that have an amplitude of ∼ 1 Å.
Individual neurons which carry signals from the hair cells
in the sacculus the to brain actually saturate in response
to vibrations of just ∼ 10 Å = 1nm. Although there are
controversies about the precise numbers, the motions of
our eardrum in response to sounds we can barely hear are
similarly on the atomic scale. Invertebrates don’t use hair
cells, but they also have mechanical sensors, and many
of these too respond reliably to motions in the Ångström
or even sub–Ångström range.
By itself, the order–of–magnitude (or more) discrep-

ancy between the amplitude of Brownian motion and the
threshold of sensation might or might not be a problem
(we’ll come back to this). But surely it motivates us to
ask if, by analogy with kinetic proofreading, it is possible
to lower the effective noise level by pushing the system
away from thermal equilibrium. This also is an inter-
esting physics problem, independent of its connection to
biology.
Consider a mass hanging from a spring, subject to drag

as it moves through the surrounding fluid, as in Fig 77.
By itself, the dynamics of this system are described by
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the Langevin equation, [point back!]

m
d2x(t)

dt2
+ γ

dx(t)

dt
+ κx(t) = Fext(t) + ζ(t), (448)

where Fext denotes external forces acting on the system
and the Langevin force obeys

〈ζ(t)ζF (t′)〉 = 2γkBT δ(t− t′). (449)

But suppose that we measure the position of the mass,
differentiate to obtain the velocity, and then apply a
“feedback” force proportional to this velocity, Ffeedback =
−ηdx(t)/dt; then we have

m
d2x(t)

dt2
+ γ

dx(t)

dt
+ κx(t) = Fext(t) + ζ(t) + Ffeedback(t) (450)

= Fext(t) + ζ(t)− η
dx(t)

dt
(451)

m
d2x(t)

dt2
+ (γ + η)

dx(t)

dt
+ κx(t) = Fext(t) + ζ(t). (452)

This system is equivalent to one with a new drag coefficient γ′ = γ+η. But the fluctuating force hasn’t changed—the
molecules of the fluid don’t know that we are applying feedback—so we can write

m
d2x(t)

dt2
+ γ′ dx(t)

dt
+ κx(t) = Fext(t) + ζ(t) (453)

〈ζ(t)ζF (t′)〉 = 2γkBT δ(t− t′) = 2γ′kBTeffδ(t− t′), (454)

where Teff = Tγ/γ′ = Tγ/(γ + η). Thus, by observing
the system and applying a feedback force, we synthesize
a system which is, effectively, colder and thus has (in
some obvious sense, but we will need to be careful) less
thermal noise.

κ

γ m

δF Fext

x(t)

d

dt

Ffeedback

FIG. 77 A schematic of active feedback, in which we observe
the position of a mass on a spring and apply a force pro-
portional to the velocity. This can serve to enhance or com-
pensate the intrinsic drag γ, but since it is generated by an
active mechanism (symbolically, through the amplifer) there
need not be an associated change in the magnitude of the
Langevin force, as there would be at thermal equilibrium.

This idea of “active cooling” is very old, but it has
received new attention in the attempt to build very sen-
sitive displacement detectors, e.g. for the detection of
gravitational waves. A recent example placed a one gram
mass in a laser interferometer and used the change in ra-
diation pressure on the mass as function of its position
to generate the feedback force; this is different in detail
from the model above, but similar in spirit. The result
was that the effective temperature could be brought down
from ∼ 300K to ∼ 7 × 10−3 K, a reduction of roughly
40, 000×, and this seems to be limited by noise in the
laser itself.
It is important to be clear about exactly which mea-

sures of noise are reduced, and which are not. The
mean–square displacement of the oscillator—and hence,
by equipartition, the apparent temperature—has been re-
duced. But when we try to drive the system with a force
at the resonant frequency, the added damping means that
it is more resistant, and hence the response to a given
force is smaller. Thus if we ask for the minimum force
that we must apply (on resonance) to displace the os-
cillator by one standard deviation, this threshold force
actually goes up, as if the system had more noise, not
less. Finally, if we imagine that we can observe the po-
sition of the oscillator over a very long time, then what
matters for detecting a small applied force at the reso-
nant frequency is the spectral density of force noise, and
this hasn’t changed at all.
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Problem 82: Effective noise levels. Do the real calculations
required to verify the statements in the previous paragraph. These
are not difficult.

As alternative to actively damping the oscillator, we
can try to actively undamp, using feedback of opposite
sign:

m
d2x(t)

dt2
+ γ

dx(t)

dt
+ κx(t) = Fext(t) + ζ(t) + Ffeedback(t) (455)

= Fext(t) + ζ(t) + η
dx(t)

dt
(456)

m
d2x(t)

dt2
+ (γ − η)

dx(t)

dt
+ κx(t) = Fext(t) + ζ(t). (457)

Now the variance of the displacement is larger,

〈(δx)2〉 = kBTeff

κ
=

kBT

κ
· γ

γ − η
, (458)

but the sensitivity to forces applied on resonance is also enhanced. If we have Fext(t) = F0 cos(ω0t), with ω0 =
√

κ/m,
then the displacement will be x(t) = x0 sin(ω0t), with x0 = F0/[(γ−η)ω0]. Thus the signal–to–noise ratio in a snapshot
of the motion becomes

x2
0

〈(δx)2〉 =
F 2
0

(γ − η)2ω2
0

· γ − η

γ

κ

kBT
=

[
κF 2

0

(γω2
0)

2

1

kBT

]
· γ

γ − η
. (459)

Thus, in this case the signal–to–noise ratio for a snapshot
of the position goes up in proportion to the amount of
active ‘undamping.’

We can understand the impact of active undamping as
a narrowing of the system bandwidth, or a sharpening of
the resonance around ω0. Both the external force and the
Langevin force drive the system in the same way. The
difference is that we are considering an external force at
the resonant frequency, while the Langevin force is white
noise, with equal power at all frequencies. By sharpening
the resonance, active undamping reduces the total impact
of this noise; since the bandwidth of the resonance is
proportional to γ− η, the enhancement of the signal–to–
noise ratio is also in proportion to this factor.

Taken at face value it seems that we can increase the
signal–to–noise ratio by an arbitrarily large factor—if we
increase η so that γ − η → 0, the resonance becomes
infinitely sharp and it becomes possible to detect arbi-
trarily small forces from just an instantaneous look at
the position x. Any recipe for detecting arbitrarily small
signals should be suspect, but what actually limits the
growth of the signal–to–noise ratio in this case?

First, it should be clear that the increased SNR comes
at a cost. In a system with a sharp resonance, the time
scale for response becomes long in inverse proportion to
the bandwidth. Thus, as we let γ − η → 0, the current
position x(t) becomes dependent on the forces Fext(t) in
distant past. This is a serious issue, but it doesn’t really

set a limit to the smallest force we can detect.

Problem 83: A reminder about Green functions. The
solution to the equation

m
d2x(t)

dt2
+ (γ − η)

dx(t)

dt
+ κx(t) = Fext(t) (460)

can be written in the form

x(t) =

∫
dt′ G(t− t′)Fext(t

′), (461)

where G(τ) is the Green function or (time domain) linear response
function. Find G(τ), and verify that as γ− η → 0 this function ac-
quires weight at very large τ , corresponding to a very long memory
or strongly nonlocal responses.

A second limit to the signal–to–noise ratio is set by
noise in the amplifier itself. This certainly is a practical
problem, and there may even be a fundamental problem,
since linear amplifiers have a minimum level of noise set
by quantum mechanics. There is some very interesting
physics here, and (confession time) there was a time when
I worked very hard to convince myself that these quan-
tum limits to measurement could be relevant to biological
systems. This project failed, and I would rather not re-
visit old failures, so let’s skip this one.
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The third consideration which limits the narrowing of
the bandwidth is the finite power output of any real am-
plifier. As we let γ − η → 0, the amplitude of motion in
response to a force at resonance grows as 1/(γ − η), and
since there is a real drag force −γ(dx/dt) the amplifier
must dissipate power to drive these ever larger motions.
At some point this power requirement will become over-
whelming, and the simple model Ffeedback = +η(dx/dt)
has to break down. Intuitively, we expect that as x be-

comes larger, the strength of the feedback will decrease,
so we can describe at least the beginning of this power
limitation we can write

η → η(x) ≈ η0[1− (x/xs)
2 + · · · ], (462)

where xs is the scale on which the amplifier loses linearity.
Then we have

m
d2x(t)

dt2
+ (γ − η0)

dx(t)

dt
+

η0
x2
s

x2(t)
dx(t)

dt
+ κx(t) = Fext(t) + δF (t). (463)

This equation has several important features.
First, γ = η0 is a bifurcation point. If γ > η0, then in

the absence of forces any small displacement from x = 0
will decay with time. In contrast, for γ < η0, small
displacements will oscillate and grow until the nonlin-
ear term ∼ x2(dx/dt) becomes significant. This is an
example of a Hopf bifurcation [should we say some more
technical things here about the kinds of bifurcations and
the defining features of Hopf?]. Second, if we poise the
system precisely at the bifurcation point, and drive it
with a resonant force, then neglecting noise we have

m
d2x(t)

dt2
+

γ

x2
s

x2(t)
dx(t)

dt
+ κx(t) = F0 cos(ω0t). (464)

Guessing that the solution is of the form x(t) ≈
x0 sin(ω0t), we note that

x2(t)
dx(t)

dt
≈ ω0x

3
0 sin

2(ω0t) cos(ωt) (465)

=
1

4
ω0x

3
0 [cos(ω0t)− cos(3ω0t)] ; (466)

in the limit that the resonance is sharp, we know that
the term at frequency 3ω0 can’t really drive the system,
so we neglect this. Thus we have

γω0

4x2
s

x3
0 = F0, (467)

or

x(t) =

[
4F0x2

s

γω0

]1/3
sin(ω0t). (468)

Thus, the response to applied forces is nonanalytic (at
least in the absence of noise); the slope of the response at
F0 = 0 is infinite, as one expects from the linear equation
above, but the response to any finite force is finite.

The fractional power behavior in Eq (468) connects to
a well known but very puzzling fact about the auditory
system. As with any nonlinear system, if we stimulate

the ear with sine waves at frequencies f1 and f2, we can
hear “combination tones” built out of these fundamen-
tals: f1 ± f2, 2f1 − f2, and so on. In the human ear,
the term 2f1 − f2 (with f1 < f2) is especially prominent.
What is surprising is that the subjective intensity of this
combination tone is proportional to the intensity of the
fundamental tones. If we imagine that combination tones
arise from a weak nonlinearity that could be treated in
perturbation theory, we would predict that if the input
tones have amplitudes A1 and A2, then the amplitude of
the combination tone should be A2f1−f2 ∝ A2

1A2. In con-
trast, the model poised precisely at the bifurcation point
predicts A2f1−f2 ∝ (A2

1A2)1/3, so that if we double the
intensity of the input sounds we also double the intensity
of the combination tone, as observed.

Problem 84: Combination tones. Do honest calculations
to verify the statements about combination tones in the previous
paragraph. Contrast the predictions far from the bifurcation point,
where perturbation theory is applicable, with the predictions at the
bifurcation point.

What happens to the nominally infinite signal–to–
noise ratio in the linear model? As we increase the feed-
back η, the mean square displacement increases, but Eq
(462) tells us that at larger x the effective strength of
the feedback term decreases. We can try to see what will
happen by asking for self–consistency. Suppose we re-
place the x–dependent value of the feedback term by an
effective feedback strength which is given by the average,

ηeff ≡ 〈η(x)〉 = η0[1− 〈x2〉/x2
s]. (469)

But if we have an effective feedback term we can go back
to the linear problem, and then Eq (458) tells us that

〈x2〉 = kBT

κ
· γ

γ − ηeff
. (470)
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Combining these equations gives us a self–consistent
equation for the position variance 〈x2〉,

η0
γx2

s

〈x2〉2 +
(
1− η0

γ

)
〈x2〉 = kBT

κ
. (471)

Even if we let the strength of the bare feedback η0 become
infinitely large, this equation predicts that the effective
feedback term will remain finite, and in particular we
always have ηeff < γ, so we can never cross the bifurca-
tion, at least in this approximation. Concretely, solving
Eq (471) and substituting back into Eq (469) for the ef-
fective feedback, we find

lim
η0→∞

γ − ηeff
γ

=
kBT

κx2
s

. (472)

Thus, the system can narrow its bandwidth to an extent
that is limited by the dynamic range of the feedback am-
plifier, which in turn is related to its power output. Since
active narrowing of the bandwidth reduces the effective
noise level below the expected thermal noise, we have a
situation every much analogous to kinetic proofreading:
we can do better than Boltzmann, but it costs energy,
and the more energy the system expends, the better it
can do.

Problem 85: Noise levels in nonlinear feedback. Start
by verifying Eq (472). In the same approximation, calculate
the response to applied forces, and show that the smallest force
which be detected above the noise has been reduced by a factor
∼

√
κx2

s/kBT relative to what we would have without feedack.
Then, there are several things to worry about.

(a.) We have given two analyses. In the first, leading to Eq
(468), we neglect noise and take the nonlinearities seriously, finding
that the response to small forces is non–analytic. In the second,
leading to Eq (472) we treat the crucial nonlinear terms a a self–
consistently determined linear feedback, and noise is included. In
this second approach, the response to applied forces is linear. Can
you reconcile these approaches? Presumably the first approach is
valid if the applied forces produce displacements much larger than
the noise level. Does this mean that the noise serves to “round”
the nonanalytic behavior near F = 0?

(b.) How do your results in (a.) effect your estimates of the
smallest force that can be detected above the noise?

(c.) You might be worried that our self–consistent approxima-
tion is a bit crude. An alternative is to simulate Eq (463) numer-
ically, reminding yourself of the discussion in Section II.A about
how to treat the Langevin force. Compare the results of your sim-
ulation with the predictions of the self–consistent approximation,
for example Eq (471).

(d.)You could also try an alternative analytic approach. If we
rewrite Eq (463) in the absence of external forces as

dx(t)

dt
= v(t) (473)

m
dv(t)

dt
= −

[
γ − η0

(
1−

x2(t)

x2
s

)]
v(t)− κx(t) + δF (t),(474)

then you should be able to derive a Fokker–Planck or diffusion–
like equation for the probability P (x, v) of finding the system with

instantaneous position x and velocity v. Can you find the steady
state solution? How does this compare with your numerical results?

What do we learn from all this? Although there are
limits, active feedback (with either sign) makes it pos-
sible to detect smaller signals than might otherwise be
possible given the level of thermal noise. Pushing the
system away from equilibrium, we spend energy to im-
prove performance. This sounds like the sort of thing
biological systems might exploit.
If thermal noise is important, then it it useful to think

about the bandwidth the system is using as it “listens”
(in this case, literally) to its input, and the resulting
exchange of energy. We recall that in a resonator, the
time scale on which oscillations decay away is τ ∼ 1/∆f ,
where ∆f is the range of frequencies under the resonant
peak. Thus if we excite the resonator to an amplitude
such that it stores energy E, this energy also decays away
on a time scale ∼ τ . But in thermal equilibrium we know
that the average energy is not zero, but rather kBT , so
the surrounding heat bath must provide a flux of power
∼ kBT/τ ∼ kBT∆f to balance the dissipation. If we
want to detect incoming signals above the background of
thermal noise, then these signals have to deliver a compa-
rable amount of power. A more careful calculation shows
that this “thermal noise power” is P = 4kBT∆f .

Problem 86: Acoustic cross–sections and detailed bal-
ance. Use idea of thermal noise power to derive limit on absorp-
tion cross–section averaged over directions. Emphasize connection
to Einstein’s argument about A and B coefficients. Maybe look at
data on the ear in relation to this limit?

Estimates of the power entering the inner ear at the
threshold of hearing are P ∼ 4 × 10−19 W. This sug-
gests that, to be sure the signals are above thermal
noise, the ear must operate with a bandwidth of less than
∆f ∼ 100Hz. There are several ways of seeing that this is
about right. If we record the responses of individual neu-
rons emerging from the cochlea of animals like us, and we
can see that these responses are tuned. More quantita-
tively, as in Fig [**], we can measure the sound pressure
required to keep the neuron generating spikes at some
fixed rate, and see how this varies with the frequency of
pure tone inputs. This input required for constant out-
put is minimal at one “characteristic frequency” of the
neuron, and rises steeply away from this minimum; for
neurons with characteristic frequencies in the range of
1 kHz, the bandwidths are indeed ∆f ∼ 100Hz. One can
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also try to measure the effective bandwidth in human
observers, either by asking listeners to detect a tone in a
noisy background and seeing how detection performance
varies with the width of the noise, or by testing when one
tone impairs the detection of another. More recently it
has been possible to record the responses from individ-
ual receptor cells, as in Fig [This paragraph needs figures
with recordings from primary auditory neurons and hair
cells; be sure that these are properly referenced at the end
of the section.] All of these bandwidth estimates are in
rough agreement, and also agree with the estimate based
on comparing thermal noise with the power entering the
ear at threshold, suggesting that filtering—in addition
to its role in decomposing sounds into their constituent
tones—really is essential in limiting the impact of noise.
It is important that the resonance or filter which defines
this bandwidth actually be in a part of the system where
it can act to reject the dominant source of thermal noise.
For example, if we think of the vibration sensitive frog,
placing the frog on a resonant table would mean that the
whole system had a narrower bandwidth, but this would
do nothing to reduce the impact of random motions of
the stereocilia. It is extremely implausible that the pas-
sive mechanics of the stereocilia themselves can generate
this narrow bandwidth.

Problem 87: Stereocilium mechanics. Use the image of the
hair bundle in Fig ** to estimate the mass and drag coefficient of
the bundle as it moves through the surrounding fluid, which you can
assume is water. Is the system naturally resonant? Overdamped
or underdamped? What bandwidth of filtering would be needed to
be sure that fluid displacements of ∼ 1 Å are detectable above the
thermal noise of the bundle? Is this roughly consistent with the
observed threshold power?

In mammalian ears, the hair cells sit on top of a struc-
ture called the basilar membrane, the tips of the stere-
ocilia are in contact with another structure, the tectorial
membrane, and the entire organ, called the cochlea, is
wrapped into a spiral and embedded in bone [need a fig-
ure here!]. Sound waves impinging on the eardrum are
coupled into the cochlea to produce a pressure difference
across the basilar membrane, which then vibrates, ul-
timately causing motions of the stereocilia. Because it
is surrounded by fluid, motions of neighboring pieces of
the basilar membrane are coupled, and the result is a
wave that travels along the membrane; because of gra-
dations in the mechanical properties of the system, high
frequency waves have their peak amplitude near the en-
trance to the cochlea and low frequency waves have their
peak near the end or apex of the cochlea. Helmholtz
knew about the structure of the inner ear, and since he

saw fibrous components in the various membranes, he
imagined that these might be taught, resonant strings.
Because the strings were of different lengths and thick-
nesses, varying smoothly along the length of the cochlea,
the resonant frequency would also vary. Thus, Helmholtz
had the basic picture of the cochlea as a mechanical sys-
tem which analyzes incoming sounds into component fre-
quencies, sorting them to different locations along the
basilar membrane. It is not clear how seriously he took
the details of the mechanics, but the picture of the ear
as frequency analyzer or bank of filters was taken very
seriously, and indeed this picture accounts for many per-
ceptual phenomena. The first direct measurements of
basilar membrane motion were made by von Békésy, who
opened the cochleae of various animals, sprinkled reflect-
ing flakes onto the membrane, and observed its motion
stroboscopically under the microscope.57 Békésy saw the
traveling wave of vibrations along the basilar membrane,
and he saw the mechanical sorting of frequencies which
Helmholtz had predicted.

Problem 88: Cochlear mechanics. Generate a problem that
gives the students a tour of classical ideas about the traveling wave
along the basilar membrane. Get them to use WKB methods to
solve, understand how the peak forms etc..

Békésy was also immediately impressed with the scale
of motions in the inner ear. To make the basilar mem-
brane vibrate by∼ 1µm and hence be easily visible under
the light microscope, he had to deliver sounds at what
would be the threshold of pain, ∼ 120 dBSPL.58 If we
just extrapolate linearly, 1µm at 120 dBSPL corresponds
to 10−12 m at 0 dBSPL, or ∼ 0.01 Å (!). This is an as-
tonishingly small displacement.

57 Many of von Békésy’s key contributions are collected in a volume
published relatively late in his life, along with various reminis-
cences and quasi–philosophical remarks. As an example, he notes
that in science good enemies are much more valuable than good
friends, since enemies will take the time to find all your mistakes.
Unfortunately, in the process of this dialogue, some of the ene-
mies become friends and hence, by von Békésy’s criteria, their
usefulness is lost.

58 SPL stands for sound pressure level. It is conventional in acous-
tics to measure the intensity of sounds logarithmically relative
to some standard. 10 dB corresponds to a power ratio of 10×, so
20 dB corresponds to a factor of 10× higher sound pressure vari-
ations. For human hearing the standard reference (0 dBSPL) is
a pressure of 2 × 10−5 N/m2 which is close to the threshold of
hearing at frequencies near 2 kHz.
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Problem 89: Brownian motion of the basilar membrane.
Generate a problem that takes the students through the analysis of
Brownian motion in a continuous system, with basilar membrane
as an example.

Békésy also observed that the frequency selectivity of
the basilar membrane motion was quite modest. More
precisely, the peak of the vibrations in response to a
single frequency was quite broad, spreading over a dis-
tance along the cochlea that corresponds to more than
ten times the apparent bandwidth over which we inte-
grate. This discrepancy seems to have caused more con-
cern than the extrapolated displacement. On the one
hand, if it is correct it suggests that there are mechanisms
to sharpen frequency selectivity that come after the me-
chanics of the inner ear, perhaps at the level of neural
circuitry. Békésy was very much taken with the ideas of
lateral inhibition in the retina, and suggested that this
might be a much more general concept for neural signal
processing. On the other hand, von Békésy studied dis-
sected cochleae that were, not to put too fine a point on
it, dead. By the 1970s, it became clear that individual
neurons emerging from the cochlea had frequency selec-
tivity which was sharper than suggested by von Békésy’s
measurements, and that (especially in mammals) this se-
lectivity was extremely fragile, dependent on the health
of the cochlea—so much so that the tuning properties of
individual neurons could be changed within minutes by
blocking blood flow to the ear, recovering just as quickly
when the block was relieved.

Observations on the fragility of cochlear tuning empha-
sized the challenge of making direct mechanical measure-
ments on more intact preparations, and presumably at
more comfortable sound levels. To make measurements
of smaller displacements, a number of tools from exper-
imental physics were brought to bear: the Mössbauer
effect, laser interferometry, and Doppler velocimetry. At
the same time, several groups turned to non–mammalian
systems which seemed like they would be more robust,
such as the frog sacculus and the turtle cochlea, and
especially in these systems it proved possible to make
much more quantitative measurements on the electrical
responses of the hair cells and eventually on their me-
chanical properties. In the midst of all this progress came
the most astonishing evidence for active mechanical fil-
tering in the inner ear.

If we build an active filter via feedback, and try to nar-
row the bandwidth as much as possible, we are pushing
the system to the edge of instability. It is not difficult to
imagine that, with active feedback provided by biologi-
cal mechanisms, that some sort of pathology could result
in an error that pushed past the gain past the bifurca-
tion, turning a narrow bandwidth filter into an oscillator.
If incoming sounds are efficiently coupled to motions of

FIG. 78 Spontaneous emission of sounds from the human
ear, from van Dijk et al (2011). Top panels show the spectral
density of sounds in the ear canals of two subjects. Bot-
tom panel shows the intensities and frequencies of 41 spectral
peaks found in 8 subjects, compared with the noise back-
ground.

the active elements in the inner ear, then spontaneous
oscillations of these elements will couple back, and the
ear will emit sound. Strange as it may seem, careful
surveys show that almost half of all ears have a “spon-
taneous oto–acoustic emission;” a rather quiet, narrow
band sound that can be detected by placing a micro-
phone in the ear canal, as shown in Fig 78. Importantly,
the statistics of the sounds being emitted are not those
of filtered noise, but rather those expected from a true
oscillator—the distribution of instantaneous sound pres-
sures has a minimum at zero, as expected if the quiet
state is unstable.
[Need to wrap this up .. Direct measurement on cil-

iary mechanics in different systems; violation of FDT as
evidence of activity. Note re electrical resonances. Look
at Marcelo & Jim’s papers to see smoking gun for Hopf
bifurcation.]
[Reach a conclusion!]

Now is a good time to look back at Schrödinger’s remarkable little
book (Schrödinger 1944). The idea which him were presented by
Timoféef–Ressovsky et al (1935). For some later perspectives see
Delbrück’s Nobel lecture (1970); the title refers to an earlier lec-
ture, also very much worth reading for its eloquence and prescience
(Delbrück 1949). A review of DNA structure is given in Appendix
A.5, and some general references on molecular biology are at the
end of Section II.B. The ideas of kinetic proofreading—and, as em-
phasized in the text, the idea that there is a general physics prob-
lem cutting across a wide range of biological phenomena—were
presented in Hopfield (1974) and Ninio (1975). Hopfield (1980)
constructed a scenario in which the basic idea of paying (energet-
ically) for increased accuracy still operates, but with none of the
experimental signatures of the original proofreading scheme. [Need
refs that proofreading is correct!]
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that some mutations lead to changes in mutation rate could have
dramatic consequences for the pace of evolutionary change, as em-
phasized by Magnasco & Thaler (1996). [where they “right,” even
in outline? what has happened since?]
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for example, by Chu (2002). For the state of the art in single
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[Find early references to active cooling ...] Recent examples of ac-
tive cooling are by Corbitt et al (2007) and Abbott et al (2009),
who are aiming at improving the sensitivity of gravitational wave
detection. For discussion of the quantum limits to mechanical mea-
surements see Caves et al (1980), Caves (1985), and Braginsky &
Khalili (1992). For the quantum limits to amplifier noise (which has
a long history), see Caves (1982). For discussions of thermal noise,
I have always liked the treatment in Kittel’s little book, cited at the
end of Section 2.1, and this includes a discussion of the “thermal
noise power.”
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mechanics of other inner ear organs. [Something more modern?]
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the guinea pig using the Mössbauer technique. PM Sellick,
R Patuzzi & BM Johnstone, J Acoust Soc Am 72, 131–141
(1982).

Wegel & Lane 1924: The auditory masking of one pure tone by
another and its probable relation to the dynamics of the
inner ear. RL Wegel & CE Lane, Phys Rev 23, 266–285
(1924).59

Zweig 1976: Basilar membrane motion. G Zweig, Cold Spring
Harb Symp Quant Biol 40, 619–633 (1976).

Zweig et al 1976: The cochlear compromise. G Zweig, R Lipes
& JR Pierce, J Acoust Soc Am 59, 975–982 (1976).

The idea of active filtering in the inner ear goes back to a re-
markably prescient paper by Gold (1948), who is better known,
perhaps, for his contributions to astronomy and astrophysics; see
Burbidge & Burbidge (2006). The idea that active elements are at
work in the mechanics of the mammalian cochlea gained currency
as experiments showed the “vulnerability” of frequency selectivity
(Evans 1972), and with the dramatic observation of acoustic emis-
sions from the ear (Kemp 1978, Zurek 1981); the data shown in
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E. Perspectives

Many of life’s phenomena exhibit a startling degree
of reliability and precision. Organisms reproduce and
develop with surprising predictability, and our own per-
ceptual experience of the world feels certain and solid.
On the other hand, when we look inside a single cell,
or even at the activity of single neurons in brain, things
look very noisy. Are the building blocks of biological be-
havior really so noisy? If so, how can we understand the
emergence of reliability and certainty from all this mess?
Many of the problems faced by living organisms can be

phrased as sensing, processing and responding to signals.
If we look at a part of a system involved in such sensory
tasks, we have to be careful in assessing noise levels. As
a simple example, if we build a system in the lab that
measures a small signal, and somewhere in this system
there is an amplifier with very high gain, then surely we
will find places in the circuitry where the voltage fluc-
tuations are very large. Alternatively, there might be no
gain, just a lot of noise. Thus, the variance of the noise at
one point in the system, by itself, tells us nothing about
its true degree of noisiness.
When we build sensors in the lab, we measure their

noise performance by referring the noise to the input—
estimating the noise level that would have to be added to
the signals that we are trying to sense so as to account
for the noise that we see at the output. This effective
noise level is also the noise that limits the detectability
of small signals, or the discriminability of signals that
are very similar to one another. Importantly, for many
sensors there are physical limits on this effective noise at
the input, which allows us to put the noise performance
on an absolute scale.
What we have done in this Chapter is to look at several

instances it which it has been possible to carry out the
program of “referring noise to the input” for increasingly
complex biological systems. This is by far not a closed
subject, and it is a minority of systems that have been
analyzed in this way. Nonetheless, it is striking that, in
so many disparate instances, the noise performance of
biological systems indeed is close to the relevant physical
limits. This of course is in the spirit of what we learned

from the case of photon counting in vision, but it seems
much more general.
[I need to give some exegesis of this, and what it im-

plies. Perhaps because I have spent so much time on
these issues myself, I am having difficulty at the moment
generating enough distance to be clear and objective (and
not just to repeat what was said at the end of the previ-
ous chapter). So, I will need to come back to this. Sorry
to leave things hanging in an important spot!]


