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III. NO FINE TUNING

Imagine making a model of all the chemical reactions
that occur inside a cell. Surely this model will have many
thousands of variables, described thousands of differen-
tial equations. If we write down this many differential
equations with the right general form but choose the pa-
rameters at random, presumably the resulting dynamics
will be chaotic. Although there are periodic spurts of in-
terest in the possibility of chaos in biological systems, it
seems clear that this sort of “generic” behavior of large
dynamical systems is not what characterizes life. On the
other hand, it is not acceptable to claim that everything
works because every parameter has been set to just the
right value—in particular these parameters depend on
details that might not be under the cell’s control, such as
the temperature or concentration of nutrients in the envi-
ronment. More specifically, the dynamics of a cell depend
on how many copies of each protein the cell makes, and
one either has to believe that everything works no matter
how many copies are made (within reason), or that the
cell has ways of exerting precise control over this number;
either answer would be interesting. This problem—the
balance between robustness and fine tuning—arises at
many different levels of biological organization. Our goal
in this chapter is to look at several examples, from single
molecules to brains, hoping to see the common themes.
[This seems to be the thinnest, and least well worked out
of all the four main chapters. All advice is welcome!]

Physics, especially theoretical physics, is the search for
concise mathematical descriptions of Nature, and to a
remarkable extent this search has been successful. The
dirty laundry of this enterprise is that our mathematical
descriptions of the world have parameters. In a sense, one
mathematical structure describes several possible worlds,
which would be somewhat different if the parameters
were chosen differently. Sometimes this variety is a good
thing—in condensed matter physics, for example, the dif-
ferent parameter values might correspond to genuinely
different materials, all of which are experimentally re-
alizable. On the other hand, if the predictions of the
model are too sensitive to the exact values of the param-
eters, there is something vaguely unsatisfying about our
claim to have explained things. Such strongly parameter–
dependent explanations are often called “finely tuned,”
and we have grown to be suspicious of fine tuning. Expe-
rience suggests that if parameters need to be set to pre-
cise (or somehow unnatural) values, then we are missing
something in our mathematical description of Nature.60

60 At this point I usually try to remind the students of examples—
the apparent vanishing of CP violation for the strong interaction,
and the prediction of the axion as a solution to this problem, is
a favorite. The cosmological constant is another one. Whether
these remarks help depends on what the students have learned

One needs, of course, to be cautious in identifying ex-
amples of fine tuning. As an example, many of the beau-
tiful phenomena associated with solar eclipses depend on
the fact that, seen from our vantage point on the earth,
the angular size of the moon is almost exactly equal to the
angular size of the sun. As far as we know, this is a coinci-
dence, and isn’t connected to anything else. Presumably
this coincidence (which, at certain times of year, occurs
with ∼ 1% precision) is related to the fact that there are
many planets with moons—even more if we count the
planets orbiting other stars—and we happen to live on
one of them. Thus, we are sampling one out of many
possibilities, and so rare things will happen. Similarly,
elections sometimes turn on a surprisingly small number
of votes, a tiny fraction of the total. This might seem like
some sort of fine tuning,61 but it is also true that most
elections do not have outcomes anywhere near the point
of perfect balance among the outcomes. This is more
obviously one of those cases in which we are sampling
many examples, and finely tuned outcomes will happen,
sometimes, by chance alone. What we need to worry
about are cases in which fine tuning seems essential to
make things work (unlike the moon/sun example), and
where we see this in representative examples, or in all
examples (unlike the elections). We’ll see plenty of these
problematic cases.
In biological systems, there may be different reasons to

be suspicious of fine tuning. On the one hand, for many
processes what we call parameters are certainly dynam-
ical variables on longer time scales (such as the number
of copies of a protein), and there is widespread doubt
that cells can regulate these dynamics precisely. More
fundamentally, the parameters of biological systems are
encoded in the genome, and in order for evolution to
occur it seems necessary that, near to the genomes we
see today, there must be genomes (and hence parameter
values) which also generate functional organisms of rea-
sonable fitness. These ideas have entered the literature
as the need for robustness and evolvability. Note that
while the physicist’s suspicion of fine tuning is a state-
ment about the kind of explanation that we find satisfy-
ing, any attempt to enshrine robustness and evolvability
as specifically biological principles involves hypotheses,
either about the ability of cells to control their internal
states or about the dynamics of evolution.
In this section we will look at several examples of the

fine problem, starting at the level of single molecules and
then moving “up” to the dynamics of single neurons, the
internal states of single cells more generally, and networks

in other courses. Would it be good to make this explicit here?
In the text or a footnote?

61 We’ll leave aside, for this discussion, the disturbing possibility
that vote totals are being tuned by some process that is separate
from the actions of the voters themselves.
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FIG. 79 The basic structure of amino acids and the peptide
bond. At top, two amino acids. Different amino acids are
distinguished by different groups R attached to the α–carbon.
Proteins are polymers of amino acids, and the chemical step
in polymerization is the formation of the “peptide bond” by
removal of a water molecule.

of neurons. As noted at the outset, these different bio-
logical systems are the subjects of non–overlapping liter-
atures, and so part of what I hope to accomplish in this
Chapter is to highlight the commonality of the physics
questions that have been raised in these very different
biological contexts.

A. Sequence ensembles

The qualitative ideas about robustness vs fine tuning
can be made much more concrete by focusing on sin-
gle protein molecules. We recall that proteins are het-
eropolymers of amino acids (Fig 79), each monomer along
the polymer chain chosen from twenty possible amino
acids (Fig 80). When we look at the proteins made by one
particular organism, of course each protein has some par-
ticular sequence. If a typical protein is 200 amino acids
long, then there are (20)200 ∼ 10260 possible sequences,
out of which a bacterium might choose a few thousand,

and we choose a few tens of thousands. While different
organisms do make slightly different choices, even if we
sum over all life forms on earth we will find that real pro-
teins occupy a very small fraction of the available volume
in sequence space.
Proteins with different sequences fold up into differ-

ent structures and carry out different functions. Thus,
the sequence obviously matters. Yet, it can’t be that the
exact sequence matters, and this can be checked exper-
imentally. Although some changes are disastrous (e.g.,
trying to bury a charged amino acid deep in the inte-
rior of the protein), many amino acid substitutions leave
the structure and function of a protein almost completely
unchanged, and many more generate quantitative mod-
ulations of function which could be useful in different
environments or for closely related organisms. [Should
add some figures with protein structures. Need pointer
to Appendix A.5 discussing methods of structure deter-
mination. Also need to point out that the possible folds
seem to be limited, which is another indication that not
all details matter.]
Although protein function is tolerant to a wide range

of sequence changes, not all sequences really make func-
tional proteins. We can make this statement both as a
theoretical result and as an experimental fact. Experi-
mentally, we can synthesize proteins by choosing amino
acids at random, and almost none of these will fold. As
we will see below, we can even bias our choices at each
site, trying to emulate a known family of proteins, and
it still is true that if we choose each amino acid indepen-
dently, most proteins don’t fold.
As a crude theoretical model of a protein, we can coarse

grain to keep track of the positions ri of each α–carbon
atom (see Fig 79) along the chain, not worrying about the
detailed configuration of the side chains that project from
the backbone. Successive amino acids are bonded to one
another, with a relatively fixed bond length ", and when
the chain folds to bring two amino acids near one another
they have an interaction that depends on their identity,
plus an excluded volume interaction that is independent
of identity. So the total energy looks something like

E({ri}) =
κ

2

∑

i

(|ri+1 − ri| − ")2 +
1

2

∑

ij

V (Si, Sj)u(ri+1 − ri) +
1

2

∑

ij

∆(ri+1 − ri),

where the stiffness κ should be large, the function u(r)
needs a shape to express the fact that amino acids have
their optimal interaction at finite separation of their cen-
ters, and ∆(r) should be relatively short ranged to ex-
press the excluded volume effect. We could try to be a

little more realistic and have an extra variable for each
amino acid, to keep track of the configuration of the side
chain which project from the position ri.
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FIG. 80 The twenty different amino acids, arranged from
most hydrophobic (top left) to most hydrophilic (bottom
right). [perhaps should redraw for better consistency with
Fig 79; show only R groups?]

Problem 90: Screening. We are assuming that all inter-
actions extend only over short distances, but we also know that
there are charged groups. In this problem you’ll show that the
long ranged Coulomb interaction is screened. For simplicity, let’s
imagine that everything is happening in an aqueous solution with
only two types of ions, one positive and one negative (e.g., a simple
salt solution, where the ions are Na+ and Cl−). Let the density of
the two ions be ρ+(x) and ρ−(x), respectively. If the local electri-
cal potential is φ(x), then in equilibrium the charge densities must
obey

ρ±(x) = ρ0 exp

[
±
qeφ(x)

kBT

]
, (475)

where qe is the charge on the electron and ρ0 is the density or
concentration of ions in the absence of fields. Suppose that we
introduce an extra charge Z at the origin. Convince yourself that

κsprings hold 
bonds to length !

u(r)
interaction

FIG. 81 A model for proteins, after Eq (475). Bonds with
stiff springs connect neighboring amino acids, which interact
through a potential u(r) when they get close. The strength
of the interaction is modulated by the identity of the amino
acids through the term V (Si, Sj) in Eq (475).

the potential then obeys

∇2φ(x) =
1

ε
[Zqeδ(x) + qe[ρ+(x)− ρ−(x)]] , (476)

where ε is the dielectric constant. The combination of these two
equations is often called the “Poisson–Boltzmann” model, since Eq
(475) is the Boltzmann distribution and Eq (476) is the Poisson
equation of electrostatics. [I have avoided issues of units in electro-
statics until now .. get this straight, because we need numbers at
the end!]

(a.) Show that, if the spatial variations in potential are small,
Eq’s (475) and (476) can be combined to give

∇2φ(x) +
1

λ2
φ(x) = Zqeδ(x). (477)

What is the length λ in terms of the other parameters in the prob-
lem?

(b.) You may remember that Eq (477) has solutions that decay
exponentially far from the origin; this is the same as for a force
mediated by the exchange of a massive particle as opposed to the
electromagnetic force, mediated by the massless photon.62 In this
context, Eq (477) is called he Debye–Hückel equation. Solve Eq
(477) to give this result explicitly. If the typical concentration of
ions in solution is ρ0 ∼ 100mM, what is the value of λ?

(c.) With only two univalent ion species, their relatively con-
centrations are fixed by neutrality, and thus there is only one pa-
rameter ρ0 that enters the discussion. Generalize the derivation of
the linearized Eq (477) to the case where there are many species of
ions.

(d.) Going back to the two–species case in Eq (476), can you
solve the problem without making the linearizing approximation
that leads to Eq (477)? With spherical symmetry it’s a one dimen-
sional problem, so at worst you should be able to do this numeri-
cally. With ρ0 in the range of 100mM as above, how good is the
linearized theory?

At the end of all this, does it seem reasonable that even electro-
static interactions are effectively local?

If we set the interaction V = 0, Eq (475) describes
a polymer that takes a self–avoiding random walk. If
V = −V0, then there is a net attraction that causes col-
lapse of the polymer into a more compact phase at low
temperature, but this state is still disordered, since there
is nothing to prefer one compact configuration over an-
other. If V depends on the amino acid identities, then if
we choose the sequence at random the effective interac-
tion between monomers i and j will also be random. Al-
though this sounds like a complicated problem, we know
a great deal about the behavior of systems where the
Hamiltonian contains terms chosen at random.

62 Historically, this idea goes back to Yukawa, who imagined the
strong force between protons and neutrons mediated by the ex-
change of a heavy particle. We now know that this was on the
right track, but there were more layers of the strong interaction
to be uncovered; solutions to Eq (477) are still called Yukawa
potentials. A more direct connection to the standard model of
particle physics is in the case of the weak interaction, where the
large mass of the W± and Z bosons are directly related to the
short range over which the weak interaction is effective.
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The prototype of a system with random interactions
is the spin glass. Imagine a solid in which, at every site,
there is a magnetic dipole which can point up or down,
and hence can be described by an Ising spin σµ = ±1 at
site µ. If neighboring spins tend to be parallel, then we
can write the Hamiltonian as

H = −J
∑

〈i,j〉

σiσj, (478)

where 〈i, j〉 denotes neighboring sites. In the classic spin
glass materials, magnetic impurities are dissolved in a
metal, so the distances between neighbors are random.
Further, when the conduction electrons in the metal re-
spond to the magnetic impurity, they polarize, but in
a metal all the electronic states involved in responses to
small perturbations are near the Fermi surface, and hence
have a very limited range of momenta or wavevectors in
their wavefunctions. This limitation in momentum space
corresponds to an oscillation in real space, so the polar-
ization surrounding a single magnetic impurity oscillates
with distance; a neighboring impurity will ‘feel’ this po-
larization, and so the effective interaction between the
two impurities can be positive or negative, at random,
depending on the distance between them. This suggests
a Hamiltonian of the form

H = −
∑

ij

Jijσiσj, (479)

where Jij is a random number. In a real system these
interactions would be nonzero only for nearby spins, but
there is a natural “mean field” limit in which we allow all
the spins to interact; this is the Sherrington–Kirkpatrick
model.

++

-

++

-

++

-

FIG. 82 Three frustrated spins. Signs on the bonds indicate
the signs of Jij in Eq (479). No matter what configuration of
spins we choose, one of the bonds is always unsatisfied.

The key qualitative idea in spin glass theory is frus-
tration, schematized in Fig 82. In the case of the “fer-
romagnetic” Ising model in Eq (478), each term in the

Hamiltonian can be made as negative as possible by hav-
ing all the spins point in the same direction, either up
or down. But, in the spin glass case, we may find (for
example) that spin 1 is coupled to spins 2 and 3 with
ferromagnetic interactions J12 > 0 and J13 > 0, but
spins 2 and 3 are coupled to each other with an anti–
ferromagnetic interaction, J23 < 0. In such a triangle,
there is no configuration of the spins which can optimize
all the terms in the energy function simultaneously—the
interactions compete. As one can see in this simple prob-
lem with three spins, a consequence of this competition
is that there are many states of the system with low en-
ergy that are nearly degenerate. Importantly, in systems
with many spins these low lying states correspond to very
different spin configurations.

Problem 91: Simulating (small) spin glasses. Consider a
mean field spin glass, as in Eq (479), in which the couplings Jµν

are drawn at random from a Gaussian distribution; for simplicity
start with the assumption that the mean of this distribution is zero
and the variance is one. Notice that with N spins there are exactly
2N states of the system as a whole, so that up to N = 20 (or even
a bit more) you can easily enumerate all of these states without
taxing the memory of your laptop.

(a.) Write a simple program (e.g., in MATLAB) which, starting
from a particular random matrix Jµν , gives the energies of all the
states in an N spin system.

(b.) Find the ground state energy of an N spin system, and do
this many times for independent choices of the random interactions
Jµν . Show that, if the distribution out of which the Jµν are drawn
is held fixed, then the ground state energy does not seem to be
extensive (i.e., proportional to N) as N varies. In contrast, if the
variance of J scales ∝ 1/N , show that the average ground state
energy does seem to be proportional to the number of spins. Can
you give an analytic argument for why this scaling should work?

(c.) The exact ground state energy depends on the particular
choice of the interactions Jµν . One might hope that, as the system
becomes large, there is a “self–averaging,” so that the energy per
spin becomes independent of these details in the limit N → ∞. Do
you see any signs of this?

(d.) Having normalized the variance of the couplings 〈J2〉 =
1/N , so that the ground state energy is on the order of −1 per spin,
compute the gap ∆ between the ground state and the first excited
state of the system, again for many realizations of the matrix Jµν .
How does the probability distribution of this gap behave at small
values of the gap? In particular, is there a finite probability density
as ∆ → 0? How does this behavior of the gap compare with what
you expect in a ferromagnet?

(e.) Show that at least some of the low lying states have spin
configurations that are very different from the ground state. Again,
contrast this with the case of a ferromagnet.

The statistical mechanics of spin glasses is a very beau-
tiful subject, and we could spend a whole semester on
this. What we need for the moment, however, is an intu-
ition, something of the sort one can get from the numer-
ical simulation above. In systems with substantial frus-
tration, we expect that there will be many locally stable
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low energy states, and these will be very far apart in the
relevant state space. Thus, rather than having a well de-
fined ground state, with small fluctuations around this
state, there are many inequivalent near–ground states,
often with large barriers between them. If we think of
the dynamics of the system as motion on an energy sur-
face, then this surface will be rough, with many valleys
separated by high passes; indeed, in the Sherrington–
Kirkpatrick model there are valleys within valleys, hier-
archically. This needs a figure. It’s a bit conventional,
but maybe there is a reason for the convention?

What does all of this teach us about the protein fold-
ing problem? To the extent that we can make analogies
between spin glasses and heteropolymers with random se-
quences, we expect that these randomly chosen proteins
will not, in general, have unique ground state structures.
Instead, there will be many inequivalent structures with
nearly the same low energy, separated by large barriers.
Several groups have used modern tools from the statis-
tical mechanics of disordered systems to make this intu-
ition precise Should I say something about the heftier cal-
culations? An Appendix about replicas? Where else do
we really need those ideas?], and indeed the random het-
eropolymer is a kind of glass—the polymer has compact,
locally stable structures, but there are many of these, and
the system tends to get ‘stuck’ in one or another such
local minimum at random. This contrasts sharply the
ability of real proteins to fold into particular, compact
conformations that are (at some level of coarse graining)
unique, determined by the sequence. The real problem
is even worse, because we have only considered the sta-
tistical mechanics of one polymer in solution; in practice
the folded state of proteins competes not only with the
higher entropy unfolded state, but with states in which
multiple protein molecules aggregate and precipitate out
of solution.

The conclusion is that the proteins which occur in
Nature cannot be typical of sequences chosen at ran-
dom. At the same time, not every detail of the amino
acid sequence can be important. This is perhaps the
most fundamental example of the general question we
are exploring in this Chapter—our description of life
cannot depend on fine tuning, but neither are the phe-
nomena of life generic. Concretely, we can ask how to
describe the ensemble of sequences that we see in real
proteins. One possibility is that this ensemble is pro-
foundly shaped by history, and surely at some level this
is true—we can trace evolutionary relationships through
sequence data. Another possibility is that the ensemble
of possible sequences is enormously constrained by physi-
cal principles—ensuring that a protein will fold into some
compact, reproducible structure is very difficult, and per-
haps even enough to explain the dramatically restricted
range of sequences and even structures that we observe
in real proteins.

At this point we should pause to note that the prob-

FIG. 83 A schematic energy landscape for protein folding,
from Onuchic et al (1995). [Maybe redraw this? Would be
good to have equations in the text to point at for features of
the funnel.]

lem we are formulating is related to, but different from,
a much more widely discussed problem. The general
question of how protein structure emerges from the un-
derlying amino acid sequence is referred to as the “the
protein folding problem.” As a practical matter, one
might like to predict the three dimensional structure of
the folded state, starting only with the sequence. Many
approaches to this problem are based not on a physical
model for the interactions, but on attempts to gener-
alize from many known examples of sequence/structure
pairs. Faced with a particular sequence from Nature,
this is can be an extraordinarily effective approach. But
it doesn’t tell us why some heteropolymers fold into com-
pact, reproducible states, while others do not, and why
(presumably) some sequences will never be seen in real
organisms. It is this more general version of the question
that concerns us here.
One approach emphasizes that in a typical sequence

chosen at random, interactions among the different amino
acids will be frustrated, blocking the system from finding
a single well isolated folded structure of minimum energy.
A candidate principle for selecting functional sequences is
thus the minimization of this frustration. If frustration is
absent, there may be few if any major energetic barriers
on the path from an unfolded state to the compact, na-
tive conformation, although the need for local structural
rearrangements along the path may mean that there is
an irreducible ‘roughness’ to the energy surface that, in
a coarse grained picture, will limit the mobility of the
system along its path. This scenario has come to be
called a folding ‘funnel,’ emphasizing that there is a sin-
gle dominant valley in the energy landscape, into which
all initial configurations of the system will be drawn, as
shown schematically in Fig 83.
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At a technical level, if frustration is absent, then we
can look at the ground state or native structure and
“read off” an approximation to the interactions. Thus,
in a ferromagnet, all the spins are parallel in the ground
state, and if simply look at each neighboring pair, we
would guess that there is a ferromagnetic interaction be-
tween them; absent any other data, we should assume
that all these interactions have the same strength. Al-
though this might not be exactly right, the Hamiltonian
we get in this way will have the correct ground state.
In contrast, this doesn’t work with spin glasses, because
the (near–)ground states necessarily leave some fraction
of the interactions unsatisfied, due to frustration. In this

spirit, if we look at a small protein, we might try to gen-
erate a potential energy function which ties neighboring
amino acids together along the chain and, in addition,
has “bonds” between amino acids which are in contact
in the folded state. We should choose the scale of the po-
tential to have more or less the correct distance between
amino acids, and the right order of magnitude for the free
energy difference between folded and unfolded states.
Models which bond together amino acids that should

form contacts, and neglect all other interactions, actually
have a long history, and referred to as Gō models. Con-
cretely, this approach involves an energy function of the
form

E =
1

2

∑

bonds

κr(r − r0)
2 +

1

2

∑

angles

κθ(θ − θ0)
2 +

1

2

∑

dihedrals

∑

n

κ(n)
φ [1 + cos(n(φ− φ0))]

+ε
∑

i<j−3

[
5

(
σij

rij

)1

2− Cnative
ij 6

(
σij

rij

)10
]
, (480)

where the various κs are stiffnesses which hold bond
lengths r and angles θ, φ along the chain to their native
values. The crucial terms are those in the second line,
which serve to bond together pairs of residues ij which
form a contact in the native, folded state (Cnative

ij = 1)

while pushing apart those which do not (Cnative
ij = 0). In

principle the different bonds can have specific lengths σij,
but this is not so important qualitatively.

More recently it has been possible to test these ideas
in more detail, by complete simulations of the folding
process (cf Fig 84). To summarize the results of the sim-
ulation, we can measure the fraction Q of the contacts
which should form in the folded state that have actually
been made; by construction, as this order parameter in-
creases, the energy of the system decreases. But making
contacts lowers the entropy of the polymer, and exactly
how much the entropy is lowered depends on which con-
tacts are made. When the dust settles, we can see that
the free energy as a function Q has roughly a double well
structure. Importantly, one can also sample the configu-
rations in the transition state between the wells, and ask
which contacts have been made by the time the molecules
finds its way to the top of the barrier. Because there are
no competing interactions, the prediction is that the en-
semble of transition state configurations must reflect only
the geometry of the target, folded state.

Can we test the predictions of such simulations? We
expect, from the general arguments in Section II.A, that
the rate of folding will have an approximately Arrhenius
temperature dependence, k ∝ exp(−∆F/kBT ), where
∆F is the free energy difference between the unfolded
state and the “transition state” at the top of the barrier.

FIG. 84 Gō models for two particular proteins, dihydrofolate
reductase (DHFR at left) and interleukin 1β (IL–1β at right),
from Clementi et al (2000). Along the x–axis in all figures is
a parameter Q measuring the fraction of native contacts that
have formed. The top panels show the root–mean–square dif-
ference between the structures and the ground state, with
colors denoting the energy. Note that, because there are no
competing interactions, the energy decreases linearly as more
of the native contacts are formed. But different values of Q
can be achieved by different numbers of configurations, until
at Q = 1 there is only one possible structure. Thus the en-
tropy generally declines with Q, although there is also some
structure along the way determined by the geometry of the
native fold. The result, shown in the bottom panels, is that
the free energy has two distinct minima, corresponding to
folded (Q ≈ 1) and unfolded (Q ≈ 0) states. Different curves
correspond to different temperatures, as indicated.
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FIG. 85 Simulations of folding for two proteins, using Gō
models, from Clementi et al (2000). At each instant of time
in the simulation we can count the fraction Q of native con-
tacts, as in Fig 84; sampling the probability distribution of
Q we infer the free energy F (Q). At left, simulations of an
SH3 domain, which is known to fold rapidly with no obvious
intermediate states between folded and unfolded. At right,
simulations of the enzyme RNase, which folds more slowly
and occupies a well defined intermediate state. These differ-
ences are captured by the Gō models, suggesting that frustra-
tion does not play a role in slowing the folding of the larger
molecules.

Imagine that we mutate the protein to change amino acid
i. This has some effect on the free energy of every contact
between i and j, and we can measure at least the sum of
these effects by measuring the change in the free energy
difference between the folded and unfolded states. But
if along the “reaction coordinate” Q in Fig 84 these con-
tacts are made (on average) only once Q > Qc, where the
Qc is the position of the transition state, then changing
their energy doesn’t change the activation free energy for
the folding reaction. On the other hand if these contacts
are made at Q < Qc, they contribute to the free energy of
the transition state and should change the rate of folding.
Roughly speaking, the ratio between changes in the (ki-
netic) free energy of activation and the (thermodynamic)
free energy of folding tells us the fraction of contacts in-
volving residue i which are formed in the transition state,
and this is something we can get directly from the com-
putations summarized in Fig 84; it is also something one
can measure experimentally. Theory and experiment are
in surprisingly good agreement [show a figure with the
comparison!], which strongly suggests that, at least for
small proteins, frustration really has been minimized.

Problem 92: The location of transition states. Sup-
pose that the dynamics of a chemical reaction are described, as
in [pointer], by motion of a coordinate x in a potential V (x) that

has two minima separated by a barrier. Let the locations of the
two minima be at x1 and x2, while the peak of the barrier is at a
position xt. Assume that rate constants from transitions between
the two wells are governed by the Arrhenius law. Now imagine that
we apply a small force f directly to the coordinate x. How does
this change the equilibrium between the two states? How does it
change the rate of transition, say from the states near x1 to the
states near x2? Notice that these are measurable quantities. Can
you combine them to infer the location of xt along the line from x1

to x2? In particular, can you say something without knowing any
additional parameters?

Some proteins are known to fold slowly, moving
through a well defined intermediate state. Does this
represent a failure to relieve all of the frustration, or is
it somehow intrinsic to the size and structure of these
molecules? One can make Gō models of thee slower pro-
teins, and compare them with the smaller “two state fold-
ers.” Results of such a comparison are shown in Fig 85.
Perhaps surprisingly, intermediates emerge in the folding
of the larger protein even in a model where there is no
intrinsic frustration from the interactions among differ-
ent kinds of amino acids. [I’d like to understand if one
be more quantitative here ... can we really conclude that
frustration is approximately minimized?]
A second approach to our problem looks more explic-

itly at the mapping between sequences and structures.
The observation that changes in amino acid sequence
(mutations) don’t necessarily change protein structure
tells us that many sequences map into the same struc-
ture. But what about the other direction of the mapping?
If we imagine some compact structure of a hypothetical
protein, can we find a sequence that will fold into this
structure? This is the inverse folding problem, or the
problem of protein design.

FIG. 86 Compact “folded” structure of an N = 30 polymer
on a square lattice.
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FIG. 87 Exhaustive simulations of compact structures on a
lattice, from Li et al (1996). At left, the number of struc-
tures which are the ground state for exactly Ns distinct HP
sequences, plotted vs Ns for 3 × 3 × 3 (top) and 6 × 6 (bot-
tom) lattices. Note the small number of structures which are
the ground states for huge numbers of sequences. At right,
the energy gap between the ground state and the first “ex-
cited” state, showing that stability correlates with Ns; the
most highly designable structure has a distinctive pattern of
hydrophobic and polar residues alternating with residues that
are free to be either H or P with nearly equal probability.

To address the inverse folding problem it is helpful to
step back and work on a simpler version of the problem.
Imagine that there are just two kinds of amino acids, hy-
drophobic (H) and polar (P). Polar residues are happy to
be next to one another, but they are equally happy to on
the outside surface of the protein, interacting with wa-
ter. Hydrophobic residues are much happier to be next
to one another, and this includes the effect of not be-
ing near water. Finally, for hydrophobic residues, it is
likely that having a polar neighbor is marginally better
than having water as a neighbor. Thus there are three
interaction energies, EPP > EHP > EHH , where lower
energy is (as usual) more favorable. To simplify yet fur-
ther, let us assume that the structure of the protein lives
on a lattice, as in Fig 86. Now it’s clear what we mean
by ‘compact’ structures—if the protein is N = 27 amino
acids long, for example, a compact structure is one which
fills a 3× 3 cube—and similarly the definition of ‘neigh-
bor’ is unambigiuous.

Once we have simplified the problem, it is possible to
attack it by exhaustive enumeration. On the 3 × 3 × 3
cube, for example, there are only ∼ 50, 000 inequivalent
compact structures, and there are only 227 ∼ 108 se-
quences of this length in the HP model. These num-
bers are large, but hardly astronomical, so one can ex-
plore these sequences and structures completely, also for
two dimensional models with N = 30 and 36. To be-
gin, out of 227 sequences, less than 5% have a unique

compact structure with minimum energy; the majority
of sequences have multiple degenerate ground states with
inequivalent structures. Conversely, there are nearly 10%
of compact structures for which no sequence finds that
structure as its ground state; the vast majority of struc-
tures are connected to just a handful of sequences. But
if we ask how many sequences map into a given struc-
ture (Ns), there is a long tail to the distribution of this
number (Fig 87, at left), and some structures have thou-
sands of sequences that all reach that structure as their
ground state. We can say that these structures are easy
to design, or ‘highly designable.’ Structures with large
Ns also have a large energy gap between the compact
ground state and the next highest energy conformation,
so that highly designable structures are also thermody-
namically stable.
What are these highly designable structures? It is hard

to extrapolate from such small systems, but certainly the
structures with largest Ns have more symmetry and show
hints of extended elements such as helices and sheets,
as seen in the insets to Fig 87). Can we understand
why designability is so variable, and why these particular
structures are highly designable?
Before proceeding it is worth noting that finding se-

quences that stabilize certain structures can be done in
two ways. What we really want are sequences with the
property that the desired structure is actually the ground
state, which means we have to check all other possible
competing structures. A weaker notion is to ask for a
sequence that assigns a low energy to the desired struc-
ture, perhaps even the lowest possible energy across all
sequences. If we are just trying the lower the energy, then
the problem of choosing sequences is relatively simple—
we should try to put the polar residues on the outside,
and the hydrophobic residues on the inside. This version
of the inverse problem seems at most weakly frustrated,
so there are “downhill” paths to find good sequences. [Is
there more to say here?]
Analytic approaches to designability describe protein

structure not in terms of the positions of all the amino
acids, but in terms of a matrix Cij that specifies whether
monomers i and j are in contact (Cij = 1) or not (Cij = 0);
by convention Cii = 0. Assuming that all long ranged
interactions are screened we can approximate the energy
of the molecule as having contributions only from amino
acids that are in contact,

E =
∑

ij

Cij

∑

µν

sµi Vµνs
ν
j , (481)

where sµi = 1 if the amino acid at site i is of type µ, and
sµi = 0 otherwise. The matrix Vµν summarizes the in-
teractions among the different types of amino acids. To
approach the weaker notion of designability, we need to
ask how many sequences give a particular structure a low
energy. But asking about the numbers of sequences with
a particular energy is just like doing statistical mechanics
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where we keep the structure fixed and instead allow the
sequence {sµi } to be the dynamical variable. This sug-
gests that we compute the partition function in sequence
space,

Zseq(C) =
∑

{sµi }

exp



−β
∑

ij

Cij

∑

µν

sµi Vµνs
ν
j



 . (482)

Again, this is hard in general, but we can get some intu-
ition by doing a high temperature (small β) expansion.

Summing over all sequences is equivalent to averag-
ing over a distribution in which all sequences are equally
likely. Recall that computing the average value of an ex-
ponential generates a series of cumulants, or connected
correlations:

〈e−x〉 = exp

[
−〈x〉+ 1

2
〈x2〉c −

1

3!
〈x3〉c + · · ·

]
(483)

〈x2〉c = 〈x2〉 − 〈x〉2 = 〈(x− 〈x〉)2〉, (484)

〈x3〉c = 〈(x− 〈x〉)3〉, (485)

and so on. To use this in evaluating Zseq(C), we need to
compute quantities of the form

〈
∑

µν

sµi Vµνs
ν
j

〉
,

or

〈(
∑

µν

sµi Vµνs
ν
j

)2 〉
.

Since we are averaging over a distribution in which all
sequences are equally likely, the vector )si that specifies
the choice of amino acid at site i is independent of the
vectors )sj for any j '= i. Pushing through the details, this
allows us to show that the free energy

Fseq(C) ≡ − 1

β
lnZseq(C) = ATr(C2) +BTr(C3) + · · · ,

(486)
where the coefficients depend on the details of the po-
tential Vµν , and the term ∼ Tr(C) is absent because
Tr(C) = 0.

Problem 93: Details of Fseq(C). Derive Eq (486), carrying
the expansion out to at least one more order. Relate the coefficients
in the expansion explictly to the properties of the potential Vµν .

Because the elements of the matrix C are either 1 or 0,
Tr(C2) just counts the number of contacts, while Tr(C3)

the number of n-step paths along the contact map which
return to their starting place, we know that all such
contact traces must be positive. Thus, the exact behavior
of the series in (10) will hinge on whether the largest
eigenvalues of v are positive or negative.

For either type of potential matrix v, however, we
expect that there will be some positive correlation be-
tween the trace of an even power of a structure’s contact
matrix and the number of low-energy monomer sequen-
ces in that structure. Furthermore, the dependence of the
free energy expansion in (10) on such coarse quantities as
the traces of powers of v suggests that the impact of the
contact matrix on the spectrum of sequence energies
should be relatively insensitive to the detailed features
of the potential. We therefore determined to empirically
test whether the above results remained valid for a dis-
crete monomer alphabet which violated the special form
of the potential assumed in (2). We first calculated the
contact matrices for all 103 346 different compact con-
formations of 27-mers on a cubic lattice [13]. Next, we
calculated hEi vs T annealing curves for random starting
sequences on different structures for a standard Monte
Carlo search of sequence space with a move set contain-
ing composition-preserving two-monomer and three-
monomer permutations. The energy of each sequence
was determined using a potential set given by Table 6 of
[14]. This set of interactions, where average interactions
are subtracted out, is one of the most diverse potentials
possible for a 20-letter alphabet, and therefore provides
the most general empirical test of the predicted relation-
ship between sequence energies and contact topology.
From the annealing curves, we then calculated the en-
tropy in sequence space S!E" according to the prescription
given by Eq. (11) of [2].

Figure 1 plots the sequence space entropy difference
between low and near-modal energy versus the largest
eigenvalue of the structure’s contact matrix for 86 ran-
domly selected lattice structures. As predicted, the en-
tropy difference between the peak and the left tail
decreased as the largest contact matrix eigenvalue in-
creased (correlation # $0:92), indicating that more se-
quences have low energy in high trace structures. Figure 2
illustrates that the effect observed in Fig. 1 results from
global differences in the shapes of the sequence spectra of
high trace and low trace structures. The higher the contact
trace, the more gradually the number of sequences falls
off as energy decreases, and therefore the greater the
relative number of sequences of low energy. Clearly, the
contact trace of the target structure controls how low in
energy a Monte Carlo sequence optimization algorithm
running at fixed temperature Tdes will be able to search.
The greater the contact trace, the larger the S!E" at low
energies, i.e., the greater the weak designability.

Interestingly, the most designable 27-mer structures
identified using our maximum eigenvalue determinant
are similar to the one identified in [15] using random
sampling of sequences and a different, ’’solvationlike’’

Miyazawa-Jernigan potential. This attests to the general-
ity of our proposed structural determinant of designabil-
ity with respect to potentials.

Structures of high contact trace are weakly designable,
but are they strongly designable? In order to address this
question, we examined the stability of sequences de-
signed on two structures of maximal and minimal contact
trace. For each target structure, we determined how many
of its designed sequences were ‘‘on target,’’ that is, had
the target structure as their unique energetic ground
state determined over all compact conformations, and
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FIG. 1. The difference in sequence space entropy between an
energy near the peak of all structural sequence spectra (E #
$2) and one in the lower tail of all spectra (E # $8) as a
function of the contact trace, measured here by the largest
eigenvalue of the structure’s contact matrix (which follows
from TrCn # P
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i ). Each point was generated from data

collected while slowly annealing a Monte Carlo sequence
design simulation from high temperature (T # 2) to low (T #
0:2), with 107 Monte Carlo steps taken at each temperature. The
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hand so as to ensure that the extrema of the range of possible
eigenvalues were represented. All other structures were chosen
randomly.
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FIG. 88 The connection between designability and the eigen-
values of the contact matrix. [explain]. From England &
Shakhnovich (2003).

counts the number of connected paths that lead from
site i to site j to site k and back to site i. Similarly,
the trace of higher powers counts the number of longer
paths. But we can also take a less local view and note
that Tr(Cn) =

∑
i λ

n
i , where λi are the eigenvalues of the

matrix C. As we consider higher powers in the expansion,
the result is dominated more and more by the largest of
these eigenvalues. Experimenting with small structures
as in the discussion above, one can show that the des-
ignability of a structure really does correlate strongly
with the largest eigenvalue of the contact matrix, and
the most designable structure have the largest eigenval-
ues, as in Fig 88. This is especially interesting since the
calculation we have outlined here does not depend on de-
tails of the assumptions about the interactions between
amino acids—all that matters is locality.
As noted above, computing Fseq(C) gives us a “weak”

notion of designability, counting the number of sequences
for which a particular structure will have low energy. If
we are willing to simplify our model of the interactions,
then we can make progress on the stronger notion of des-
ignability, that many sequences have the same minimum
energy structure. Suppose we return to the model in
which there are just two kinds of amino acids, hydropho-
bic and polar. Further, let’s describe the structure in
a similar binary fashion, labeling each amino acid by
whether it is on the surface of the molecule or in the
interior.63 Now there is a plausible energy function—
hydrophobic residues prefer interior sites, polar residues
prefer the surface. Thus the energy will be minimized

63 On a lattice, with the protein folded into a compact structure,
this categorization of sites is unambiguous, although one might
worry a bit about the more general case.
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when the binary description of the sequences (si = +1
for hydrophobic, si = −1 for polar) matches the bi-
nary description of the structure (σi = +1 for interior,
σi = −1 for the surface). Although we might not be
able to calculate the exact energy function, ground state
structures should correspond to the minimum of a very
simple energy that just counts the violations of the hy-
drophobic/interior, polar/surface rule,

E ∝
∑

i

(si − σi)
2. (487)

An important point about this binary description of
structures and sequences is that while all binary strings
{si} represent possible amino acid sequences, not all bi-
nary strings {σi} are possible compact structures of a
polymer [maybe it would be useful to have a figure illus-
trating this point?]. Thus in the space of binary strings,
and hence H/P sequences, there are special points that
correspond to realizable protein structures. The energy
function in Eq (487) tells us that the ground state struc-
ture for any sequence is the nearest such point, where
“near” is measured by a natural metric, the “Hamming
distance,” counting the number of bits that disagree in
the binary string. The set of sequences that will fold into
one particular structure are those which fall within the
Voronoi polygon surrounding the binary description of
that structure, as shown in Fig 89. In this picture, the
sequence literally encodes the structure, and the folding
process provides a kind of error correction in this code,
mapping arbitrary binary strings back to the sparse set of
realizable structures. By choosing structures which are
far from other structures in this binary representation,
one guarantees that many sequences will map to that
one structure. Again this picture can be tested against
simulations of the lattice models (as in the discussion
above), and the results are consistent.

The lesson from all this is that not all structures
are created equal, and that selection of structures for
their designability induces a nontrivial distribution on
the space of sequences. This constraint of course restricts
the set of allowed sequences, but at the same time focuses
precisely on those sequences for which not all details of
the sequence have functional relevance. [check if there is
more worth saying here]

There is yet another approach which tries to address
the ensemble of allowed sequences, leaning on theory but
also using a more direct experimental exploration. In or-
der to appreciate this approach, you need to know that
proteins form families. We have already met a simple
example of this, with rhodopsin. In your retina, there
are four kinds of photoreceptor cells—rods for night vi-
sion, and three kinds of cones that provide color vision at
higher light intensities—and each one expresses a differ-
ent pigment molecule, with a different absorption spec-
trum. Rhodopsin consists of a medium sized organic

molecule, retinal embedded in the protein; all the pig-
ments use retinal, so the differences in absorption spec-
trum reflect differences in the protein. All of these pro-
teins are doing the same job, and have recognizably re-
lated structures and amino acid sequences. Nonetheless,
they are not identical. In fact, they share sequence and
structural similarities with many more proteins, all of
which function as receptors (usually for the binding of
small molecules rather than the absorption of light), and
sit in a membrane rather than being free in solution.
Rhodopsin interacts with transducin (Section I.C), which
functions as the first stage of an amplification cascade,
and other rhodopsin–like molecules interact with similar
amplifier molecule. The family to which transducin be-
longs is called the “G proteins,” because part of their
function is driven by the hydrolysis of GTP to GDP [be
sure this was clear in Chapter 1!], while the rhodopsins
and relatives are referred to as G protein coupled recep-
tors (GPCRs). There are GPCRs that respond to hor-
mones, to neurotransmitters in the brain, and, notably,
to odorants in the receptor cells of the nose.
Important examples of protein families are provided by

enzymes. For example, there are many enzymes which
attach phosphate groups to other proteins, for example,
and there is variety even within an organism because
these protein kinases have different targets; there is even
more diversity across organisms. In order to digest our
food, we need to cut up the proteins that we ingest, and
all cells also need to cut up old proteins that have been
damaged or outlived their usefulness in other ways. Cut-
ting the peptide bond quickly and efficiently requires a
carefully engineered catalyst, but cells also need control
over which sequences they are cutting. Thus there are
several families of protein–cutting proteins, called pro-
teases, and there are remarkable structural similarities
among molecules separated by billions of yeras of evolu-

determine the details of the structure of a protein. The
advantage of considering only the hydrophobic force is that it
drastically simplifies the analysis and thereby elucidates some
essential features of the folding problem.

To simplify the application of Eq. 1, let us consider only
globular compact structures and let si take only two values: 0
and 1, depending on whether the amino acid is on the surface
or in the core of the structure, respectively. Therefore, each
compact structure can be represented by a string {si} of 0s and
1s: si ! 0 if the i-th amino acid is on the surface and si ! 1 if
it is in the core (see Fig. 1 for an example on a lattice).
Assuming every compact structure of a given size has the same
numbers of surface and core sites and noting that the term
"ih!

2 is a constant for a fixed sequence of amino acids and
does not play any role in determining the relative energies of
structures folded by the sequence, Eq. 1 is equivalent to:

H " !
i!1

N

#h!i
# si$

2. [2]

Having rewritten the Hamiltonian 1 in terms of Eq. 2, we now
proceed to make a few observations. The problem involves two
spaces: the sequence space and the structure space. We
represent a sequence by the vector of its hydrophobicities h !
(h!1,h!2,. . . ,h!N), and the sequence space {h} consists of 20N

sequences because there can be any of 20 amino acids at each
site. A structure also is represented by a vector s ! (s1,s2,. . .,
sN), where si ! 0 or 1, and the structure space {s} consists of
all of the structures. Note that only a small subset of the 2w

strings of 0s and 1s represents realizable structures. If two or
more structures map into the same string, we say that these
structures are degenerate (see Fig. 1a). It is evident that a
degenerate structure cannot be the unique ground state for any
sequence within this formulation. The fraction of all structures
that are nondegenerate depends on the ratio of surface sites to
core sites. This fraction approaches zero in the limits of very
large and very small surface-to-core ratios. It is worthwhile
noting that, for natural proteins, the surface-to-core ratio is of
the order one.

Now imagine embedding both the sequence space {h} and
the structure space {s} in an N-dimensional Euclidean space
(Fig. 2). This is simplest to picture if one normalizes the h! so
that 0 $ h! $ 1. Because the energy for a sequence h folded
into a structure s is the square of the distance between h and

s (Eq. 2), it is evident that h will have s as its unique ground
state if and only if h is closer to s than to any other structure.
Therefore, the set of all sequences {h(s)} that uniquely design
a structure s can be found by the following geometrical
construction: Draw bisector planes between s and all of its
neighboring structures in the N-dimensional space (see Fig. 2).
The volume enclosed by these planes is called the Voronoi
polytope around s. {h(s)} then consists of all sequences within
the Voronoi polytope. Hence, the designabilities of structures
are related directly to the distribution of the structures in the
N-dimensional space. A structure closely surrounded by many
neighbors will have a small Voronoi polytope and hence a low
designability whereas a structure far away from others will
have a large Voronoi polytope and hence a high designability.
Furthermore, the thermodynamic stability of a folded struc-
ture is related directly to the size of its Voronoi polytope. For
a sequence h, the energy gap between the ground state and an
excited state is the difference of the squared distances between
h and the two states (Eq. 2). A larger Voronoi polytope
implies, on average, a larger gap because excited states can only
lie outside of the Voronoi polytope of the ground state. Thus,
this geometrical representation of the problem naturally ex-
plains the positive correlation between the thermodynamic
stability and the designability, an observation made in ref. 12.

To further illustrate and elaborate on the above ideas, let us
proceed with a simple example: a two-dimensional lattice HP
model (26). Instead of 20, we use only two amino acids: H
(hydrophobic) and P (polar). The vector representing a se-
quence is now h ! (h1,h2,. . . ,hi,. . . ,hN), where hi ! 1 if the i-th
amino acid is an H and hi ! 0 if it is a P. The sequence space
now consists of all of the possible strings of 0s and 1s of length
N. To obtain a set of allowed structure strings, we focus on the
compact 6 % 6 two-dimensional lattice structures (Fig. 1),
which can be enumerated easily. We divide the 36 sites into 20
surface sites and 16 core sites; the surface-to-core ratio is 1.25.
There are 57,337 compact structures not related by symme-
tries. These structures map into 30,408 distinct strings, among
which 18,213 (&30% of all structures) represent nondegener-
ate structures. To obtain a histogram of the designability for all
structures, we randomly sampled the sequence space. We

FIG. 1. Structures are represented by strings s of 0s and 1s,
according to whether a site is on the surface or in the core, respectively.
Shown are two examples of compact 6 % 6 lattice structures. (a) A
typical structure. Dotted lines indicate local changes that can be
performed to transform it to other compact structures. Note that the
change at the lower right corner does not change the string pattern, so
this structure is a degenerate one. (b) The most designable structure.

FIG. 2. Schematic plot of the sequence and the structure spaces and
the Voronoi construction. The Voronoi polytope is the shaded region.

4988 Biophysics: Li et al. Proc. Natl. Acad. Sci. USA 95 (1998)

FIG. 89 Designability as seen in the binary description of
sequences and structures. [explain]. From Li et al (1998).
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FIG. 90 Comparison of the structure of SGPA (right) and
chymotrypsin (left), in the neighborhood of the active site;
from Brayer et al (1978). Note in particular the very similar
geometrical relations among His57, Asp 102 and Ser 195, the
triad of residues involved in the catalytic events.

tionary history. An example is shown in Fig 90, compar-
ing the structure of the bacterial enzyme SGPA and the
mammalian enzyme chymotryspin. These molecules have
recognizably similar amino acids along only ∼ 25% of
their sequences, yet the structures are very similar, espe-
cially in the active site where the crucial chemical events
occur—the proteins fold to bring these key elements into
a very specific geometrical arrangement, despite the se-
quence differences. Other interesting examples of protein
families include smaller parts of proteins (domains) which
can fold on their own and function as the interfaces be-
tween different molecules; there are hundreds of examples
in some of these families.

If we line up the sequences for all the proteins in a
family,64 as in Fig 91, we find that, at each site there are
some preferences for one amino acid over another. With
enough members in the family, we get a decent estimate
of the probability that an amino acid will be chosen in
each position along the sequence. Perhaps the simplest
hypothesis about the ensemble of allowed sequences is
that amino acids are chosen independently at every site,
with these probabilities. It should be emphasized that
such ‘one body’ constraints are strong, reducing the en-
tropy of the allowed sequences from a nominal ∼ log(20)
per site down to ∼ log(3) per site [check the exact num-

64 We need to explain that sequence alignment is not trivial. One
might even note that algorithms for alignment (or for the recog-
nition of family members) already embody hypotheses about the
answer to the question we are trying to formulate here. This
all needs some discussion, not least because it points to open
problems!

bers!]. But, this is not enough: if we synthesize proteins
at random out of this distribution, it is almost impossible
to find one which folds into something like the functional
structure characteristic of the original family.
Given that one body models don’t work, it seems the

next logical step is to look at two body effects: looking
across the family of proteins, we see that substitutions
at one site tend to be correlated with substitutions at
other sites. Can we sample an ensemble of sequences
that captures these pairwise correlations? Let us imag-
ine, for simplicity, that there are only two kinds of amino
acid; the real case of twenty possibilities just needs more
notation. Then we can use σi = +1 for one kind of amino
acid at position i, and σi = −1 for the other. The rel-
ative frequency of the two choices is measured by the
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FIG. 91 Alignment of the WW domains, showing (A) the se-
quences in the family and (B) the correlations between amino
acids at pairs of sites, measured by the mutual information.
The amino acids are indicated by the one letter codes from
Fig 80, with − for gaps. Figure from Mora & Bialek (2011),
based on data from [explain source!].
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“magnetization” 〈σi〉expt, where the subscript remind us
that we measure this from data. Similarly, the correla-
tions between amino acid substitutions at pairs of sites
is measured by

Cexpt
ij ≡ 〈σiσj〉expt − 〈σi〉expt〈σj〉expt. (488)

Imagine creating an artificial family of M sequences
{σµ

i }, with µ = 1, 2, · · · ,M . From this set of replica
sequences we can compute the same expectation values
that we computed fromt he real family of sequences,

〈σi〉model =
1

M

M∑

µ=1

σµ
i (489)

Cmodel
ij =

1

M

M∑

µ=1

σµ
i σ

µ
j − 〈σi〉model〈σj〉model. (490)

We would like to arrange for the model family of se-
quences to have these quantities match the experimental
ones. The first part (〈σi〉model = 〈σi〉expt) is easy, since
we can do this just by choosing the amino acids at every
site independently with the same probabilities as in the
experimental family. For the two–point correlations, we
can form a measure of error between our model sequence
ensemble and the real family,

χ2 =
∑

ij

∣∣∣∣C
model
ij − Cexpt

ij

∣∣∣∣
2

, (491)

and then we can promote this mean square error to an en-
ergy function, and adjust the M sequences according to
a Monte Carlo simulation with slowly decreasing (effec-
tive) temperature. At low temperatures, this procedure
should generate an ensemble of sequences which repro-
duce the pairwise correlations in the naturally occurring
sequences. This procedure has been implemented for a
real family of proteins, and novel sequences drawn out
of the resulting ensemble have been synthesized. Re-
markably, a finite fraction of these sequences fold into
something close to the proper native structure, and these
folded states are essentially as stable as are the natu-
ral proteins. [Reproduce a figure from the Ranganathan
work?]

In the limit that we are considering a very large fam-
ily (M → ∞) of artificial sequences, and we really take
the effective temperature to zero, the Monte Carlo pro-
cedure draws samples out of a probability distribution
that perfectly matches the measured one–point and two–
point correlations, but otherwise is as random or unstruc-
tured as possible, and hence has maximum entropy. We
will meet the maximum entropy idea again in Section
III.D, with more details in Appendix A.8. For now, we
note that the maximum entropy distribution of sequences
takes the form

P ({si}) =
1

Z
exp




N∑

i=1

ui(si) +
1

2

N∑

i,j=1

Vij(si, sj)



 , (492)

where the “fields” ui and the “interactions” Vij must be
chosen to reproduce the one–point and two–point corre-
lations, where now we allow for the amino acid identity at
each site to take on all twenty values, si = 1, 2, · · · , 20.
Actually finding these fields and interactions is the in-
verse of the usual problem in statistical mechanics, and
can be challenging. But if we can solve this problem, the
maximum entropy method provides a potential answer to
the question we posed at the outset—if random sequences
don’t fold, and the exact sequence doesn’t matter, how
do we describe the ensemble of sequences consistent with
a given protein structure or function? Equation (492)
gives an explicit answer, a formula for the probability
that a particular sequence will occur. Importantly, the
form of the distribution is the same as the Boltzmann
distribution, with the interactions and fields defining an
effective energy surface on the space of sequences. [not
sure how to end this .. maybe depends on what Thierry
finds in reanalysis of WW domains]

Problem 94: A small maximum entropy model. Give
a problem that takes the student through the maxent problem
for three spins. Emphasize distinction between interaction and
correlation—how much correlation can you get without any direct
interactions?

We recall from other problems in statistical mechanics
that correlations can extend over much longer distances
that the underlying interactions. Thus, although we may
detect significant correlations among the amino acid sub-
stitutions at many pairs of sites, it is possible that these
can be explained by Eq (492) with the interactions Vij

being nonzero only for a very small fraction of pairs ij.
Since the physical interactions between amino acids are
short ranged, it seems reasonable that if there is a di-
rect connection between the joint choice of residues at
sites i and j on the probability that the resulting protein
is a member of the family, then sites i and j should be
physically close to one another in the protein structure.
This idea was worked out in detail for pairs of recep-
tors and associated signaling proteins in bacteria, and it
was possible to identify, with high reliability, the amino
acids which make up the region of contact between these
molecules, as shown in Fig 92. This success raises the
tantalizing possibility that we could read off the physi-
cal contacts between amino acids—and hence infer the
three–dimensional structure of proteins—from analysis
of the covariations in amino acid substitutions across a
large family.
Should end with some review of what we have learned

about the interplay of tuning and robustness; at least
some of these questions have become more quantitative.
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FIG. 92 Interactions between residues in the ensemble of se-
quences predict spatial proximity, from Weigt et al (2009).
[Fill in caption! Do we need more discussion in the text to
define “direct information” as generalization of Jij?]

There is also a question about history vs. physics: is
the ensemble of sequences just a record of evolutionary
history, or more like an equilibrium distribution subject
to some sensible physical constraints? Do we want to
say something explicit about the antibodies? Empha-
size that the challenge of building the maximum entropy
distributions for larger proteins is really still open?

The amino acid sequences of proteins are translations
of the DNA sequences. But there are large parts of DNA
which are not coding for proteins. Important parts of
this “non–coding” DNA are involved in transcriptional
regulation, as discussed in Section II.B. The key steps
of this regulatory process involve the binding of tran-
scription factor proteins to DNA, and the architecture of
the regulatory network depends on the specificity of these
protein–DNA interactions. When we draw an arrow from
one transcription factor (TF) to its target gene, then as
schematized in Fig [** we had a schematic in a previous
chapter, but maybe need another one here?] there must
be a short sequence of DNA in or around the target gene
to which the transcription factor can bind. The fact that
a given TF activates or represses one gene, but not an-
other, then is controlled by the presence or absence of
the relevant sequences. But some transcription factors
are quite promiscuous, and in higher organisms the rel-
evant sequences often are quite short, so this specificity
is not all–or–none. Rather we should think that every
short sequence is a possible binding site, and there is a
binding energy that depends on the sequence.

Formally, a short piece of DNA sequence can be
thought of as a series of bases. Let’s write sµi = 1 if
the base at position i is of type µ; we have µ = 1, 2, 3, 4
and i = 1, 2, · · · , L, where L is the length of the possible
binding site. We can abbreviate s ≡ {sµi }. Then if we

look at one transcription factor, there is some binding
energy of that factor to the DNA, E(s), for every pos-
sible sequence. What does the function E(s) look like?
Obviously, if it’s a constant then there is no specificity at
all—a given transcription factor will influence every gene
in the genome—and this can’t be right. On the other
hand, if the binding is strong only for one specific se-
quence s0 (that is, E(s) = −E0 with large E0 > 0), while
E(s '= s0) ∼ 0, then the transcription factor can success-
fully target a small subset of genes, but the landscape
for evolutionary change becomes very rugged—changing
a single base can completely eliminate one of the regu-
latory “arrows” in the network, or create a new one of
equal strength to all previous arrows—and this doesn’t
seem right either.
We can turn our question about the form of E(s)

around and ask about the set of sequences that will act
as functional binding sites, presumably those sequences
that have E(s) in some range. In one limit, this ensem-
ble would include all sequences; in the other limit, there
would be just one sequence. Thus the issue of specificity
in protein–DNA interaction is rather like the problem of
amino acid sequence ensembles with which we started
this Chapter: where do real biological systems sit along
the continuum between completely random sequences at
one extreme and unique sequences at the other?
Many of the ideas for analyzing the nature of the se-

quence ensemble for binding sites involve the starting as-
sumption that each base contributes linearly to the total
binding energy, so that

E(s) =
L∑

i=1

4∑

µ=1

Wiµs
µ
i , (493)

whereWiµ are the weights given to each position i. One of
the first ideas was, in the language we have already used,
a maximum entropy argument. If all we know is that
functional binding sites must have some average bind-
ing energy 〈E〉, then the maximum entropy distribution
consistent with this knowledge is

P (s) =
1

Z
exp [−λE(s)] , (494)

which of course is the Boltzmann distribution at some
effective temperature ∝ 1/λ. Importantly, if the energy
is additive as in Eq (493), then the probability of the en-
tire sequence is a product of probabilities at the different
sites,

P (s) =
1

Z

L∏

i=1

exp

[
−λ

4∑

µ=1

Wiµs
µ
i

]
. (495)

This means that the expected frequency of occurrence of
the different bases at each site—that is, the probability
that sµi = 1—can be related directly to the weight matrix,

fiµ ∝ exp [−λWiµ] . (496)
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Thus, if we could get a fair sampling of the ensemble
of sequences we could just read off the matrix elements
Wiµ. [Should I explain that Berg & von Hippel never
said “maximum entropy”? Does it matter?]

Problem 95: Random sequences. Take the students
through expectations about the distribution of binding energies for
the case where sequences are random.

When these ideas first emerged in the mid to late
1980s, in work by Berg & von Hippel, there were few
examples where one could point to multiple known bind-
ing sites for a single transcription factor. Two important
examples were the lac operon and the phage λ switch.
These are sufficiently important examples in the history
of the subject that it is worth taking some time to explain
here how they work. [Do this!]

Problem 96: A little more about λ. Depends on what gets
said in the text, but maybe ask the students to reproduce Ptashne’s
argument about the importance of cooperativity.

What was available to Berg and von Hippel were ∼ 100
examples of the DNA sequences to which RNA poly-
merase binds when it begins transcribing. This of course
is another example of protein–DNA interaction, not a
regulatory interaction but an essential part of all gene
expression.65 Further, there had been in vitro kinetic
measurements on transcription, so they knew something
about directly about the binding energies. If experiments
are done in the regime where the binding sites are usu-
ally empty, then the observed transcription rates will be
proportional to the concentration of polymerase and the
equilibrium constant K ∝ exp[−βE(s)]. The comparison
is shown in Fig 93, including some estimates of errors
in the measurements and predictions. The agreement is
quite good. Thus, it really does seem that one can, at
least roughly, estimate the energetics of binding events

65 Even in this case the number of sequences is not very large,
and we should remember that we are trying to estimate the fre-
quencies of four different bases at each site. To improve their
estimates, Berg & von Hippel (1987) used “psuedo–counts,” a
procedure explained in Appendix A.9.

from the statistics of sequences, which is quite surpris-
ing.
The sequencing of whole genomes, from many organ-

isms, created the opportunity for much more systematic
exploration of sequence ensembles. The fact that the
number of transcription factors is very much smaller than
the number of genes means that, generally, even in a
single organism there must be many examples of bind-
ing sites for each transcription factor. It seems likely,
then, that similar sequences—sequences with good bind-
ing energies—will appear more frequently than would be
expected at random, and these sequences should, in the
simplest cases, be positioned near the start sites of tran-
scription.
In written language, short sequences of letters that

occur more frequently than expected by chance have a
name—words. When we read, however, there are spaces
and punctuation that mark the limits of the words, so
we can recognize them. Interestingly, this is less true for
spoken language, where the sounds of words often run to-
gether, and pauses or gaps are both less distinguishable
and less reliable indicators of word boundaries. In fact,
we really don’t need these markers, even in the case of
written text, as you can see by reading Fig 94.
In the simplest view, words are independent, and all

structure arises from the fact that not all combinations of
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FIG. 93 Sequence dependence of RNA polymerase activity
compared with predictions from a maximum entropy model,
from Berg & von Hippel (1987). On the vertical axis, effective
second–order rate constants for the initiation of transcription
by combination of RNA polymerase and different promoter
sequences. On the horizontal axis, scaled binding energies
predicted from a maximum entropy model based on ∼ 100
sequences. Points refer to independent biochemical experi-
ments, with lines connecting measurements on the same se-
quences, giving a sense for the error bars. A solid line with
slope −1 is shown to guide the eye, with dashed lines indi-
cating roughly the errors in the model arising from the finite
sample size.
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FIG. 94 A passage from Beckett’s Waiting for Godot, spoken
by Vladimir. All punctuation and spaces have been removed,
but (hopefully) the text can still be understood.

letters form legal words. Then, if we know the boundaries
between words, the probability of observing a particular
text becomes

P =
∏

w

[P (w)]nw , (497)

where nw is the number of occurrences of the word w
in the text, and P (w) is the probability of this word.
But we don’t really know, a priori, the correct way of
segmenting the text into words, and so we need to sum
over all possible segmentations. Each segmentation S
generates a different combination of words, so the count
nw(S) depends on S. On the other hand, the probability
that a word appears is a property of the language, not of
our segmentation, and should be constant. Then

P =
∑

S

∏

w

[P (w)]nw(S). (498)

If we think of this as a model for a long text, then
given the vocabulary defined by the set of possible words
{w}, maximizing the likelihood of the data amounts to
setting the predicted probability of each word to the
mean number of occurrences of that word when aver-
aged over all segmentations. Because the text is one–
dimensional, there are methods to sum over segmenta-
tions that are analogous to transfer function methods for
one–dimensional models in statistical mechanics. The
real challenge in looking at a genome is that we don’t
know the vocabulary.

One approach to learning the vocabulary is iterative:
start with the assumption that words are single letters,
then add two letter words when the frequency of letter
pairs is significantly higher than predicted by the model,
and so on. To capture the the functional behavior of
real biological systems one needs to include words with

gaps, such as TTTCCNNNNNNGGAAA, in which “N”
can be any nucleotide. Indeed, this example is one of
the longer words that emerges from an analysis of pos-
sible regulatory regions of the yeast genome, and corre-
sponds to the binding site for MCM1, a protein involved
in (among other things) control of the cell cycle. Glob-
ally, this approach to “building a dictionary” identifies
hundreds words of more than four bases that pass rea-
sonable tests of significance. At the time of the original
work, there were ∼ 400 known, non–redundant binding
sites whose function had been confirmed directly by ex-
periment, and the dictionary reproduced one quarter of
these, a success rate 18 standard deviations outside what
might have been expected by chance.66 One can do even
better by repeating the analysis using as input text only
the regulatory regions of genes whose expression level is
affected during particular processes or by the deletion
or over–expression of other genes. More power is added
to the analysis by using the genomes of closely related
organisms. [What do we want to conclude from all of
this? Have we lost the notion of binding energy in this
discussion?]

Problem 97: Summing over segmentations. Give a prob-
lem to connect summing over segmentations with transfer matrix.
See Bussemaker et al (2000b).

A very different approach to our problem involves ex-
ploring sequence space more systematically. In a rel-
atively short time, several different technologies have
emerged for doing this, each of course with its own
strengths and weaknesses. [Explain protein binding mi-
croarrays, methods from the Quake lab for similar bind-
ing measurements, ChiP methods (but chip and seq).
Need one good figure illustrating all of these schemati-
cally!! Justin provided some input that I haven’t digested
yet here!]
How do we analyze all these data? Certainly we have

the impression that this new generation of experiments
provides much more systematic, quantitative data, but
there are problems. In the protein binding microarray,
for example, there seem to be no reliable calibration of
the relation between fluorescence levels and binding prob-
ability. Certainly if we see a very bright spot, we can be
sure that the protein is bound, but the actual distribu-
tion of fluorescence intensities has a long tail, as in Fig
95. Where in this tail do we decide that we have a “hit”?

66 Say something about what chance means here, and about the
general problem of statistical significance in bioinformatics ... .
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FIG. 95 Protein binding microarray data on the yeast tran-
scription factor Abf1, from Kinney et al (2007). In blue, a his-
togram of the fluorescence intensities (relative to background)
across all ∼ 6000 regulatory regions from the yeast genome
(Murkherjee et al 2004). In green, the line drawn in the orig-
inal experiments to define the threshold for binding. In red,
with error bars, estimates of the probability that binding has
occurred as a function of the fluorescence level, from the anal-
ysis described in the text.

In the experiments of Fig 95, fluorescence is a proxy for
protein binding, and if things come to equilibrium then
this depends on the DNA sequence through the binding
energy E(s). The space of sequences is huge, but the
model of Eq (493) says that the binding energy is a lin-
ear function of the sequence. Thus, fluorescence should
depend on sequence only through a single linear projec-
tion. Finding this projection is an example of the dimen-
sionality reduction problem discussed in Appendix A.7.
The key idea is that, no matter how complicated or noisy
the relationship that connects energy to binding to flu-
orescence, the sequence can’t provide more information
about the output of the experiment than it does about
the more fundamental quantity E(s). Similarly, if we try
to summarize the sequence by any reduced description,
we will lose information unless our reduction corresponds
to estimating E(s) itself. Thus, if we search for a one di-
mensional description, corresponding to a single linear
projections of the sequence that preserves as much in-
formation67 as possible about the experimental output,
then the projection we find must be our best linear ap-
proximation to E(s), up to a scale factor.68

Figure 96 show examples of the weight matrices Wiµ

67 “Information” here is used in the technical sense, in bits. See
Section IV.A.

68 The actual computation is a bit more involved because the pos-
sible regulatory regions are much larger than the binding sites,
and so we have to test not all projections, but all possible pro-
jections along the relevant ∼ 500 base regions. For details see
Kinney et al (2007).

obtained from the “maximally informative dimension”
analysis of experiments on the yeast transcription factor
Abf1, which is assumed to interact with a 20 base long
segment of the DNA. Individual matrix elements typi-
cally are determined with better than 10% accuracy, and
the interaction of the protein with the DNA evidently
is dominated by two approximately symmetric regions
of five bases, separated by a gap of another five bases.
Importantly, using this method it is possible to analyze
in vitro (protein binding microarray) and in vivo (ChiP)
experiments, and get consistent answers. In contrast,
if we just draw a conservative threshold on the signals
strengths (e.g., the green line in Fig 95), then these dif-
ferent sorts of experiments typically lead to divergent in-
terpretations. Once we have confidence in the estimates
of E(s), we can go back and ask how the probability that
the protein is bound is related to the fluorescence inten-
sity, and this is shown in Fig 95. There is nothing about
the analysis that forces this relationship to be smooth or
monotonic, but it is.
Can we go further, and relate these linear models of

binding energy to the control of gene expression itself?
Suppose that we put the expression of a fluorescent pro-
tein under the control of a known promoter, and then
randomly mutate the sequence. We can then generate
an ensemble of bacteria with slightly different sequences,
each of which will express the fluorescent protein at dif-
ferent levels, presumably because the relevant transcrip-
tion factor is binding more or less strongly. Experimen-

FIG. 96 Weight matrices Wiµ for Abf1 in yeast, from analysis
of ChiP (top) and protein binding microarray (bottom) exper-
iments (Kinney et al 2007). In these analyses the overall scale
of E(s) is not determined by the data, and so the two results
have been scaled to maximize their similarity. Importantly,
the two experiments are done in vivo and in vitro, respec-
tively, but nonetheless generate very similar estimates of the
underlying matrix governing protein–DNA interactions. The
two matrix elements with the poorest agreement are circled,
but even these differences have little effect on the predicted
binding energies.
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FIG. 97 Analysis of experiments in which the expression of
a fluorescent protein is placed under the control of promoter
sequences that are randomly mutated versions of the native
sequence binding the transcription factor CRP, from Kinney
et al (2010). At the top, separate analyses yield the weight
matrices Wiµ for the CRP binding site and for the RNA poly-
merase binding site, up to an arbitrary scale factor. At bot-
tom, a combined analysis places these energies on an absolute
scale and determines the interaction energy εi.

tally, one can sort the cells by their fluorescence, and se-
quence the promoter regions, and then search once more
for a reduction of dimensionality that captures as much
information as possible. If the mutations are sprinkled
throughout the promoter region, we expect that there
are at least two relevant dimensions, corresponding to
the binding energy of the transcription factor and the
binding energy of the RNA polymerase. The results of
such an experiment and analysis are shown in Fig 97.

As before, the search for maximally informative dimen-
sions does not determine the scale of the energies. But if
we take seriously that the quantities emerging from the
analysis really are energies, then we should be able to
compute the probability that the RNA polymerase site
is occupied, and it is this occupancy that presumably
controls the initiation of transcription. If the energies for
binding of the transcription factor (CRP) and RNA poly-
merase are εc and εr, respectively, then the probability
of the polymerase site being occupied is

τ =
1

Z
Cre

−εr/kBT
(
1 + Cce

−εc/kBT e−εi/kBT
)
, (499)

where the partition function

Z = 1 + Cce
−εc/kBT + Cre

−εr/kBT

+CrCce
−εr/kBT e−εc/kBT e−εi/kBT , (500)

where Cc and Cr are the concentrations of the transcrip-
tion factor and the RNA polymerase, and εi is the in-
teraction energy between the two proteins when they are
both bound to the DNA. Notice that the two binding

energies are quantities whose relation to the sequence
should already have been determined by search for max-
imally informative dimensions, except for the scale and
zero of energy. By trying to combine these energies we
need to set the scale (kBT ) and the zero (equivalently,
the concentrations of the proteins), and we have to fit
one more parameter, the interaction energy εi. All of
this works, with the results shown at the bottom of Fig
97. For this particular system there are independent mea-
surements of εi, and there is agreement with ∼ 10% accu-
racy. Even better, one can show that the single number
τ is Eq (499) captures as much information about the se-
quence dependence of the expression level as do the two
numbers εc and εr. All of this gives us confidence that
the use of statistical mechanics and linear energy models
really does make sense here.

Problem 98: RNA polymerase occupancy. Derive Eq
(499). Generalize to the case where there are two or more tran-
scription factors, each of which can “touch” the RNA polymerase
and contribute an interaction energy. Show that even if the bind-
ing of each transcription factor is independent (that is, there are no
direct interactions among the TFs), their mutual interactions with
the RNA polymerase gives rise to an effective cooperativity in the
regulation of transcription. What is the relation of this picture to
the MWC models of cooperativity discussed in Appendix A.4?

Now that we have some confidence in our description of
the binding energies, we can go back and ask once more
about the statistics of sequences, and problem of robust-
ness vs fine tuning. There are several things to say here.
I’d like ot cover what happens in Sengupta et al (2002)
and Mustonen et al (2008). I think that Justin’s obser-
vation that you can’t find a linear model which points
to random collections of genes also is interesting. I’m a
bit worried that all of this discussion is in the context of
single celled organisms, but there is a lot of stuff to say,
e.g., about flies. This needs ALOT of work.

A good general reference about proteins is Fersht (1998). For a
modern introduction to polymer physics, see de Gennes (1979).
The small simulation in the problems is not a substitute for ex-
ploring the theory of spin glasses; the classic papers are collected,
with an introduction, by Mézard et al (1986), and a textbook ac-
count is given by De Dominicis & Giardina (2006). Early efforts to
apply these methods to the random heteropolymer were made by
Shakhnovich & Gutin (1989).

De Dominicis & Giardina 2006: Random Fields and Spin
Glasses C De Dominicis & I Giardina (Cambridge University
Press, Cambridge, 2006).

Fersht 1998: Structure and Mechanism in Protein Science: A
Guide to Enzyme Catalysis and Protein Folding AR Ferhst
(WH Freeman, San Francisco, 1998).
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de Gennes 1979: Scaling Concepts in Polymer Physics PG de
Gennes (Cornell University Press, Ithaca, 1979).

Mézard et al 1986: Spin Glass Theory and Beyond M Mézard,
G Parisi & MA Virasoro (World Scientific, Singapore, 1986).

Shakhnovich & Gutin 1989: Formation of unique structure in
polypeptide chains: Theoretical investigation with the aid of
a replica approach. EI Shakhnovich & AM Gutin, Biophys
Chem 34, 187–199 (1989).

Models which incorporate only native interactions, with no frus-
tration, have their origin in work by Gō, reviewed in Gō (1983).
A more explicit discussion of minimizing frustration as a principle
was given by Bryngelson & Wolynes (1987), and the funnel land-
scape of Fig 83 is from Onuchic et al (1995). Detailed simulations
based on the Gō model are described by Clementi et al (2000a,b).

Bryngleson & Wolynes 1987: Spin glasses and the statistical
mechanics of protein folding. JD Bryngelson & PG Wolynes,
Proc Nat’l Acad Sci (USA) 84, 7524–7528 (1987).

Clementi et al 2000a: How native-state topology affects the
folding of dihydrofolate reductase and interleukin–1β. C
Clementi, PA Jennings & JN Onuchic, Proc Nat’l Acad Sci
(USA) 97, 5871–5876 (2000).

Clementi et al 2000b: Topological and energetic factors: What
determines the structural details of the transition state en-
semble and “en–route” intermediates for protein dolding?
An investigation for small globular proteins. C Clementi, H
Nymeyer & JN Onuchic, J Mol Biol 298, 937–953 (2000).

Gō 1983: Theoretical studies of protein folding. N Gō, Ann Rev
Biophys Bioeng 12, 183–210 (1983).

Onuchic et al 1995: Toward an outline of the topography of a
realistic protein–folding funnel. JN Onuchic, PG Wolynes,
Z Luthey–Schultern & ND Socci, Proc Nat’l Acad Sci (USA)
92, 3626–3630 (1995).

The lattice simulations which explored protein designability were
by Li et al (1996). The analytic argument connecting designability
to the eigenvalues of the contact matrix was given by England &
Shakhnovich (2003), and Li et al (1998) gave the argument relating
folding to error correction in the HP model. [Probably there is more
to say here!]

England & Shakhnovich 2003: Structural determinant of pro-
tein designability. JL England & EI Shakhnovich, Phys Rev
Lett 90, 218101 (2003).

Li et al 1996: Emergence of preferred structures in a simple
model of protein folding. H Li, R Helling, C Tang & N
Wingreen, Science 273, 666–669 (1996).

Li et al 1998: Are protein folds atypical? H Li, C Tang &
NS Wingreen, Proc Nat’l Acad Sci (USA) 95, 4987–4990
(1998).

[Need to start with a general reference about protein families]
The idea of protein families was essential in the experiments that
searched for, and found, the receptors in the olfactory system (Buck
& Axel 1991, Axel 2005, Buck 2005). [should give general reference
for serine proteases] The structural correspondence between bac-
terial serine proteases and their mammalian counterparts is from
Brayer et al (1978, 1979) and Fujinaga et al (1985). Experiments
on the sampling of sequence space while preserving one–point and
two–point correlations were done by Socolich et al (2005) and by
Russ et al (2005). The equivalence of these ideas to the maximum
entropy method was shown in Bialek & Ranganthan (2007). For
more on maximum entropy approaches to sequence ensembles, see
Weigt et al (2009), Halabi et al (2009), and Mora et al (2010). For
a broader view of maximum entropy models applied to biological
systems, see Appendix A.8 and Mora & Bialek (2011).

Axel 2005: Scents and sensibility: A molecular logic of olfactory
perception. R Axel, in Les Prix Nobel 2004, T Frängsmyr,
ed, pp 234–256 (Nobel Foundation, Stockholm, 2004).

Bialek & Ranganthan 2007: Rediscovering the power of pair-
wise interactions. W Bialek & R Ranganathan,
arXiv:0712.4397 [q–bio.QM] (2007).

Brayer et al 1979: Molecular structure of crystalline Strepto-
myces gresius protease A at 2.8 Å resolution: II. Molec-
ular conformation, comparison with α–chymotrypsin, and
active–site geometry. GD Brayer, LTJ Delbaere & MNG
James, J Mol Biol 124, 261–283 (1978).

Brayer et al 1979: Molecular structure of the α–lytic protease
from Myxobacter 495 at 2.8 Å resolution. GD Brayer, LTJ
Delbaere & MNG James, J Mol Biol 131, 743–775 (1979).

Buck & Axel 1991: A novel multigene family may encode odor-
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B. Ion channels and neuronal dynamics

The functional behavior of neurons involves the gen-
eration and processing of electrical signals. The dynam-
ics of these currents and voltages are determined by the
ion channels which sit in the cell membrane. As noted
in our discussion of the rod photoreceptor cell (Section
I.C), the cell membrane itself is insulating, and hence
there would be no interesting electrical dynamics if not
for specific conducting pores. These pores are protein
molecules that can change their structure in response to
various signals, including the voltage across the mem-
brane, and this means that the system of channels inter-
acting with the voltage constitutes a potentially complex
nonlinear dynamical system. We can also think of the
ion channels in the cell membrane as a network of in-
teracting protein molecules, with the interactions medi-
ated through the transmembrane voltage. In contrast to
many other such biochemical systems, we actually know
the equations that describe the network dynamics, and
as a result the questions of fine tuning vs. robustness can
be posed rather sharply.
When we move from thinking about individual neu-

rons to thinking about circuits and networks of neurons,
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FIG. 98 Activation curve for an ion channel, from Eq (505),
with Q = 4.

which really do the business of the brain, it is easy to
imagine that the neurons are ‘circuit elements’ with some
fixed properties. We enhance this tendency by drawing
circuit diagrams in which we keep track of whether neu-
rons excite or inhibit one another, but nothing else about
their dynamics is made explicit. In fact, our genome en-
codes ∼ 102 different kinds of channels, each with its
own kinetics, and this range is expanded even further by
the fact that many of these channels have multiple sub-
units, and it is possible to splice together the subunits
in different combinations. On the one hand, this creates
enormous flexibility, and presumably adds to the com-
putational power of the nervous system. On the other
hand, this range of possibilities raises a problem of con-
trol. A typical neuron might have eight or nine different
kinds of channels, and we will see that the dynamics of
the cell depend rather sensitively on how many of each
kind of channel is present. In keeping with the theme of
this Chapter, it might seem that cells need to tune their
channel content very precisely, yet this needs to happen
in a robust fashion.

To explore the tradeoff between fine tuning and robust-
ness in neurons, we need to understand the dynamics of
the channels themselves. For simplicity, let’s neglect the
spatial structure of the cell and assume we can talk about
a single voltage difference V between inside and outside.
Then since the membrane acts as a capacitor, we can
write, quite generally,

C
dV

dt
= Ichannels + Iext, (501)

where Iext is any external current that is being injected
(perhaps by us as experimenters) and Ichannels is the cur-
rent flowing through the channels. Each channel acts
more or less as an Ohmic conductance, and the structure
of the channel endows it with specificity for particular

ions. Since the cell works to keep the concentrations
of ions different on the inside and outside of the cell,
the thermodynamic driving force for the flow of current
includes both the electrical voltage and a difference in
chemical potential; it is conventional to summarize this
by the “reversal potential” Vi for the currents flowing
through channels of type i, which might involve a mix of
ions. Since current only flows through open channels, we
can write

Ichannels = −
∑

i

giNifi(V − Vi), (502)

where gi is the conductance of one open channel of type i,
Ni is the total number of these channels, fi is the fraction
which are open, and Vi is the reversal potential. If each
channel has just two states, open and closed, then their
dynamics would be described by

dfi
dt

= − 1

τi(V )
[fi − f eq

i (V )] . (503)

The equilibrium fraction of open channels as a function
of voltage, f eq

i (V ), often is called the activation curve,
and τi(V ) is the time constant for relaxation to this equi-
librium.
What is a reasonable shape for the activation curve?

We are describing a protein molecule that can exist in
two states, and the equilibrium between these two states
depends on voltage. This is possible only if the transition
from closed to open rearranges the charges in the protein.
In the simplest model, then, the opening of the channel
effectively moves a charge Q across the membrane, and
so the free energy difference between open and closed
states will be ∆F = F0 − QeV . Then the equilibrium
probability of a channel being open will be given by

f eq(V ) =
1

1 + exp [(F0 −QeV )/kBT ]
(504)

=
1

1 + exp
[
−(V − V1/2)/Vw

] , (505)

where the point of half maximal activation is V1/2 =
F0/(Qe), and the width of the activation curve is Vw =
kBT/Qe, as shown in Fig 98. The charge Q is referred to
as the “gating charge.” We recall that, at room tempera-
ture, kBT/e = 25mV, so that even with relatively small
values of Q we expect channels to make the transition
from closed to open in a window of ∼ 10mV or so. The
location of the midpoint V1/2 depends on essentially all
aspects of the protein structure in the open and closed
states, so it is harder to get intuition for this parame-
ter. In practice, different channels have V1/2 values in
the range [look this up to give a meaningful survey ..].

It’s useful to think about the linearized dynamics; we
imagine that there is some steady state at a “resting po-
tential” V = V0, and study small perturbations around
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this steady state. The full dynamics are

C
dV

dt
= −

∑

i

giNifi(V − Vi) + Iext, (506)

dfi
dt

= − 1

τi(V )
[fi − f eq

i (V )] , (507)

and the linearization is

C
dδV

dt
= −

∑

i

giNif
eq
i (V )δV −

∑

i

giNi(V0 − Vi)δfi + Iext, (508)

dδfi
dt

= − 1

τi(V0)

[
δfi −

df eq
i (V )

dV

∣∣∣∣∣
V=V0

δV

]
. (509)

Fourier transforming, we can solve for the channel dynamics,

dδfi
dt

= − 1

τi(V0)

[
δfi −

df eq
i (V )

dV

∣∣∣∣∣
V=V0

δV

]
(510)

−iωδf̃i(ω) = − 1

τi(V0)

[
δf̃i(ω)−

df eq
i (V )

dV

∣∣∣∣∣
V=V0

δṼ (ω)

]
(511)

δf̃i(ω) =
[df eq

i (V )/dV ]0
−iω + 1/τi(V0)

δṼ (ω), (512)

and then substitute,

C
dδV

dt
= −

∑

i

giNif
eq
i (V )δV −

∑

i

giNi(V0 − Vi)δfi + Iext

−iωCδṼ (ω) = −
∑

i

giNif
eq
i (V )δṼ (ω)−

∑

i

giNi(V0 − Vi)δf̃i(ω) + Ĩext(ω) (513)

−iωCδṼ (ω) = −
∑

i

giNif
eq
i (V )δṼ (ω)−

∑

i

[giNi(V0 − Vi)df
eq
i (V )/dV ]0

−iω + 1/τi(V0)
δṼ (ω) + Ĩext(ω). (514)

Collecting terms, we find
[
−iωC +

1

R0
+
∑

i

giNi(V0 − Vi)[df
eq
i (V )/dV ]0

−iω + 1/τi(V0)

]
δṼ (ω) = Ĩext(ω). (515)

The resting resistance of the membrane is defined by

1

R0
=

∑

i

giNif
eq
i (V ). (516)

The term in brackets in Eq (515) is the inverse impedance
(or “admittance”) of the system.

To understand what is going on here, it’s useful to
think about channels which have fast (1/τi + ω) or slow
(1/τi , ω) responses. The fast channels renormalize the
resistance,

1

R0
→ 1

R0
+

∑

i∈fast

τi(V0)giNi(V0 − Vi)
df eq

i (V )

dV

∣∣∣∣∣
V=V0

.

(517)

Importantly, the correction to the resistance can be ei-
ther positive or negative. Suppose that, as in Fig 98, the
channels tend to open in response to increasing voltage,
as most channels do. Then [df eq

i (V )/dV ]0 > 0. But if
this channel is specific for an ion with a reversal poten-
tial above the resting potential (Vi > V0), then opening
the channel creates a stronger tendency to pull the volt-
age toward this higher potential, which is a regenerative
effect—a negative resistance.
If the channels are slow, they make a contribution to

the imaginary part of the admittance, along with the
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capacitance,

−iωC → −iωC +
1

−iω

∑

i∈slow

giNi(V0 − Vi)
df eq

i (V )

dV

∣∣∣∣∣
V=V0

.

(518)
Again the sign depends on details. If the channels are
opened by increasing voltage and the reversal potential
is below the resting potential, then their contribution is
(almost) like an inductance, and can generate a resonance
by competing with the capacitance. This resonance is at
a frequency

ω∗ =

[
1

C

∑

i∈slow

giNi(V0 − Vi)
df eq

i (V )

dV

∣∣∣∣∣
V=V0

]1/2

(519)

which, interestingly, does not depend on the precise value
of the time constants defining the channel kinetics, al-
though one must obey the condition ω∗ + 1/τi(V0) for
all i ∈ slow.

Problem 99: Equivalent circuits. Equation (515) shows
that each type of channel contributes a parallel path for current
flow through the membrane. The impedance of this path is defined
by

1

Z̃i(ω)
= giNif

eq
i (V ) +

giNi(V0 − Vi)[df
eq
i (V )/dV ]0

−iω + 1/τi(V0)
. (520)

Without resorting to the fast/slow approximations above, draw
an equivalent circuit using the standard lumped elements (capaci-
tance, resistance, inductance) which realizes this impedance. Show
how the parameters of the lumped elements relate to the parame-
ters of the channels.

So, we have seen that even in response to small sig-
nals, the dynamics of ion channels generate an interest-
ing complement of electronic parts: resistors, inductors,
and negative resistors. Certainly one can put these to-
gether to make a filter, playing the effective inductance
of the channels against the intrinsic capacitance of the
membrane, as noted above. With the negative resistor
one can sharpen the resonance, and even generate an in-
stability; presumably on the other side of the instability
is a genuine oscillator.

Problem 100: Oscillations. Construct a minimal model for
ion channels in the cell membrane that supports a stable, limit
cycle oscillation of the voltage.

The negative resistance alone means that we can have
(without oscillations) an instability of the steady state
around which we were expanding, presumably because
the real system is multi–stable. To see this more clearly,
consider just two types of channels—a ‘leak’ channel
which is open independent of the voltage and has a rever-
sal potential of zero, and some other channel which opens
in response to increasing voltage. Then the dynamics are

C
dV

dt
= −GleakV − gNf(V − Vr), (521)

df

dt
= − 1

τ(V )
[f − feq(V )]. (522)

The steady state solutions are determined by solving two
simultaneous equations, usually called the nullclines, ob-
tained by setting the time derivatives equal to zero:

f = feq(V ) (523)

V = Vr
f

f +Gleak/gN
; (524)

these are shown schematically in Fig 99, for some rea-
sonable choice of parameters. Evidently there are three
solutions to the two simultaneous equations, and it is
fairly easy to show that two are stable and one is unsta-
ble. The two stable states correspond, roughly, to one
state in which all the channels are closed and the volt-
age is zero (the reversal potential of the leak), and one
state in which all the channels are open and the volt-
age is near the reversal potential for these channels. The
bistability means that, if the cell starts in the low volt-
age state, injection of a relatively small, brief current
can drive the system across a threshold (separatrix) so
that it falls into the high voltage state after the current
pulse is complete. This is a form of memory (interest-
ing, although not very realistic), but also a substantial
amplification of the incoming signal, especially if the pa-
rameters are tuned so that the difference in voltage to
the unstable state is small.

Problem 101: Bistability. Work through a concrete example
of the ideas in the previous paragraphs, perhaps using the detailed
model from Fig 99. You should be able to verify, analytically, the
claims about stability of the different steady states. Explain how
these analytic criteria can be converted into a test for stability of
each steady state that can be ‘read off’ directly from the plots in
Fig 99. Analyze the response to brief pulses of current, showing
that there is a well defined threshold for switching from one stable
state to the other.

All the different kinds of dynamics we have seen thus
far—filtering, oscillation, and bistability—can be gener-
ated by just one kind of channel with only two states.
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FIG. 99 Bistability in a simple model of a neuron. The chan-
nel nullcline is Eq (523), and the voltage nullcline is Eq (524).
To be explicit we choose feq(V ) from Eq (505), with V1/2 = 70
and Vw = 10, and Gleak/gN = 0.1. Note that there are three
crossing points, corresponding to steady states. The low volt-
age and high voltage states are stable; the intermediate volt-
age state is unstable.

Real neurons are much more complex. One important
class of dynamics that we can’t quite see in the simplest
models is ‘excitability.’ In this case, a small pulse again
drives the system across a threshold, but what would
have been a second stable state is destabilized by relax-
ation of some other degrees of freedom; the result is that
the system takes a long, and often stereotyped, trajec-
tory through its phase space before coming back to its
original steady state after the input pulse is over. The
action potential is an example of such excitable dynamics
[should we have a sketch of what this means in a simple
phase plane?].

Our understanding of ion channels goes back to the
classic work of Hodgkin and Huxley in the 1940s and
50s. They studied the giant axon, a single cell, visi-
ble to the naked eye, which runs along the length of a
squid’s body, and along which action potentials are prop-
agated to trigger the squid’s escape reflex. Passing a con-
ducting wire through the interior of the long axon, they
short–circuited the propagation, insuring that the volt-
age across the membrane was spatially uniform, as in our
idealization above. They then studied the current that
flowed in response to steps of voltage. If the picture of
channels is correct, then with the voltage held constant,
there should be an (Ohmic) flow of current through the
open channels. If we step suddenly to a new value of the
voltage, Ohm’s law tell us that the current through the
open channels will change immediately, but there will be
a prolonged time dependence that results from the open
or closing of channels as they equilibrate at the new volt-
age. In the simple model with two states, this changing

current should relax exponentially to a new steady state;
in particular, the initial slope of the current should be
finite.
Hodgkin and Huxley found that the relaxation of the

current at constant voltage has a gradual start, as if the
channels had not one closed state but several, and the
molecules had to go through these states in sequence be-
fore opening. They chose to describe these dynamics of
the currents by imagining that, in order for the chan-
nel to be open, there were several independent molecular
“gates” that all had to be open. Each gate could have
only two states, and would obey simple first order kinet-
ics, but the probability that the channel is open would
be the product of the probabilities that the gates were
open. In the simple case that the multiple gates are iden-
tical, the probability of the channel being open is just a
power of the ‘gating variable’ describing the probability
that one gate is open. Hodgkin and Huxley also discov-
ered that at least one important class of channels open
in response to increased voltage, and then seem to close
over time. They described this by saying that in addi-
tion to ‘activation gates’ that were opened by increasing
voltage, there were ‘inactivation gates’ which closed in
response to increasing voltage, but these had slower ki-
netics. Putting the pieces together, they described the
fraction of open channels as

fi = mαi
i hβi

i , (525)

where m and h are activation and inactivation gates, re-
spectively, and the powers α and β count the number of
these gates that contribute to the opening of one channel.
The kinetics are then described by

dmi

dt
= − 1

τ (m)
i (V )

[mi −meq
i (V )] (526)

dhi

dt
= − 1

τ (h)i (V )
[hi − heq

i (V )] , (527)

and finally the voltage (again neglecting spatial varia-
tions) obeys

C
dV

dt
= −

∑

i

giNim
αi
i hβi

i (V − Vi). (528)

Problem 102: Two gates. Suppose that each channel has
two independent structural elements (“gates”), each of which has
two states. Assuming that the two gates are independent of one
another, fill in the steps showing that the dynamics of the channels
are as described above. In particular, show that after a sudden
change in voltage, the fraction of open channels starts to change
as ∝ t2, not ∝ t as expected if the entire channel only has two
states. [This, and the preceding paragraph, might be a little too
telegraphic. Need feedback here!]
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Problem 103: Hodgkin and Huxley revisited. The origi-
nal equations written by Hodgkin and Huxley are as follows:69

C
dV

dt
= −ḡL(V − VL)− ḡNam

3h(V − VNa)

−ḡKn4(V − VK) + I(t) (529)

dn

dt
= (0.01V + 0.1) exp(−V/10)(1− n)− 0.125n exp(V/80)n

(530)

dm

dt
= (0.1V + 2.5) exp(−V/10− 1.5)(1−m)− 4 exp(V/18)m

(531)

dh

dt
= 0.07 exp(V/20)(1− h)− exp(−V/10− 4)h, (532)

where Na and K refer to sodium and potassium channels, respec-
tively; time is measured in milliseconds and V is measured in mil-
liVolts. These equations are intended to describe a small patch
of the membrane, and so many parameters are given per unit
area: C = 1µF/cm2, ḡL = 0.3mS/cm2, ḡNa = 120mS/cm2, and
ḡK = 36mS/cm2; the reversal potentials are VL = 10.613mV,
VNa = 115mV, and VK = −12mV.

(a.) Rewrite these equations in terms of equilibrium values and
relaxation times for the gating variables, e.g.

dm

dt
= −

1

τm(V )
[m−meq(V )] . (533)

Plot these quantities. Can you explain, intuitively, the form of the
curves?

(b.) Simulate the dynamics of the Hodgkin–Huxley equations in
response to constant current inputs. Show that there is a threshold
current, above which the system generates period pulses. Explore
the frequency of the pulses as a function of current.

(c.) Suppose that the injected current consists of a mean (less
than the threshold you identified in [b]), plus a small component
at frequency ω. By some appropriate combination of analytic and
numerical methods, find the impedance Z(ω) for different values
of the mean injected current. Show that the membrane has a res-
onance, and explore what happens to this resonance as the mean
current is increased toward threshold. How do your results connect
to the frequency of pulses above threshold?

(d.) Real axons are essentially long thin cylinders. Show that,
if we allow the voltage to vary along the length of the axon, there
should be a current per unit area flowing across the membrane of

I =
a

2R

∂2V

∂z2
, (534)

where z is the coordinate along the cylinder, a is its radius, and R is
the resistivity of the fluid filling the axon, assuming that resistance
outside the axon is negligible. For the squid giant axon, a ∼ 250µm
and R ∼ 35Ω·cm. Use this result to write equations for the voltage
and gating variables along the axon. Note that only the dynamics
of voltage is sensitive to spatial derivatives. Why?

(e.) Simulate the response of a long segment of the axon to a
current pulse injected at one end. Show that small pulses result in
spatially restricted voltage responses, while larger pulses produce a

69 The only difference from the original paper is that we use the
modern sign convention for the voltage. Notice that this original
formulation is in terms of a “maximal conductance” for each type
of “current,” while in modern language we could talk about the
number of each type of channel. In fact, the more phenomeno-
logical description persists, because it corresponds more directly
to what is measured, but this allows us to forget that parameters
such as ḡK actually measure the number of copies of a protein
that have been inserted into the membrane.

FIG. 100 The action potential that emerges from the
Hodgkin–Huxley model. Need to decide what to say, what
other things to reproduce ... .

propagating pulse. Confirm that these pulses become more stereo-
typed as the propagate, and have a velocity that is independent of
the input current. What is this velocity? How does it compare to
the observed speed of action potentials, v ∼ 20m/s?

Problem 104: Simplification. It is very hard to make ana-
lytic progress in understanding the dynamics of a system with five
variables. There is a history of trying to approximate the system
by exploiting the fact that the different variables have very differ-
ent time scales. See how far you can go along this path. I have
left this problem deliberately open–ended. For one approach, see
Abbott and Kepler (1990).

It is good to pause here and review how we know that
the Hodgkin–Huxley description of ion channels is cor-
rect. [Not sure how much of this should be illustrated by
figures from the original papers?] The initial triumph,
which you are asked to reproduce in the problem above,
is the prediction of the propagating action potential it-
self, as in Fig 100, with the correct speed. The model
also predicts that, as the action potential passes, there is
a net flux of potassium and sodium across the membrane.
On long time scales, this must be balanced by the action
of pumps that maintain the concentration differences be-
tween the inside and outside of the cell. But either by
looking quickly or by poisoning the pumps, one should
be able to detect the flux, for example using radioactive
tracers, and this works, quantitatively.
[This is all a little vague; should go back and try to do

better!] Nature provides a variety of toxins which block
the action potential in different ways, and we can also find
artificial blockers, for example using ions with very large
radius that can literally plug the hole in open channels.
It is striking that these agents act selectively on different
channels, and one can verify that this way of isolating the
dynamics of sodium and potassium channels matches the
Hodgkin–Huxley description. If we can arrange for the
channels to “open” but be blocked, then the structural
change of the channel molecule upon opening should still
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move the gating charge across the membrane, and if we
are careful this should be measurable essentially as a de-
layed capacitive response to changes in the applied volt-
age. These “gating currents” have indeed been detected,
and in some cases it has been possible to match these
quantitatively not only against predictions based on the
form of the activation curve, but also to genetically engi-
neer the channels and show that changes in the activation
curve and gating currents track one another. [How much
detail here? Give the example of shaker?]

If individual channels are independent of one another,
then their opening and closing events should be indepen-
dent. If we look at a small patch of the membrane, there
will not be that many channels present, and we might
be able to see that the discrete events in the individual
molecules don’t quite average out—there should be noise
from the random opening and closing of the single chan-
nels. This channel noise has been detected, and has the
spectral properties expected from the Hodgkin–Huxley
model. Finally, if we look at even smaller patches of the
membrane, and have proportionately more sensitive am-
plifiers, we should be able to see the opening and closing
of single channels. Again, this works. Most importantly,
we can look at the distribution of times that individual
channels spend in the open and closed states, and con-
nect this to the kinetics predicted by the Hodgkin–Huxley
model and its generalizations. Although these more de-
tailed measurements have revealed new features of chan-
nel kinetics even in well studied examples, in outline the
picture given to us by Hodgkin and Huxley has stood
the test of time. [Again, should probably show some fig-
ures. Emphasize how remarkable it is to be looking at
individual molecular events—current flow through sub–
nanometer pores! Maybe even discuss shot noise through
open channels?]

Problem 105: Channel noise. Give a problem that maps
the HH model onto a stochastic picture of channel states, and then
derive the expected properties of the channel noise. Remember
that we did the simplest version of this in Chapter 1.

Problem 106: Single channel kinetics. Give a problem that
explores how single channel kinetics are connected to the macro-
scopic kinetics.

Now that we have confidence in our mathematical de-
scription of neurons, it is time to realize now just how
many parameters are involved. A typical cell expresses
eight or nine different kinds of channels. Each channel
is described by the dynamics of two gating variables. If
we imagine that activation or inactivation curves have
the simple sigmoidal form as in Fig 99, then there are
roughly two parameters for each such curve—the voltage

at half activation and the slope or width—and at least
one more parameter to set the time scale of the kinet-
ics. Finally, there is the total number of channels, or
the maximum conductance achieved if all the channels
are open. All together, then, this is ∼ 7 parameters per
channel type, or roughly fifty parameters for the entire
neuron, conservatively. Importantly, to a large extent the
cell actually has control over these parameters, and, in a
meaningful sense, can adjust them almost continuously.
How do these adjustments occur? Most obviously, the

total number of open channels is controlled in the same
that all other protein copy numbers are controlled. Some-
times, because of the clearer connection to experiment,
one speaks about the ‘maximal conductance’ associated
with a particular type of channel (Gmax

i = giNi), but
this obscures the fact that this parameter really is the
total number of copies of the protein that the cell has
expressed and inserted into the membrane. The param-
eters of the activation curves and the time constants are
intrinsic properties of the proteins, but these too can be
adjusted in several ways. First, like all proteins, ion chan-
nels can be covalently modified by phosphorylation etc..
More importantly, the genome encodes a huge number of
different ion channels proteins; the human genome has
90 different potassium channels alone. While these do
form classes based on their dynamics, there is consid-
erable variation within classes, and since many of these
genes have multiple alternative splicings, there is the po-
tential for almost continuous parameter variation. These
different mechanisms of variation interact; as an example,
different splicing variants can exhibit different sensitivity
to phosphorylation.

Problem 107: Continuous adjustment of electrical dy-
namics. [It might be that I should take the students by hand
through the model; let’s see how this works.] To illustrate the pos-
sibility of nearly continuous adjustments in the electrical dynamics
of neurons, consider the case of the hair cells in the turtle ear. In
these cells (cf Section 2.5), one contribution to frequency selectivity
comes from a resonance in the electrical response of the hair cell
itself. This resonance is driven by a combination of voltage–gated
calcium channels and calcium–activated potassium channels. There
is a detailed model of this system, described by Wu & Fettiplace
(2001). Try to understand what they have done, and reproduce the
essential theoretical results. In particular, what is the role of “de-
tails” (e.g., the building of channels out of combinations of different
subunits) in generating the correct qualitative behavior?

One well studied example of channel dynamics is in the
stomatogastric ganglion of crabs and lobsters, schema-
tized in Fig 101. This is a network of ∼ 30 neurons which
generates a rhythm, and this rhythm in turn drives mus-
cles which actuate teeth in the crab stomach, grinding its
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FIG. 101 The stomatogastric ganglion (STG) in crustaceans, from Marder & Bucher (2007). At top left, the location of the
STG and the commissural ganglion (CoG) in a lobster. A top right, a schematic of the ganglion dissected out of the animal,
and the opportunities for recording the activity of the neurons. At bottom, simultaneous extracellular recordings from nine
motor nerves at the output of this network. Names indicate particular neurons which can be identified in each individual (as
with the named neurons in the fly visual system discussed in [pointer]), and in some cases (e.g., avn, mvn) we can identify
spikes from several individual neurons in the recording from one nerve. There are two main rhythms, the faster pyloric rhythm
in cells PD, LP, PY, VD and IC, and the slower gastric mill rhythm in cells MG, DG, GM, LPG and LG.

food. Evidently getting the correct rhythm is important
in the life of the organism. If one records the electrical
signals from individual neurons, several of the cells pro-
duce period bursts of action potentials, and a handful of
cells are ‘pacemakers’ that can generate this periodic pat-
tern without input from the other cells. In one such cell
(the lateral pyloric neuron), experiments show that there
are seven different channel types. An important feature
of this cell, shared by many other cells, is the presence
of voltage–gated calcium channels. This means that, as
action potentials occur, they trigger calcium flux into the
cell. Because there are also channels which are directly
affected by the calcium concentration, a complete model
must include a description of the calcium buffering or
pumping that counterbalances this flux.

It is worth being very explicit about all these ingredi-
ents in the dynamics of the lateral pyloric neuron, not
least to get a sense for the state of the art in such anal-
yses. As before, we will neglect the spatial structure of
the cell, so there is just one relevant voltage difference V
between the inside and outside of the cell, which obeys a
slight generalization of Eq (528),

C
dV

dt
= −

∑

i

giNim
αi
i hβi

i (V − Ei) + Iext, (535)

where Iext is any externally injected current and Ei is the
reversal potential for channel type i. The kinetics of the
gating variables mi and hi are governed by Eq’s (526)
and (527), respectively. For most of the channels, we can
take the equilibrium values of the gating variables to be
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channel type giNi (µS) Ei (mV) midpoints (mV) widths (mV) rates (s−1)

i = 1: “delayed rectifier” 0.35 EK = −80

activation equilibrium (α1 = 4) V m1
1/2 = −25 V m1

w = 17

activation kinetics V (m)
1 = 10 1/γ(m)

1 = 22 k(m)
1 = 180

i = 2: Ca++ current 1 0.21 ECa

activation (α2 = 1) V m2
1/2 = −11 V m2

w = 7 50

inactivation (β2 = 1) V h2
1/2 = −50 V h2

w = −8 16

i = 3: Ca++ current 2 0.047 ECa

activation (α3 = 1) V m3
1/2 = −22 V m3

w = 7 10

i = 4: “inward rectifier” 0.037 -10

activation equilibrium (α4 = 1) V m4
1/2 = −70 V m4

w = −7

activation kinetics V (m)
4 = −110 1/γ(m)

1 = 13 k(m)
1 = 0.33

i = 5: “leak” 0.1 -50

i = 6: “A–current” 2.2 EK = −80

activation equilibrium (α6 = 3) V m6
1/2 = −12 V m6

w = 26

activation kinetics k(m)
6 = 140

inactivation equilibrium (β6a = 1) V h6a
1/2 = ... V m6a

w = ...

inactivation kinetics k(h)
6a = ...

inactivation equilibrium (β6b = 1) V h6b
1/2 = ... V m6b

w = ...

inactivation kinetics k(h)
6b = ...

TABLE I A subset of channels in the lateral pyloric neuron, from Buchholtz et al (1992). For the delayed rectifier and the

second type of calcium channel, there is no evidence for inactivation. The negative value of V (h2)
w means, from Eq (505), that

the probability of the inactivation gate being “open” decreases with increasing voltage. For calcium channels, the reversal
potential varies, depending on the calcium concentration inside the cell, as in Eq (541), and the relaxation times do not have
a detectable voltage dependence. The voltage dependence of the inward rectifier kinetics is opposite to Eq (538), that is

1/τ ∝ 1 + exp[−γ(m)
i (V − V (m)

i )]. The leak current, by convention, is the current that exhibits no voltage or time dependence
of its conductance. Get details of the A–current right!

given by the generalization of Eq (505),

meq
i (V ) =

1

1 + exp[−(V − V mi

1/2)/V
mi
w ]

, (536)

heq
i (V ) =

1

1 + exp[−(V − V hi

1/2)/V
hi
w ]

, (537)

and the time constants for relaxation of the gating vari-
ables are, phenomenologically,

1

τ (m)
i (V )

=
k(m)
i

1 + exp[−γ(m)
i (V − V (m)

i )]
, (538)

1

τ (h)i (V )
=

k(h)i

1 + exp[−γ(h)
i (V − V (h)

i )]
. (539)

As shown in Table I, this description works for several
channel types, one selective for potassium, two for cal-
cium, and one mixed, plus a “leak” that exhibits no sig-
nificant time or voltage dependence of its conductance.

Two of the important channel types allow calcium to
flow into the cell. As we will see, this current is big
enough to change the concentration of calcium inside

the cell, and this has a variety of effects on other pro-
cesses, including one of the channels that doesn’t fit the
simple description we have given so far. So, we will
need to describe the dynamics of the calcium concen-
tration itself. The simplest model is that the calcium
relaxes back to some internally determined steady state,
[Ca]0 = 0.05µM, with a rate kCa = 360 s−1, in which
case

d[Ca]

dt
= −kCa ([Ca]− [Ca]0) +AICa, (540)

where ICa is the total calcium current (ICa = I2 + I3
from Table I). The constant A = 300µM/nC is inversely
proportional to the volume into which the current flows,
which experimentally comes out to be much smaller than
the total volume of the cell body. As the concentration
of calcium changes, the reversal potential for the calcium
currents also changes,

ECa =
kBT

2e
ln

(
[Ca]out
[Ca]

)
, (541)

where the calcium concentration outside the cell is
[Ca]out = 13mM.
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We are still missing three of the channel types in this
cell. First, there is another potassium channel that is
almost described by our standard model, but the inacti-
vation seems to involve two processes that occur on dif-
ferent time scales. This can be captured by replacing

h6 → x(V )h6a + [1− x(V )]h6b, (542)

where the weighting function

x(V ) =
1

1 + exp[−(V − 7)/15]
, (543)

with V measured in mV as before.
Next, there is a fast sodium channel not unlike the ones

that Hodgkin and Huxley found in the squid giant axon,
with α7 = 3 and β7 = 1. The activation is sufficiently
fast that it can be approximated as instantaneous, so
that m7 is always at its equilibrium value, which varies
with voltage in a slightly more complicated way than for
the other channels,

m7 = meq
7 (V ) =

1

1 + 136
V+6 (exp[−(V + 34)/13]− exp[−(V − 0.07)/7.9])

, (544)

where V again is measured in mV [Need to check this
carefully!]. The inactivation gates obey

dh7

dt
= a7(V )(1− h7)− b7(V )h7, (545)

where the rates

a7(V ) = 40 exp[−(V + 39)/8], and (546)

b7(V ) =
500

1 + exp[−(V + 40)/5]
, (547)

are measured in s−1. The total conductance that is con-
tributed by these channels is large, g7N7 = 2300µS, al-

though they are only open briefly.
The last type of channel, like the first two in Table

I, is selective for potassium ions, but the probability of
the channel being open is modulated by the intracellular
calcium concentration. This channel has α8 = β8, and
the equilibrium state of the inactivation gate depends
only on the calcium concentration,

heq
8 =

1

1 + [Ca]/(0.6µM)
. (548)

The equilibrium state of the activation gate, in contrast,
depends both on voltage and on calcium,

meq
8 =

1

1 + exp[−(V + f [Ca])/23]
· 1

1 + exp[−(V + 16 + f [Ca])/5]
· [Ca]

2.5µM+ [Ca]
, (549)

where f = 0.6mV/µM. The relaxation rates k(m)
8 =

600 s−1 and k(h)8 = 35 s−1 show little if any voltage de-
pendence. This seems like a complicated model, but it
fits the experimental results very well, as in Fig 102.

Problem 108: Calcium dependent potassium conduc-
tances. Develop a microscopic picture to explain the combination
of voltage and calcium dependences seen in Eq’s (548) and (549).
Remember that these equations describe the equilibrium fractions
of molecules in particular states, so you need to relate these back
to the free energies of the different states. Connect your discussion
with the MWC models discussed in Appendix A.4 and [elsewhere?].

The model of the lateral pyloric neuron which we have
described here represent the culmination of many years of
effort, both in experiments on this particular system and
in the exploration of these fully realistic generalizations
of the Hodgkin–Huxley model to what seems the more
typical case, with many different channel types function-
ing together. This model also represents a level of de-
tail and complexity that I have tried to avoid so far, so
some explanation is called for. First, the complexity con-
sists largely of variations on a theme. Many channels are
known to be described by the general picture of multi-
ple activation and inactivation gates, so this provides a
framework within which each new type of channel can be
fit. Second, the complexity is justified by a large body of
data. There are independent experiments on other sys-
tems, exploring quantitatively each of the types of chan-
nels that we see in this neuron, and detailed experiments
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on this one cell to tease out the contributions of each of
the channel types.

Problem 109: Justifying complexity. Go through
Golowasch & Marder (1992), Buchholtz et al (1992), and
Golowasch et al (1992), and explain the justification for each of
the channel types in the model discussed above.

Indeed, the program of describing the electrical dy-
namics of single neurons in terms of generalized Hodgkin–
Huxley models, usually with many different channel
types functioning together, became a small industry. It
really worked. In some cases one could go so far as
to characterize the kinetics of particular channel types
through measurements on single molecules, and then put
these single molecule properties together to reproduce the
functional behavior of the cell as a whole. This really is
quite a beautiful body of work, and implements what
many people would like to do in other systems, building
from measured properties of individual molecular events
up to macroscopic biological function. As emphasized
above, we can think of the ion channels in the cell mem-
brane as a network of interacting proteins, where the in-
teraction is mediated by the voltage across the membrane
rather than direct protein–protein encounters, and where
the equations for the dynamics of the individual channels
have a firm foundation. It is not unreasonable to claim
that ion channels in the cell membrane are in fact the

FIG. 102 Dynamics of the calcium dependent potassium cur-
rent, from Buchholtz et al (1992). Experimental data (noisy
traces) from Golowasch & Marder (1992), solid lines from the
model including Eq’s (548) and (549). [Go back and under-
stand how they isolate this contribution to the current]

FIG. 103 Simulations of a detailed model, with seven types
of channel, for the lateral pyloric neuron in the stomatogas-
tric ganglion of the crab. Changes in the pattern of activity
as a function of the numbers of two different kinds of chan-
nel, where channel number here is expressed as the maximal
conductance when all channels are open. Note that relatively
small changes in these parameters can result in both quan-
titative and qualitative changes in the pattern of electrical
activity, running the full range from silence to single spike
firing to bursting. From Le Masson et al (1993).

best understood examples of biochemical networks, al-
though the language typically used in describing these
systems obscures this connection.
Despite their success, it came to be known, though

not widely commented upon, that these models of cou-
pled ion channel dynamics had a problem. While ex-
periments often characterize the activation curves and
kinetics of the individual channels, it is hard to make
independent measurements of the total number of chan-
nels, or equivalently the maximum conductance when all
the channels are open. Thus, one is left adjusting these
parameters, trying to fit the overall electrical dynamics
of the neuron—for example, the rhythmic bursting of the
pyloric neuron. This fitting turns out to be delicate; as
one adjusts the (many) parameters, one finds bifurca-
tions to qualitatively different behaviors in response to
relatively small changes. An example of this is shown in
one two–dimensional slice through the seven dimensional
space of channel numbers in the pyloric model, at the top
in Fig 103.
Frankly, from a physicist’s point of view this all seems

a mess. There are many details one has to keep track of,
and many parameters to adjust. One might be tempted
just to walk away, and count this as a part of biology
we don’t want to know about. But there is a deep ques-
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tion here:70 if we have trouble adjusting the parame-
ters of our models in order to reproduce the observed
functional behaviors of particular cells, how do the cells
themselves adjust these parameters to achieve their cor-
rect functions? How does it choose the ‘correct’ number
of each type of channel to express? One could imagine
that the cell has some sort of lookup table—I am a cell of
type α, so I should express Nα

1 molecules of channel type
1, Nα

37 molecules of channel type 37, and so on. This is a
bit implausible. More likely would be that the cell has a
way of monitoring its activity and asking “how close am I
to doing the right thing?,” generating an error signal that
could be used to drive changes in the expression of the
channels or perhaps their insertion into the membrane.

How can a neuron “know” whether it is exhibiting the
desired pattern of electrical activity? It would need some
signal that couples voltage changes across the membrane,
which are quite fast, to the biochemical events regulating
gene expression, which are quite slow. One idea is to use
the intracellular calcium concentration as an intermedi-
ary. We know that many cellular processes are regulated
by calcium, so one end of this is easy to imagine. But
in the models described above the calcium concentration
is an explicit part of the dynamics, so we can calculate,
for example, the time average calcium concentration as
function of the parameters of the model. What we see
in Fig 104 is that [Ca++] does an excellent job of trac-
ing the pattern of electrical activity in this cell. Thus
if the system wants to stabilize a pattern of rhythmic
bursting, it can do so via feedback mechanisms which
try to hold the calcium concentration near a target value
of C0 ∼ 0.2µM.

Let us suppose that the expression of each channel pro-
tein is regulated by calcium, so that

τi
dNi

dt
= Nmax

i fi([Ca++]/C0)−Ni, (550)

where fi(x) is a sigmoidal function such as

fi(x) =
1

1 + x±n
. (551)

Of course these equations have their steady state at
Ni = Nmax

i fi([Ca++]/C0), but the calcium concentration
must be determined self–consistently through the full dy-
namics of the channels and voltage. We should choose
the signs of the calcium dependences to insure stabil-
ity: channels which allow excitatory currents to flow will
tend to drive increases in [Ca++], and so these should be

70 As in the case of kinetic proofreading, I think there is a tendency
to remember the original papers as having proposed mechanisms
that solve problems. But I think that, in many ways, it was a
much deeper contribution to formulate the problems. Even if the
solutions turn out not to be precisely the ones chosen by Nature,
the problems are important.

FIG. 104 Mean calcium concentration follows the pattern of
electrical activity. Main figure shows the mean calcium con-
centration as a function of the same two variables shown in Fig
103. Small figure at right shows that the region of bursting
activity corresponds almost perfectly to the region of parame-
ter space in which the mean calcium concentration is between
0.1 and 0.3 µM, so that holding the calcium level fixed will
stabilize bursting. From Le Masson et al (1993).

opposed by a decreasing function fi(x), and vice versa.
Once we do this, if the regulation functions are steep
[large value of n in Eq (551)], and the maximum possible
numbers of channels (Nmax

i ) are large, the dynamics will
always be pulled into regimes where [Ca++] ≈ C0. We
need a figure which illustrates this!

Problem 110: A simple example of a self–tuning neuron.
Need to find the simplest example of these models, and let the
students work it through for themselves.

How can we tell if something like this sort of self–tuning
really is happening? If neurons knew how many of each
kind of channel to make, then they would try to do this
no matter what the conditions. For example, inputs from
other neurons would drive changes in the electrical activ-
ity, but not changes in channel expression. On the other
hand, if the cell is ‘trying’ to maintain some mean cal-
cium concentration, or some other measure of activity,
then changing the environment in which the neuron op-
erates will change channel expression. As an extreme
example, if we rip the neuron from its network and put
it in a dish, the normal pattern of rhythmic bursting will
go (wildly) wrong, but the calcium–sensitive dynamics
of the channel expression levels will eventually bring the
system back into something close to the original pattern.
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In this new state, the channels are playing different roles
in the dynamics, because the driving forces for ionic cur-
rent flow are different, but the final pattern of activity
is the same. A literal version of this rather dramatic
scenario actually works experimentally, as shown in Fig
105.

We have noted already that, in invertebrates such as
flies and crabs, neurons have names, numbers and iden-
tifiable functions from individual to individual within a
species. This discussion of stabilizing patterns of activ-
ity rather than expression levels suggests that this repro-
ducibility of function can be achieved without exactly
reproducing the number of copies of each channel pro-
tein. Further, although the slice through parameter space
shown in Fig 104 suggests that the region compatible
with normal function is convex, this in fact is not the
generic case, and real models often have banana–shaped
volumes in parameter space which are consistent with
particular patterns of electrical activity. [Look through
Goldman et al (2001) & Golowasch et al (2002) to de-
cide on a figure.] Again this is consistent with what one
sees experimentally, most impressively in subsequent ex-
periments which measure directly the number of copies
of mRNA for several channel types in single cells [recent

FIG. 105 Changing intrinsic properties of the STG neurons,
from Turrigiano et al (1994). At left, an experiment in which
one cell is ripped from the network and placed in isolation. At
first (top) the electrical activity shifts from rhythmic bursts to
repeated (“tonic”) firing of single action potentials. After two
days in culture, the cell is silent but responds to small posi-
tive currents with tonic firing; after three days the response
consists of bursts not unlike those in the native network envi-
ronment. At bottom, continuous recordings demonstrate that
this switch from tonic firing to bursting can occur within an
hour. At right, one hour of stimulation with negative current
pulses drives a shift from bursting to tonic firing, which is
reversed after one hour of no stimulation. All these changes
in activity reflect changes in the numbers of different types
of ion channels in the cell membrane, as predicted from the
models discussed in the text.

refs from Eve’s group].
One might worry that we have replaced the tuning of

channel copy numbers with a fine tuning of the regulatory
mechanisms on all the channels. In fact, it is not plau-
sible that calcium acts directly on expression of genes.
More likely is that calcium binds to some protein, and
when its binding sites are occupied the protein can act,
directly or indirectly, as a transcription factor. Then
the fact that all the genes have the same calcium depen-
dence to their steady state values reflects the fact that
they are all being regulated by the same calcium bind-
ing protein. Exploring this scenario in more detail, one
realizes that the kinetics of binding and unbinding of cal-
cium to the sensitive protein can span the time scales of
action potentials, bursts, and even the basic rhythm it-
self. By combining signals from calcium binding proteins
with different kinetics [that’s a little quick!] one can thus
stabilize more subtle details in the pattern of electrical
activity. Maybe there is more to say about all this before
drawing the lessons. Check most recent papers.
Faced with a model that explains the behavior of cells

only when parameters are finely tuned, we become sus-
picious that we are missing something. One possibility—
often the most plausible—is that the model simply is
wrong. The models that we have for biological systems
are not like the Navier–Stokes equations for fluids or the
standard model of particle physics; we have many rea-
sons to doubt that we are simply solving the wrong equa-
tions. But the electrical dynamics of neurons are a spe-
cial case. Our mathematical models of channel dynamics
emerged as accurate summaries of a huge body of data,
and are nearly exact on the time scales that are exper-
imentally accessible. Rather than rejecting the models,
we must conclude that we are missing something, pre-
sumably on time scales longer than the experiments that
go into characterizing the channel kinetics. In partic-
ular, what look like constant parameters must become
slow dynamical variables. The simplest implementation
of this idea seems to work, and to generate several dra-
matic experimental predictions which have since been
confirmed. Indeed, this theoretical work on the prob-
lem of parameter determination has launched a whole
subfield of experimental neurobiology, investigating the
activity–dependent regulation of the ‘intrinsic’ electrical
properties of neurons [be sure there is a ref to recent
review].

Our understanding of ion channels goes back to the classic papers
of Hodgkin and Huxley (1952a–d), still very much worth reading.
The series of papers (of which the first really is Hodgkin, Huxely
& Katz 1952) describes many ingenious experiments, culminating
in a mathematical model which predicts the form and speed of the
action potential. Iinclude Hodgkin’s summaries—Croonian lecture,
plus the one from Pursuit of Nature] For a modern textbook ac-
count, see Dayan & Abbott (2001). The Hodgkin–Huxley model is
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complicated, so over the years there have been various attempts at
simplifying to the point where one can gain analytic insight; for one
approach, see Abbott & Kepler (1990) [also FitzHugh & Nagumo].

Abbott & Kepler 1990: Model neurons: From Hodgkin–
Huxley to Hopfield. LF Abbott & T Kepler, in Statisti-
cal Mechanics of Neural Networks, L Garrido, ed, pp 5–18
(Springer–Verlag, Berlin, 1990).

Dayan & Abbott 2001: Theoretical Neuroscience P Dayab &
LF Abbott (MIT Press, Cambridge, 2001).

Hodgkin et al 1952: Measurement of the current–voltage rela-
tions in the membrane of the giant axon of Loligo. AL
Hodgkin, AF Huxley & B Katz, J Physiol (Lond) 117, 442–
448 (1952).

Hodgkin & Huxley 1952a: Currents carried by sodium and
potassium ions through the membrane of the giant axon of
Loligo. AL Hodgkin & AF Huxley, J Physiol (Lond) 117,
449–472 (1952).

Hodgkin & Huxley 1952b: The components of membrane con-
ductance in the giant axon of Loligo. AL Hodgkin & AF
Huxley, J Physiol (Lond) 117, 473–496 (1952).

Hodgkin & Huxley 1952c: The dual effect of membrane poten-
tial on sodium conductance in the giant axon of Loligo.
AL Hodgkin & AF Huxley, J Physiol (Lond) 117, 497–506
(1952).

Hodgkin & Huxley 1952d: A quantitative description of mem-
brane current and its application to conduction and excita-
tion in nerve. AL Hodgkin & AF Huxley, J Physiol (Lond)
117, 500–544 (1952).

For a modern view of ion channels, see Hille (2001). [add some clas-
sic references about resonances etc.] For a detailed discussion of
system in which the effective resonance generated by channel kinet-
ics has functional importance, see Wu & Fettiplace (2001). [Need
references that survey the richness of ion channel diversity, phos-
phorylation, splicing variants, etc. Check Laughlin refs re splicing
variants in the fly eye.] For one example of this complexity, see
Tian et al (2001).

Hille 2001: Ion Channels of Excitable Membranes, Third Edi-
tion. B Hille (Sinauer, 2001).

Wu & Fettiplace 2001: A developmental model for generating
frequency maps in the reptilian and avian cochleas. YC Wu
& R Fettplace, Biophys J 70, 2557–2570 (1996).

Tian et al 2001: Altenative splicing switches potassium channel
sensitivity to protein phosphorylation. L Tian, RR Duncan,
MS Hammon, LS Coghill, H Wen, R Rusinova, AG Clark,
IB Levitan & MJ Shipston, J Biol Chem 276, 7717–7720
(2001).

[Need the list of references for the “how we know HH were right”
discussion.]

:

The problem of setting the numbers of each kind of ion channel
emerged in attempts to make quantitative models of individual neu-
rons in the stomatogastric ganglion. For a recent overview of the
STG, emphasizing its role as a model system for studying network
dynamics, see Marder & Bucher (2007). These models reached a
very high degree of sophistication, as described in the series of pa-
pers by Golowasch & Marder (1992), Buchholtz et al (1992) and
Golowasch et al (1992). The basic idea of regulating the number
of ion channels via feedback from the electrical activity of the cell
was described by LeMasson et al (1993); see Abbott & LeMasson
(1993) for a more complete account. Dramatic experimental ev-
idence for “self–tuning” of channel numbers came (quickly) from
Turrigiano et al (1994). For feedback mechanisms with sensitive to
multiple time scales, see Liu et al (1998).

Buchholtz et al 1992: Mathematical model of an identified
stomatogastric ganglion neuron. F Buchholtz, J Golowasch,
IR Epstein & E Marder, J Neurophysiol 67, 332–340 (1992).

Golowasch & Marder 1992: Ionic currents of the lateral pyloric
neuron of the stomatogastric ganglion of the crab. J Neuro-
physiol 67, 318–331 (1992).

Golowasch et al 1992: The contribution of individual ionic cur-
rents to the activity of a model stomatogastric ganglion neu-
ron. J Golowasch, F Buchholtz, IR Epstein & E Marder, J
Neurophysiol, 67, 341–349 (1992).

LeMasson et al 1993: Activity–dependent regulation of conduc-
tances in model neurons. G LeMasson, E Marder, & LF
Abbott, Science 259, 1915–1917 (1993).

Marder & Bucher 2007: Understanding circuit dynamics using
the stomatogastric nervous system of lobsters and carbs. E
Marder & D Bucher, Annu Rev Physiol 69, 291–316 (2007).

Abbott & LeMasson 1993: Analysis of neuron models with dy-
namically regulated conductances. LF Abbott & G LeMas-
son, Neural Comp 5, 823–842 (1993).

Liu et al 1998: A model neuron with activity–dependent con-
ductances regulated by multiple calcium sensors. Z Liu, J
Golowasch, E Marder & LF Abbott, J Neurosci 18, 2309–
2320 (1998).

Turrigiano et al 1994: Activity–dependent changes in the in-
trinsic properties of cultured neurons. G Turrigiano, LF
Abbott & E Marder, Science 264, 974–977 (1994).

Need references to second generation of experiments on mRNA
levels. Maybe some pointers to work on networks??

C. The states of cells

Cells have internal states. Sometimes these states are
expressed in a very obvious way, even to external ob-
servers, as when we see the alternating black and white
stripes of a zebra. In other cases, the states are hid-
den, as when a neuron stops responding to a constant
external stimulus, but then rebounds when the stimu-
lus is removed; the amplitude of the rebound reflects the
initial amplitude of the stimulus, which must have been
stored in some internal state, separate from the output.
In these two examples, we also see that these internal
states can be discrete or continuous. In many cases, the
states of cells are known to be encoded by the concen-
trations of particular, identifiable molecules, and these
concentrations in turn reflect a balance of multiple ki-
netic processes. If we try to transcribe these qualitative
ideas simply into quantitative models, we will find that
the states of cells depend on parameters. Most obviously,
these states will depend on absolute concentrations, and
there is a widespread suspicion that absolute concentra-
tions are highly variable, making them poor candidates
for the markers of cellular state. More generally, it would
seem that, unless we are careful, states will depend sen-
sitively on parameters, providing another example of the
problem of fine tuning vs. robustness that we have been
discussing.
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In this section we will look at the issue of fine tuning
in a variety of biochemical and genetic networks. His-
torically, these discussions have been independent of the
earlier work on protein folding or ion channel dynam-
ics, although I hope to make clear that the conceptual
questions are the same. We’ll start with the problem
of adaptation to constant sensory signals, and move to
more complex examples in the cell cycle and embryonic
development.
When you tie your shoes in the morning, you can

feel the pressure against the skin of your foot, but very
quickly this sensation dissipates. When you step out-
side on a bright summer morning, you are aware of the
light, but soon everything looks normal, and you would
have trouble reporting accurately the absolute light level.
These are examples of sensory or perceptual adaptation,
in which we gradually become unaware of constant stim-
uli, while maintaining sensitivity to small changes in
these incoming signals. One of the first things discov-
ered when it became possible to record the signals prop-
agating along individual nerve fibers is that this adap-
tation occurs, at least in part, in the response of the
single cells that first convert sensory inputs into electri-
cal signals, as shown in Fig 106. Further, as we have
seen in the discussion of bacterial chemotaxis (Section
II.B), adaptation occurs even in the sensory systems of
single celled organisms. As we will discuss in connection
with the problems of information transmission in neu-
ral coding (Section IV.C), adaptation can be a rich and
complex phenomenon, being driven not just by constant
background signals, but also by the statistical structure
of fluctuations around this background.
In the simplest case, where adaptation consists of re-

ducing the response to constant signals while maintaining

FIG. 106 The original experiments demonstrating adaptation
in the response of single sensory neurons (here from the muscle
spindle) exposed to constant stimuli (weights), from Adrian
& Zotterman (1926a).
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input

+ -
output

FIG. 107 A schematic of the mechanisms underlying sensory
adaptation. The branch which generates fast responses in-
sures that sudden changes in input will be transduced faith-
fully. The branch with the slower response causes a gradual
decay of the output in response to constant inputs. To have
truly zero response to constant input requires that the two
branches be perfectly balanced.

sensitivity to small transient changes, there is a natu-
ral schematic model (Fig 107) in which a rapid positive
response to the sensory input is cancelled by a slower
negative response. In several systems we can identify
the molecular or cellular components that correspond to
these different branches, and we will discuss the exam-
ple of bacterial chemotaxis in detail. For the moment,
however, our concern is more general. If adaptation is
accomplished through some pathway that is independent
of the basic response to incoming stimuli, then the ‘gain’
of the two pathways are set by independent parameters.
If we want the responses to constant inputs to be small,
then these two gains must be very similar, so that they
nearly cancel. In particular, if we want truly zero re-
sponse to constants—zero net gain at zero frequency—
then the signals passing through the two branches need
to cancel exactly, and this seems to require fine tuning of
the parameters.
Before saying that we have found a problem, we

should examine the precision of cancellation that is ac-
tually required. In the example of the fly photorecep-
tors, discussed in Section I.A, we saw that the system
acts as a nearly ideal photon counter up to rates of
∼ 105 photons/s. If the response to a single photon lasts
(at its shortest)∼ 10ms, this means that cell is effectively
counting up to ∼ 1000. But, as we noted, single photon
responses are on the order of a few milliVolts, so if things
just add up the voltage across the cell membrane would
have to change by several Volts, and this isn’t going to
happen—something like 90− 99% of this response needs
to be cancelled in order to fit into the available dynamic
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range.
In the case of bacterial chemotaxis, we have seen in

Section II.B that adaptation is essential for function (see
especially Problem **). Because the cell makes deci-
sions based on the time course of concentrations along its
trajectory, having a response to constant stimuli would
mean that the cell effectively confuses “things are good”
for “things are getting better,” and this would impede
progress up the gradient of desirable chemicals. Direct
measurements of the clockwise vs. counterclockwise ro-
tation of the flagellar motor, as in Fig 47, show that
the response to a small step in the concentration of at-
tractant molecules decays to zero, so that adaptation is
nearly perfect. Another way of seeing this is if one ex-
poses the cells to concentrations that are exponentially
increasing in time, the fraction time the motor spends
running clockwise become constant, depending on the
rate of exponential increase, rather than rising up to sat-
uration; an example is in Fig 108.

Problem 111: Exponential ramps. Give a problem to work
out why Fig 108 makes sense!

If we observe freely swimming bacteria, then we can
count the rate at which they initiate tumbles, and see
that this also adapts to constant stimuli; Fig 109 shows
an unnatural but dramatic example, in which a popula-
tion of bacteria is suddenly exposed to milliMolar concen-
trations of aspartate, starting from zero background con-
centration. Tumbling is almost completely suppressed

FIG. 108 Response of E coli to exponentially increasing (top)
or decreasing (bottom) concentrations of an attractant, from
Block et al (1983). Probably needs more explanation.

time (min)

tumbling 
rate

(1/sec)

FIG. 109 Experiments on adaptation in a large population
of E. coli (Alon et al 1999). At time t = 0, the population
is exposed to a high concentration of an attractive chemical,
and as a result the bacteria almost stop tumbling. Over time,
they adapt, and the average rate of tumbling approaches the
steady–state value observed in the absence of stimuli.

for nearly ten minutes, but eventually recovers to within
∼ 10% of its initial rate, despite the fact that the ini-
tially saturating stimulus continues to be present [show
an earlier figure of this flavor from Berg or Koshland?].
To understand how it’s possible to achieve near per-

fect adaptation without fine tuning of parameters (as
one might have thought from Fig 107), we have to dig
into the details of the molecular mechanisms involved.
In Section II.B we outlined the fast events involved in
the “positive” part of the chemotactic response (Fig 48).
To review briefly, receptor molecules on the cell surface
form a complex with the enzyme CheA (a kinase), held
together by a scaffolding molecule CheW. The complex is
in equilibrium between the active (CheA*) and inactive
(CheA) states, and this equilibrium is shifted by binding
of attractant or repellent molecules to their receptors; for
attractants, binding shifts the equilibrium toward the in-
active state. The active kinase CheA* phosphorylates the
protein CheY, which can diffuse through the cell from the
receptor complex to the flagellar motor, where it binds
and favors clockwise rotation, driving the tumbling mo-
tion of the cell; the action of the kinase is opposed by a
phosphatase, CheZ. Thus, an increase in the attractant
concentration drives the kinase toward its inactive state,
reducing the rate of phosphorylation of CheY; the con-
tinued action of the phosphatase results in a reduction of
the CheY–P concentration, and this reduces the proba-
bility of tumbling. This whole pathway is extraordinarily
sensitive, responding reliably to individual molecules as
they bind to their receptors.
How does the extremely sensitive response of the

chemotactic system get cancelled when stimuli are main-
tained at constant levels? In addition to binding the
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chemoattractant or repellent molecules, the receptors can
be modified by covalent attachment of methyl groups.
Much as with ligand binding, these modifications shift
the equilibrium between active and inactive conforma-
tions of the kinase CheA—binding of attractants favors
the inactive state, addition of methyl groups favors the
active state. The key point is that the active kinase
not only phosphorylates CheY, leading to clockwise rota-
tion of the motor, it also phosphorylates CheB, and then
CheB–P removes methyl groups from the receptor. Thus,
when an attractant lowers the activity of the kinase, it
also allows more methyl groups to be attached, driving
the activity back toward its original level—adapting.

Although the methylation system provides a pathway
to cancel the effect of the immediate response to sensory
inputs, it isn’t clear that this cancellation should be any-
where near exact. In general, one would need to tune the
activity of the methylation and de–methylation enzymes
to make sure that their effects exactly balance the direct
response to sensory input. So, this system provides an
example of our general problem of fine tuning, as empha-
sized by Barkai and Leibler. In addition to identifying the
problem, they proposed that one can evade this need for
fine tuning by assuming that the de–methylation enzyme
CheB only recognizes the active state of the receptor–
kinase complex, and ignores the inactive conformation.
If this is true, one doesn’t even need the phosphorylation
of CheB in order to close the feedback loop.

To see how the Barkai–Leibler scheme works, let’s

CheB

CheB-P

CheW CheA*

receptor

CheW

CheA

receptor

CheW

CheA*

receptor

CheW

CheA

CH3

CH3

CH3

receptor

CheW

CheA*

CH3

CH3

CH3

CheR

+ methyl groups

CheB-P

FIG. 110 Methylation of the receptors allows for adapta-
tion of the chemotactic response. At left, addition of methyl
groups acts, similarly to ligand binding, as an allosteric effec-
tor, shifting the equilibrium between the active and inactive
states of the kinase CheA; the schematic is meant to indicate
that there are multiple methylation sites. At right, the feed-
back loop is closed by having the active kinase CheA* trigger
activation of the de–methylation enzyme CheB. Need to re-
draw to remind that methylation is working opposite to the
effects of an attractant binding.

imagine that the whole receptor complex, which might
include a cluster of several receptor molecules, switches
as a whole between active an inactive states. There is
some free energy difference ∆F between these states, and
there are two contributions to this difference—one from
the binding of attractants, and one from methylation.
Assume that the contribution of the methyl groups is
additive, and that the contribution from ligand binding
has some arbitrary dependence on ligand concentration
c (which we could work out from a model like that in Fig
110; see Problem 112 [check] below). Then the number
of active enzymes is given by

A∗ =
Atotal

1 + exp [FL(c)− nM∆M]
, (552)

where nM is the number of methyl groups per receptor
complex. This number reflects a balance between the ac-
tivities of CheR and CheB, so we can write schematically

dnM

dt
= VR − VB , (553)

where VR and VB are the ‘velocities’ of the methylation
and de–methylation enzymes, respectively.
The key assumptions suggested by Barkai and Leibler

are that CheR is running at some maximal rate, limited
by its internal dynamics and not by the availability of
substrate, while the velocity of CheB does depend on the
availability of its substrate A∗ according to some function
f(A∗) that we don’t need to specify. Then

dnM

dt
= V max

R − V max
B f(A∗). (554)

In order to reach steady state (dnM/dt = 0), we must
have

A∗ = A∗
0 = f−1(V max

R /V max
B ), (555)

independent of the ligand concentration c. Thus all
steady states in the system must have the same level of
activation of the kinase, hence the same level of phospho-
rylation of CheY and the same rate of tumbling. These
steady states at varying c are not identical—they involve
different levels of methylation—but they have the same
functional output.

Problem 112: Allosteric model for chemotactic recep-
tors. [check for earlier problem about this ...] The schematic in Fig
48 is equivalent to a Monod–Wyman–Changeaux model (all rele-
vant pointers) in which the whole complex of the receptor, CheW
and CheA has two states, and the equilibrium is shifted by binding
of the attractant molecule. In Fig 110, attachment of methyl groups
also shifts this equilibrium, but the binding and unbinding of these
groups is part of an energy–yielding reaction, and so doesn’t have
to obey detailed balance. Show that, nonetheless, these schematics
generate Eq (552), which has a decidedly Boltzmann form. Why
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does this work? What would change if groups or clusters of N
receptor complexes were tied together, and forced to all be in the
same activation state?

If the scenario sketched here is correct, then we
should be able to test it by manipulating the activity of
the methylation and de–methylation enzymes, using the
modern tricks of molecular biology to modify the genome
of E coli. To begin, one can replace CheB with a mutant
form which cannot be phosphorylated; adaptation still
works, and still is nearly perfect, suggesting that phos-
phorylation is not the key step in closing the feedback
loop. Then one can delete the normal CheR gene and
replace it with a plasmid which carries the CheR coding
region under the control of a promoter that responds to
external signals. In this way one can generate roughly
100–fold variations in CheR expression levels, from half
the normal level to 50× over–expression, as in Fig 111.
Throughout this range, adaptation to large inputs (as in
Fig 109) is within ∼ 10% of being exact. Although the
mean rate of tumbling to which the system adapts, as
well as the time scale of this adaptation, depends on the
amount of CheR in the cell, the fact that this rate is in-
dependent of input concentration does not. Are there ex-
periments that look at adaptation in response to smaller
signals? Maybe from Sourjik?

There is a lot of evidence that the methylation level of
the receptors really is the molecular representation of the
cell’s adaptation state. As such, we might have expected
that over– or under–expressing the enzyme that carries
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FIG. 111 Chemotactic responses in the presence of varying
amounts of CheR, from Alon et al (1999). At the top, ‘adapta-
tion precision’ is measured as the ratio of the mean tumbling
rates in the presence and absence of 1mM aspartate (as in
the experiments of Fig 109). The actual tumbling rates and
the time required to reach steady state after sudden exposure
to 1mM aspartate are shown in the bottom panel.

out the methylation reaction would shift the actual state
of the system, and this would show up as a change in the
output. In the model considered here, however, this last
expectation is violated. The absolute level of kinase ac-
tivity, and hence the absolute tumbling rate, does indeed
change when we change the expression of CheR. But Fig
111 shows us that the average steady state response to
an applied step in attractant concentration remains zero,
independent of the CheR level. Thus, the precision of the
balance between the processes responsible for excitation
and adaptation does not depend on fine tuning of the
underlying kinetics.

Problem 113: Calcium driven adaptation in neurons.
Consider a neuron that generates spikes at rate r. Let’s assume
the response to external inputs I involves this rate relaxing toward
some steady state,

τ
dr

dt
= rmaxf(I, [Ca])− r, (556)

where we note explicitly that the rate depends both on the inputs
and on the intracellular calcium concentration. Write an equation
for the dynamics of [Ca], assuming that each spike brings in a fixed
number of calcium ions, and that there is a pump which extrudes
the ions at some opposing rate. The pumping rate must depend
on the concentration, but for the moment take this dependence
as some unknown function Vpump([Ca]). Find equations that de-
scribe the steady state of this system. Are there conditions on
Vpump([Ca]) that lead to a steady state spike rate that is indepen-
dent of the input I? If the input changes suddenly, does the spike
rate still respond? Explain how this relates to the discussion of
chemotaxis given here.

Are we done? I think there is still more to this prob-
lem. To begin, the fact that motor output is an extremely
steep function of the CheY–P concentration (pointer)
means that successful adaptation requires more than just
a constant level of CheY–P in steady state, independent
of the input signal—this level actually has to fall into a
very narrow range, or else the cells will be always run-
ning or tumbling. The parameters which determine the
steady state level of CheY–P are independent of the prop-
erties of the motor, which determine the functional op-
erating range for this concentration. This seems like the
same sort of balancing problem that Barkai and Leibler
were worried about, but in a different part of the sys-
tem, where their solution has no obvious analog. [Has
somebody worried about this?]
Next, you should also be a little suspicious about the

simple equations above. At best, they are some sort of
mean field theory in a system where fluctuations could
be important. Also, while it’s plausible that CheB recog-
nizes CheA* as opposed to CheA, one might worry that
the rate of removing methyl groups depends on how many
are there (especially if that number goes to zero!). There
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must be some regime in which the simple argument is
right, but we need a more honest calculation. [several
groups have tried this; look closely at Wingreen et al,
and check for others, to decide what to say here.]

Finally, although one can manipulate the E coli
genome to change expression level of individual proteins
by large factors, the many protein components of the
chemotactic system are encoded on just two operons,
which means that the expression of the different com-
ponents is tightly coupled under normal conditions [be
sure to have talked about operons before this, or maybe
this is really a good place to introduce the idea?].

The mocha operon encodes CheA and CheW, along
with the flagellar motor proteins, and the meche operon
encodes CheR, CheB, CheY and CheZ, along with two
classes of receptor proteins. Recent experiments indicate
that there is covariation even between the expression lev-
els of CheA and CheY, suggesting that the cell can in fact
control at least the relative concentrations of these pro-
teins fairly precisely. Further, there is direct evidence
that tight correlation between protein concentrations ac-
tually improves chemotactic performance, as shown in
Fig 112.

Problem 114: Balancing CheY and CheZ. Take the stu-
dents through a model in which it becomes clear why variations in
the relative levels of CheY and CheZ are detrimental for chemo-
taxis, thus making sense out of Fig 112.

It is interesting to compare the problem of robustness
vs. fine tuning in the case of chemotaxis with what we
learned in the case of ion channels (Section III.B). For
ion channels, function really does depend sensitively on
the number of copies of the different proteins in the net-
work, and neurons have evolved control mechanisms that
use their functional output (or a near surrogate) to con-
trol these copy numbers. Importantly, there are many
ways to achieve the same function, so it is not the num-
ber of copies of each component that is tuned, but rather
some possibly complex combinations of these quantities.
For chemotaxis, the message of the experiments in Fig
111 is that large variations in the copy number of just
one component can be tolerated, pointing toward net-
works that are intrinsically insensitive to this parameter
variation rather than any hidden control or tuning mech-
anisms. This suggests that one system is tuned, and the
other is robust.

On the other hand, Fig 112 shows that, as with ion
channels, the relative copy numbers of the proteins in
the chemotaxis network are controlled, and that this con-
trol contributes to function. Experiments more directly

FIG. 112 Better chemotactic performance is associated with
correlated fluctuations in protein levels, from Løvdok et al
(2009). At right, E coli swarm outward toward attractants.
Cells have been engineered to express CheY and CheZ only
under the control of a promoter induced by external signals.
If we select cells from regions B or C of the swarm, we see that
the cells which have been efficient (B) have tightly correlated
variations in the two protein levels, while cells that have been
inefficient (C) have weaker correlations. Thus, selection for
chemotactic efficiency will drive down the relative fluctuations
in expression levels, even there is substantial tolerance for
variation in the absolute levels.

analogous to Fig 111 have now been done in stomatogas-
tric ganglion neurons, and one finds that there are control
mechanisms which can compensate for over–expression of
particular channel types by changing the expression lev-
els of other channels see Fig 113. Perhaps surprisingly,
these compensation mechanisms are triggered even if the
first channel is non–functional and hence doesn’t effect
the electrical output, suggesting that the there are signals
internal to the transcriptional and translational networks
which encode something about the correct, functional op-
erating point of the system. This could be a much more
general phenomenon.
Before moving on, there is also a somewhat philosoph-

ical point to be made about the mechanism of robustness
in chemotaxis, or perhaps even about the idea of robust-
ness itself. If we expect the function of a biochemical
network to be robust against parameter variation, this
robustness must be a property of the network topology—
which nodes (molecules) are connected by arrows (reac-
tions). In the specific model considered by Barkai and
Leibler, for example, it is essential that CheB acts on
CheA∗ as a substrate, but not on the inactive CheA—
what is important in this case is the absence of an link
in the network connecting CheB with CheA.
The particular links that appear (or don’t appear) in a

biochemical network reflect the specificity of the various
enzymatic and protein–protein binding reactions. Sub-
strate specificity is a classical topic in biochemistry, and
much of what we understand about this topic was learned
through painstaking experiments on purified samples of
particular enzymes. The ideas of robustness emerged at
a time when the community started to wonder if there
wasn’t something a bit hopeless about the overall project
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of this classical biochemical approach. While one can
study individual enzymes in detail, many interesting bi-
ological functions emerge from networks with many in-
teracting proteins engaged in dozens if not hundreds of
individual reactions. Further, the conditions inside the
living cell may be far from those that we can reproduce
in a test tube. How then could we ever study every one of
the relevant reactions, under the right conditions? Seen
in this light, it just doesn’t seem plausible that the ac-
cumulated biochemical knowledge will “add up” to give
us an understanding of how cells function as complete
systems. Robustness was one of several ideas offered as
an alternative—if Nature has selected networks that are
robust to parameter variations, then the (already some-
what hopeless) project of measuring all these parameters
could safely be abandoned. But because network topol-
ogy is an encoding of substrate specificity, we can’t really
brush aside all of classical biochemistry. Indeed, the ex-
ample brought forward by Barkai and Leibler is one in
which the biochemistry is subtle, with one protein recog-
nizing different conformations of another. At the end of
the day, then, biochemistry has its revenge—robustness
may be an emergent, system level property, driven by
network topology, but this topology is an expression of
the underlying, detailed biochemistry.

[I’d like put here a discussion of the work by Tang
and coworkers on the cell cycle. The idea is that not
just states, but trajectories through the space of states,
are robust. Need to sort through the papers for details.
Should also discuss the results from the Siggia/Cross col-

FIG. 113 Responses to over–expression of a channel, from
Maclean et al (2003). At left, injecting mRNA for the A cur-
rent channel (see Table I) produces, after 72 hrs, an increase
in the current that flows when the voltage is stepped through
the range expected to activate this channel. This shows that
injecting the mRNA really does result in more channels be-
ing synthesized and inserted into the membrane. At right,
a demonstration that this increased number of channels (in
the “Shal” trace) does not perturb the basic pattern of ac-
tivity (seen in the control). This is possible only because the
cell compensates by increasing the expression levels of other
channels.

laboration on the cell cycle, in particular what makes the
decision to go from one state to the next reliable and ir-
reversible.]
Another example of “robust” output from a biological

network is that almost everyone you know was born with
five fingers on each hand. In insects, one can count even
more instances in which discrete pieces of the body are
arranged in a repetitive pattern, from the segments of the
body itself (as in the beautiful caterpillar shown in Fig
114) to the hairs or bristles on the body surface; essen-
tially every member of a particular species has the same
number of body segments, the same number of hairs, and
even the positions of the hairs are identifiable from in-
dividual to individual. It is not at all obvious how this
level of reproducibility is achieved.

FIG. 114 Insects provide many examples of re-
peated, reproducible structures visible on the outside
of the body. Image of tiger moth caterpillar from
http://www.hsu.edu/content.aspx?id=7435.[probably should
take our own picture; also, maybe another panel about
segments, or bristles?]

Broadly speaking we can distinguish two classes of ex-
planations for the reproducibility of pattern formation
(‘morphogenesis’) in the embryo. In the first kind of ex-
planation, the organism works to set the initial conditions
and boundary conditions very precisely, and each step in
the process has been tuned to minimize noise. Patterns
then develop in a reproducible fashion in the same way
that accurate clocks continue the same time even though
tick independently. Alternatively, it is possible that noise
and errors abound, but that there are error correction
mechanisms that pull the pattern back to its ideal struc-
ture. Of course, it is also possible that both scenarios
are correct: nature has selected for systems with minimal
noise, and taken care to control the conditions of devel-
opment, but error correction mechanisms still are needed
to deal with the vagaries of a fluctuating environment.
To appreciate why the observations of reproducibility

in morphogenesis are so puzzling, we need to review some
of the basic mechanisms by which patterns form in the
developing embryo. We will also need to check our quali-
tative impressions of reproducibility against quantitative
data. Let’s start with the background.
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We recall that embryos start as just one cell, the fertil-
ized egg, and then there are multiple cell divisions. Every
one of these cells (as in our adult bodies) has the same
DNA, assuming that nothing has gone wrong. What
makes the different cells different is that they “express”
different genes. The genes code for proteins, but not all
of the proteins are made in all cells; the reading of the
code to make the proteins is called the expression of the
genes, as we have discussed before. Importantly, the reg-
ulation of gene expression is not just the flipping of a
switch sometime in development, but rather something
that all cells (from neurons in our brain down to bacte-
ria) are doing all the time. Embryos come in all shapes
and sizes throughout the animal kingdom, but for vari-
ous reasons people have focused on a few model systems,
and we will do the same.
The fly embryo is an interesting model system for many

reasons. One is that there is a well developed genet-
ics for fruit flies (the species Drosophila melanogaster),
made possible not least by their rapid growth and repro-
duction. Embryonic development itself is rapid as well,
leading from a fertilized egg to the hatching of a fully
functional maggot (the larvae of flies, like caterpillars for
butterflies) within 24 hours. All of this happens inside
an egg shell, so there is no growth—pattern formation
occurs at constant volume. The egg is ∼ 1/2mm long,
so one starts with one rather large cell, which has one
nucleus. In the maggot there are ∼ 50, 000 cells. For
the first three hours of development, during which the
“blueprint” for the body plan is laid out, something spe-
cial happens: the nuclei multiply without building walls
to make separated cells. Thus, for about three hours,

FIG. 115 Electron micrographs of a Drosophila embryo in cy-
cle 14, before (top) and after (bottom) gastrulation. Note, in
particular, the cephalic furrow roughly one third of the dis-
tance from the left in the bottom image. Micrographs taken
by EF Wieschaus.

the fly embryo is close to the physicists idealization of a
box in which chemical reactions are occurring, with the
different molecules free to move from one end of the box
to the other (perhaps even by diffusion, although this is
a more subtle question).
The duplication of the nuclei is more or less syn-

chronous for the first 13 mitotic divisions, or nuclear
cycles, which is visually quite striking. During cycles 8
through 10, almost all of the nuclei move to the surface of
the egg, where they form a fairly regular two dimensional
lattice; conveniently, with all the nuclei at the surface of
the egg, we have a much better chance to “see” what
is going on (see Figs ?? et seq). With each subsequent
cycle, this lattice dissolves and reforms. With cycle 14,
the synchronous duplication of nuclei stops, and there is
a pause while the embryo builds walls between the nu-
clei to make separate cells. If you stop the action at this
point and take an electron micrograph of the embryo,
what you see is at the top in Fig 115. If you count, you’ll
find that there are ∼ 6000 cells on the surface. This is
smaller than 213, but thats because not all of the nu-
clei make it to the surface; some stay in the interior of
the embryo, probably not by accident since these become
cells with special functions. Notice that all the cells look
pretty much alike. If instead of stopping at this point, we
wait just 15 minutes more, we see something very differ-
ent, shown at the bottom in Fig 115. Notice that there
is a vertical cleft, about one-third of the way from the
left edge of the embryo. This is the “cephalic furrow,”
and defines which part of the body will become the head.
There is also a furrow along the bottom of the embryo,
which is where the one layer of cells on the surface starts
to fold in on itself so that you can have two “outside” sur-
faces (think about the inside and outside of your cheek,
both of which are outside of the body from the topo-
logical point of view we are not simply connected!), a
process called “gastrulation.”
Its not just that the embryo breaks into a head and

a non–head. In fact there are many different pieces to
the body, usually called segments, as noted above. The
obvious question is how the cells at different points in
the embryo know to become parts of different segments.
The answer is quite striking, and one of the great tri-
umphs of modern biology. Long before cells start mov-
ing around and making the three dimensional structures
that one sees in the fully developed organism, there is a
“blueprint” that can be made visible by asking about the
expression levels of particular genes. A now classic set
of genetic experiments showed that the number of genes
that are relevant in these early patterning events is small,
on the order of 100 out of the roughly 25,000 genes in the
whole fly genome; if we focus on the pattern along the
anterior–posterior axis of the embryo, the number of rel-
evant genes is less than 20. Most of these genes code for
transcription factors that control the expression of other
genes.
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FIG. 116 [...] Thanks again to EF Wieschaus for these im-
ages.

Suppose we stop that action in the embryo at cycle 14
and measure the concentration of two of these key pro-
teins. One way to do this is to make antibodies against
the protein we are interested in, and then make antibod-
ies against the antibodies, but before using the secondary
antibodies we attach to them a fluorescent dye molecule.
So if we expose the embryo first to one antibody (which
should stick to the protein we are interested in, and not
anywhere else, if were lucky) and to the other, we should
have the effect of attaching fluorescent dyes to the protein
we are looking for, and hence if we look under a micro-
scope the brightness of the fluorescence should indicate
the concentration of the protein (not obvious if this re-
lationship is quantitative; hold that question). One such
experiment is shown in Fig 116. Evidently the concentra-
tion of the proteins varies with position, and this varia-
tion corresponds to a striped pattern. The stripes should

FIG. 117 A combination of Figs 115 and 116, emphasizing
that the cephalic furrow occurs along a single line of cells that
can be identified from the pattern of pair rule gene expression.

position along the anterior-posterior axis

intensity of immuno-staining

0

FIG. 118 Antibody staining for the protein Bicoid in the early
Drosophila embryo, from the original experiments by Driever
& Nüsslein–Vollhard (1988a). The plot at the bottom repre-
sents means and 2× standard deviations from ten embryos;
units of staining intensity are arbitrary. [Are these errors bars
realy 2× the standard deviation, or just ± the standard de-
viation? Might have to ask the authors—for a preliminary
result, one can’t complain about a factor of two, but I want
to get it right!]

remind you of the segments in the fully develop animal,
and this is actually quite precise. Mutations that move
the stripes around, or delete particular stripes, have the
expected correlates in the pattern of segmentation. To
illustrate this point, we can blow up corresponding pieces
of this image and the electron micrograph above, showing
the cephalic furrow (Fig 117); hopefully you can see how
the furrow occurs at a place defined by the locations of
the green and orange stripes. At the moment the names
of these molecules don’t really matter. What is impor-
tant is to realize that the macroscopic structure of the
fully developed organism largely follows a blueprint laid
out within about three hours after fertilization, and that
this blueprint is “written” as variations in the expression
level of different genes. Furthermore, we know which
genes are the important ones, and there aren’t too many
of them.
We have pushed the problem of pattern formation in

the embryo back to spatial variations in the pattern of
gene expression, but how do these arise? You could imag-
ine, as Turing did, that these patterns reflect a sponta-
neous breaking of symmetries in the egg. This, for better
or worse, is not how it works. When the mother makes
the egg, she places the mRNA for a handful of proteins
at cardinal points. For example, there is a protein called
Bicoid for which the mRNA is placed at the end that will
become the head; importantly, the mRNA is attached to
the end of the egg, not free to move. Once the egg is
laid, translation of this mRNA begins, and the resulting
Bicoid protein is free to move through the embryo. If we
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use the same trick as above and stop the action, labeling
the embryo antibodies against the protein, we see images
like those in Fig 118. Evidently there is a rather smooth
gradient in the concentration of Bicoid protein, high at
one end and low at the other. A cell sitting at some point
in the embryo thus can “know” where it is along this long
(anterior–posterior) axis by measuring the Bicoid concen-
tration. This is an example of the very general idea of
“positional information” in the embryo.

Since Bicoid is a transcription factor, it provides an
input signal to a whole network of interacting genes, and
this network can (if we speak colloquially) interpret the
positional information, ultimately driving the emergence
of the beautiful striped patterns as in Fig 117. We’ll look
in more detail at how this happens, but for now let’s try
to sharpen our questions about reproducibility.

Measurements on the profile of Bcd concentration show
rather decent agreement with an exponential decay, as
was noted already in the very first experiments (Fig 118),
so that

c(x) ≈ c0e
−x/λ, (557)

where x is measured from the anterior end of the egg.
Suppose, then, that the cephalic furrow is placed at the
point where the Bcd concentration reaches some thresh-
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FIG. 119 Reproducibility of various spatial markers along the
anterior–posterior axis in the early Drosophila embryo, from
Dubuis et al (2011). At top, fluorescent antibody staining
of the protein Eve; scale bar is 50µm. Middle, normalized
spatial profiles of the fluorescent intensity in 14 embryos; the
darker red line is the embryo shown at the top. At right, a
small region is blown up to show the variability of the peak;
error bars show standard deviations of position and ampli-
tude. Bottom, standard deviations of position for peaks and
troughs of several gene expression profiles, as well as for the
position of the cephalic furrow measured in live embryos.

old value θcf . The position of the cephalic furrow is then

xcf = λ ln(c0/θcf). (558)

Thus, if c0 changes by ∼ 10%, the location of the fur-
row would shift by δxcf ∼ 0.1λ. Experimentally, modern
experiments show that λ ∼ 100µm, and the location of
the cephalic furrow is reproducible with a standard devi-
ation of ∼ 1% of the length of the embryo, or ∼ 5µm in
absolute length. In fact, one can look at other positional
markers, such as the locations of peaks or troughs in the
striped patterns of expression for the “pair rule” genes in
Fig 116, and these are all reproducible at the ∼ 1% level,
as shown in Fig 119. Thus, taken at face value, if the
Bcd profile provides the basic “map” of position along
the anterior–posterior axis, then the absolute concentra-
tion of Bcd, c0, would have to be reproducible to better
than ∼ 10% from embryo to embryo in order to gener-
ate the observed reproducibility of these patterns. This
problem exists even before we ask how to maintain con-
stant proportions in the face of variations in the overall
size of the embryo.
I think that, when people started to think about this

problem quantitatively, it seemed implausible that the re-
producibility of embryonic development would depend on
controlling absolute concentrations with 10% accuracy.
One the other hand, the paper which first characterized
the spatial profile of Bicoid protein actually reported data
on the variations across embryos (Fig 118), and the re-
sults are roughly consistent with ∼ 10% reproducibility,
at least near the anterior end of the embryo.
Let’s take seriously the simplest possible model for the

spatial profile of Bicoid (Bcd), described above in words:
the mRNA placed by the mother acts (as it is translated)
as a source, the Bcd protein diffuses through the embryo,
and the protein is also degraded by some first order reac-
tion. If we simplify and think of the system as just being
one dimensional (along the anterior–posterior axis), then
the concentration c(x, t) should obey

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
− 1

τ
c(x, t), (559)

where τ is the lifetime of the protein against degradation.
The boundary conditions are

−D
∂c(x, t)

∂x

∣∣∣∣∣
x=0

= R, (560)

∂c(x, t)

∂x

∣∣∣∣∣
x=L

= 0, (561)

where R is the strength of the source at x = 0 and the last
condition states that there is no flux out of the other end
of the embryo. If we imagine that development is slow
enough for the system to come to steady state, and that
the embryo is long, the concentration profile becomes

cs(x) =
Rτ

λ
e−x/λ, λ =

√
Dτ. (562)
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Problem 115: Details of the Bicoid profile.
(a.) What are the units of concentration in one dimension?

Show that, with this proper choice of units, R is the number of
Bcd molecules being translated per second.

(b.) Derive the steady state solution in Eq (562). What is
the precise criterion for the embryo to be long enough that this is
approximation is accurate?

(c.) At this writing, there is controversy about whether the
Bcd profile really reaches steady state during the early stages of
development. Although this is an experimental question, we can
ask what the simplest model predicts. Intuitively, there is some
time scale t∗ do you expect the solution of Eq(559) reaches steady
state; how does this time scale relate to the other parameters of
the problem? Answer this without doing any detailed calculations,
and think about how your intuition might go astray.

(d.) Try to do a more detailed calculation to address the ap-
proach to steady state. It is useful to assume from the beginning
that L is large [in the sense of part (b.)], and to replace the bound-
ary condition at x = 0 with a source in the symmetrized version of
the problem,

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
−

1

τ
c(x, t) + 2Rδ(x), (563)

where now −∞ < x < ∞; be sure you understand why we need a
factor of 2 in front of the source term. At t = 0, before any protein
has been translated, we must have c = 0 everywhere. By Fourier
transforming in space, show that the exact time dependent solution
is

c(x, t) = 2R

∫ ∞

−∞

dk

2π

eikx

Dk2 + 1/τ

[
1− e−(Dk2+1/τ)t

]
. (564)

Verify that this approaches cs(x) from Eq (562) as t → ∞.
(e.) Find a simple closed form for the time derivative of concen-

tration at a point, ∂tc(x, t). Show that, expressed as a fraction of
the local steady state concentration, this derivative peaks at a point
x∗ = 2λt/τ , and that at this peak [∂tc(x∗, t)]/cs(x∗) = 1/

√
πτt.

(f.) Suppose we could establish experimentally that, for exam-
ple, after t = 1hr, at each point x that we can see, c(x, t) changes
by less than 1%/min (or ∼ 10% across the time required for the
cell cycle). What can you conclude about the parameters of the
system, taking the simple model seriously?

We see that this simplest model recovers Eq (557),
which was suggested by the data. It gives us an explicit
formula for the length constant λ, and tells us (not sur-
prisingly) that the absolute concentration scale c0 is pro-
portional to the strength of the source—that is, to the
rate at which proteins can be translated from the mRNA
bound to the anterior end of the embryo. In this sim-
ple model, then, if we want c0 to be reproducible with
10% accuracy, the source strength must also be repro-
ducible. Is it plausible that the mother can count out
mRNA molecules, with 10% accuracy, and create an en-
vironment in the embryo where the efficiency of trans-
lation is similarly well controlled? Alternatively, can we
escape from these requirement of fine tuning by moving
away from the simplest model?

Suppose that the processes which degrade the Bicoid
molecule act not on individual molecules, but on dimers,

and these dimers are rare. We then expect that the con-
centration of dimers will be proportional to the square
of the Bcd concentration, and the dynamics become [in-
stead of Eq (559)]

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
− 1

τc2
c2(x, t), (565)

where c2 is the concentration scale for dimer formation.
Now the steady state solution must obey

d2cs(x)

dx2
=

1

Dτc2
c2s(x). (566)

Notice that if we look for a solution of the form cs(x) =
Axn, we have

d2(Axn)

dx2
=

1

Dτc2
(Axn)2 (567)

An(n− 1)xn−2 =
A2

Dτc2
x2n, (568)

which is solved by n = −2 and A = 6Dτc2. Thus,
far from the source, the concentration profile is cs(x) =
6Dτc2/x2 independent of the strength of the source. More
precisely, to match the boundary condition describing the
source at x = 0, we have to have

cs(x) =
6Dτc2

(x+ x0)2
, x0 = (12D2τc2/R)1/3. (569)

The strength of the source appears only in x0; for x + x0

this term is negligible, and for large R this condition itself
sets in at very small x. In this model, then, just mak-
ing the source very strong—but not setting the strength
precisely—is sufficient to insure that almost the entire
concentration profile will be independent of variations in
this source strength.

Problem 116: Fill in the arguments leading to Eq (569).

It is interesting that a relatively small change in molec-
ular mechanism makes such a dramatic change in the ro-
bustness of the system to variations in parameters. One
might object, of course, that here is no free lunch here.
While Eq (569) predicts that the Bcd profile is indepen-
dent of the source strength, the concentration scale is now
set by c2, which has something to do with the dimeriza-
tion of the molecules. The source strength R depends on
how many copies of mRNA the mother places in the egg,
but the scale c2 is determined by more global physical–
chemical parameters of the cytoplasm, and perhaps these
are easier to control. On the other hand, if degradation is
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active, via enzymatic reactions, then τ itself will depend
on the number of copies of the enzyme that are present in
the embryo. Still, it is interesting to ask whether Nature
makes use of such a scheme to reduce the sensitivity of
morphogen profiles to variations in the strength of the
source. [Should also discuss Bollenbach et al (2005).]

Another approach is to give up on making a single
morphogen signal reproducible, and to assume that the
embryo makes use of multiple signals, hoping that the
dominant sources of variation are in a “common mode”
that can be rejected by the network that processes these
signals. Several models of this flavor have been suggested
[refs: Houchmandzadeh et al (2005), McHale et al (2006),
others?]. Need to sort out how much of this is about
scaling, and how much about reproducibility.

Problem 117: [Should be able to get one or two problems
from the model in the last two paragraphs!]

With all this theoretical background, what can we say
about the experimental situation? As noted at the out-
set, there are hints from the earliest literature that Bicoid
profiles in Drosophila might indeed be reproducible. We
also know that the notion of robustness should not be ex-
aggerated. The success of classical genetics in identifying
the components of these networks immediately tells us
that the system is not resistant to the elimination of sin-
gle components. More subtly, one of the key experiments
in establishing that Bicoid is a primary source of posi-
tional information was to change the number of copies
of the bcd gene; with more (or fewer) copies of the gene
in its genome, the mother makes more (or less) mRNA
and hence drives the strength of the Bcd source up (or
down). In response to these changes, the patterns in the
early embryo shift, with the cephalic furrow in particular
moving—with higher concentrations of Bicoid, the em-
bryo tries to make a larger head, as shown in Fig 120.71

These results suggest that the embryo does not engage
mechanisms which buffer the Bcd profile against varia-
tions in the strength of the source. For the morphogens
whose concentration profile varies along the other axis of
the embryo, however, there are signatures of the nonlin-
ear degradation mechanism which, as we have seen, can

71 It is not so easy to interpret these results quantitatively, because
we don’t really know if adding more copies of the gene produces
proportionately higher concentrations of the protein. Still, Fig
120 is prima facie evidence against robustness of the pattern to
variations in the strength of the source.
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FIG. 120 Variations in the position of spatial markers along
the anterior–posterior axis in response to changes in the num-
ber of copies of the bcd gene, from Driever & Nüsslein–
Vollhard (1988b). [explain!]

generate substantial robustness. [Should we have a figure
from Eldar et al?]
If there is no buffering, then it really does seem that

reproducible outputs require reproducible inputs. Can
we see this directly? As discussed in Section II.B, one
can genetically engineer flies to express a fusion of Bcd
with the green fluorescent protein (GFP), and show that
this fusion protein quantitatively replaces the function
of the native molecule. Figure 121 shows measurements
of the concentration of Bicoid in nuclei from 15 different
embryos, using this Bcd–GFP fusion. The raw fluores-
cence intensity (or the inferred concentration) is plotted
vs. position along the anterior–posterior axis for each nu-
cleus. Evidently the variability from embryo to embryo
is small, with a standard deviation of less than 20%, and
some of this variability can be traced to measurement er-
rors, suggesting that the true variability is ∼ 10% or even
less. If the mother has only one copy of the Bcd–GFP
gene instead of the usual two, the fluorescence really is
cut in half, so again there is no evidence of mechanisms
which buffer the observable profile against variations in
the strength of the source. This strongly suggests that
the mother can place a reproducible number of mRNA
molecules into the egg, and that the apparatus for trans-
lation has an efficiency that is constant from embryo to
embryo as well. It would be attractive to have direct
measurements that confirm these conclusions. Of course,
this also pushes the problem back. How does the mother
count mRNA molecules with ∼ 10% accuracy? How
does the embryo ensure that the efficiency of translation,
which depends on myriad factors, is reproducible?
Can we make the same argument in any other system?

Maybe the Dpp experiments of Bollenbach et al (2008)?
Others?
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The problem we have been discussing thus far emerges
as soon as we claim that position in the embryo is en-
coded by the concentration of specific molecules. In such
a scheme, if we want neighboring cells to do different
things, reliably, then we will be driven to questions about
how these cells can distinguish small differences in con-
centration, as discussed in Section II.B.72 Conversely, if
we want two cells that occupy corresponding positions
in different embryos to do the same thing, then we are
driven to ask how the concentrations at these correspond-
ing points can be the same. These issues of precision and
reproducibility arise even if the size of the embryo and the
external conditions of development are identical. There
is another problem, related to the variations in size of the
embryo, and this is the problem of scaling.

To a remarkable extent, the proportions of organisms
are constant, despite size variations. We all know peo-
ple who have especially large heads, but certainly the
proportions of the body vary much less than the over-
all size, and again insects provide clear examples of this,
both within species and across species. Different species
of flies, for example, have embryos that span a factor of
five or more in length, yet they have the same number of

FIG. 121 Measurements of the Bicoid concentration in nuclei
along the anterior–posterior axis of the Drosophila embryo,
from Gregor et al (2007b). Each point corresponds to one
nucleus in one embryo; points of the same color come from
the same embryo, and error bars show the means and stan-
dard deviations across the fifteen embryos in the experiment.
The vertical axis shows the fluorescence signal in embryos en-
gineered to make the Bcd–GFP fusion protein, which can be
calibrated to give the absolute concentration (at left). The
horizontal axis shows the position of the nucleus as a fraction
of the overall length of the embryo.

72 See also the discussion of positional information, in bits, in Sec-
tion IV.A.

FIG. 122 Immunofluorescence stainings for products of the
gap and pair–rule genes in flies of different sizes, from Gre-
gor et al (2005). (A) Staining of L sericata (upper em-
bryos) and D melanogaster (lower embryos) for Hunchback
(green) and Giant (red) in the left column, and for Paired
(green) and Runt (red) in the right column. (B) Staining of
D melanogaster (upper embryos) and D busckii (lower em-
bryo) for Hunchback (green) and Runt (red). Scale bars:
100µm. [Should give typical sizes of the embryos in the dif-
ferent species!]

body segments, and individual segments have dimensions
that scale with the overall size of the organism. You can
see this scaling not just in the macroscopic patterns of
the developed organisms, but also in the patterns of gene
expression, as shown in Fig 122. Indeed, when we have
looked at the problem of reproducibility above, we have
implicitly used the idea of scaling, always plotting posi-
tion as a fractional distance along the anterior–posterior
axis.73

Scaling is deeply puzzling, perhaps more so for physi-
cists who have thought about pattern formation in non–
biological systems. To make this point, let’s imagine
making a model of the whole network of interactions
that lead to, for example, the beautiful stripes of gene
expression. In each nucleus there are chemical reactions
corresponding to the transcription of the relevant genes,
and the rates of these reactions are determined by the
concentrations of the appropriate transcription factors.
More equations will be needed to describe translation (al-
though maybe one can simplify, if, for example, mRNA
molecules degrade quickly and proteins live longer). Dif-
ferent points in space are coupled, presumably through
diffusion of all these molecules, although we should worry

73 [I want to emphasize the distinction between the problems of
reproducibility and scaling, but need to think about how to do
this. For example, in Fig 121 the embryos have lengths with
standard deviation of only ∼ 4%.]
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about whether diffusion is the correct description. Even
if youre not sure about the details, you can see the form of
the equations: some sort of partial differential equations,
in which the local time dependence of concentrations has
contributions both from nonlinear terms describing the
various chemical reactions and from spatial derivatives
describing diffusion or other transport processes,

∂gi(x, t)

∂t
= Digi(x, t) + Fi({gj}). (570)

But we have seen equations like these before in the
study of non–biological pattern forming systems such as
Rayleigh–Bernard convection, directional solidification,
... .

Many non–biological pattern forming system generate
periodic spatial patterns that remind us of the segments
in the insect and the patterns of pair rule gene expression.
The scale of these patterns, however, is set by combina-
tions of parameters in the equations. For example, we
can combine a diffusion constant with a reaction rate or
lifetime to get a length, as in the discussion of the Bicoid
profile above (λ =

√
Dτ). What happens if you put these

equations in a larger box? Well, from Rayleigh–Bernard
convection, we know the answer. [should really have an
image of convection, or some other ‘physical’ pattern for-
mation problem]. In this system—a fluid layer heated
from below—we see a collection of convective rolls, some-
times in stripes and sometimes in 2D cellular patterns.
Again, the length scale of the stripes is determined by
the parameters of the equation(s). If you put the whole
system in a bigger box, you get more stripes, not wider
stripes.

Problem 118: A lightning review of pattern formation.
[give the students a tour of instabilities etc in some simple case!]

The results in Fig 122 come close to saying that we
can put all the same equations into a bigger box, and
the stripes come out wider in proportion to the length of
the box. One might worry that these are different organ-
isms, and so perhaps evolution has tuned the properties
of the proteins involved so that the relevant combinations
of parameters turn out to scale with embryo size. The
differences can’t be too large, because we can identify the
same molecules as being involved through similarities of
amino acid sequence, and because the same antibodies
react with these molecules in different species. Still, it is
possible that scaling across embryos in different species
reflects an evolutionary adaptation.

If we look across related species of flies with embryos
of very different sizes, then the Bcd profiles (as measured

with antibody staining) seem to scale with the length of
the egg. One can use the same experimental methods
used in making the Bcd–GFP fusion more aggressively,
extracting the sequences of Bicoid from flies of different
sizes and re–inserting green versions of these different Bi-
coids into the Drosophila genome. The striking result is
that the resulting spatial profiles are those appropriate
to the host embryo, not the source of the Bicoid. Taken
together, all of these results suggest that, as with the
problem of variability, the scaling problem is solved at
the level of Bicoid itself. It would appear that there is
something about the environment or geometry of the em-
bryo itself that couples the global changes in the size of
the embryo to the local dynamics.
Scaling might not be so mysterious. Suppose that we

think of the (roughly ellipsoidal) embryo as a cylinder,
with the source covering one end of this cylinder; since
most of the interior of the egg is yolk, we imagine that
all degradation of proteins occurs near the surface. If
the degradation reaction is rapid, then the surface of the
embryo acts as a sink, and in the interior of the embryo
the concentration obeys the diffusion equation, with no
additional terms. Assuming cylindrical symmetry, the
steady state profile must then obey

∂2cs(x, r)

∂x2
+

1

r

∂

∂r

[
r
∂cs(x, r)

∂r

]
= 0 (571)

−D
∂cs(x, r)

∂x
=

R

πr20
(572)

c(x, r = r0) = 0, (573)

where x measures position along the axis of the cylin-
der (the anterior–posterior axis of the embryo), r0 is the
radius of the cylinder, R is once again the number of
molecules per second being injected by the source, and
the last condition follows in the limit that degradation re-
actions at the surface are fast. If we using the standard
separation of variables method and look for solutions of
the form cs(x, r) = e−x/λf(r), then we must have

1

r

d

dr

[
r
df(r)

dr

]
+

1

λ2
f(r) = 0, (574)

with the boundary condition f(r0) = 0. You may rec-
ognize this as the differential equation which defines the
Bessel function,

d2J0(r)

dr2
+

1

r

dJ0(r)

dr
+ J0(r) = 0, (575)

so that f(r) ∝ J0(r/λ). But then to obey the boundary
condition at the surface of the cylinder, we must have
λ = r0/z01, where z01 is the location of the first point
where J0(z) = 0. So, in this model, the length scale
of the Bicoid profile λ is automatically proportional to
the radius of the embryo; if variations in aspect ratio are
smaller than variations in length, this will serve, at least
approximately, to scale the profile to the size of the egg.
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Problem 119: Could it be so simple?. Work out the details
of the scenario in the last paragraph. Looking at images of the
fly embryo earlier in this section, estimate the radius r0 assuming
that the length of the embryo is L ∼ 0.5mm. Does the prediction
λ = r0/z01 actually work quantitatively?

While simple geometrical mechanisms of scaling might
be too simple to work, we should note that embryos of
different linear dimensions have the same number of cells.
Further, because the nuclei arrange themselves more or
less regularly over the embryo surface, the distance from
one nucleus to the next provides a local measure propor-
tional to the global size of the egg. Finish this discussion!!

Complementary to the problem of scaling is the prob-
lem of size control. In many developmental problems
(even in later fly development), tissues are growing as
they differentiate, and cells have to know both where
they are and whether they should still be dividing and
hence expanding the size of the tissue. [Add discussion
of work by Shraiman on size control, and subsequent ex-
periments.]

The discussion so far has taken very seriously the idea
that there are “primary morphogens,” placed by the
mother, which define provide the basic signal for posi-
tion in the embryo. Position is a continuous variable, as
is concentration. A very different perspective emphasizes
that, when development is finished, cells have adopted
distinct types or “fates,” which define their function in
the adult organism. These fates persist long after the pri-
mary morphogen signals have disappeared, and so they
must represent stable states of the cells, thus bringing
us back to the theme of this section. Cells even main-
tain their identity and state when separated from their
neighbors, which suggests that the biochemical and ge-
netic networks in each cell have multiple attractors. A
minimal model of the networks relevant for development,
then, would have the right number of attractors but a
limited number of dynamical variables, perhaps much
fewer than the number of genes involved in the entire
network. As with the attractors in the Hopfield model,
there is a plausible path to “robustness,” because chang-
ing the qualitative behavior of the system would actually
require changing the number of attractors—the develop-
ment of cells into types becomes a matter of topology
rather than geometry in the model, and hence invariant
to a finite range of parameter variation.

Need to fill out the discussion of attractors. In some
ways this is a mathematization of Waddington’s “canal-
ization,” which is an old idea. In modern times, there
is work by Reinitz, Sharp and colleagues that tries to
make a more direct analogy between genetic and neural

networks. Most recently there is work by Siggia and Carl-
son on vulva development in C elegans that pushes the
“minimal model” strategy the furthest, arguing that we
can choose coordinates to make the attractors obvious,
and then try to map the known biochemical signals into
these coordinates, rather than the more usual effort to
use biochemical coordinates and decipher the attractors.
This belongs here, but isn’t published yet .. hopefully
by the time I finalize the text there will be something to
cite.
This section needs a conclusion. We have covered a

lot of territory, from chemotaxis to development ... what
have we learned?

Some of the basic idea about adaptation in sensory neurons were
established early on, by Adrian and Zotterman; for a review see
Rieke et al (1997).

Adrian 1926: The impulses produced by sensory nerve endings:
Part I. ED Adrian, J Physiol (Lond) 61, 49–72 (1926).

Adrian & Zotterman 1926a: ED Adrian & Y Zotterman, The
impulses produced by sensory nerve endings: Part II. The
response of a single end organ. J Physiol (Lond) 61, 151–
171 (1926).

Adrian & Zotterman 1926b: ED Adrian & Y Zotterman, The
impulses produced by sensory nerve endings: Part III. Im-
pulses set up by touch and pressure. J Physiol (Lond) 61,
465–483 (1926).

Rieke et al 1997: Spikes: Exploring the Neural Code. F Rieke,
D Warland, R de Ruyter van Steveninck & W Bialek (MIT
Press, Cambridge, 1997).

[Need to check on references for adaptation in bacterial chemo-
taxis in Chapter 2] Renewed interest in this system was triggered
by the work of Barkai and Leibler (1997), who used adaptation in
chemotaxis as an example for the more general problem of robust-
ness. The idea that perfect adaptation could be achieved even in
the presence of variations in protein copy numbers was then tested
more directly by Alon et al (1999). [Need to reference subsequent
work that goes beyond the mean–field level, e.g. from Wingreen et
al] Recent work suggests that, although the biochemical network
responsible for chemotaxis may allow for robustness against vari-
ations in protein copy numbers, under natural conditions there is
relatively precise control over (at least) relative copy numbers, even
for proteins on different operons (Kollman et al 2005). In competi-
tion experiments, one can even show that tight correlations between
protein concentrations improves chemotactic performance (Løvdok
et al 2009).

Alon et al 1999: Robustness in bacterial chemotaxis. U Alon,
MG Surette, N Barkai & S Leibler, Nature 397, 168–171
(1999).

Barkai & Leibler 1997: Robustness in simple biochemical net-
works. N Barkai & S Leibler, Nature 387, 913–917 (1997).

Kollman et al 2005: Design principles of a bacterial signalling
network. M Kollmann, L Løvdok, K Bartholome, J Timmer
& V Sourjik Nature 438, 504–507 (2005).

Løvdok et al 2009: Role of translational coupling in robustness
of bacterial chemotaxis pathway. L Løvdok, K Bentele, N
Vladimirov, A Müller, FS Pop, D Lebiedz, M Kollmann &
V Sourjik, PLoS Biology 7, e1000171 (2009).

Pointers toward work on the cell cycle.
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Bean et al 2006: Coherence and timing of cell cycle start exam-
ined at single–cell resolution. JM Bean, ED Siggia & FR
Cross, Mol Cell 21, 3–14 (2006).

Di Talia et al 2007: The effects of molecular noise and size con-
trol on variability in the budding yeast cell cycle. S Di Talia,
JM Skotheim, JM Bean, ED Siggia & FR Cross, Nature 448,
947–952 (2007).

Li et al 2004: The yeast cell cycle network is robustly designed.
F Li, Y Lu, T Long, Q Ouyang & C Tang, Proc Nat’l Acad
Sci (USA) 101, 4781 (2004).

Zhang et al 2006: A stochastic model of the yeast cell cycle net-
work. Y Zhang, M Qian, Q Ouyang, M Deng, F Li & C
Tang, Physica D 219, 35 (2006).

Lau et al 2007: Function constrains network architecture and
dynamics: A case study on the yeast cell cycle Boolean net-
work. K Lau, S Ganguli & C Tang, Phys Rev E 75, 051907
(2007).

Skotheim et al 2008: Positive feedback of G1 cyclins ensures co-
herent cell cycle entry. JM Skotheim, S Di Talia, ED Siggia
& FR Cross, Nature 454, 291–297 (2008).

A modern textbook account of development in the fly embryo is
provided by Lawrence (1992). We know which genes are relevant to
the earliest events in patterning because of pioneering experiments
first by EB Lewis and then by EF Wieschaus and C Nüsslein–
Vollhard. Lewis identified a series of puzzling mutant flies where
a mutation in a single gene could generate flies that were missing
segments, or had extra segments. It is as if the “program” of em-
bryonic development has subroutines (!). Wieschaus and Nüsslein–
Vollhard decided to search for all the genes such that mutations in
those genes would perturb the formation of spatial structure in the
embryo, and they found that there are surprisingly few such genes,
on the order of 100. To get a feeling for all this, one can certainly
do worse than to read the Nobel lectures from 1994 (Lewis 1997;
Nüsslein–Volhard 1997; Wieschaus 1997).

Lawrence 1992: The Making of a Fly: The Genetics of Animal
Design PA Lawrence (Blackwell, Oxford, 1992).

Lewis 1995: The bithorax complex: The first fifty years. EB
Lewis, in Nobel Lectures, Medicine or Physiology 1991–1995
N Ringertz, ed, pp 247–272 (World Scientific, Singapore,
1997).

Nüsslein–Volhard 1997: The identification of genes controlling
development in flies and fishes. C Nüsslein–Volhard, in No-
bel Lectures, Medicine or Physiology 1991–1995 N Ringertz,
ed, pp 285–306 (World Scientific, Singapore, 1997).

Wieschaus 1997: Molecular patterns to morphogenesis: The
lessons from Drosophila. EF Wieschaus, in Nobel Lectures,
Medicine or Physiology 1991–1995 N Ringertz, ed, pp 314–
326 (World Scientific, Singapore, 1997).

The classical ideas about pattern formation in non–equilibrium sys-
tems were presented by Turing (1952), who was aiming specifically
at an understanding of embryonic development. Modern views are
given by Cross & Hohenberg (1993) and by Cross & Greenside
(2009).

Cross & Greenside 2009: Pattern Formation and Dynamics in
Nonequilibrium Systems M Cross & H Greenside (Cam-
bridge University Press, Cambridge 2009).

Cross & Hohenberg 1993: Pattern formation outside of equi-
librium. MC Cross & PC Hohenberg, Revs Mod Phys 65,
851–1112 (1993).

Turing 1952: The chemical basis of morphogenesis. AM Turing,
Phil Trans R Soc Lond B 237, 33–72 (1952).

The general idea that cells know their position, and hence their
fate, in an embryo by responding to the concentration of some
special “morphogen” molecule is very old, and it didn’t take too

long before people started to think about the role of diffusion in
establishing morphogen gradients. Some milestones are Wolpert’s
discussion of positional information (Wolpert 1969), and Crick’s
surprisingly influential discussion of diffusion (Crick 1970). The
transcription factor bicoid, in the Drosophila embryo, provides a
very clear example of these ideas (Driever & Nüsslein–Vollhard
1988a,b; Ephrussi & St Johnston 2004). I am embarrassed not to
know who first wrote down the simple model for Bcd profiles, and
I should check!

Crick 1970: Diffusion in embryogenesis. F Crick, Nature 225,
420–422 (1970).

Driever & Nüsslein–Vollhard 1988a: A gradient of Bicoid
protein in Drosophila embryos. W Driever & C Nüsslein–
Vollhard, Cell 54, 83–93 (1988).

Driever & Nüsslein–Vollhard 1988b: The Bicoid protein de-
termines position in the Drosophila embryo in a
concentration–dependent manner. W Driever & C Nüsslein–
Vollhard, Cell 54, 95–104 (1988).

Ephrussi & St Johnston 2004: Seeing is believing: The bicoid
morphogen gradient matures. A Ephrussi & D St Johnston,
Cell 116, 143–152 (2004).

Wolpert 1969: Positional information and the spatial pattern of
cellular differentiation. L Wolpert, J Theor Biol 25, 1–47
(1969).

Houchhmandzadeh et al (2002) drew attention to the problem of
variability in morphogen gradients, and their suggestion that the
emergence of reproducible patterns was an example of robustness in
biochemical networks attracted considerable attention. Among the
models that emerged in an attempt to flesh out the idea of robust-
ness, some make specific use of gradients from the two ends of the
embryo to compensate for global parameter variations and allow
for scaling with the size of the egg (Houchmandzadeh et al 2005,
McHale et al 2006), while others use nonlinearities in degradation
reactions (Eldar et al 2002) or in the transport process (Bollenbach
et al 2005) to generate spatial profiles that are robust against varia-
tions in source strength. Although much of this discussion focuses
on early events in embryonic development, there is also the idea
that the final patterns of gene expression, which are more closely
tied to cell fate, should be robust steady states of the relevant
biochemical networks (von Dassow et al 2000). Even earlier work
emphasized the similarity of these networks to neural nets, with
stable patterns being analogous to stored memories (Mjolsness et
al 1991), and one can see this as a modern formulation of the ideas
of “canalization” (Waddington 1942). Most recent work from Sig-
gia & Carlson. Have to see what gets said about size control, but
certainly will cite Shraiman (2005).

Bollenbach et al 2005: Robust formation of morphogen gradi-
ents. T Bollenbach, K Kruse, P Pantazis, M Gonzalés–
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D. Long time scales in neural networks

The basic time scales of electrical dynamics in neurons
are measured in milliseconds, yet the time scales of our
mental experience are much longer. From the fraction of
a second that we need to integrate sounds as we identify
words or phrases, to the minutes of memory for a phone
number, to the decades over which our recollections of
childhood experiences can stretch, the brain has access
to time scales far beyond those describing the elementary
events of action potential generation and synaptic trans-
mission. If we write a set of dynamical equations, and the
time scales which emerge to describe the whole system
are much longer than the time scales which appear as
parameters in the equations, then something special has
happened. How does this work in the brain? How does
the system insure that this seemingly special separation
of time scales occurs robustly?

One possible solution to the wide range of relevant
time scales is to invoke a correspondingly wide range of
mechanisms, and surely this is part of the right answer.
Thus, it seems unlikely that memories of things long past
are stored as continuing patterns of electrical activity
in the brain, which somehow last for ∼ 1010× longer
than their natural time scale, and are always present to
be examined as we reminisce. On the other hand, for
working memory—holding the words of a sentence in our
minds, or doing mental arithmetic—the time scales in-
volved seem at once long compared with natural time
scales for electrical activity, yet too short to engage bio-
chemical mechanisms, such as the regulation of gene ex-
pression, which could have more stable, semi–permanent
effects.
In fact, we know a whole class of examples in which

long time scales emerge naturally. When a ball rolls down
a hill, the time scale of the rolling may be short, but
once at the bottom the ball can stay there (more or less)
forever. So, perhaps we can arrange for the dynamics
of neurons in an interconnected network to be like the
motion of a particle on a (multidimensional) landscape,
with nice deep valleys corresponding to patterns of ac-
tivity that can persist for a long time once the system
find itself in the right neighborhood. In two hugely in-
fluential papers in the early 1980s, Hopfield showed how
to do exactly this.
A typical neuron in the brain receives inputs from

many other neurons [need to see where we’ve had a
chance to talk about axons, dendrites, synapses .. should
be before this!]; in the cortex ‘many’ is several thousand,
and in the extreme case of the cerebellum ‘many’ actu-
ally means ∼ 105. Conversely, although each cell has
only one axon along which its output action potentials
are sent, this axon can branch to contact thousands of

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

W13 W23 W33 W43 W53 W63

FIG. 123 A schematic network of neurons, focusing on one
cell i that receives inputs from may other cells j = 1, 4, 8, · · · .



183

other cells. Let’s focus on one cell i, which receives inputs
from many other cells j, as in Fig 156. Schematically, we
can imagine that each cell is either active or inactive, on
or off, and hence the state of one cell can be represented
by a binary variable σi = ±1; for the moment we will
leave this as schematic, and not try to interpret σi too
closely in terms of action potentials or membrane volt-
age. In the simplest view, each cell j sends its output to
cell i, and as these inputs are collected from the synapses,
they are summed with some weights Wij which we can
think of as the “strengths” of the synapses from cell j to
cell i. Having summed its inputs, cell i must then decide
whether to be on or off, comparing the total input to a
threshold θi. These words are equivalent to saying that
the state of cell i is set according to the equation

σi → sgn




∑

j

Wijσj − θi



 . (576)

Models of this flavor go back at least to the 1940s, when
McCulloch and Pitts explored the idea that the on/off
states of neurons could implement a kind of logical calcu-
lus. Precisely because they can perform such operations,
these sorts of discrete dynamics can be almost arbitrarily
complicated. Thus, in general, it’s hard to say anything
about the dynamics generated by Eq (576).

Suppose, however, that if neuron j synapses onto neu-
ron i with strength Wij, then neuron i synapses onto neu-
ron j with the same strength, so that the matrix of synap-
tic strengths Wij is symmetric. Then the updating of the
state of neruon i in Eq (576) serves to reduce an ‘energy’
function defined by

E = −1

2

∑

ij

σiWijσj +
∑

i

θiσi. (577)

Indeed, we recognize Eq (576) as being the dynamics of
a zero temperature Monte Carlo simulation of an Ising
model with energy defined by Eq (577). Now, we can
make progress.

Problem 120: Energy in the Hopfield model. Show ex-
plicitly that the dynamics in Eq (576) serves to decrease the energy
function in Eq (577).

If we can map the dynamics of a neural network onto
the Ising model, then we can bring an enormous amount
of our intuition (and mathematical tools) from statistical
mechanics. We know that, since the dynamics we have
defined are at zero temperature—we are neglecting, for
the moment, any noise in the neurons or synapses—it

is possible to have collective states of the whole system
which are stable forever. The simplest example is with
all thresholds equal to zero, and all synaptic strengths
equal and positive. Then the energy function becomes

E = −W

2

∑

ij

σiσj = −W

2

(
∑

i

σi

)2

. (578)

This is the mean–field ferromagnet. In this model there
are two stable ground states—all neurons ‘on’ (σi = +1
for all i) and all neurons ‘off’ (σi = −1 for all i). Two
states aren’t many, and these states seem especially odd,
but maybe we are on the right track.
If instead of making all the Wij equal, we choose them

at random, then the Ising model we have constructed
is the mean–field or Sherrington–Kirkpatrick spin glass.
We know that this system has many locally stable states,
with an energy landscape that has valleys within valleys,
as discussed in Section III.A. This is probably too much,
since the structure of these exponentially large number of
states depends very sensitively on the precise form of the
couplings Wij. More generally, since we only have ∼ N2

parameters at our disposal when we adjust the Wij, it is
difficult to imagine how we could ‘program’ the network
to store exponentially many independent patterns.
To find a compromise between the ferromagnet and the

spin glass, we recall a trick from the history of models for
magnetism. Suppose that

Wij = Wξiξj, (579)

where )ξ is an arbitrary binary vector, ξi = ±1, and for
simplicity let the thresholds θi = 0. Then the energy
becomes

E = −1

2

∑

ij

σiWijσj

= −W

2

∑

ij

σiξiξjσj (580)

= −W

2

∑

ij

(ξiσi) (ξjσj) (581)

= −W

2

∑

ij

σ̃iσ̃j, (582)

where σ̃i = ξiσi is again a binary variable, σ̃i = ±1. The
transformation σi → σ̃i is a discrete gauge transforma-
tion, so we see that the model with weights in Eq (579)
is gauge equivalent to a ferromagnet. Rather than the
stable states of the system being σi = +1 for all i and
σi = −1 for all i, the stable states are σi = +ξi and
σi = −ξi. Importantly, this construction can be general-
ized.
Rather than Eq (579), let us imagine that

Wij = W
(
ξ(1)i ξ(1)j + ξ(2)i ξ(2)j

)
. (583)
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Now we have

E = −1

2

∑

ij

σiWijσj

= −W

2




∑

ij

σiξ
(1)
i ξ(1)j σj



− W

2




∑

ij

σiξ
(2)
i ξ(2)j σj





(584)

= −W

2

[(
)ξ(1)·)σ

)2
+
(
)ξ(2)·)σ

)2
]
. (585)

Clearly the energy will be low if the pattern of neural
activity )σ is parallel to the vector )ξ(1) or to the vector
)ξ(2). But in a high dimensional space, two randomly cho-
sen vectors are, with high probability, nearly orthogonal.
This means that the two terms in the Hamiltonian can’t
both be important at once. Thus, the energy function
will have a minimum near )σ = )ξ(1) and a separate min-
imum near )σ = )ξ(2), as well as the flipped versions of
these states, )σ = −)ξ(1) and )σ = −)ξ(2).

Problem 121: Random vectors in high dimensions.
Consider random binary vectors ,v in an N–dimensional space:
,v ≡ {v1, v2, · · · , vN}, where each vi = ±1 is chosen independently
and at random. The angle φ between two such vectors is defined
in the usual way by normalizing the dot product,

cosφ ≡
1

N
,v(1)·,v(2). (586)

Before calculating anything, explain why, if ,v(1) and ,v(2) are chosen
independently, it must be that 〈cosφ〉 = 0. Calculate the variance
〈cos2 φ〉 to show that the typical values of | cosφ| ∼ 1/

√
N , which

vanishes as N → ∞. Can you use the central limit theorem to say
something about the whole probability distribution P (cosφ) in this
limit? Show that the distribution can be written exactly as

P (z = cosφ) =

∫
dk

2π
e−ikz [cos(k/N)]N . (587)

Connect this result to the predictions of the central limit theorem.
Develop a saddle point approximation so that you can calculate, at
large N , P (z) for values of |z| + 1/

√
N . Verify your approxima-

tions with a simulation.

The key idea now is to go further, with not just two
patterns but many, writing the weights as

Wij = W
K∑

µ=1

ξ(µ)i ξ(µ)j . (588)

Then the energy becomes

E = −W

2

∑

ij

σi

[
K∑

µ=1

ξ(µ)i ξ(µ)j ]

]
σj = −W

2

K∑

µ=1

(
)ξ(µ)·)σ

)2
.

(589)

Certainly if K , N our intuition from the case of two
patterns should carry over, since almost all of the vectors
)ξ(µ) will be nearly orthogonal, and we should find that
the energy function has 2K minima, near the vectors
±)ξ(µ). At some value of K this must stop being true;
indeed if we let K itself become large we must get back
to the spin glass model in which there are many locally
stable states, but they don’t have any connection to the
patterns )ξ(µ) that we have ‘programmed’ into the system.
In his original work on this model, Hopfield gave rough
arguments to suggest that this transition from ordered
to disordered behavior occurs at roughly K ∼ 0.15N ,
so that it should be possible to have a number of states
which is proportional to the number of neurons, and he
verified this in simulations with N = 100 [should break
this off as a paragraph and give the argument, rather
than pointing].

Problem 122: Simulating the Hopfield model. Given a
matrix Wij it is straightforward to simulate the dynamics of the
Hopfield model, as defined by Eq (576); try the simplest case, with
θi = 0. To run the simulation, you can go through these steps:

1. Start a collection of N spins in some randomly chosen state.

2. Choose one spin i at random.

3. Set σi = sgn
[∑

j Wijσj

]
.

4. Choose another spin and repeat the update, again and again

Produce a series of simulations to convince yourself that, with Wij

chosen as in Eq (588) and a small value of K, the dynamics always

stop in the neighborhood of one of the vectors ,ξ(µ) that you have
used in sculpting the energy landscape. Explore what happens as
K becomes larger. If you jump to K ∼ N/2, can you see the emer-
gence of more random stopping points for the dynamics? Perhaps
even if you start at one of the vectors ,ξ(µ), the interference from
the other vectors destabilizes this state? If the dynamics stops at
a state ,σs, define an order parameter by finding the nearest vector
,ξ(µ), and measuring the normalized dot product,

ms = max
µ

∣∣∣∣∣
,ξ(µ)·,σs

∣∣∣∣∣. (590)

From many random starting points, what is the mean value of
ms as a function of K and N? As N gets larger, do you see the
emergence of a ‘thermodynamic limit,’ where the (intensive) order
parameter 〈ms〉 depends only on the ratio K/N? Are there signs
of a phase transition at some critical value of K/N?

The idea that the dynamics of neural networks could
be mapped onto the Ising model immediately captured
the imagination of the physics community. But before ex-
ercising ourselves in this direction, let’s think about how
much progress we have made toward solving our original
problem. The Hopfield model shows how the dynamics
of a neural network can correspond to ‘downhill’ motion
on an energy landscape, much like a ball rolling down a
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hill. Thus, the system as a whole has collective, macro-
scopic states which will persist for times arbitrarily long
compared with the basic time scales of the system, the
time scales on which the individual neurons update their
microscopic states according to Eq (576). Importantly,
there are not just a few of these stable states, but many,
in proportion to the number of neurons. Unlike the case
of the ball coming to a stop at the bottom of the hill, the
stability of these states is the result of activity, each neu-
ron receiving continuous input from other neurons in the
network; in effect the stable states are patterns of electri-
cal activity which can reinforce themselves as they propa-
gate through the network, embodying old ideas about the
‘reverberation’ of activity patterns through the extensive
feedback loops found in the brain.

It is tempting to think of the stable patterns of activity,
)σ ≈ )ξ(µ) as being memories. When we set the synaptic
connection matrix to the form shown in Eq (588), we
“store” the memories, and as the dynamics settles into
one of its locally stable states, one of these memories
is “recalled.” Each of the stored memories has a large
basin of attraction, so the network will recall the mem-
ory given only a relatively weak “hint” that the memory
is somewhere in the neighborhood of the current state.
I use quotation marks extensively here to highlight the
fact that we are sliding from properties of the equations
into the everyday language that we use in describing our
internal mental experiences, and this is dangerous. But,
of course, it is also great fun.
A crucial property of the model is that a particular

memory—e.g., µ = 42—is not stored in any particular
place. There is no single neuron or synapse that has re-
sponsibility for remembering this single recallable item.
Instead, the memory is distributed over essentially all of
the elements in the system. Correspondingly, if we elim-
inate one neuron or one synapse, there is no catastrophic
loss of one memory, but at worst a gentle degradation
of all the memories; in the limit K , N we might even
imagine that, as N → ∞ deletion of anything less than
a finite fraction of cells or synapses would have a van-
ishingly small effect. This ‘fault tolerance’ is a highly
attractive property.

Problem 123: Fault tolerance. Develop a small simulation
to illustrate the idea of fault tolerance in the Hopfield model.

One might worry that all of this depends upon a very
particular form of the synaptic weight matrix, Eq (588).
But this form is both natural and, perhaps surprisingly,
well connected to experiment. Suppose that the current
state of activity in the network, )σ(t) represents something

that we would like to store and be able to recall later. If
every synaptic strength is changed by the rule

Wij → Wij +Wσi(t)σj(t), (591)

then, assuming that we have not already tried to store too
many patterns in the network, the current state )σ(t) will
act as one more pattern that can be recalled, one more
stable state in the energy landscape—the network will
have “learned” the state )σ(t). Importantly, the change in
strength of the synapse from neuron i to neuron j depends
only on the states of neurons i and j. Thus, although the
memory is distributed throughout the network, the rule
for storing the memory is completely local.
The rule for modification of synaptic strengths in Eq

(591), sometimes called a “learning rule,” means that,
over time, the strength of the synapse from neuron j to
neuron i will be proportional to the correlation between
the activities of these two cells. Learning based on corre-
lations is an idea that goes back at least to Hebb in the
1940s, although there are clear precursors in the writ-
ing of William James fifty years earlier. Both James
and Hebb were making an intuitive leap between the
macroscopic phenomena of human and animal learning
and what they imagined could be the underlying neural
mechanisms. Although their words admit some breadth
of interpretation, to a remarkable extent they were right,
and many synapses are found to exhibit “Hebbian plas-
ticity.”
At this point we should say something about the ex-

periments which demonstrate Hebbian plasticity at real
synapses. Should get as far as explaining that there is
a new issue of time scale separation, since the mem-
ory trace should be written quickly (so that the relevant
biochemical mechanisms must switch quickly) but then
be stable for long times, despite the fact that all the
molecules get replaced fairly often. Models for this bring
us back to the question of stability against noise in bio-
chemical networks, which is something that should have
been covered, in part in Section II.B. There is a lot that
one could say here (one could make a nice course about
synaptic plasticity alone), so careful selection is required.
What is the evidence that something like the Hopfield

model is actually a correct description of real neural net-
works? The essence of the model, shorn of the analogies
to magnetism, is that a recalled memory is a stable state
of neural activity, one which persists in the absence of ex-
ternal stimuli by reverberating in the network. Persistent
activity of neurons has been observed. The canonical ex-
ample occurs when an animal has to remember a sensory
stimulus for a brief time (a few second to a minute) in
order to compare it with another image or more simply
because an immediate response would be impossible. In
the period between the stimulus and the cue for the re-
sponse, where the subject has to remember what has been
seen or heard, these neurons continue to generate action
potentials at a rate very different from the ‘resting’ rate
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before exposure to the initial stimulus, as shown in Fig
124. Although the behavior of each cell is different in de-
tail, in many cases the activity during this ‘delay period’
is steady, as if the system were simply locked into a new
state, but the state into which the system falls is differ-
ent depending on the image which is being remembered.
Persistent activity is not just a feature of our cortex, but
appears also in many other systems, from the primate
spinal cord to the goldfish brainstem. [Probably need
more here: demonstrate that persistent activity varies in
relation to the triggering inputs, in some cases is contin-
uously graded, etc..]

One would like to demonstrate directly that the per-
sistent activity of individual neurons during the delay
period really reflects a collective state of the network.
This is not so easy to do. Need to decide how far to
go here—are there good experiments in cortex looking at
synaptic inputs? Maybe say that this is an important
reason to look for simpler examples ... Also want at least
to point toward Amit’s analysis of the Miyashita cor-
relations, where the persistent patterns of activity have
a trace of the sequence in which images were presented
during learning.

At this point it would be nice to say a little about the
more sophisticated analysis of the Hopfield model using
replicas. The goal is to calculate the ‘capacity,’ that is
the maximum number of patterns K that can be stored

stimulus

cue

(variable)

delay period 10 sec

response

cues

FIG. 124 The activity of a single neural in primate prefrontal
cortex during short–term memory, from Fuster & Alexander
(1971). In these experiments a rhesus monkey is trained to
open one of two doors when he receives a cue that they are
unlocked (response cues). Some time before this, the subject
has been allowed to see which of the doors has a piece of apple
behind it (stimulus cue). This neuron seems to be active
during the delay period, and this persistent activity plausibly
is part of the memory that the subject hold. These data
record the results of five such experiments, where the vertical
lines mark the times of spikes, and the arrows mark the times
of the cues, as labelled.

and successfully retrieved. This can be formulated as a
problem in the statistical mechanics of disordered sys-
tems. I am not sure how much technical force is needed
here (or in the discussion of protein above). Advice is
welcome!
There is a very different way of connecting the Hop-

field model to experiment. Imagine that we divide time
into small bins of duration ∆τ . If ∆τ is sufficiently small,
then each neuron either generate an action potential in
this bin, or it does not not, so that the neural response
is naturally binary: σi = +1 for a spike, σi = −1 for si-
lence. for a large network it is impossible to ‘measure’ the
probability distribution of all the network states, P ()σ).
But even recording from neurons one by one it is possi-
ble to measure the mean rate at which each cell generates
spikes, which is equivalent to the expectation value 〈σi〉,
and it is becoming increasingly common to record at least
from pairs of cells, which makes it possible to estimate
the correlations Cij ≡ 〈σiσj〉−〈σi〉〈σj〉. One could ask, as
a purely practical question, what do these measurements
tell us about the full distribution P ()σ)? In general, of
course, there are infinitely many distributions (over the
2N states) that are consistent with theseN(N+1)/2 mea-
surements. Out of all these possible distributions, there
is one which reproduces the measurements but otherwise
describes a system which is as random or unstructured as
possible, and this is the maximum entropy distribution,
as we discussed in Section III.A; see also Appendix A.8.
We recall that the maximum entropy distribution con-

sistent with a certain mean energy for a system is the
Boltzmann distribution. This construction generalizes.
Suppose that we are looking for the probability distribu-
tion P ()σ), and we know the expectation values of some
functions on the state, 〈fµ()σ)〉 = f̄µ. Then to maxi-
mize the entropy of the distribution subject to these con-
straints, we use Lagrange multipliers as usual. Thus, our
problem is to maximize [again, let’s be careful about how
this is done here vs. earlier vs. Appendix A.8]

F = −
∑

(σ

P ()σ) lnP ()σ)−
∑

µ

λµ

[
∑

(σ

P ()σ)fµ()σ)− f̄µ

]

−Λ

[
∑

(σ

P ()σ)− 1

]
, (592)

where the last term fixes the normalization of the dis-
tribution. Following through the steps, the optimum is
defined by

0 =
δF

δP ()σ)
= − [lnP ()σ) + 1]−

∑

µ

λµfµ()σ)− Λ(593)

lnP ()σ) = −
∑

µ

λµfµ()σ)− (Λ + 1) (594)

P ()σ) =
1

Z
exp

[
−
∑

µ

λµfµ()σ)

]
, (595)
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where the partition function Z = e−(Λ+1), or, fixing nor-
malization,

Z({λµ}) =
∑

(σ

exp

[
−
∑

µ

λµfµ()σ)

]
. (596)

The multipliers λµ are determined by matching the ex-
pectation values in the distribution to those observed ex-
perimentally. We recall the usual identity

〈fν()σ)〉 = −∂ lnZ({λµ})
∂λν

, (597)

so we have to solve the equations

−∂ lnZ({λµ})
∂λν

= f̄µ (598)

to complete the construction of the model; in general
this is a hard task, the inverse of what we usually do in
statistical mechanics.

If the expectation values that we measure are 〈σi〉 and
〈σiσj〉, then the corresponding maximum entropy distri-
bution can be written as

P ()σ) =
1

Z
exp




M∑

i=1

hiσi +
1

2

N∑

i &=j

Jijσiσj



 , (599)

where the ‘magnetic fields’ {hi} and the ‘exchange cou-
plings’ {Jij} have to be set to reproduce the measured
values of {〈σi〉} and {Cij}. This of course is an Ising
model with pairwise interactions among the spins. What
is crucial is that this model emerges here not through
hypotheses about the network dynamics, but rather as
the least structured model that is consistent with the
measured expectation values. The mapping to the Ising
model is a mathematical equivalence, not an analogy, and
the details of the model are specified by the data.

The emergence of the Ising model is an attractive as-
pect of the maximum entropy construction. But, there
is no obvious reason why real biological networks should
have this maximum entropy property. Indeed, one might
guess that there are complicated, higher order correla-
tions which are important for the function of the net-
work, and these will be missed by a maximum entropy
model built only from pairwise correlations. It thus came
as a surprise when it was found that these models really
do provide an accurate description of the full correlation
structure in the vertebrate retina as it responds to nat-
uralistic stimuli. This has led to considerable interest in
the use of these models more generally for the description
of real neural networks; for details, see Appendix A.8.

Problem 124: Maximum entropy model for a simple
neural network. Imagine that we record from N neurons and we

find that all of them have the same mean rate of spiking, r̄. Further,
if we look at any pair of neurons, the probability of both spiking
in the same small window of duration ∆τ is pc = (r̄∆τ)2(1 + ε).
We want to describe this network as above, with Ising variables
σi = +1 for spiking and σi = −1 for silence.

(a.) Show that

〈σi〉 = −1 + r̄∆τ (600)

Cij ≡ 〈σiσj〉 − 〈σi〉〈σj〉 = 4ε(r̄∆τ)2. (601)

(b.) Since all neurons and pairs are equivalent, the maximum
entropy model consistent with pairwise correlations has the simpler
form,

P (,σ) =
1

Z
exp



h
M∑

i=1

σi +
J

2

N∑

i $=j

σiσj



 , (602)

which is just the mean field ferromagnet (assuming that J is pos-
itive). If N is large, one might expect that there is a ‘thermody-
namic limit’ in which quantities like energy and entropy become
extensive, proportional to N . Show that this requires scaling of
the coupling, J = J0/N . With this scaling, derive the relationship
between the derivatives of lnZ and the expectation values 〈σi〉 and
Cij.

(c.) Some of you will be very familiar with the substitution tricks
that we’re about to use, others less so. To be sure, let me take you
through the steps. We notice that the interactions are described
by a term

J

2

N∑

i $=j

σiσj =
J

2

N∑

i,j=1

σiσj −
NJ

2
=

J

2

(
N∑

i=1

σi

)2

−
NJ

2
. (603)

Thus the partition function can be written as

Z =
∑

#σ

exp



h
M∑

i=1

σi +
J

2

N∑

i $=j

σiσj



 (604)

= e−NJ/2
∑

#σ

exp

[
h

M∑

i=1

σi

]
exp



J

2

(
N∑

i=1

σi

)2


 . (605)

Then the key step is to realize that

exp

[
A

2
(x)2

]
=

∫
dφ

√
2πA

exp

[
−

φ2

2A
+ φx

]
. (606)

Applied to Eq (605) this allows us to write

Z = e−NJ/2
∑

#σ

exp

[
h

M∑

i=1

σi

]
exp



J

2

(
N∑

i=1

σi

)2


 .

= e−NJ/2
∑

#σ

exp

[
h

M∑

i=1

σi

]∫
dφ

√
2πJ

exp

[
−

φ2

2J
+ φ

N∑

i=1

σi

]

(607)

= e−NJ/2
∫

dφ
√
2πJ

exp

[
−

φ2

2J

]∑

#σ

exp

[
(h+ φ)

N∑

i=1

σi

]
. (608)

Now we see that the spins have decoupled, and you should be able
to do the sum over states,

∑
#σ , inside the integral. Show that, with

the scaling from (b.),

Z = e−NJ/2
∫

dφ
√
2πJ

exp [−NF (φ;h, J0)] , (609)

where the effective free energy F (φ;h, J0) has no explicit N depen-
dence.

(d.) Use steepest descent to approximate Eq (609) at large N .
Derive an expression for lnZ which captures both the leading be-
havior (lnZ ∝ N) and the first two corrections.

(e.) To finish the construction of the model, we have to adjust h
and J to match the measured means and pairwise correlations, Eq’s
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(600) and (601). Using the scaling required for a thermodynamic
limit, is there a prediction for the N dependence of the correla-
tion strength ε? This should bother you—ε is a quantity that is
measured from pairs of cells, and shouldn’t really depend on the
number of cells in the network. Suppose we measure ε among more
and more pairs of cells, so we have to describe larger and larger
networks. Is it possible to have ε small and constant as N → ∞?
What conditions need to be met in order for this to happen?

The Hopfield model provides a scheme for the stabi-
lizing multiple, discrete patterns of activity. But there
certainly are situations in which the brain must hold a
memory of a continuous variable. This is even less generic
than the case of discrete attractors. In order to have a
memory of a continuous variable, there must be (at least)
a whole line or curve in state space along which the sys-
tem can stop; if we think it terms of an energy landscape,
then there must be one big valley, and the bottom of this
valley must be precisely flat along one direction. Im-
plausible as all this sounds, the brain really does hold
memories of continuous variables, and it does so even in
simple situations.

When you turn your head, cells in the semicircular
canals, buried in the same bone as the cochlea, sense the
rotational motion; this is called our “vestibular” sense.
This angular motion input passes through the brain and
drives a motor output which counter–rotates the eyes.
This happens automatically, and is called the vestibulo–
ocular reflex. You can demonstrate it for yourself by
shaking your head from side to side as you read this text.
If you are holding the book at arm’s length, then in order
to read you have to have your fovea—the ∼ 1◦ wide area
of highest image quality—focused on the words as you
read them. If you move your head from side to side,
and don’t move your eyes to compensate, the text will
blur. In fact, you (hopefully) have no trouble reading and
shaking your head at the same time, suggesting that your
eyes are being moved to compensate with an accuracy of
better than ∼ 1◦. When you are reading, of course, there
are visual cues to help guide you eye movements, but it
turns out that even if you close your eyes or sit in a dark
room, seeing nothing, your eyes still counter–rotate to
compensate for your head motions.

Problem 125: Mechanics of the semicircular canals. Give
a problem to develop the simple mechanical model of the canal, ex-
plaining how one gets velocity sensitivity over a reasonable band-
width. Use real dimensions of the canal (e.g., in humans) to get
numbers out.
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FIG. 125 Integration as memory for a continuous variable.
Dashed lines show possible velocity signals, and the solid lines
show corresponding position signals, obtained by integrating
the velocity. After the transient inputs die away, the output
of the integrator is stable for all time (a memory) and can
take on any real value.

There is a subtlety of the vestibulo–ocular reflex, how-
ever. If we relax all the muscles to our eyes, then they ro-
tate to a resting position in which we are looking more or
less straight ahead (as defined by where our nose is point-
ing). Thus, if we turn out head to the right and stop, we
need to keep tension on the eye muscles to be sure that
they don’t drift away from where we were looking before
we turned. That is, to fully compensate for rotation of
the head we need a signal related to the desired angular
displacement of the eyes. But the vestibular system is an
inertial sensor, driven by angular accelerations; the me-
chanics of canal turn this into a velocity signal over a wide
range of frequencies, but the sensors really have zero re-
sponse to constant displacements. Thus, the brain needs
to take a input related (at best) to head velocity, and
generate an output related to head displacement—it has
to integrate, where here ‘integrate’ has the literal mean-
ing from calculus, rather than being a qualitative state-
ment about the gathering of multiple signals. Although
we don’t usually think about it this way, an integrator
is a device which, once the input signals die away, has a
perfect memory for a continuous variable, as schematized
in Fig 125. Although these properties of the integral are
obvious mathematically, it it less obvious how to build a
network of neurons that implements this mathematics.
Before continuing, it should be noted that the move-

ment of our eyes is not the perfect integral of our head
velocity. On a longer time scale, roughly thirty seconds,
our eyes do drift back to a resting position if there is no
further stimulus. But this time scale is very long com-
pared with the natural time scales of individual neurons,
perhaps by a factor of as much as ∼ 103. Could this gap
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be closed by an emergent long time scale in the network,
resulting from a line or curve of fixed points?

Suppose that the activity of each neuron is described
by a coarse–grained continuous variable, such as the rate
r at which it generates action potentials. If we inject a
current I into the neuron directly, we find that the rate
changes, along some curve r(I). Each spike arriving at a
synapse onto cell i effectively injects current into that cell,
but this current is smoothed by some dynamics which we
will summarize by a time scale τ , and the spikes from cell
j are weighted by the strength of the synapse Wij. This
suggests a simple model,

τ
dIi
dt

+ Ii =
∑

j

Wijr(Ij) + Iexti , (610)

where Iexti represents currents injected from outside the
network, including from sensory inputs. Typical exam-
ples of the response function g(I) are sigmoids, threshold
linear relations, and other monotonic functions. [add fig-
ure to show some examples of g(I)?]
What would it mean for the dynamics of Eq (610) to

be an integrator? At the very least, the dynamics has to
look like an integrator in its linear response to inputs, so
let’s see how this is possible. Assume that in the absence
of inputs, there is some steady state at which Ii = I∗i .
Then if we linearize around this, writing Ii = I∗i + ui, we
have

τ
dui

dt
+ ui =

∑

j

Wijr
′(I∗j )uj + Iexti . (611)

As always with linear problems, we want to change coor-
dinates so that matrices become diagonal. If we denote
quantities in this new coordinate system by tildes, then
we will have

τ
dũn

dt
+ ũn = Λnũn + Ĩextn , (612)

where the eigenvalues are defined as solutions to

∑

j

Wijr
′(I∗j )ψ

(n)
j = Λnψ

(n)
j . (613)

If one of the Λn → 1, then along this direction we have
simply

τ
dũn

dt
= +Ĩextn , (614)

⇒ ũn(t) = ũn(0) +
1

τ

∫ t

0
dt′ Ĩextn (t′), (615)

so that ũn is the time integral of its inputs. Thus, be-
ing an integrator means arranging the matrix of synap-
tic strength so that it (is appropriate units) has a unit
eigenvalue, which means that (at least in this one mode)
the signals which are being received from other cells
in the network perfectly balance the decay processes

within each cell. This of course is a critical point in the
dynamics—if the eigenvalue is larger than one, the dy-
namics become unstable, if it is less than one it is stable
but an imperfect integrator. Only at the critical point is
true integration achieved. If we are within ε of the crit-
ical point, the system will hold a memory for ∼ τ/ε, so
if we really need to span three orders of magnitude (or
even two), then the adjustment to the critical point must
be quite precise.
The language of eigenvalues and critical points makes

precise our initial intuition that there is something highly
non–generic about memory for a continuous variable.
Most valleys have a single lowest point, and balls keep
rolling downhill until they find it. Only at the critical
point is there one perfectly neutral direction in the val-
ley, along which the ball feels no force.

Problem 126: Details of the line attractor. [go through
Seung (1996) to look for good questions about the linear algebra
of the model]

The fact that the position of our eyes is the integral
of the velocity signals from our semicircular canals, and
that there is (apparently) a continuum of stable points
where our eyes can sit, means that something like this
description in terms of line attractors must be true for
the system as a whole. Indeed this is more general: the
fact that we (and other animals) can stabilize a contin-
uously variable set of postures means that the combined
dynamics of our limbs, muscles, sensors and brain must
have a line or manifold of attractors. It is more chal-
lenging to point to a particular part of the system—e.g.,
a particular sub–network of neurons in one part of the
brain—and claim that the dynamics of this subsystem
must have a line or attractors.
Seeing a model which explains things but only for par-

ticular choices of parameters makes us uneasy, as in our
previous examples in this chapter. But in this case, we
know that the relevant parameters—synaptic strengths—
are adjustable, because this is how we learn. Also, we
know that if we make errors, then under normal condi-
tions (with the lights on) these errors are literally visible
as slippage of the image on our retina as we turn out
heads. There must be some way to use this error signal
to adjust the synaptic weights and tune the network to
its critical point. Does this happen?
To test the idea that the brain tunes the dynamics of

the integrator circuit to its critical point, Major et al did
a seemingly simple but beautiful experiment using gold-
fish, which also exhibit oculomotor integration. Essen-
tially they built a planetarium for the goldfish, and then
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hold the eyes still. However, if the integrator’s parameters are
mistuned, for example, because of insufficient internal positive
feedback, so that firing rates decay toward a ‘‘null’’ rate, then the
eyes will follow suit, and the retinal image will slip in the opposite
direction (Fig. 2a Upper). In the case of simple exponential
decay, seen in many models when internal positive feedback is
too weak, the visual surround will appear to move with a velocity
proportional to eye position, with the proportionality constant
equal to 1!(time constant). This pattern of retinal slip vs. eye
position (‘‘leaky slip’’) could be used to generate a signal to
increase positive feedback within the integrator, which would
tune it back toward stability. Conversely, if the integrator is
unstable, with eye position deviating exponentially away from a
null position, as seen in many models when internal positive
feedback is too strong, the visual surround will appear to move
with a velocity proportional to minus eye position (Fig. 2a
Lower). This pattern of slip (‘‘unstable slip’’) could generate a
signal to decrease positive feedback within the integrator, which
would again tune it back toward stability.

Here we test the hypothesis that external visual feedback tunes
the integrator. We reasoned that if visual feedback normally
tunes integrator stability, it should be possible to detune it to
instability by using an electronically controlled visual stimulus to
impose a retinal slip vs. eye-position relationship consistent with
the integrator being leaky. This effect could be achieved by
rotating the visual surround horizontally with a velocity propor-
tional to eye position (Fig. 2b, ‘‘training to instability’’; see
Supporting Methods, which is published on the PNAS web site).
Conversely, rotating the surround with a velocity proportional to
minus eye position, imposing unstable slip, should drive the
integrator leaky (‘‘training to leak’’). Both manipulations simu-
late the normal pattern of visual feedback, but with an altered
gain between retinal slip and eye position.

We report that the goldfish oculomotor neural integrator
demonstrates remarkable plasticity when visual feedback is
manipulated in this manner and is capable of being trained to
instability or leak with an effective time constant reduced to !1
or 2 s, respectively, a two-orders-of-magnitude change from
control. Conversely, visual feedback from a stationary surround
can gradually retune the neural integrator back toward stability.
Judging by independent tests of responses to vestibular inputs,
fixation instability and leak represent genuine detuning of the
neural integrator. This is a clear demonstration of a progressive
tuning mechanism for the dynamics of a model biological system

for persistent neural activity. Corresponding changes in area I
neural responses are described in a companion paper (25).

Methods
Preparation. All experiments (n " 100 fish) were Institutional
Animal Care and Use Committee approved and performed in
compliance with the National Research Council Guide for the
Care and Use of Laboratory Animals. Goldfish [Carassius auratus,
3–5 inches (8–13 cm) tip to peduncle, from a commercial
supplier] were acclimated to 20–23°C in a 50-gallon aquarium
with daily light exposure. Awake fish were mounted head-fixed
horizontally under water in the experimental tank (6, 22) at a
temperature of 20–22°C. Eye movements were measured with
scleral search coils (26) and were digitized along with planetar-
ium velocity and head position (Digidata and CLAMPEX, Axon
Instruments, Foster City, CA).

Visual Training. A planetarium above the head was rotated by a
velocity-controlled servo motor and projected a random pattern
of white dots moving horizontally on a plastic white screen,
15-cm radius, surrounding the animal (Fig. 2b). During training,
the voltage output of one eye coil was filtered (50-Hz low pass),
offset, amplified, and used as the planetarium velocity drive
signal. This amplification or training gain (g) is presented in units
of (degree!s of planetarium velocity per degree of eye position)
or s#1. The offset E0 (eye position at which spots stationary) was
adjusted to achieve roughly symmetrical leftward and rightward
movements. Generally the eye providing the command was
alternated every 10 or 20 min. Effective training was achieved by
starting with a low g, then gradually increasing it (range, $0.5 to
$5 s#1). If too high a g was imposed when training to leak, the
eyes would become trapped in a rapid sawtooth motion on one
side, impairing training. A light shield surrounded the apparatus
so that the planetarium provided the only source of light.
Training was continued for up to 22 h, during which fixation
performance was monitored every 20 min or longer by recording
for 3–10 min in the dark.

Saccade Detection. When analyzing data, the beginning and end
of a saccade were identified as the first and last time points at
which the absolute value of acceleration exceeded a threshold
(100–500 degrees!s2) after filtering with a 25-ms Gaussian.

Fig. 2. Simulating leaky and unstable retinal slip. (a) Eye drift and retinal slip
of detuned integrator with a stationary visual surround. (Upper) Leaky.
(Lower) Unstable. (Left) Integrator output (eye position) E vs. time (green).
(Right) Position–velocity (PV) plots of eye drift velocity (green) and apparent
motion of visual surround (retinal slip, red) against E. (b) Training paradigm.
The fish is positioned horizontally. Horizontal eye position E measured with
scleral coil, offset by E0, and amplified by g controls horizontal rotation
velocity of planetarium above fish, projecting spots onto wall of tank. This
provides visual feedback consistent with a leaky (g % 0) or unstable (g & 0)
integrator, which gradually drives the integrator to the opposite condition.

Fig. 1. Normal eye movements and firing pattern of a generic area I cell. (a)
Right horizontal eye position recorded in dark. Fixations were approximately
stable between saccades. L, left; R, right. Positions L (R) of midrange were
taken to be positive (negative). (b) Action potentials of right-side area I
neuron recorded with extracellular electrode. (c) Cyan, instantaneous firing
rate (1!interspike interval); black, smoothed progressively more away from
saccades (see ref. 25, Methods); green arrows, ‘‘ON’’ direction saccades; red
arrow, ‘‘OFF’’ direction saccade.

7740 " www.pnas.org!cgi!doi!10.1073!pnas.0401970101 Major et al.

FIG. 126 Schematic of the “planetarium experiment,” from
Major et al (2004a). At left, the dynamics of a leaky (top)
or unstable (bottom) integrator are evident as exponential
decay or growth of eye position. This can be analyzed by
plotting eye velocity vs eye position, revealing a straight line
with a sign that indicates stability or instability, and a slope
that measures the time constant of the system. At right, the
planetarium setup, in which eye movements are monitored
and fed back to movements of the surrounding scene.

coupled the rotation of this ‘world’ to their eye move-
ments, as in Fig 126. Under normal conditions, when
the eyes move by an angle θ, this is equivalent to the
world moving the other way by the same angle. But if
we give an additional rotation, we can create a situation
in which the world slips on the retina even when the in-
tegrator network is set correctly. If the system in fact
continuously uses slip signals to tune the system, this
will drive a mistuning, either toward stability or insta-
bility. If we remove the feedback, we should then see
that the fish can no longer stabilize its gaze, with the
eyes either quickly relaxing to their resting position or
exploding wildly away from rest, needing correction by
frequent saccades.

The quick summary is that all of what we expect to
see is observed experimentally, as summarized in Fig 127.
Importantly, one can record from neurons in the relevant
circuit and demonstrate that the detuning of the behav-
ioral integration is mirrored by changes in the dynamics
of persistent neural firing. While this does not prove that
the line attractor scenario is correct, it does show that
the long time scale of memory exhibited by the oculo-
motor integrator is the result of an active tuning process
which uses visual feedback as a control signal. In this
way, non–generic behavior of the system is learned, ro-
bustly.

Need an introduction.

Eye Position–Velocity (PV) Plots. Ocular drift during fixations was
measured after excluding saccade-related transients in eye po-
sition (22). A period ta after every saccade was excluded, to avoid
‘‘postsaccadic slide’’ in eye position and firing rate (6), as was a
period tb ! 0.1 s before the next saccade; ta ranged from 0.5 to
1.5 s (constant for a given animal, but varied between animals to
allow for different slide durations). A straight line was fit by
regression through the first tf ! 1 s segment of the remainder of
the fixation (if at least tf long), to minimize effects of saturation
and null-point shifts (see below) which were more pronounced
at the ends of fixations. Eye position was the mean position of
the fitted segment, and eye velocity was the slope of the
regression line. Each fitted segment yielded a single (position,
velocity) data point for the PV plot. Finally, standard least-
squares linear regression was performed to obtain the slope k of
the best-fit line through all points in the PV plot.

Training Time Course Experiments. Twelve animals were trained to
instability by using training gain 0.5 s"1 for 80 min, then 1 s"1 for
80 min. Every 20 min, fixations were assessed in the dark for 3
min, except immediately after training finished, when the as-
sessment period was 10 min (5 # 2-min measurement periods).
After this, the fish were split into two groups. One group was left
in the light (spots still) and tested in the dark for 3 min every 20
min. The other group was left in the dark. After a total of 380
min, fish kept in the dark were switched to the light recovery
protocol. A similar experiment was performed on 10 fish trained
to leak, following the same protocol but with negative training
gains.

VOR. For vestibular stimulation, the tank, planetarium, field coils,
and light shield were mounted on a rate table with a computer-
controlled servo motor. Eye position was measured relative to
head position. The fish’s head was at the center of rotation about
a vertical axis, and the angular position of the table was
measured with an axial potentiometer. Horizontal sinusoidal
vestibular stimulation was carried out at 1!32, 1!16, or 1!8 Hz
with 8–32 degrees!s peak head velocity. Peaks or troughs of eye
position more than 4° into the opposite half of the oculomotor
range to the head were selected for phase-shift analysis (see
Supporting Methods). Apparent phase shifts were determined
from times of peaks and troughs of the eye position relative to
the nearest trough or peak of the head position, respectively.

All data presented are from animals in the dark, unless
otherwise stated.

Results
Artificially Imposed Visual Feedback Can Detune Stability of Fixations.
In the dark, control animals had approximately stable fixations
(Fig. 3a). Over the course of an hour or more of training under
a planetarium rotating with velocity proportional to eye position,
animals developed pronounced fixation instability when tested in
the dark (n ! 58 fish). The instability became more extreme the
longer the animals were trained or the greater the training gain
g. The eyes deviated centrifugally from midpositions at a rate
that increased with eccentricity before saturating near the
extremes of the oculomotor range (Fig. 3b). Likewise, over the
course of an hour or more of training under a planetarium
rotating with velocity proportional to minus eye position, ani-
mals developed striking fixation leak when tested in the dark
(n ! 45 fish), with eye position decaying centripetally toward
midpositions (Fig. 3c). Again, the leak grew more severe the
longer the training or the more negative the training gain. The
same animal could be trained first to leak and then to instability,
or vice versa (n ! 23), indicating that the plasticity process is
both bidirectional and reversible. Oculomotor behavior during
training, which resembled a more extreme version of the trained

behavior, is illustrated in Fig. 7, which is published as supporting
information on the PNAS web site.

Fixations Can Be Detuned to Extreme Instability or Leak. Integrator
performance was assessed from fixations in the dark, by means
of PV plots (22), illustrated in Fig. 3 (see Methods), obtained by
fitting straight lines to segments of fixations (Left, red). The slope
k of the regression line through all of the PV data points, and !e,
the effective time constant, defined as 1!"k", were used as
measures of fixation performance. This procedure could be
applied across the range of fixation behaviors explored, unlike
exponential fitting, which could not be used on control data
because the time constant was generally much longer than the
fixations.

Control animals had roughly stable fixations in the dark, in the
absence of visual feedback, yielding PV plots with nearly hori-
zontal best-fit lines (Fig. 3a Right), with median k "0.004 s"1

(range "0.068 to 0.032 s"1, n ! 85 fish), equivalent to median
!e ! 250 s (range 15 s leaky to 31 s unstable). Following sufficient
training to instability, generally 20 min or longer, PV plots
developed positive slopes (Figs. 3b and 4a). Similarly, training
control animals to leak for 20 min or more resulted in PV plots
with negative slopes (Figs. 3c and 4b). In general, the longer an
animal was trained (Fig. 4 a and b), and the more extreme the
training gain g, the steeper the slope k of the PV plot would
become (when the animal was tested in the dark). Over the entire
data set, the most positive k value achieved was 0.92 s"1 (!e !
1.1 s). Three animals were trained to k $ 0.8 s"1 or !e % 1.25 s,
13 to k $ 0.4 s"1 or !e % 2.5 s, and 30 to k $ 0.2 s"1 or !e % 5 s.
The median k for animals trained to instability for at least an
hour with g " 0.5 was 0.23 s"1, equivalent to a !e of 4.3 s (n !

Fig. 3. Artificially imposed visual feedback can detune fixations to extreme
instability or leak. (Left) Eye movements in dark, control animal. Red, fitted 1-s
segments of data; each contributes one point to the PV plot. (Right) Quanti-
fication by PV plot least-squares fit line, slope k, effective time constant !e !
1!"k" (5 min of data). (b) Same animal as in a, in dark, after training to instability
for 6 h, with gain 2.5 s"1. (Right) PV plot of 3 min of data. (c) Another animal,
in dark, after training to leak for 16.5 h, with gain "2 s"1. (Right) PV plot of
14 min of data. Drift depends primarily on eye position, as opposed to previous
saccade direction (b and c). Green arrows highlight fixations following sac-
cades toward but not crossing midposition; direction of drift is the same as in
the previous fixation. When saccades cross midposition, the direction of drift
reverses.
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FIG. 127 Results of the planetarium experiment, from Major
et al (2004a). At the top (a), control experiments showing the
eye trajectories and position vs velocity plots before exposure
to the feedback system in the planetarium. Note that the
time constant of the system is ∼ 20 s. After exposure to
feedback which should “teach” the system to be unstable (b)
or leaky (c), trajectories and position vs velocity plots show
the expected behaviors, with time constants for growth or
decay on the oder of 1− 5 s.

Amit 1989: Modeling Brain Function: The World of Attractor
Neural Networks. DJ Amit (Cambridge University Press,
Cambridge, 1989).

Cooper 1973: A possible organization of animal memory and
learning. LN Cooper, in Collective Properties of Physical
Systems: Proceedings of Nobel Symposium 24, B Lundqvist
& S Lundqvist, eds, pp 252–264 (Academic Press, New York,
1973).

Hertz et al 1991: Introduction to the Theory of Neural Compu-
tation J Hertz, A Krogh & RG Palmer (Addison Wesley,
Redwood City, 1991).

Hopfield 1982: Neural networks and physical systems with emer-
gent collective computational abilities. JJ Hopfield, Proc
Nat’l Acad Sci (USA) 79, 2554–8 (1982).

Hopfield 1984: Neurons with graded response have collective
properties like those of two–state neurons. JJ Hopfield, Proc
Nat’l Acad Sci (USA) 81, 3088–3092 (1984).

McCulloch & Pitts 1943: A logical calculus of ideas immanent
in nervous activity. WS McCulloch & W Pitts, Bull Math
Biophys 5, 115–133 (1943).

Now talk about connections to real neurons

Hebb 1949: The Organization of Behavior: A Neuropsychologi-
cal Theory. DO Hebb (Wiley, New York , 1949).

James 1892: Psychology: The Briefer Course. W James (Henry
Holt and Company, 1892). There is a modern edition from
Dover Publications (New York, 2001), based on the 1961
abridged version from Harper and Row (New York, 1961).

Lorente de No 1938: Analysis of the activity of the chains of
internuncial neurons. R Lorente de No, J Neurophysiol 1,
207–244 (1938).

Introduce more powerful stat mech approaches

Amit et al 1985: Spin–glass models of neural networks. DJ
Amit, H Gutfreund & H Sompolinsky, Phys Rev A 32, 1007–
1018 (1985).



191

Amit et al 1987: Statistical mechanics of neural networks near
saturation. DJ Amit, H Gutfreund & H Sompolinsky, Ann
Phys 173, 30–67 (1987).

Crisanti et al 1986: Saturation level of the Hopfield model for
neural networks. A Crisanti, DJ Amit & H Gutfreund, Eu-
rophys Lett 2, 337–341 (1986).

Pointers to experiments on persistent activity (need more!).

Funahashi et al 1989: Mnemonic coding of visual space in the
monkey’s dorsolateral prefrontal cortex. S Funahashi, CJ
Bruce & PS Goldman–Rakic, J Neurophysiol 61, 331–349
(1989).

Fuster & Alexander 1971: Neuron activity related to short–
term memory. JM Fuster & GE Alexander, Science 173,
652–654 (1971).

Prut & Fetz 1999: Primate spinal interneurons show pre–
movement instructed delay activity. Y Prut & EE Fetz,
Nature 401, 590–594 (1999).

The idea of using maximum entropy models to think about correla-
tions in networks of neurons arose from a very practical problem—if
we observe correlations among pairs of neurons, should we be sur-
prised if we observe, for example, three or four neurons generating
action potentials simultaneously? For continuous variables, we can
separate different orders of correlations quite simply (recall the idea
of cumulants in statistics, or “connected diagrams” in field theory).
For discrete variables, pairwise correlations imply higher order cor-
relations, even without any further assumptions. One touchstone
for this idea is in statistical mechanics—recall that the usual Ising
model has only interactions between two spins at a time, but when
we coarse grain this model to give the Landau–Ginzburg Hamilto-
nian, we generate φ4 interaction terms, so that the magnetization
φ (which is a spatially smoothed version of the original spins) must
have nontrivial fourth order correlations [should give some stan-
dard ref]. Schneidman et al (2003) showed how one could use the
maximum entropy construction to generalize the idea of connected
correlations to discrete variables. [Be careful here .. maybe push
more into Appendix A.8?]

Schneidman et al 2003: Network information and connected
correlations. E Schneidman, S Still, MJ Berry II & W
Bialek, Phys Rev Lett 91, 238701 (2003).

When we set out to use the maximum entropy method to analyze
the responses of real neurons in the vertebrate retina, we expected
we would “clean out” the pairwise correlations and uncover the
higher order effects which were responsible for the known tendency
of many neurons to fire simultaneously (Schnitzer & Meister 2003).
The surprising result was that the pairwise Ising model provides a
very accurate description of the combinatorial patterns of spiking
and silence in ganglion cells of the salamander retina as they re-
spond to natural and artificial movies, and in cortical cell cultures
(Schneidman et al 2006). After the initial success in the salaman-
der retina, similarly encouraging results were obtained in the pri-
mate retina, under very different stimulus conditions (Shlens et al
2006, 2009), in visual cortex (Ohiorhenuan & Victor 2007, Yu et al
2008), and in networks grown in vitro (Tang et al 2008). Most of
these detailed comparisons of theory and experiment were done for
groups of N ∼ 10 neurons, small enough that the full distribution
Pexpt({σi}) could be sampled experimentally and used to assess
the quality of the pairwise maximum entropy model. Attempts to
push to larger networks are described by Tkačik et al (2006, 2009)
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E. Perspectives

The exploration of fine tuning vs. robustness in bi-
ological systems encourages us to think beyond models
for this or that particular system. To ask whether some
function requires fine tuning of parameters, we imagine
that the system we are looking at is just one member in
a class of possible systems. Whatever the answer to our
initial questions, this effort at generalization clearly is an
important step on the path to a physicist’s view of life.
When we think about individual proteins, generaliza-

tion is easy—proteins are polymers, and there is a nat-
ural class of molecules that can be built from the same
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monomers, but with different sequences. When we think
about a biochemical or genetic network, with many in-
teracting protein molecules, it seems natural to general-
ize to a class of networks that has the same topology,
but different parameters on each node or link. The ion
channels in a single neuron provide an important exam-
ple of a network of interacting proteins, where the in-
teractions are mediated by the (global) transmembrane
voltage and, importantly, experiments on single channel
molecules serve to validate the equations describing what
happens at each node. Finally, for networks of neurons,
the fact that the strengths of synaptic connections are
‘plastic’ makes it natural to think about classes of net-
works that have the same topology of connections among
neurons, but with different strengths. In all of these
cases, we can see that the generalization to a class of
networks is not just a useful theoretical construct, but
also something which has meaning in the life or evolu-
tion of the organism.

In the extreme, “robustness” would mean that func-
tional behavior is largely invariant over the whole class of
networks. If this really is the case, then we should be able
to choose networks at random and have them function.
This is essentially the strategy employed by many groups
searching for robustness in biochemical networks, and
long before this there was a serious exploration of neu-
ral networks with randomly chosen strengths of synap-
tic connections among all the cells, using analytic meth-
ods borrowed from the dynamical theory of spin glasses.
In the context of neural networks, the model with ran-
dom connections indeed behaves chaotically, which seems
odd, although it has been suggested that in the absence
of other inputs this is the right answer—sensory inputs
serve to drive the network out of the chaotic phase into
an ordered state. For biochemical and genetic networks
chaos seems less generic, but to obtain functional behav-
ior without adjusting parameters there is general agree-
ment that the topology of the network must be chosen
carefully. There are several open questions here. Why is
chaos not more common in large networks of biochemi-
cal reactions? What is the boundary between changing
parameters (e.g., make the rate on one particular chemi-
cal reaction smaller) and changing topology (setting that
rate exactly to zero)? To speak precisely about what will
be typical of a randomly chosen network, we need a mea-
sure on the space of parameters; is there a natural choice
of this measure?

In most of the systems we have studied, the randomly
chosen parameters do not correspond to functional be-
havior. Random amino acid sequences don’t fold into
functional proteins, randomly chosen numbers of ion
channels will not generate the correct rhythms of elec-
trical activity, and while random neural networks may
perform some functions, they certainly don’t provide for
stable storage and recall of memories. In each of these
cases there are mechanisms for tuning or selecting the

functional regions of parameter space. In single neurons,
adjusting the numbers of copies of different channels is
a form of physiological adaptation, connecting electri-
cal activity, intracellular messengers, and the control of
gene expression. In neural networks, the strengths of
synapses are adjusted during learning, and for some key
processes this learning happens all the time—as perhaps
is necessary if the behavior the system is trying to sta-
bilize is very far from typical in the space of possible
networks. Finally, for amino acid and DNA sequences,
the “adjustment” to functional behavior occurs on evo-
lutionary time scales.74 In this context, we can think of
adaption, learning and evolution as different mechanisms
for accomplishing the same task, albeit on different time
scales.
As we will see in Section IV.D, there is a sophisticated

mathematical theory of learning, combining ideas from
mathematics, computer science and statistical physics.
In particular, in different contexts, this theoretical ap-
proach places bounds on what can be learned, and how
quickly. If we see adaptation, learning and evolution as
different approaches to the same problem, should there
be a comparable theoretical framework limiting the speed
of evolution, or the effectiveness of adaptation? For evo-
lution there is, in the long run, an obvious external defini-
tion of correct functional behavior (successful reproduc-
tion), and for learning there are often external signals
(as in the case of the oculomotor integrator) that define
the goal of the learning process; in adaptation, how do
cells “know” the correct behavior that they are trying to
stabilize? In the models for regulation of ion channel den-
sities that we discussed in Section III.B, this is (weakly)
programmed into the cell by the parameters that define
a target calcium concentration; is there a more general
definition of when cells are getting things right? Are
there, as with learning, limits on how precisely one can
get things right if the system needs to adjust quickly?
To return to the opening remarks in this Chapter, we

wanted to distinguish between the usual physicist’s mis-
trust of explanations that rest on fine tuning of param-
eters, and some specifically biological notions of robust-
ness or evolvability. Part of the motivation for robustness
as a biological principle is the intuition that living organ-
isms simply can’t adjust parameters accurately enough to
guarantee reliable, reproducible functions. I think this
intuition turns out to be wrong—cells can and do ex-
ercise precise control over the numbers of molecules that
they make, so that the absolute concentrations of relevant
molecules can be reproducible from cell to cell (or, in the

74 It is worth emphasizing that, in the immune system, there is a
kind of accelerated evolution within individual organisms, and
this serves to select a nontrivial distribution of sequences for the
antibody molecules. See the discussion in Section III.A.
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discussion of Section III.C, embryo to embryo) with high
precision. I emphasize “can be,” because one clearly can-
not conclude that all concentrations or molecule counts
will be reproducible in this way. Indeed, the example
of ion channels makes clear that, in the natural param-
eter space for the cell, there are many different ways of
achieving essentially the same function, and so there is
no reason for the cell to control the number of copies
of any one particular molecule very precisely; what is
important are the tight correlations among variations in
different molecule counts, and these correlations are of-
ten expected and observed to be nonlinear, even defining
non–convex regions of parameter space.

The fact that they can exert precise control over the
concentrations, or combinations of concentrations, of cer-
tain molecules does not solve all of the organism’s prob-
lems. Most fundamentally, life as a cold blooded organ-
ism75 means having to function across a range of condi-
tions where all chemical reaction rates vary, often by an
order of magnitude or more, with no guarantee that the
different rates in a given network will scale together; for
an example of this problem one need look no further than
the familiar circadian rhythms, which have long been
known to be invariant to temperature changes. At the
same time, diversity of environments is one of the driving
forces for speciation, so that (for example) the fruit flies
that live at different latitudes, and hence different tem-
perature ranges, are genetically distinguishable. Natural
history abounds with stories of animals that seek out very
special environments in which to lay their eggs, casting
doubt on any glib statement that embryonic development
is robust against environmental perturbations. Still, sim-
ple laboratory experiments demonstrate that many as-
pects of life are nearly invariant over a wide range of
temperatures, much wider than we might expect from
simple models.

Locating life on the spectrum between precisely con-
trolled (rather than finely tuned) dynamics and some
more generic or robust behavior is an incredibly impor-
tant question. It touches, as we have seen, phenomena
ranging from the states of single cells to the nature of
our memories. It connects to theoretical ideas that have
the potential to reach deeply into statistical physics and
dynamical systems. Still, at the risk of making clear the
limits of my own understanding, I would say that we are
still searching for the best formulations of these ques-
tions. We need more experimental guidance about what
features of behavior are robust against which variations,
and we need evidence that organisms actually face these
variations in their natural environment. On the theoret-
ical side, we need more anchor points like the random

75 Most of the biomass on our planet is cold blooded, so this is a
very general problem.

heteropolymer and the random neural network, where
we have a complete analytic understanding of what is
expected in the truly generic case, and we need a statis-
tical mechanics of systems with random parameters that
allows us to deal with the case where these parameters
have nontrivial distributions. These are substantial chal-
lenges.

The idea of choosing parameters at random in biochemical networks
was explored by Barkai and Leibler (1999) and by von Dassow et al
(2000), among others, using simulations; see Sections III.C. Much
earlier, Sompolinsky et al (1988) had analyzed the dynamics of ran-
dom neural networks, identifying a transition between a stationary
phase and a chaotic phase at a critical value of the typical synaptic
strength. For attempts to connect these random networks to the
behavior of cortex, see van Vreeswijk & Sompolinksy (1996, 1998).
More recently, Rajan et al (2010) have emphasized that input sig-
nals can drive random networks across the transition between order
and chaos, providing a possible new view of the nature of variability
in cortical responses (Abbott et al 2010).
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