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IV. EFFICIENT REPRESENTATION

The generation of physicists who turned to biologi-
cal phenomena in the wake of quantum mechanics noted
that, to understand life, one has to understand not just
the flow of energy (as in inanimate systems) but also the
flow of information. There is, of course, some difficulty
in translating the colloquial notion of “information” into
something mathematically precise. Almost all statisti-
cal mechanics textbooks note that the entropy of a gas
measures our lack of information about the microscopic
state of the molecules, but often this connection is left
a bit vague or qualitative. In 1948, Shannon proved a
theorem that makes the connection precise: entropy is
the unique measure of available information consistent
with certain simple and plausible requirements. Further,
entropy also answers the practical question of how much
space we need to use in writing down a description of the
signals or states that we observe. This leads to a notion
of efficient representation, and in this Chapter we’ll ex-
plore the possibility that biological systems in fact form
efficient representations, maximizing the amount of rele-
vant information that they transmit and process, subject
to fundamental physical constraints.
The idea that a mathematically precise notion of “in-

formation” would be useful in thinking about the repre-
sentation of information in the brain came very quickly
after Shannon’s original work. There is, therefore, a well
developed set of ideas about the how many bits are car-
ried by the responses of neurons, in what sense the encod-
ing of sensory signals into sequences of action potentials
is efficient, and so on. More subtly, there is a body of
work on the theory of learning that can be summarized
by saying that the goal of learning is to build an effi-
cient representation of what we have seen. In contrast,
most discussions of signaling and control at the molec-
ular level has left “information” as a colloquial concept.
One of the goals of this Chapter, then, is to bridge this
gap. Hopefully, in the physics tradition, it will be clear
how the same concepts can be used in thinking about
the broadest possible range of phenomena. We begin,
however, with the foundations.

A. Entropy and information

Two friends, Max and Allan, are having a conversa-
tion. In the course of the conversation, Max asks Allan
what he thinks of the headline story in this morning’s
newspaper. We have the clear intuitive notion that Max
will ‘gain information’ by hearing the answer to his ques-
tion, and we would like to quantify this intuition. Let
us start by assuming that Max knows Allan very well.
Allan speaks very proper English, being careful to fol-
low the grammatical rules even in casual conversation.
Since they have had many political discussions Max has
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FIG. 128 The branching postulate in Shannon’s proof. The
idea is to break a big question into multiple parts, as in the
familiar game of twenty questions. We start with some initial
question, at the top (?). Depending on the answer to this
question (a or b), we ask a new question. This second question
in turn has multiple possible answers (a1, a2, a3 or b1, b2). In
this tree structure, the various sub–questions live at branch
points, with the answers emerging along the branches; finding
our way to the full answer means following one path through
the tree. The average information that we gain along this path
should be additive, the weighted sum of information gained
at every branch point.

a rather good idea about how Allan will react to the lat-
est news. Thus Max can make a list of Allan’s possible
responses to his question, and he can assign probabilities
to each of the answers. From this list of possibilities and
probabilities we can compute an entropy, and this is done
in exactly the same way as we compute the entropy of a
gas in statistical mechanics. Thus, if the probability of
the nth possible response is pn, then the entropy is

S = −
∑

n

pn log2 pn bits. (616)

Our intuition from statistical mechanics suggests that
the entropy S measures Max’s uncertainty about what
Allan will say in response to his question, in the same way
that the entropy of a gas measures our lack of knowledge
about the microstates of all the constituent molecules.
Once Allan gives his answer, all of this uncertainty is
removed—one of the responses occurred, corresponding
to p = 1, and all the others did not, corresponding to
p = 0—so the entropy is reduced to zero. It is appealing
to equate this reduction in our uncertainty with the in-
formation we gain by hearing Allan’s answer. Shannon
proved that this is not just an interesting analogy; it is
the only definition of information that conforms to some
simple constraints.
If we want to have a general measure of how much in-

formation is gained on hearing the answer to a question,
we have to put aside the details of the questions and the
answers—although this might make us uncomfortable,
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and is something we should revisit. If we leave out the
text of the questions and answers themselves, then all
that remains are the probabilities pn of hearing the dif-
ferent answers, and so Shannon assumes that the infor-
mation gained must be a function of these probabilities,
I({pn}). The challenge is to determine this function.76

The first constraint is that, if all N possible answers
are equally likely, then the information gained should
be a monotonically increasing function of N—we learn
more by asking questions that have a wider range of pos-
sible answers. The next constraint is that if our ques-
tion consists of two parts, and if these two parts are en-
tirely independent of one another, then we should be able
to write the total information gained as the sum of the
information gained in response to each of the two sub-
questions. Finally, more general multipart questions can
be thought of as branching trees, as in Fig 128, where
the answer to each successive part of the question pro-
vides some further refinement of the probabilities; in this
case we should be able to write the total information
gained as the weighted sum of the information gained at
each branch point. Shannon proved that the only func-
tion of the {pn} consistent with these three postulates—
monotonicity, independence, and branching—is the en-
tropy S, up to a multiplicative constant. The proof is
sufficiently simple that it seems worth going through the
details, not least to be sure we understand how little is
required to derive such a powerful result.

To prove Shannon’s theorem we start with the case
where all N possible answers are equally likely. Then
the information must be a function of N , and let this
function be I({pn}) = f(N). Consider the special case
N = km. Then we can think of our answer—one out of N
possibilities—as being given in m independent parts, and
in each part we must be told one of k equally likely possi-
bilities. But we have assumed that information from in-
dependent questions and answers must add, so the func-
tion f(N) must obey the condition

f(km) = mf(k). (617)

Notice that although we are focusing on cases where
N = km, we have a condition that involves f(k) for ar-
bitrary k. It is easy to see that f(N) ∝ logN satisfies
this equation. To show that this is the unique solution,
consider another pair of integers ! and n such that

km ≤ !n ≤ km+1, (618)

76 Notice that Shannon’s ‘zeroth’ assumption—that the informa-
tion gained is a function of the probability distribution over the
answers to our question—means that we must take seriously the
notion of enumerating the possible answers. In this framework
we cannot quantify the information that would be gained upon
hearing a literally unimaginable answer to our question. It is
interesting to think about whether this is a real restriction.

or, taking logarithms,

m

n
≤ log !

log k
≤ m

n
+

1

n
. (619)

Now because the information measure f(N) is monotoni-
cally increasing with N , the ordering in Eq. (618) means
that

f(km) ≤ f(!n) ≤ f(km+1), (620)

and hence from Eq. (617) we obtain

mf(k) ≤ nf(!) ≤ (m+ 1)f(k). (621)

Dividing through by nf(k) we have

m

n
≤ f(!)

f(k)
≤ m

n
+

1

n
, (622)

which is very similar to Eq. (619). The trick is now that
with k and ! fixed, we can choose an arbitrarily large
value for n, so that 1/n = ε is as small as we like. Then
Eq. (619) is telling us that

∣∣∣∣
m

n
− log !

log k

∣∣∣∣ < ε, (623)

and Eq. (622) for the function f(N) can similarly be
rewritten as

∣∣∣∣
m

n
− f(!)

f(k)

∣∣∣∣ < ε. (624)

Putting these together, we have
∣∣∣∣
f(!)

f(k)
− log !

log k

∣∣∣∣ ≤ 2ε, (625)

so that f(N) ∝ logN as promised. Note that if we were
allowed to consider f(N) as a continuous function, then
we could have made a much simpler argument. But,
strictly speaking, f(N) is defined only at integer argu-
ments.
We are not quite finished, even with the simple case

of N equally likely alternatives, because we still have
an arbitrary constant of proportionality. We recall that
the same issue arises in statistical mechanics: what are
the units of entropy? In a chemistry course you might
learn that entropy is measured in “entropy units,” with
the property that if you multiply by the absolute tem-
perature (in Kelvin) you obtain an energy in units of
calories per mole; this happens because the constant of
proportionality is chosen to be the gas constant R, which
refers to Avogadro’s number of molecules.77 In physics

77 I have to admit that whenever I read about entropy units (or
calories, for that matter) I imagine that there was some great
congress on units at which all such things were supposed to be
standardized. Of course every group has its own favorite non-
standard units. Perhaps at the end of some long negotiations
the chemists were allowed to keep entropy units in exchange for
physicists continuing to use electron Volts.
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courses entropy is often defined with a factor of Boltz-
mann’s constant kB , so that if we multiply by the abso-
lute temperature we again obtain an energy (in Joules)
but now per molecule (or per degree of freedom), not per
mole. In fact many statistical mechanics texts take the
sensible view that temperature itself should be measured
in energy units—that is, we should always talk about the
quantity kBT , not T alone—so that the entropy, which
after all measures the number of possible states of the
system, is dimensionless. Any dimensionless proportion-
ality constant can be absorbed by choosing the base that
we use for taking logarithms, and in measuring informa-
tion it is conventional to choose base two. Finally, then,
we have f(N) = log2 N . The units of this measure are
called bits, and one bit is the information contained in
the choice between two equally likely alternatives.

Ultimately we need to know the information conveyed
in the general case where our N possible answers all have
unequal probabilities. Consider first the situation where
all the probabilities are rational, that is

pn =
kn∑
m km

, (626)

where all the kn are integers. If we can find the correct
information measure for rational {pn} then by continuity
we can extrapolate to the general case; the trick is that
we can reduce the case of rational probabilities to the case
of equal probabilities. To do this, imagine that we have
a total of Ntotal =

∑
m km possible answers, but that

we have organized these into N groups, each of which
contains kn possibilities, as in Fig 129. To specify the
full answer, we would first tell which group it is in, then
tell which of the kn possibilities is realized. In this two
step process, at the first step we get the information we

k1 = 3 k2 ! " k3 = 4 kN = 2kN−1 = 5

1 2 3 N − 1 N

p1 p2 p3 pN−1 pN

I = I({pn})

In = log2 kn

Itotal = log2

(
∑

n

kn

)

FIG. 129 Grouping. To determine the information gained
with unequal probabilities, we consider a “big question” with
answer that fall into N groups. By hypothesis, in each the kn
answers are equally likely.

are really looking for—which of the N groups are we in—
and so the information in the first step is our unknown
function,

I1 = I({pn}). (627)

At the second step, if we are in group n then we will
gain In = log2 kn bits, because this is just the problem
of choosing from kn equally likely possibilities, and since
group n occurs with probability pn, the average informa-
tion we gain in the second step is

I2 =
∑

n

pnIn =
∑

n

pn log2 kn. (628)

But this two step process is not the only way to com-
pute the information in the enlarged problem, because,
by construction, the enlarged problem is just the problem
of choosing from Ntotal equally likely possibilities. The
two calculations have to give the same answer, so that

I1 + I2 = log2 (Ntotal) , (629)

I({pn}) +
∑

n

pn log2 kn = log2

(
∑

m

km

)
. (630)

Rearranging the terms, we find

I({pn}) = −
∑

n

pn log2

(
kn∑
m km

)
(631)

= −
∑

n

pn log2 pn. (632)

Again, although this is worked out explicitly for the case
where the pn are rational, it must be the general answer
if the information measure is continuous. So we are done:
the average information gained on hearing the answer to
a question is measured uniquely by the entropy of the
distribution of possible answers.
It is worth pausing here to note that what Shannon

did is very different from our conventional experience in
using mathematics to describe the natural world. In most
of physics, we have some set of observations (the motion
of the planets in the night sky, for example) that can
be made quantitative (as Brahe did), and we search for
mathematical structures that can explain and unify these
data (Kepler, Newton). In contrast, Shannon considered
an everyday phenomenon for which we have a colloquial
language, and asked if this language itself could be made
mathematically precise, without reference to quantitative
data. It is remarkable that this actually worked, and
that Shannon’s construction has, as we will see, so many
consequences.
When we try to quantify the information we gain from

hearing the answer to a question, it seems natural to
think about a discrete set of possible answers. On the
other hand, if we think about gaining information from
the acoustic waveform that reaches our ears, then there



198

is a continuum of possibilities. Naively, we are tempted
to write

Scontinuum = −
∫

dxP (x) log2 P (x), (633)

or some multidimensional generalization. The difficulty
is that probability distributions for continuous variables
have units—P (x) has units inverse to the units of x—and
we should be worried about taking logs of objects that
have dimensions. Notice that if we wanted to compute
a difference in entropy between two distributions, this
problem would go away. This is a hint that only entropy
differences are going to be important.

Problem 127: Dimensionality and the scaling of the en-
tropy. As written, Eq (633) doesn’t really make sense, because we
are taking the log of something with units. Suppose we try to clean
this up, and make bins along the x axis, each bin of width ∆x and
the nth bin centered at xn. Then if the bins are reasonably small,
the probability of falling in the nth bin is pn = P (xn)∆x.

(a.) Show that if you calculate the entropy in the usual way, you
find

S = −
∑

n

pn log2 pn = Scontinuum − log2(∆x) (634)

in the limit ∆x → 0. More generally, show that in D dimensions

S = −
∑

n

pn log2 pn = Scontinuum −D log2(∆x). (635)

The result in Eq (635) suggests that the scaling of the entropy
with bin size provides a measure of the dimensionality D of the
underlying space. This is especially interesting if the intrinsic di-
mensionality is different from the dimensionality we happen to be
using in describing the system. As an example, if we describe a
system by its position in a two dimensional space (x, y), but really
the points fall on a curve, then the right answer is that the system
is one dimensional, not two dimensional.

(b.) Write a small program in MATLAB to generate 106 points
in the (x, y) plane that fall on the circle x2 + y2 = 1. Then divide
the plane (you can confine your attention to the region −2 < x < 2,
and similarly for y) into boxes of size (∆x) × (∆x), and estimate
the fraction of points that fall in each box. From this estimate,
compute the entropy, and see how it varies as a function of ∆x.
Can you identify the signature of the reduced dimensionality?

(c.) Suppose that you take the 106 points from (b) and add, to
each point, a bit of noise in the x and y directions, for example
Gaussian noise with a standard deviation of σ = 0.05. Repeat
the calculation of the entropy vs. box size. If you look closely
enough (∆x $ σ) the underlying probability distribution really is
two dimensional, since there is independent noise along x and y.
But if your resolution is more coarse (∆x % σ) you won’t be able
to “see” the noise and the points will appear to fall on a circle,
corresponding to a one dimensional distribution. Can you see this
transition in the plot of S(∆x)?

The problem of defining the entropy for continuous

variables is familiar in statistical mechanics.78 In the
simple example of an ideal gas in a finite box, we know
that the quantum version of the problem has a discrete
set of states, so that we can compute the entropy of the
gas as a sum over these states. In the limit that the box is
large, sums can be approximated as integrals, and if the
temperature is high we expect that quantum effects are
negligible and one might naively suppose that Planck’s
constant should disappear from the results; we recall that
this is not quite the case. Planck’s constant has units of
momentum times position, and so is an elementary area
for each pair of conjugate position and momentum vari-
ables in the classical phase space; in the classical limit
the entropy becomes (roughly) the logarithm of the occu-
pied volume in phase space, but this volume is measured
in units of Planck’s constant. If we start with a classi-
cal formulation (as did Boltzmann and Gibbs, of course)
then we would find ourselves with the problems of Eq.
(633), namely that we are trying to take the logarithm of
a quantity with dimensions. If we measure phase space
volumes in units of Planck’s constant, then all is well.
The important point is that the problems with defining
a purely classical entropy do not stop us from calculat-
ing entropy differences, which are observable directly as
heat flows, and we shall find a similar situation for the
information content of continuous (“classical”) variables.
In the simple case where we ask a question and there

are exactlyN = 2m possible answers, all with equal prob-
ability, the entropy is just m bits. But if we make a list of
all the possible answers we can label each of them with
a distinct m–bit binary number: to specify the answer
all we need to do is write down this number. Note that
the answers themselves can be very complex—different
possible answers could correspond to lengthy essays, but
the number of pages required to write these essays is ir-
relevant. If we agree in advance on the set of possible
answers, all we have to do in answering the question is
to provide a unique label. If we think of the label as a
‘code word’ for the answer, then in this simple case the
length of the code word that represents the nth possible
answer is given by !n = − log2 pn, and the average length
of a code word is given by the entropy.
The equality of the entropy and the average length of

code words is much more general than our simple ex-
ample. Before proceeding, however, it is important to
realize that the entropy is emerging as the answer to two

78 Indeed, this problem is so troublesome that it has led to a serious
shift in our teaching. It is simpler to define everything in the
case where states are discrete, and this has led many people
to argue that we shouldn’t teach statistical physics until after
students have learned quantummechanics. Whatever advantages
this might have, it guarantees that many US students never see
anything statistical (beyond a few lectures on the kinetic theory
of gases) until their third year of university, which is quite late.
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very different questions. In the first case we wanted to
quantify our intuitive notion of gaining information by
hearing the answer to a question. In the second case,
we are interested in the problem of representing this an-
swer in the smallest possible space. It is quite remarkable
that the only way of quantifying how much we learn by
hearing the answer to a question is to measure how much
space is required to write down the answer.

Clearly these remarks are interesting only if we can
treat more general cases. Let us recall that in statistical
mechanics we have the choice of working with a micro-
canonical ensemble, in which an ensemble of systems is
distributed uniformly over states of fixed energy, or with
a canonical ensemble, in which an ensemble of systems
is distributed across states of different energies accord-
ing to the Boltzmann distribution. The microcanonical
ensemble is like our simple example with all answers hav-

ing equal probability: entropy really is just the log of the
number of possible states. On the other hand, we know
that in the thermodynamic limit there is not much differ-
ence between the two ensembles. This suggests that we
can recover a simple notion of representing answers with
code words of length !n = − log2 pn provided that we can
find a suitable analog of the thermodynamic limit.
Imagine that instead of asking a question once, we ask

it many times. As an example, every day we can ask
the weatherman for an estimate of the temperature at
noon the next day. Now instead of trying to represent
the answer to one question we can try to represent the
whole stream of answers collected over a long period of
time. Let us label the sequences of answers n1n2 · · · nN ,
and these sequences have probabilites P (n1n2 · · · nN ).79

From these probabilities we can compute an entropy that
must depend on the length of the sequence,

S(N) = −
∑

n1

∑

n2

· · ·
∑

nN

P (n1n2 · · · nN ) log2 P (n1n2 · · · nN ). (636)

Now we can draw on our intuition from statistical me-
chanics. The entropy is an extensive quantity, which
means that as N becomes large the entropy should be
proportional to N ; more precisely we should have

lim
N→∞

S(N)

N
= S, (637)

where S is the entropy density for our sequence in the
same way that a large volume of material has a well de-
fined entropy per unit volume.
The equivalence of ensembles in the thermodynamic

limit means that having unequal probabilities in the
Boltzmann distribution has almost no effect on anything
we want to calculate. In particular, for the Boltzmann
distribution we know that, state by state, the log of the
probability is the energy and that this energy is itself
an extensive quantity. Further we know that (relative)
fluctuations in energy are small. But if energy is log prob-
ability, and relative fluctuations in energy are small, this
must mean that almost all the states we actually observe
have log probabilities which are the same. By analogy, all
the long sequences of answers must fall into two groups:
those with − log2 P ≈ NS, and those with P ≈ 0. Now
this is all a bit sloppy, but it is the right idea: if we are
willing to think about long sequences or streams of data,
then the equivalence of ensembles tells us that ‘typical’

79 Notice that, at this point, we do not need to assume that suc-
cessive questions have independent answers.

sequences are uniformly distributed over N ≈ 2NS possi-
bilities, and that this appproximation becomes more and
more accurate as the length N of the sequences becomes
large.

Problem 128: Probabilities and the equivalence of en-
sembles.80 Consider an ideal monatomic gas in three dimensions,
for which the energy is

E =
1

2m

3N∑

i=1

p2i , (638)

where m is the atomic mass. We will define the classical sum over
states to be an integral over positions and velocities, normalized by
appropriate powers of Planck’s constant h.

(a.) The partition function in the microcanonical ensemble is

Zmicro(E) ≡
1

h3N

∫
d3x

∫
d3p δ

(
E −

1

2m

3N∑

i=1

p2i

)
(639)

=

(
V

h3

)N ∫
d3p δ

(
E −

1

2m

3N∑

i=1

p2i

)
. (640)

If the energy is fixed with precision ε, then Zmicro(E)ε is the num-
ber of accessible states, all occurring with equal probability, and so
the microcanonical entropy is Smicro(E) = log2[Zmicro(E)ε]. Use
the Fourier representation of the delta function and the method of

80 This should be a review of things you learned in a statistical
mechanics class, though perhaps in slightly different language.
It is useful to make all of this explicit here.
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steepest descent to derive the asymptotic behavior of Smicro(E) at
large N .

(b.) In the canonical ensemble, at inverse temperature β, the
probability of being in any state is given by the Boltzmann distri-
bution,

P =
1

Z(β)
e−βE , (641)

where

Z(β) =
1

h3N

∫
d3x

∫
d3p exp

(
−

β

2m

3N∑

i=1

p2i

)
. (642)

Evaluate Z(β) and the entropy S(β). Review what we mean when
we say that the entropy is the same in the canonical and micro-
canonical ensembles at large N .

(c.) The typical probability of a state in the canonical ensem-
ble is Ptypical = 2−S(β). Define the deviation from this typical
probability as ∆ = log2(P/Ptypical). What can you say about the
distribution of ∆ over all the states? Can you make a precise ver-
sion of the statement that “most” states have either “almost” the
typical probability or zero probability? For example, can you put
a bound on the fraction f of states which have |∆| > δc? How does
the relation between f and δc change with N?

Problem 129: More about typicality. Consider drawing
N samples of a variable that can take on K different values, with
probabilities p1, p2, · · · , pK . Let the sequence of samples that you
observe be called i1, i2, · · · , iN , which has probability

P =
N∏

n=1

pin . (643)

It should be easy to show that the average of L = −(1/N) log2 P
is the entropy of the underlying distribution, S = −

∑
i pi log2 pi.

Say as much as you can about the distribution of L as N becomes
large.

The idea of typical sequences, which is the information
theoretic version of a thermodynamic limit, is enough to
tell us that our simple arguments about representing an-
swers by binary numbers ought to work on average for
long sequences of answers. An important if obvious con-
sequence is that if we have many rather unlikely answers
(rather than fewer more likely answers) then we need
more space to write the answers down. More profoundly,
this turns out to be true answer by answer: to be sure
that long sequences of answers take up as little space as
possible, we need to use !n ≈ − log2 pn bits to represent
each individual answer n. Thus, even individual answers
which are more surprising require more space to write
down.

As a simple example, imagine that we have four an-
swers, with probabilities p1 = 1/2, p2 = 1/4, and
p3 = p4 = 1/8. Naively, if we use a binary representation
we will need two bits to represent the four possibilities.
But the entropy is

S ≡
4∑

i=1

pi log2 pi =
1

2
log2 2 +

1

4
log2 4 +

2

8
log2 8 =

7

4
,

(644)

which is less than two bits (as it must be). Suppose
that we represent the four possibilities by the binary se-
quences:

1 → 0, (645)

2 → 10, (646)

3 → 110, (647)

4 → 111. (648)

Notice that the length of each code word obeys !i =
− log2 pi, so we know that, on average, the number of bi-
nary digits that we use per answer will be equal to the en-
tropy. This illustrates the idea that, by using code words
of different lengths, we can reduce the average amount of
space we need to write things down.

Problem 130: Do we need commas? When we represent
a sequence of answers, we have to be sure that we can find the
boundaries between the code words. If all the words have the same
length, we can just count, but this doesn’t work if we use unequal
lengths. At worst, we could add an extra symbol to “punctuate”
the stream of words, but this takes extra space and surely is in-
efficient. Convince yourself that the code defined by Eqs (645)
through (648) does not need any extra symbols—all sequences of
code words can be parsed uniquely.

To complete the picture, we have to put together the
ideas of typicality and code words of varying length. Sup-
pose that we look at a block of N answers, n1, n2, · · · , nN
as before; let’s label this block (or “state,” to reinforce
the analogy with statistical physics) by s, which occurs
with probability ps. We choose the labels so that all the
states are numbered in order of their probability, that is
p1 ≥ p2 ≥ · · · ≥ pK , where K is the number of possible
sequences of length N . For each state s we can compute
the cumulative probability of lower energy (higher prob-
ability) states, Ps ≡

∑s−1
i=1 pi. Now take this cumulative

probability and expand it as a binary number. If we stop
after ms digits, where

− log2 ps ≤ ms < − log2 ps + 1, (649)

then we guarantee that this binary number we are looking
at will be different from any subsequent number with
larger s, so it is a unique encoding of the state s, as
shown schematically in Fig 130. But now we can see
that the average number of binary digits we have used to
encode the blocks of length N will be

L(N) ≡
∑

s

psms, (650)
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FIG. 130 Coding of sequences with variable word length. In
a stream where ‘0’ and ‘1’ occur independently, but with un-
equal probabilities, we can compress our description by coding
N–bit blocks; here N = 10. Each block can be labelled by
s, the number equivalent to the binary string (top). These
states have widely varying probability ps (lower left). We
can compute the cumulative probability of states with higher
probability (lower right), as described in the text, and use the
binary expansion of this cumulative probability as the code
word W . We stop the expansion at a number of digits given
by rounding up from − log2(ps).

and we can bound this from both sides,
∑

s

psms (− log2 ps) ≤L(N)<
∑

s

ps (− log2 ps + 1)(651)

S(N) ≤L(N)< S(N) + 1, (652)

where S is the entropy of the N–answer blocks, S(N) =
−
∑

s ps log2 ps. If we count the length of the code per
answer, then

S(N)

N
≤ L(N)

N
<

S(N)

N
+

1

N
. (653)

But, as before, we know that the entropy per degree of
freedom should approach a finite entropy density, as in
Eq (637), and now we see that the average code length
per answer is within 1/N of this entropy density. Thus,
as N → ∞, the entropy and the minimum code length
are equal.

To summarize, if we need to write down answers many
times, then the minimum space required to write down
these answers is, per answer, the entropy of the distri-
bution out of which the answers are drawn. Notice that
our choice of alphabet in which to write is arbitrary, but
we also had an arbitrariness in choosing the units of en-
tropy; this is the same arbitrariness. Thus, the statement
that entropy is both the amount of information we gain

and the amount of space we need to write down what we
have learned is not arbitrary, and there are no constants
floating around to spoil the exact equality. To reach this
maximally compact representation, we must at least im-
plicitly use the structure of the probability distribution
out of which the answers are drawn, adjusting the lengths
of individual code words in relation to the probability of
the answer.

Problem 131: Coding rare events. Suppose that we have
two possible answers, A and B, which occur with very unequal
probabilities, pA $ pB . Show that the entropy of the distribution
of answers is approximately S ≈ pA log2(e/pA). If we have a long
sequence of answers, most are B with a sprinkling of As. Try
to encode such a sequence in binary form, using a code in which
some symbol (e.g., 1111) is reserved for A, and the blocks of B
are encoded by writing the number of consecutive Bs as a binary
number. To make this work—that is, to be sure that your encoding
can be uniquely decoded—you obviously have to be careful in the
special case where the number of Bs is equal to 15 (1111 in binary
form). Are there any other problems? Can you find a solution?
Does this code come close to the lower bound on code length set
by the entropy?

The idea that there is a minimum amount of space
required to write down a description of a system is in-
credibly important. At a practical level, we pay for the
resources needed to write things down, or to transmit
information from one place to another, and so there is
a premium on using as little space as possible. This is
often called “data compression.” More generally, this is
the first indication that there is a general notion of ef-
ficiency in representing data, and we will see how this
becomes relevant to biological systems.
The argument we have just given tells us that once

we know the probability distribution for the states s, we
have a code that we can use to represent these states, and
asymptotically this code is of minimum length. Suppose
that states really are chosen out of a distribution p ≡
{ps}, but we don’t know this; instead, we think that
the distribution is q. Then (neglecting terms that are
unimportant in the large N limit), we assign a code word
of length !s = − log2 qs to each state, and so the mean
code length is

L = −
∑

s

ps log2 qs. (654)

This is different than the entropy of the distribution p,
and the difference
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L− Lmin = L− S = −
∑

s

ps log2 qs −
[
−
∑

s

ps log2 ps

]
=

∑

s

ps log2

(
ps
qs

)
. (655)

This quantity is zero if the two distributions are the same,
and is positive for any pair of distributions p and q; it is
called the Kullback–Leibler divergence between the two
distributions, and usually is written as

DKL(p||q) =
∑

s

ps log2

(
ps
qs

)
. (656)

Notice that this is not a symmetric quantity, and hence
is not a metric on the space of distributions, although
it does say something about the degree of similarity or
difference between p and q. DKL also is sometimes called
the “relative entropy” of the distribution p with respect
to q.

To emphasize the role of DKL as a measure of differ-
ence between distributions, suppose that we are given N
samples and have to decide whether they came from p
or q. Out of the N samples, n1 come from state 1, n2

come from state 2, and so on. So the probability that the
distribution p generated these samples is

P (samples|p) = A
∏

s

pns
s , (657)

where A is a combinatorial factor, and similarly

P (samples|q) = A
∏

s

qns
s . (658)

What we want to know is, given the samples, what is
the probability P that they came from the distribution
p as opposed to q? Let us say that, a priori, the two
possibilities are equally likely. Then, by Bayes’ rule,

P =
P (samples|p)P (p)

P (samples)
(659)

=
P (samples|p)

P (samples|p) + P (samples|q) (660)

=
1

1 + 2−Λ
, (661)

where

Λ = log2

[
P (samples|p)
P (samples|q)

]
=

∑

s

ns log2

(
ps
qs

)
. (662)

As discussed in Chapter 1 [give specific pointer], Λ is
called the log likelihood ratio. We notice that since it is
proportional to all the ns, it must also be proportional
to N , and hence grows (on average) linearly with the
number of samples. We can think of this as the accumu-
lation of evidence for p vs. q, and the rate at which this

evidence accumulates is, asymptotically,

lim
N→∞

1

N
Λ =

∑

s

[
lim

N→∞

ns

N

]
log2

(
ps
qs

)
(663)

=
∑

s

ps log2

(
ps
qs

)
(664)

= DKL(p||q). (665)

Thus, the Kullback–Leibler divergence is, like the entropy
itself, the answer to two very different questions: the cost
of coding data using codes based on the wrong distribu-
tion, and the ease of discriminating the distributions from
one another based on samples.

Problem 132: A little more about the Kullback–Leibler
divergence.

(a.) Show that DKL(p||q) is positive (semi–)definite, and is
minimized when p = q.

(b.) DKL(p||q) is unbounded, so some probability distributions
are infinitely different from one another. Explain, using the con-
nection to the accumulation of evidence, how to make sense out of
this divergence.

(c.) If we have a family of distributions that depend on a pa-
rameter, pθ, show that DKL(pθ||pθ′ ) behaves as F (θ)× (θ − θ′)2

when the parameters θ and θ′ are close. Give an explicit formula
for F (θ).

(d.) Imagine that we draw N samples out of the distribution pθ0 ,
but all we know is that the distribution is in the family pθ. Use
Bayes’ rule to construct P (θ|samples), and show that as N becomes
large this becomes peaked around the right answer, θ = θ0. Show
that the variance around this peak is related to F (θ0).

(e.) If the two distributions p and q are Gaussians, it’s rela-
tively easy to evaluate DKL(p||q). Suppose that the two Gaussian
differ in either their means or their variances, but not both. You
should find that the choice of changing mean vs. variance makes a
difference to the (a)symmetry of DKL. Make this explicit, and use
what we have shown about DKL as a measure of discrimination to
explain the origin of this difference.

The connection between entropy and information has
(at least) one more very important consequence: corre-
lations or order reduce the capacity to transmit informa-
tion. Perhaps the most familiar example is in spelling. If
all possible combinations of letters were legal words, then
there would be (26)4 = 456, 976 four letter words. But
if you look through a large, reasonably coherent body
of English text—the collected works of a prolific author,
or the last year of newspaper articles—you will find that
there at most a few hundred four letter words being used.
Most of this restriction of vocabulary comes from corre-
lations among the letters in the word: once we have put
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a ‘t’ in the first position, it is much more likely that we
will put a vowel in the second position; if we want to
put a consonant then it has a high probability of being
an ‘h’, and so on. It is important that, while correla-
tions have signs—we speak both of correlation and anti–
correlation—with respect to the entropy all correlations
have the same effect, namely reducing the entropy. In-
deed, as explained in [pointer to appendix on maximum
entropy], we can construct models for the probability dis-
tribution of the states in a system that are consistent
with some measured correlations but otherwise have the
maximum possible entropy, and we can build a hierarchy
of these models with ever smaller entropies as we take
account of more correlations; once we capture all the
relevant correlations, the entropy converges to its true
value.

For four letter words, as an example, the entropy for
random letters would be Srand = 4 log2(26) = 18.8 bits.
In the collected works of Jane Austen, the “one body”
correlations, which measure unequal frequencies with
which letters are used, reduces this to Sind = 14bits.
Taking account of the “two body” correlations between
pairs of letters cuts this entropy nearly in half, to S2 =
7.48 bits, while the true entropy of the distribution of
four letter words in these texts in only slightly less, at
S = 6.92 bits. Thus the entropy is nearly reduced by a
factor of three from the case of completely random let-
ters, and most of this reduction is explained by one and
two body correlations. Again, the important point is that
these correlations, which may have many advantages, cer-
tainly have the consequence of reducing our vocabulary
and hence our capacity to transmit information.

This seems an appropriate moment to recall that en-
tropy is a very old idea. It arises in thermodynamics
first as a way of keeping track of heat flows, so that a
small amount of heat dQ transferred at absolute tem-
perature T generates a change in entropy dS = dQ/T .
While there is no function Q which measure the heat con-
tent of a system, there is a function S that characterizes
the (macroscopic) state of a system independent of the
path to that state. But now we know that the entropy
of a probability distribution also measures the amount
of space that we need to write down a description of the
(microscopic) states drawn out of that distribution.

[Would a schematic help here?] Let us imagine, then,
a thought experiment in which we measure (with some
fixed resolution) the positions and velocities of all the
gas molecules in a small box, and type these numbers
into a file on our computer. There are relatively effi-
cient programs (gzip, or “compress” on a UNIX machine)
that compresses such files to nearly their shortest possi-
ble length. If this really works, then the length of the
file tells us the entropy of the distribution out of which
the numbers in the file are being drawn, but this is the
entropy of the gas. Thus, if we heat up the room by
ten degrees, and repeat the process, we will find that the

resulting data file is longer. More profoundly, if we mea-
sure the increase in the length of the file, we know the
entropy change of the gas and hence the amount of heat
that we had to add to the room in order to increase the
temperature. This connection between a rather abstract
quantity such as the length, in bits, of a computer file and
a very tangible physical quantity such as the amount of
heat added to a room has long struck me as one of the
more dramatic, if elementary, examples of the power of
mathematics to unify our description of very disparate
phenomena.

Problem 133: Heat flows and file sizes. Give a problem
that expands the thought experiment in the previous paragraph ...
maybe with a polymer and entropic forces, where we can simulate?

Returning to the conversation between Max and Allan,
we assumed that Max would receive a complete answer
to his question, and hence that all his uncertainty would
be removed. This is an idealization, of course. The more
natural description is that, for example, the world can
take on many states w, and by observing data d we learn
something but not everything about w. Before we make
our observations, we know only that states of the world
are chosen from some distribution P (w), and this distri-
bution has an entropy S[P (w)]. Once we observe some
particular datum d, our (hopefully improved) knowledge
of w is described by the conditional distribution P (w|d),
and this has an entropy S[P (w|d)] that is smaller than
S[P (w)] if we have reduced our uncertainty about the
state of the world by virtue of our observations. We iden-
tify this reduction in entropy as the information that we
have gained about w,

I(d → w) ≡ S[P (w)]− S[P (w|d)]. (666)

Notice that this depends on exactly what datum d we
have observed.
Before proceeding, I should draw attention to some no-

tational issues. Strictly speaking, entropy is a property
of the probability distribution out of which the states of
a system are drawn. Thus, we write S[P (w)] to mean the
entropy of the states of the world when these are drawn
out of P (w). Similarly, we should write S[P (w|d)] for
the entropy of states of the world conditional on having
observed the data d. Notice that S[· · · ] is the same func-
tional in both cases. But, this is slightly cumbersome.
Indeed, in statistical mechanics and thermodynamics we
seldom talk about “the entropy of the distribution out of
which the states of the gas have been drawn” (although
we should); instead we just say “the entropy of the gas.”
In this spirit, sometimes I will write in the shorthand
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S(w) ≡ S[P (w)], and S(w|d) ≡ S[P (w|d)]. I hope this
doesn’t cause any confusion.

There is one more notational difficulty. When we talk
about the states w of the world, it is natural to say that
these states are drawn from the distribution P (w). Sim-
ilarly, when we talk about the data that we will collect,
it is natural to write that particular observations d are
drawn from the distribution P (d). The problem is that
P (·) refers to different functions in these two cases. We
could solve this by noting carefully that the states of
the world w come from a set of possible states, w ∈ W ,
and the distribution over these states should be written
PW (w). Similarly, individual observations come from a
set of possible observations, d ∈ D, and the distribution
of these data should be written PD(d). Whenever there
is a possibility for confusion, I’ll try to adhere to this
convention. In other cases, I’ll slide to the more informal
P (w) and P (d). Again, I hope this doesn’t cause prob-
lems. [I am not sure that the current draft lives up to
this policy, so please read carefully!]

With the notational issues settled, let’s go back to our
problem. Having defined the information gained in Eq
(??), we should appreciate that this is not guaranteed

to be positive. Consider, for instance, data which tell us
that all of our previous measurements have larger error
bars than we thought: clearly such data, at an intuitive
level, reduce our knowledge about the world and should
be associated with a negative information. Another way
to say this is that some data points d will increase our
uncertainty about state w of the world, and hence for
these particular data the conditional distribution P (w|d)
has a larger entropy than the prior distribution P (w), so
that Id will be negative. On the other hand, we hope
that, on average, gathering data corresponds to gaining
information: although single data points can increase our
uncertainty, the average over all data points does not.
If we average over all possible data—weighted, of

course, by their probability of occurrence PD(d)—we ob-
tain the average information that d provides about w:

〈(d → w)〉 = S(w)−
∑

d

PD(d)S(w|D). (667)

This can be rearranged and simplified, and the result is
so important that it is worth being very explicit about
the algebra:

〈(d → w)〉 = −
∑

w

PW (w) log2 PW (w)−
∑

d

PD(d)

[
−
∑

w

P (w|d) log2 P (w|d)
]

(668)

= −
∑

w

∑

d

P (w,D) log2 PW (w) +
∑

w

∑

d

P (w|D)PD(d) log2 P (w|d) (669)

= −
∑

w

∑

d

P (w,D) log2 PW (w) +
∑

w

∑

d

P (w,D) log2 P (w|d) (670)

=
∑

w

∑

d

P (w,D) log2

[
P (w|d)
PW (w)

]
(671)

=
∑

w

∑

d

P (w,D) log2

[
P (w, d)

PW (w)PD(d)

]
, (672)

where we identify the joint distribution of states of the
world and data, P (w, d) = P (w|d)PD(d).
We see that, after all the dust settles, the average infor-

mation which d provides about w is symmetric in d and
w. This means that we can also view the state of the
world as providing information about the data we will
observe, and this information is, on average, the same
as the data will provide about the state of the world.
This ‘information provided’ is therefore often called the
mutual information, and this symmetry will be very im-
portant in subsequent discussions; to remind ourselves of
this symmetry we write I(d;w) rather than 〈(d → w)〉.
One consequence of the symmetry or mutuality of in-

formation is that we can write the mutual information as

a difference of entropies if two different ways,

I(d;w) = S(w)−
∑

d

PD(d)S(w|d) (673)

= S(d)−
∑

w

PW (w)S(d|w). (674)

If we consider only discrete sets of possibilities then en-
tropies are positive (or zero), so that these equations im-
ply

I(d;w) ≤ S(w) (675)

I(d;w) ≤ S(d). (676)

The first equation tells us that by observing d we can-
not learn more about the world then there is entropy in
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the world itself. This makes sense: entropy measures
the number of possible states that the world can be in,
and we cannot learn more than we would learn by re-
ducing this set of possibilities down to one unique state.
Although sensible (and, of course, true), this is not a ter-
ribly powerful statement: seldom are we in the position
that our ability to gain knowledge is limited by the lack of
possibilities in the world around us. On the other hand,
there is a tradition of studying the biological systems
as they responds to highly simplified signals, and under
these conditions the lack of possibilities in the world can
be a significant limitation, substantially confounding the
interpretation of experiments.

Equation (676), however, is much more powerful. It
says that, whatever may be happening in the world, we
can never learn more than the entropy of the distribution
that characterizes our data. Thus, if we ask how much
we can learn about the world by taking readings from a
wind detector on top of the roof, we can place a bound on
the amount we learn just by taking a very long stream of
data, using these data to estimate the distribution PD(d),
and then computing the entropy of this distribution.

The entropy of our observations thus limits how much
we can learn no matter what question we were hoping to
answer, and so we can think of the entropy as setting (in
a slight abuse of terminology) the capacity of the data
d to provide or to convey information. As an example,
the entropy of neural responses sets a limit to how much
information a neuron can provide about the world, and
we can estimate this limit even if we don’t yet understand
what it is that the neuron is telling us (or the rest of the
brain).

Problem 134: Maximally informative experiments.
Imagine that we are trying to gain information about the correct
theory T describing some set of phenomena. At some point, our
relative confidence in one particular theory is very high; that is,
P (T = T∗) > F · P (T (= T∗) for some large F . On the other hand,
there are many possible theories, so our absolute confidence in the
theory T∗ might nonetheless be quite low, P (T = T∗) $ 1. Sup-
pose we follow the “scientific method” and design an experiment
that has a yes or no answer, and this answer is perfectly correlated
with the correctness of theory T∗, but uncorrelated with the cor-
rectness of any other possible theory—our experiment is designed
specifically to test or falsify the currently most likely theory. What
can you say about how much information you expect to gain from
such a measurement? Suppose instead that you are completely
irrational and design an experiment that is irrelevant to testing
T∗ but has the potential to eliminate many (perhaps half) of the
alternatives. Which experiment is expected to be more informa-
tive? Although this is a gross cartoon of the scientific process, it
is not such a terrible model of a game like “twenty questions.” It
is interesting to ask whether people play such question games fol-
lowing strategies that might seem irrational but nonetheless serve
to maximize information gain. Related but distinct criteria for op-
timal experimental design have been developed in the statistical
literature.

[I wonder if I should go through the basic calculation
of maximum entropy counting here ... since the “things”
we count have a cost, this would complete the thought
about bounds. At least need a pointer to Appendix A.8.]
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FIG. 131 A schematic of how a train of action potential is
converted to discrete “words” at different times resolutions
∆τ . There is a minimum inter–spike interval, the “refractory
period” (here, ∼ 2ms), so that for sufficiently small ∆τ the
words are binary. Highlighted is the case where ∆τ = 2ms
and T = 8ms, so this segment of the spike train becomes
three successive four bit words, 0101, 0100, and 0110.

To see how the ideas of entropy reduction and informa-
tion work in a real example, let’s consider the response of
a neuron to sensory inputs. As we have discussed [start-
ing in Chapter One; give specific pointers], most neurons
in the brain generate a sequence of brief (∼ 1ms), iden-
tical electrical pulses called action potentials or spikes.
Since these events are identical, we can think of them as
marking points in time, and then we can build a discrete
vocabulary of responses by fixing some limited time res-
olution ∆τ , as in Fig 131. More precisely, if ∆τ is small,
then in each small time window of duration ∆τ we will
see either one or zero spikes, and so the response is nat-
urally discrete and binary. Then segments of the spike
train of duration T can be thought of as T/∆τ–letter bi-
nary words. Recording from a single neuron as the animal
experiences some reasonably complex, dynamic sensory
inputs, it is relatively easy to estimate the distribution of
these these words, P (W ), so long as we don’t make the
ratio T/∆τ too large. Then we can compute the entropy
of this distribution, S(T,∆τ).
Figure 132 shows the results of experiments on the

motion sensitive neuron H1 in the fly visual system that
we met earlier, in Section [**], when we discussed noise
and the precision of visual motion estimation. In these
experiments, the fly sees a randomly moving pattern, and
H1 responds with a stream of spikes. If we fix ∆τ = 3ms
and look at T = 30ms segments of the spike train, there
are 2T/∆τ ∼ 103 possible words, but the distribution is
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analysis of Fig. 3. The total entropy (Stotal !
5.17 bits) is almost the same as that of the real
spike trains, whereas the noise entropy (Snoise
! 4.22 bits) is substantially larger: Real spike
trains are almost as variable as possible given
the mean spike rate, but they are much more
reproducible than Poisson trains. H1 thus
transmits more than twice as much informa-
tion (2.43 versus 0.95 bits in a 30-ms window)
about these stimuli as would be the case if the
neuron exhibited the noisiness found with
constant inputs (23).

Several mechanisms may contribute to
the reproducibility of responses. First, to
achieve millisecond precision in the spiking
of H1, the fly’s visual system must resolve
events in the motion stimulus on this time
scale; more detailed analysis suggests that
this is close to the limit set by photoreceptor
noise. Second, neural computation and en-
coding must be adaptive in order to follow
rapid modulations of the stimulus over a
wide dynamic range (24). Finally, refractori-
ness regularizes spike trains at high firing
rates (11), enforcing a more deterministic
relation between stimulus and response (25).

In summary, during stimulation dynam-

ic H1 makes efficient use of its capacity to
transmit information. This efficiency is
achieved by establishing precise temporal
relations between individual action poten-
tials and events in the sensory stimulus.
These observations on the encoding of
naturalistic stimuli cannot be understood
by extrapolation from quasistatic experi-
ments, nor do such experiments provide
any hint of the timing and counting accu-
racy that the brain can achieve. Just as H1
resembles cortical neurons in its noisy re-
sponse to static stimuli, many systems may
resemble H1 in their reproducible re-
sponse to dynamic stimuli (26).
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log(x)&, we are guaranteed that Stotal ! Snoise, and
hence that the average information I is nonnegative.
The relation between P(W!t ) and P(W ) implies that
one does not need separate repeated and nonre-
peated parts of the stimulus, but in practice this
design provides more efficient sampling of the rele-
vant distributions, given fixed experimental time.

19. W. Bialek, F. Rieke, R. R. de Ruyter van Steveninck,
D. Warland, Science 252, 1854 (1991). The recon-
struction methods described there begin with an as-
sumption about which stimulus feature is being en-
coded, and this feature is then estimated from the
spike train; information measures are derived by
quantifying the errors in this estimate.

20. There are two concerns about these numbers, ad-
dressed in (17). These are random and systematic
errors resulting from finite data sets, and the ex-
trapolation from entropies computed for finite time
windows to entropies and information rates per unit
time. With the 5 hours of experimental data on
which the estimates are based, both systematic

Fig. 3. Word frequency distributions and information transfer. (A) Two segments from 100 response
traces of H1, starting at about 600 and 1800 ms, respectively, after onset of the repeated stimulus of Fig.
2. (B) Construction of local word frequencies. We start with a set of spike trains in response to a repeated
random velocity sequence. Beginning at 600 ms these spike trains are divided in 10 contiguous 3-ms
bins, as indicated by the array of vertical lines. For each trial, the spikes in each of the 10 bins are
counted, and this set of 10 numbers forms a word, W. Here almost all words are binary strings, as two
spikes occur only very rarely within 3 ms. This procedure gives us as many words as there are trials (here
900). From this set we compute the probability for each word, and the resulting distribution is depicted
in the histogram, P(W!t) ! 600 ms, where the words are ordered according to their probability. (C) As
in (B), but now starting at 1800 ms. (D) Distribution, P(W ), of all words throughout the experiment. Words
are defined in the same way as in (B) and (C). However, here they are taken from the long (900 times 10 s)
nonrepeated part of the stimulus sequence in order to obtain a large number of independent stimulus
samples. Thus, stepping in 3-ms bins, (3 ) 106 words are sampled, and the distribution shown here
describes their ranked frequencies. In these windows, by far the most likely word is 0000000000, and
roughly 1500 different words are observed.
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FIG. 132 [Make a new version of this.] A neuron responds to dynamic stimuli with sequences of spikes. In this case, as
described in the text, we look at the motion sensitive neuron H1 in the fly’s visual system. (A) Each line across time is a single
presentation of a movie, and dots mark the arrival times of spikes on each trial. (B) and (C) show the discretization of the
spike trains into binary “words” with ∆τ = 3ms resolution, and the distribution of words that occur at a particular moment
in the movie, P (w|t). (D) The distribution of words averaged over all times, in rank order. From de Ruyter van Steveninck et
al (1997).

strongly biased and the entropy is only S(T,∆τ) ∼ 5 bits.
This relatively low entropy means that we can still sample
the distributions of words even out to T ∼ 50 − 60ms,
which is interesting because the fly can actually generate
a flight correction in response to visual motion inputs
within ∼ 30ms.

The entropy S(T,∆τ) should be an extensive quan-
tity, which means that, for large T , we should have
S(T,∆τ) ∝ T . More strongly, if the correlations in the
spike train are sufficiently short ranged, then we expect
that at large T we will have

1

T
S(T,∆τ) = S(∆τ) +

C(∆τ)

T
+ · · · , (677)

where · · · vanish more rapidly than 1/T . In fact we see
this in the real data (Fig 133), which suggests that we
really can estimate the entropy rate S(∆τ).
Connecting to the discussion above, the entropy rate

S(∆τ) sets a limit on the rate at which the spikes can

provide information about the sensory input. When we
make ∆τ smaller, the entropy rate necessarily goes up,
because previously indistinguishable responses map to
different words at higher time resolution. Concretely, if
we make ∆τ smaller by a factor of two, then every ‘1’ in
the coarse words can become either a ‘01’ or a ‘10’ in the
higher resolution words, and so we expect the entropy to
increase by roughly one bit for every spike, as in Fig 131.

Problem 135: Entropy and entropy rate in simple mod-
els. Going back to Chapter 1, you know how to generate events
drawn from a Poisson process with an arbitrary time dependent
rate r(t). Here you should take this (semi–)seriously as a model
for spike trains, and use the resulting simulations to explore the
entropy and entropy rate of neural responses.

(a.) Start with r = r0, a constant. Generate a long sequence
of spikes (e.g., ∼ 104). Choose a time resolution ∆τ such that
r0∆τ $ 1, and turn your simulated spike train into a binary se-
quence; for simplicity ignore the (rare) occurrence of two spikes
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FIG. 133 Entropy is extensive. From the experiments on the
neuron H1 in Fig 132, we compute the entropy of words at
fixed time resolution ∆τ == 3ms and variable length T , stop-
ping when T is so large that we can no longer reliably sample
the distribution P (W ). The data (error bars are smaller than
the symbols) fall on the line predicted in Eq (677), and we can
thus extract an estimate of the entropy rate S(∆τ). Redrawn
from Strong et al (1998a).

in one bin. Form “words” with T/∆τ bits, and estimate the dis-
tribution of these words from your simulated data. Compute the
entropy of this distribution, and explore its dependence on T , r0,
and ∆τ . Do you see the emergence of an entropy rate, S ∼ ST?

(b.) Explain why, for a Poisson process with a constant rate,
S = ST should be exact. From this result, you can calculate S
by thinking about just one bin of size ∆τ , and you should do this.
How does your analytic result compare with the simulation results
in (a)?

(c.) Suppose that x(t) is a Gaussian stochastic process with

correlation function 〈x(t)x(t′)〉 = σ2e−|t−t′|/τc .[This should be ex-
plained somewhere already!] Samples of this process can be gener-
ated by simulating the Langevin equation,

τc
dx

dt
= −x+ 2ση(t), (678)

where 〈η(t)η(t′)〉 = δ(t − t′). Consider a Poisson process with
rate r(t) = r0ex(t). Generate spike sequences for this process,
and follow the procedures in (a) to estimate the entropy in binary
words of duration T at resolution ∆τ , with reasonable choices of
parameters. Can you observe the emergence of extensive behavior,
S ∼ ST? Does this (as seems plausible) require T % τc? How do
your results depend on σ?

A long standing question in thinking about the brain
has been whether the precise timing of individual spikes
is important, or whether the brain is capable of count-
ing spikes only in relatively coarse time bins, so that the
“rate” of spikes over longer periods of time is all that
matters. We now have the tools to give a more precise
formulation of this question. As we increase our time
resolution, the entropy of the spike trains goes up, and

hence so does the capacity of the neuron to convey infor-
mation. The question is whether this capacity is used—
does the information about sensory inputs also rise as the
time resolution is improved, or is the extra entropy just
‘noise’?
If the sensory inputs are called s, then the information

that the spike sequences in some window T provide about
these inputs can be written, as in Eq (674), as a difference
of entropies,

I(s;W ) = S(W )− 〈S(W |s)〉s, (679)

where 〈· · · 〉s denotes an average over the distribution of
inputs. We have already discussed the entropy of the
neural vocabulary, S(W ); the problem is how to esti-
mate S(W |s), the entropy of the words given the sensory
input s. To do this we need to sample the distribution
P (W |s), that is the distribution of neural responses when
the stimulus is fixed. At a minimum, this requires that
we repeat the same stimuli many times. So, if the visual
stimulus is a long movie, we have to show the movie over
and over again. But how do we pick out a particular
stimulus s from the continuous stream? One way to do
this is to realize that the flow of time in the movie pro-
vides an index into the stimuli, and all we need is to be
able to compute averages over the distribution of stimuli.
If the source of stimuli is ergodic (which we can arrange
to be true in the lab!), then an average over stimuli is
equivalent to an average over time. So, if we repeat the
movie many times, and focus on events at time t relative
to the start of the movie, we can sample, in repeats of
the movie, the distribution P (W |t), as in Fig 132, and
hence estimate S(W |t). Finally, the information is ob-
tained by explicitly replacing the ensemble average with
a time average,

I(s;W ) = S(W )− 〈S(W |t)〉t. (680)

Each of the entropy terms on the right should behave as
in Eq (677), and so we can extract an estimate of the in-
formation rate Rinfo(∆τ) as a function of time resolution.
Results are shown in Fig 134.
We see that, as we vary the time resolution from 800ms

down to 2ms, the information rate follows the entropy
rate, with a nearly constant 50% efficiency. Although
we should not generalize too much from one example,
this certainly suggests that neurons are making use of a
significant fraction of their capacity in actually encod-
ing sensory signals. Also, this is true even at millisec-
ond time resolution. The idea that the entropy of the
spike train sets a limit to neural information transmis-
sion emerged almost immediately after Shannon’s work,
but it was never clear whether these limits could be ap-
proached by real systems.
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FIG. 134 Entropy and information in a spike train. Exper-
iments on the fly’s motion sensitive visual neuron were ana-
lyzed as described in the text (following Fig 132) to estimate
the total entropy and the information carried about the sen-
sory input. As we vary the time resolution of our analysis
from ∆τ = 800ms down to ∆τ = 2ms, we distinguish finer
details of the neural response and expand the capacity of the
putative neural code; this enhanced capacity is measured by
the increasing entropy. Remarkably, across this huge range,
capacity is used with almost constant efficiency. From Strong
et al (1998a).

Problem 136: Information from single events. This sec-
tion began by defining the information gained in a single observa-
tion. Here, we would like to give the parallel for individual neural
responses, but there is a twist because spikes are rare compared
with silences. Thus it makes sense to ask how much information
we obtain per spike, or per non–silent word W . Imagine that we
look in a window of duration ∆τ at time t, and we are looking
for some event e—this event could be a single action potential, or
some combination of multiple spikes with specific intervals between
them. On average these events occur with some rate r̄e.

(a.) In the small window ∆τ , either the event e occurs or it
does not; for sufficiently small ∆τ , the probability of occurrence is
pe = r̄e∆τ . What is the entropy of the binary variable marking
the occurrence of the event? Can you simplify your result when
pe $ 1? You’ll see that the entropy in this limit is small, but so is
the expected number of events. What is the entropy per event?

(b.) If we know the sensory inputs to this neuron, then the prob-
ability of an event depends on time, locked to the time dependence
of the sensory signal. Let’s call the time dependent rate re(t). As
in (a.), compute the entropy of the binary event/nonevent variable,
but now conditional on knowledge of the sensory inputs.

(c.) Combine your results in (a.) and (b.) to give an expression
for the mean information that the occurrence or non–occurrence
of the event provides about the sensory input. Normalize by the
expected number of events, to give bits per event. Is the limit
∆τ → 0 well behaved? When the dust settles, you should find that
the information per event is

Ie =

〈
re(t)

r̄e
log2

[
re(t)

r̄e

]〉

t

. (681)

(d.) As an alternative view of the same question, suppose that
we observe a large window of time T . If T is sufficiently large, we
can be sure that the event e will occur, but we don’t know when.

Problem 137: Information from single spikes in a simple
model. In Problem [**] above, you constructed a model spike train
using a Poisson process with a time varying rate r(t) = r0ex(t),
where x(t) is a Gaussian stochastic process. Show that, for this

model, the information carried by a single spike about x(t) is lin-
ear in the variance of the signal 〈x2〉. This suggests that if the
signal variance grows, the information carried by spikes grows with
it, without bound. Explain what is wrong with this picture. Sup-
pose instead that the spike rate r(t) depends on x through some
saturating function, for example

r(t) =
r0

1 + exp[−x(t) + θ]
. (682)

Reduce the formula for Ie in this model to a single integral which
you can do numerically. Can you see how the results simplify as
〈x2〉 becomes large? As a hint, notice that this is equivalent to a
model in which

r(t) =
r0

1 + exp[−γ(x(t) + θ̃)]
, (683)

where γ → ∞ while 〈x2〉 stays constant. Is there a setting of the
threshold θ which maximizes Ie? Is there a cost to achieving this
optimum?

One might worry that the high efficiency of coding seen
in the fly’s H1 neuron arises because the fly has relatively
few neurons, and thus is under greater pressure to be ef-
ficient. While this may be true, it seems that high coding
efficiencies are there to be found even in animals like us
and our primate cousins who have very large numbers of
neurons. In humans it is possible to record from individ-
ual receptor cells in our hands and fingertips, contacting
the axons of these cells as they course along the arm to
the spinal cord. Data are more limited than in the fly,
so one has to be more careful to avoid systematic errors,
but the lower bound on the efficiency of coding com-
plex, dynamic variations in the indentation of the skin
is above 50%. In the visual cortex of non–human pri-
mates, there is a classic series of experiments correlating
the perception of motion with the activity of single neu-
rons in area MT. [probably this needs more explanation!]
The standard stimuli for these experiments are random
dot patterns in which a fraction of the dots move coher-
ently while another fraction are randomly deleted and
replaced at new locations; the perception of motion di-
rection becomes less reliable as the degree of coherence
decreases. The evidence that single neurons are mak-
ing a measurable contribution to the perceptual decision
is strong, since one can correlate the number of spikes
generated by a neuron with the animal’s decision about
leftward vs. rightward motion even when the coherence
is zero, and the animal is just guessing.
The experiments in MT focused on asking the animal

to report a decision about motion direction across a two
second window of stimulation. When we look at these
random patterns, however, we see a certain amount of
“jiggling,” especially at low coherence. If we present ex-
actly the same pattern of random dots vs. time, we find
that the neurons respond with a fair degree of reliabil-
ity to the temporal details of the movie, certainly down
to time scales below 10ms. In Fig 135 we see what this
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FIG. 135 Entropy and information in spike trains from a mo-
tion sensitive neurons in the primate visual cortex (area MT);
experiments by Britten et al (1993) and analysis by Strong et
al (1998b). [fill in the caption]

means in terms of the information carried by the spike
trains about the time–varying details of the visual stim-
ulus, rather than just the overall direction of motion.
Here the information, at ∆τ = 6ms time resolution, is
25− 30%. Experiments on the same neurons using stim-
uli that alternated between moving left and right81 on
the 30 − 100ms time scale found information rates of
1 − 2.5 bits/spike, quite comparable to the results with
H1. In summary, although there are differences in the de-
tails of the spike trains from motion sensitive neurons in
flies and monkeys, there is little different in the amount
of information they carry, or the efficiency with this in-
formation is encoded, if we asking about the kinds of
complex, dynamic stimuli that are relevant to the real
world.

We now want to look at information transmission in
the presence of noise, connecting back a bit to what we
discussed in Chapters 1 and 2. Imagine that we are in-
terested in some signal x, and we have a detector that
generates data y which is linearly related to the signal

but corrupted by added noise:

y = gx+ ξ. (684)

It seems reasonable in many systems to assume that the
noise is Gaussian, either for fundamental physical rea-
sons (as with thermal noise), or because it arises from
a superposition of many independent sources, in which
case the central limit theorem takes over. We will also
start with the assumption that x is drawn from a Gaus-
sian distribution just because this is a simple place to
start; we will see that we can use the maximum entropy
property of Gaussians to make some more general state-
ments based on this simple example. The question, then,
is how much information observations on y provide about
the signal x.
The problem of information transmission with Gaus-

sian signals and noise is sufficiently important that it is
worth going through all the algebra quite explicitly; this
is also one of those pleasing problems where, as we cal-
culate, terms proliferate and then collapse into a much
simpler result. So, onward. The statement that ξ is
Gaussian noise means that

P (y|x) = 1√
2π〈ξ2〉

exp

[
− 1

2〈ξ2〉 (y − gx)2
]
. (685)

Our simplification is that the signal x also is drawn from
a Gaussian distribution,

P (x) =
1√

2π〈x2〉
exp

[
− 1

2〈x2〉x
2

]
, (686)

and hence y itself is Gaussian,

P (y) =
1√

2π〈y2〉
exp

[
− 1

2〈y2〉y
2

]
(687)

〈y2〉 = g2〈x2〉+ 〈ξ2〉. (688)

To compute the information that y provides about x we
use Eq. (672):

I(y → x) =

∫
dy

∫
dxP (x, y) log2

[
P (x, y)

P (x)P (y)

]
bits (689)

=
1

ln 2

∫
dy

∫
dxP (x, y) ln

[
P (y|x)
P (y)

]
(690)

=
1

ln 2

〈
ln

[√
2π〈y2〉√
2π〈ξ2〉

]
− 1

2〈ξ2〉 (y − gx)2 +
1

2〈y2〉y
2

〉
,

(691)

where by 〈· · · 〉 we understand an expectation value over the joint distribution P (x, y). Now in Eq. (691) we can
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see that the first term is the expectation value of a con-
stant. The third term involves the expectation value
of y2 divided by 〈y2〉, so we can cancel numerator and
denominator. In the second term, we can take the ex-
pectation value first of y with x fixed, and then aver-
age over x, but since y = gx + ξ the numerator is just
the mean square fluctuation of y around its mean value,
which again cancels with the 〈ξ2〉 in the denominator. So
we have, putting the three terms together,

I(y → x) =
1

ln 2

[
ln

√
〈y2〉
〈ξ2〉 − 1

2
+

1

2

]
(692)

=
1

2
log2

(
〈y2〉
〈ξ2〉

)
(693)

=
1

2
log2

(
1 +

g2〈x2〉
〈ξ2〉

)
bits. (694)

Another way of arriving at these results is to remem-
ber that the information is a difference of entropies [Eq
(674)], but in this case the underlying distributions are
all Gaussian. Thus it’s useful to know, in general, the
entropy of a Gaussian distribution. Suppose that

P (z) =
1√

2π〈(δz)2〉
exp

[
− (z − 〈z〉)2

2〈(δz)2〉

]
. (695)

Now our task is to compute

S = −
∫

dz P (z) log2 P (z) = −
〈
log2 P (z)

〉
. (696)

But

log2 P (z) =
1

ln 2

[
ln

(
1√

2π〈(δz)2〉

)
− (z − 〈z〉)2

2〈(δz)2〉

]
,

(697)
and hence

S = −
〈
log2 P (z)

〉
(698)

=
1

ln 2

[
ln
(√

2π〈(δz)2〉
)
+

〈
(z − 〈z〉)2

2〈(δz)2〉

〉]
(699)

=
1

ln 2

[
1

2
ln
(
2π〈(δz)2〉

)
+

1

2

]
(700)

=
1

2
log2

[
2πe〈(δz)2〉

]
. (701)

Notice that the entropy is independent of the mean, as we
expect, since entropy measures variability or uncertainty.

Problem 138: Using the entropy of Gaussians. Use the
general result on the entropy of Gaussian distributions, Eq (701),

to rederive Eq (694) for the information transmission through the
“Gaussian channel.”

We can gain some intuition by rewriting Eq (694).
Rather than thinking of our detector as adding noise af-
ter generating the signal gx, we can think of it as adding
noise directly to the input, and then transducing this
corrupted input:

y = g(x+ ηeff), (702)

where ηeff = ξ/g. Note that the “effective noise” ηeff is in
the same units as the input x; this is called “referring the
noise to the input” and is a standard way of characteriz-
ing detectors, amplifiers and other devices, as discussed
above.82 Written in terms of the effective noise level, the
information transmission takes a simple form,

I(y → x) =
1

2
log2

(
1 +

〈x2〉
〈η2eff〉

)
bits, (703)

or

I(y → x) =
1

2
log2(1 + SNR), (704)

where the signal to noise ratio is the ratio of the variance
in the signal to the variance of the effective noise, SNR =
〈x2〉/〈η2eff〉.
The result in Eq. (704) is easy to picture: When we

start, the signal is spread over a range δx0 ∼ 〈x2〉1/2, but
by observing the output of our detector we can localize
the signal to a small range δx1 ∼ 〈η2eff〉1/2, and the reduc-
tion in entropy is ∼ log2(δx0/δx1) ∼ (1/2) · log2(SNR),
which is approximately the information gain.

Problem 139: A small point. Try to understand why the
simple argument in the preceding paragraph, which seems sensible,
doesn’t give the exact answer for the information gain at small
SNR.

82 As a reminder, if we build a photodetector it is not so useful to
quote the noise level in Volts at the output—we want to know
how this noise limits our ability to detect dim lights. Similarly,
when we characterize a neuron that uses a stream of pulses to
encode a continuous signal, we don’t really want to know the
variance in the pulse rate (although this is widely discussed); we
want to know how noise in the neural response limits precision
in estimating the real signal, and this amounts to defining an
effective noise level in the units of the signal itself. In the present
case this is just a matter of dividing, but generally it is a more
complex task.
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FIG. 136 Spatial profiles of Hunchback expression in the early
Drosophila embryo. Small dots show experiments from indi-
vidual embryos; circles with error bars are mean and standard
deviation across 51 embryos. In the inset, image in red shows
fluorescent antibody staining for Hb, and green shows the
corresponding measurement for Krüppel. These images are
taken by optical sectioning along the midline of the embryo,
and the intensity is measured in a small area, roughly the size
of a nucleus, the slides along the “rim” of the embryo where
the nuclei are sitting. From Dubuis et al (2011).

To illustrate these ideas, consider the expression of the
“gap genes” in the fly embryo, which we have seen in
Sections [pointers to specific sections in previous chap-
ters]. We recall that, in response to the primary, ma-
ternally supplied morphogens, these genes have varying
levels of expression which provide a first step in building
the blueprint for the fully developed organism. One of
the basic ideas in developmental biology is that these ex-
pression levels carry “positional information,” i.e. that
cells know where they are in the embryo, and hence their
fate in the developed organism, as a result of knowing
the concentrations of these molecules. It seems natural
to ask if we can quantify this positional information, in

bits. To do this, as in Fig 136, we can look at many em-
bryos and measure the concentration vs. position in each
one. If there is a perfect functional relationship, with no
noise, then the transmission of positional information is
limited only by the number of samples that we take along
the position axis, and hence the information in bits will
just be the log of the number of cells. But there is noise,
and this sets a limit to the positional information.
The position along the embryo can be measured by

0 ≤ x ≤ 1. If we assume that the cells acquiring po-
sitional information are distributed uniformly (which is
approximately true), then P (x) is uniform, P (x) = 1.
The expression level of the gene we are looking at will
be called g. What we need to know is the distribution
of expression levels at one position, P (g|x). Experiments
give us samples out of this distribution, but we may or
may not have enough samples to characterize the whole
distribution. What we can do more easily is to measure
the mean ḡ(x) and the variance σ2

g(x), and then approx-
imate P (g|x) as being Gaussian. One might worry that
this approximation is uncontrolled, but in fact we can
say more.
Suppose that all we know is the mean and variance of

the distribution P (g|x). The mutual information I(g;x)
is the difference between the entropy of the distribution
P (g) and the average entropy of the distribution P (g|x),

I(g;x) = S[P (g)]− 〈S[P (g|x)]〉x. (705)

Thus if we can put an upper bound on the entropy
S[P (g|x)], we can put a lower bound on the information.
Suppose we search for a distribution P (g|x) that maxi-
mizes the entropy, while reproducing the measured mean
and variance. As explained in more detail in Appendix
[**], we can do this constrained optimization using the
standard method of Lagrange multipliers. To maximize
S[P (g|x)] we introduce a functional

S̃[P (g|x)] = S[P (g|x)]− λ1

[∫
dg P (g|x)g − ḡ(x)

]
− λ2

[∫
dg P (g|x) (g − ḡ(x))2 − σ2

g(x)

]
. (706)

Now if we maximize S̃[P (g|x)] with respect to P (g|x),
and then extremize with respect to the Lagrange multi-
pliers λ1 and λ2, we will find a distribution that maxi-
mizes the entropy and reproduces the observed mean and
variance. The solution to this problem, as shown in Ap-
pendix [**], is the Gaussian distribution. Thus, when
we approximate P (g|x) as being Gaussian, we generate
a lower bound on the information I(g;x).
In the example of Fig 136, this variance at each posi-

tion is relatively small, with σg(x) ∼ 0.1 in units where

the maximum mean expression level is one. Following
through the computation of entropies as outlined above,
one finds from these data that the expression level of
Hunchback protein provides nearly two bits (give exact
answer, with error bars) of information about position
in the embryo. In the Gaussian approximation this is a
lower bound on the information, but in fact the data sets
are just large enough to make more direct estimates, and
to show that this bound is tight [add a figure to illustrate
this]. Classically, the gap genes have been described as
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specifying boundaries, dividing the embryo into patches
of high (on) and low (off) expression. Evidently a simple
on/off picture corresponds at most to one bit of positional
information, and so a quantitative analysis teaches us
that the focus on “expression boundaries” literally misses
half of the story.

Problem 140: Details of positional information. [Develop
a problem that asks the students to use some of the real data on
the gap genes ...]

As a next step consider the case where we ob-
serve several variables y1, y2, · · · , yK in the hopes of

learning about the same number of underlying signals
x1, x2, · · · , xK . The equations analogous to Eq. (684)
are then

yi = gijxj + ξi, (707)

with the usual convention that we sum over repeated
indices. The Gaussian assumptions are that each xi and
ξi has zero mean, but in general we have to think about
arbitrary covariance matrices,

Sij = 〈xixj〉 (708)

Nij = 〈ξiξj〉. (709)

The relevant probability distributions are

P ({xi}) =
1√

(2π)K detS
exp

[
−1

2
xi · (S−1)ij · xj

]
(710)

P ({yi}|{xi}) =
1√

(2π)K detN
exp

[
−1

2
(yj − gikxk) · (N−1)ij · (yj − gjmxm)

]
, (711)

where again the summation convention is used; detS de-
notes the determinant of the matrix S, (S−1)ij is the ij
element in the inverse of the matrix S, and similarly for
the matrix N .

To compute the mutual information we proceed as be-
fore. First we find P ({yi}) by doing the integrals over
the xi,

P ({yi}) =
∫

dKxP ({yi}|{xi})P ({xi}), (712)

and then we write the information as an expectation
value,

I({yi} →{ xi}) =
〈
log2

[
P ({yi}|{xi})

P ({yi})

]〉
, (713)

where 〈· · · 〉 denotes an average over the joint distribu-
tion P ({yi}, {xi}). As in Eq. (691), the logarithm can
be broken into several terms such that the expectation
value of each one is relatively easy to calculate. Two of
three terms cancel, and the one which survives is related
to the normalization factors that come in front of the
exponentials. After the dust settles we find

I({yi} →{ xi}) =
1

2
Tr log2[1+N−1 · (g · S · gT )], (714)

where Tr denotes the trace of a matrix, 1 is the unit
matrix, and gT is the transpose of the matrix g.

Problem 141: The multi–dimensional Gaussian. Fill in
the details leading to Eq (714). [where do I give the problem Tr ln
= ln det? connect here]

The matrix g · S · gT describes the covariance of those
components of y that are contributed by the signal x. We
can always rotate our coordinate system on the space of
ys to make this matrix diagonal, which corresponds to
finding the eigenvectors and eigenvalues of the covariance
matrix; these eigenvectors are also called “principal com-
ponents.” For a Gaussian distribution, the eigenvectors
describe directions in the space of y which are fluctuat-
ing independently, and the eigenvalues are the variances
along each of these directions. If the covariance of the
noise is diagonal in the same coordinate system, then the
matrix N−1 · (g · S · gT ) is diagonal and the elements
along the diagonal are the signal to noise ratios along
each independent direction. Taking the Tr log is equiv-
alent to computing the information transmission along
each direction using Eq. (704), and then summing the
results.
An important case is when the different variables xi

represent a signal sampled at several different points in
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time. Then there is some underlying continuous func-
tion x(t), and in place of the discrete Eq. (707) we have
the continuous linear response of the detector to input
signals,

y(t) =

∫
dt′M(t− t′)x(t′) + ξ(t). (715)

In this continuous case the analog of the covariance ma-
trix 〈xixj〉 is the correlation function 〈x(t)x(t′)〉. We are
usually interested in signals (and noise) that are station-
ary. This means, as discussed in Appendix A.2, that all
statistical properties of the signal are invariant to trans-
lations in time: a particular pattern of wiggles in the
function x(t) is equally likely to occur at any time. Thus,
the correlation function which could in principle depend
on two times t and t′ depends only on the time difference,

〈x(t)x(t′)〉 = Cx(t− t′). (716)

The correlation function generalizes the covariance ma-
trix to continuous time, but we have seen that it can be
useful to diagonalize the covariance matrix, thus finding
a coordinate system in which fluctuations in the different
directions are independent. From [pointer] we know that
the answer is to go into a Fourier representation, where
(in the Gaussian case) different Fourier components are
independent and their variances are (up to normaliza-
tion) the power spectra.

To complete the analysis of the continuous time Gaus-
sian channel described by Eq. (715), we again refer noise

to the input by writing

y(t) =

∫
dt′M(t− t′)[x(t′) + ηeff(t

′)]. (717)

If both signal and effective noise are stationary, then each
has a power spectrum; let us denote the power spectrum
of the effective noise ηeff by Neff(ω) and the power spec-
trum of x by Sx(ω) as usual. There is a signal to noise
ratio at each frequency,

SNR(ω) =
Sx(ω)

Neff(ω)
, (718)

and since we have diagonalized the problem by Fourier
transforming, we can compute the information just by
adding the contributions from each frequency compo-
nent, so that

I[y(t) → x(t)] =
1

2

∑

ω

log2[1 + SNR(ω)]. (719)

Finally, to compute the frequency sum, we recall that [I
think this is found also in an Appendix; check!]

∑

n

f(ωn) → T

∫
dω

2π
f(ω). (720)

Thus, the information conveyed by observations on a
(large) window of time becomes

I[y(0 < t < T ) → x(0 < t < T )] → T

2

∫
dω

2π
log2[1 + SNR(ω)] bits. (721)

We see that the information gained is proportional to the
time of our observations, so it makes sense to define an
information rate:

Rinfo ≡ lim
T→∞

1

T
· I[y(0 < t < T ) → x(0 < t < T )]

(722)

=
1

2

∫
dω

2π
log2[1 + SNR(ω)] bits/sec. (723)

Note that in all these equations, integrals over frequency
run over both positive and negative frequencies; if the
signals are sampled at points in time spaced by τ0 then
the maximum (Nyquist) frequency is |ω|max = π/τ0.

Problem 142: How long to look? We know that when we
integrate for longer times we can suppress the effects of noise and

hence presumably gain more information. Usually we would say
that the benefits of integration are cut off by the fact that the
signals we are looking at will change. But once we think about
information transmission there is another possibility—perhaps we
would learn more by using the same time to look at something
new, rather than getting a more accurate view of something we
have already seen. To address this possibility, let’s consider the
following simple model. We look at one thing for a time τ , and
then jump to something completely new. Given that we integrate
for τ , we achieve some signal–to–noise ratio which we’ll call S(τ).

(a.) Explain why, in this simple model, if the noise is Gaussian
then the rate at which we gain information is at most

Rinfo(τ) =
1

τ
log2 [1 + S(τ)] . (724)

How does the assumption that we ‘jump to something completely
new’ enter into the justification of this formula?

(b.) To make progress we need a model for S(τ). Since this is
the signal–to–noise ratio let’s start with the signal. Suppose that
inputs are given by x, and the output is y. At t = 0, the value of
y is set to zero, and after that our sensory receptor responds to its
inputs according to a simple differential equation

τ0
dy

dt
= −y + x. (725)
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Show that y(τ) = x[1 − exp(−τ/τ0)]. Now for the noise, suppose
that ηeff(t) has a correlation function

〈ηeff(t)ηeff(t′)〉 = σ2
0e

−|t−t′|/τc . (726)

Show that if we average the noise over a window of duration τ ,
then the variance

σ2(τ) ≡
〈[

1

τ

∫ τ

0
dt ηeff(t)

]2 〉
≈ σ2

0 (τ $ τ0) (727)

≈
2σ2

0τc

τ
(τ % τ0). (728)

Give a more general analytic expression for σ2(τ). Put these factors
together to get an expression for S(τ) = y2(τ)/σ2(τ). To keep
things simple, you can assume that the time scale which determines
the response to inputs is the same as that which determines the
correlations in the noise, so that τc = τ0.

(c.) Hopefully you can show from your results in [b] that S(τ %
τ0) ∝ τ . This corresponds to our intuition that signal–to–noise
ratios grow with averaging time because we beat down the noise,
not worrying about the possibility that the signal itself will change.
What happens for τ $ τ0?

(d.) Suppose that τ0 is very small, so that all “reasonable” values
of τ % τ0. Then, from [c], S(τ) = Aτ , with A a constant. With this
assumption, plot Rinfo(τ); show that with proper choice of units,
you don’t need to know the value of A. What value of τ maximizes
the information rate? Is this consistent with the assumption that
τ % τ0?

(e.) In general, the maximum information is found at the point
where dRinfo/dτ = 0. Show that this condition can be rewritten as
a relationship between the signal–to–noise ratio and its logarithmic
derivative, z = d lnS(τ)/d ln τ . From your previous results, what
can you say about the possible values of z as τ is varied? Use this
to bound S(τ) at the point of maximum Rinfo. What does this say
about the compromise between looking carefully at one thing and
jumping to something new?

(f.) How general can you make the conclusions that you draw in
[e]?

In the same way that we used the Gaussian approxima-
tion to put bounds on the positional information carried
by the gap genes, we can put bounds on the informa-
tion carried by sensory neurons. As discussed in Section
[**], we can reconstruct continuous sensory input signals
from the discrete sequences of action potentials, some-
times quite accurately. Concretely, the sensory stimulus
s(t) could be light intensity as a function of time in a
small region of the visual field, sound pressure as a func-
tion of time at the ear canal, the amplitude of mechanical
vibrations in sensors such as the cricket cercus and frog
sacculus, ... . We can estimate the signal from the spike
times {ti} in a single neuron as

sest(t) =
∑

i

f(t− ti), (729)

where the filter f(τ) is chosen to minimize χ2 = 〈|sest(t)−
s(t)|2〉. Then the quality of the reconstructions can be
evaluated by measuring the power spectrum of errors in
the reconstruction, and referring these errors to the in-
put, frequency component by frequency component,

s̃est(ω) = g(ω) [s̃(ω) + η̃eff(ω)] . (730)

(A)

(C) (D)

(B)

FIG. 137 Coding efficiency in cricket and frog vibration sen-
sors. (A) A schematic of experiments on the cricket cercal sen-
sors, with direct stimulation of the sensory hairs and record-
ing from the primary sensory neurons. (B) Stimulus (dashed)
and reconstruction (Solid line) in experiments on the cercal
neurons. (C) Power spectral density of the signal, and the
noise ηeff in the reconstructions, from Eq(730). (D) Coding
efficiency for example neurons in the cricker cercus and the
frog sacculus, using successively higher order approximations
to the spike train entropy. Variable timing precision is im-
plemented by providing the reconstruction algorithm in Eq
(729) with spike times ti at limited resolution. From Rieke et
al (1993).

Although the errors in the reconstruction might not be
exactly Gaussian, the maximum entropy argument above
tells us that we can put a lower bound on the informa-
tion which the spike train provides about the stimulus
s(t) by measuring the power spectrum of the effective
noise ηeff . An example is shown in Fig 137, from ex-
periments on the mechanical sensors in the cricket and
frog. Importantly, we can also put upper bounds on the
entropy of the spike train, first by assuming that spikes
occur independently, then by assuming that the inter-
vals between spikes are independent, then allowing for
correlations between successive intervals. With a lower
bound on the information and an upper bound on the
entropy, we have a lower bound on their ratio, the cod-
ing efficiency. In these systems, as with the case of H1 in
Fig 134, we see that efficiencies reach ∼ 50% with timing
precision in the millisecond range.
By now both the “direct” and the “reconstruction”

methods have been used to measure information rates
and coding efficiencies in a wide range of neurons re-
sponding to sensory stimuli, from the first steps of sen-
sory coding in invertebrates, such as the cricket cercal
system in Fig 137, to cells deep in primate visual cortex.
The result that single neurons use 30–50% of their spike
train entropy to encode sensory information, even down
to millisecond resolution, has been confirmed in many
systems [maybe reminder that references are at the end
of the section?]. An important thread running through
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this work is that information rates and coding efficien-
cies are higher, and the high coding efficiency extends
to higher time resolution, when sensory inputs are more
like those which occur in nature—complex, dynamic, and
with enormous dynamic range; an example from the frog
auditory system is shown in Fig 138 [do we need more
examples here?]. These results suggest not only that the
brain is capable of efficient coding, but also that this ef-
ficiency is achieved by matching neural coding strategies
to the structure of natural sensory inputs. We will return
to this idea in Section IV.C.

The Gaussian channel gives us the opportunity to ex-
plore the way in which noise limits information trans-
mission. Imagine that we have measured the spectrum
of the effective noise, Neff(ω). By changing the spec-
trum of input signals, S(ω), we can change the rate of
information transmission. Can we maximize this infor-
mation rate? Clearly this problem is not well posed with-
out some constraints: if we are allowed just to increase
the amplitude of the signal—multiply the spectrum by a
large constant—then we can always increase information
transmission. We need to study the optimization of in-
formation rate with some fixed ‘dynamic range’ for the
signals. A simple example, considered by Shannon at the
outset, is to fix the total variance of the signal, which is
the same as fixing the integral of the spectrum. We can
motivate this constraint by noting that if the signal is
a voltage and we have to drive this signal through a re-

FIG. 138 Coding efficiency in frog auditory neurons. At left,
the power spectrum of a broadband, artificial stimulus (top)
and a stimulus shaped to have the same spectrum as bull-
frog calls (bottom). These stimuli were played to the bullfrog
while recording from individual auditory neurons emerging
from the amphibian papilla. Reconstructing the sound pres-
sure as a function of time allows us to bound the information
transmission rate, as explained in the text, and from this we
estimate the coding efficiency—the ratio of the information
rate to the entropy rate. In this example, at right, we see
clearly that the coding efficiency is substantially higher for
the more naturalistic stimuli, approaching 90%. From Rieke
et al (1995).

sistive element, then the variance is proportional to the
mean power dissipation. Alternatively, it might be easy
to measure the variance of the signals that we are inter-
ested in (as for the visual signals in the example below),
and then the constraint is empirical.
So the problem we want to solve is maximizing Rinfo

while holding 〈x2〉 fixed. As before, we introduce a La-
grange multiplier and maximize a new function

R̃ = Rinfo − λ〈x2〉 (731)

=
1

2

∫
dω

2π
log2

[
1 +

Sx(ω)

Neff(ω)

]
− λ

∫
dω

2π
Sx(ω).

(732)

The value of the function Sx(ω) at each frequency con-
tributes independently, so it is easy to compute the func-
tional derivatives,

δR̃

δSx(ω)
=

1

2 ln 2
· 1

1 + Sx(ω)/Neff(ω)
· 1

Neff(ω)
−λ, (733)

and the optimization condition is δR̃/δSx(ω) = 0. The
result is that

Sx(ω) +Neff(ω) =
1

2λ ln 2
. (734)

Thus the optimal choice of the signal spectrum is one
which makes the sum of signal and (effective) noise equal
to white noise! This, like the fact that information is
maximized by a Gaussian signal, is telling us that effi-
cient information transmission occurs when the received
signals are as random as possible given the constraints.
Thus an attempt to look for structure in an optimally en-
coded signal (say, deep in the brain) will be frustrating.
In general, complete whitening as suggested by Eq.

(734) can’t be achieved at all frequencies, since if the
system has finite time resolution (for example) the effec-
tive noise grows without bound at high frequencies. Thus
the full solution is to have the spectrum determined by
Eq. (734) everywhere that the spectrum comes out to a
positive number, and then to set the spectrum equal to
zero outside this range. If we think of the effective noise
spectrum as a landscape with valleys, the condition for
optimizing information transmission corresponds to fill-
ing the valleys with water; the total volume of water is
the variance of the signal.

Problem 143: Whitening. Consider a system that responds
linearly to a signal s(t), with added noise η(t):

x(t) =

∫
dτ F (τ)s(t− τ) + η(t). (735)

Assume that the noise is Gaussian and white, with power spectrum
N0, so that

〈η(t)η(t′)〉 = N0δ(t− t′). (736)
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For simplicity, assume that the signal s(t) is Gaussian, with a power
spectrum S(ω),

〈s(t)s(t′)〉 =
∫

dω

2π
S(ω) exp[−iω(t− t′)]. (737)

(a.) Write an expression for the rate Rinfo at which the observ-
able x(t) provides information about the signal s(t).

(b.) The variance of the variable x(t) is not well defined. Why?
Consider just the component of x(t) that comes from the signal
s(t), that is Eq (735) but with η = 0. Find an expression for the
variance of this “ouput signal.”

(c.) Consider the problem of maximizing Rinfo by adjusting the
filter F (τ). Obviously the information transmission is larger if F is
larger, so to make the problem well posed assume that the variance
of the output signal (from [b]) is fixed. Show that this variational
problem can be solved explicitly for |F̃ (ω)|2, where F̃ (ω) is the
Fourier transform of the filter F (τ). Can you explain intuitively
why only the modulus, and not the phase, of F̃ (ω) is relevant here?

(d.) Find the limiting form of the optimal filter as the noise
becomes small. What does this filter do to the input signal? Ex-
plain why this makes sense. Saying that “noise is small” is slightly
strange, since N0 has units. Give a more precise criterion for your
small noise limit be valid.

(e.) Consider the case of an input with exponentially decaying
correlations, so that

S(ω) =
2〈s2〉τc

1 + (ωτc)2
, (738)

where τc is the correlation time. Find the optimal filter in this
case, and use this to evaluate the maximum value of Rinfo as a
function of the output signal variance. You should check that your
results for Rinfo, which should be in bits/s, are independent of the
units used for the output variance and the noise power spectrum.
Contrast your result with what would happen if |F̃ (ω)| were flat as
a function of frequency, so that there was no real filtering (just a
multiplication so that the output signal variance comes out right).
How much can one gain by building the right filter?

These ideas have been used to characterize informa-
tion transmission across the first synapse in the fly’s vi-
sual system. We have seen these data before, in think-
ing about how the precision of photon counting changes
as the background light intensity increases. Recall from
Section I.A that, over a reasonable dynamic range of in-
tensity variations, the average voltage response of the
photoreceptor cell is related linearly to the intensity or
contrast in the movie, and the noise or variability δV (t)
is governed by a Gaussian distribution of voltage fluctu-
ations around the average:

V (t) = VDC +

∫
dt′T (t− t′)C(t′) + δV (t). (739)

This (happily) is the problem we have just analyzed.
As before, we think of the noise in the response as

being equivalent to noise δCeff(t) that is added to the
movie itself,

V (t) = VDC +

∫
dt′T (t− t′)[C(t′) + δCeff(t)]. (740)

Since the fluctuations have a Gaussian distribution, they
can be characterized completely by their power spectrum

N eff
C (ω), which measures the variance of the fluctuations

that occur at different frequencies,

〈δCeff(t)δCeff(t
′)〉 =

∫
dω

2π
N eff

C (ω) exp[−iω(t− t′)].

(741)
There is a minimum level of this effective noise set by
the random arrival of photons (shot noise). The photon
noise is white if expressed as N eff

C (ω), although it makes
a nonwhite contribution to the voltage noise. As we have
discussed, over a wide range of background light intensi-
ties and frequencies, the fly photoreceptors have effective
noise levels that reach the limit set by photon statistics.
At high frequencies there is excess noise beyond the phys-
ical limit, and this excess noise sets the time resolution
of the system.
The power spectrum of the effective noise tells us, ul-

timately, what signals the photoreceptor can and cannot
transmit. How do we turn these measurements into bits?
One approach is to assume that the fly lives in some
particular environment, and then calculate how much in-
formation the receptor cell can provide about this par-
ticular environment. But to characterize the cell itself,
we might ask a different question: in principle how much
information can the cell transmit? To answer this ques-
tion we are allowed to shape the statistical structure of
the environment so as to make the best use of the recep-
tor (the opposite, presumably, of what happens in evo-
lution!). This is just the optimization discussed above,
so it is possible to turn the measurements on signals and
noise into estimates of the information capacity of these
cells. This was done both for the photoreceptor cells and
for the large monopolar cells (LMCs) that receive direct
synaptic input from a group of six receptors. From mea-
surements on natural scenes the mean square contrast
signal was fixed at 〈C2〉 = 0.1. Results are shown in Fig
139.
The first interesting feature of the results is the scale:

individual neurons are capable of transmitting well above
1000 bits per second. This does not mean that this ca-
pacity is used under natural conditions, but rather speaks
to the precision of the mechanisms underlying the detec-
tion and transmission of signals in this system. Second,
information capacity continues to increase as the level of
background light increases: noise due to photon statistics
is less important in brighter lights, and this reduction of
the physical limit actually improves the performance of
the system even up to very high photon counting rates,
indicating once more that the physical limit is relevant to
the real performance. Third, we see that the information
capacity as a function of photon counting rate is shifted
along the counting rate axis as we go from photoreceptors
to the LMCs, and this corresponds (quite accurately!) to
the fact that LMCs integrate signals from six photore-
ceptors and thus act is if they captured photons at a six
times higher rate. Finally, in the large monopolar cells in-
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FIG. 139 At left, the effective contrast noise levels in a single
photoreceptor cell, a single LMC (the second order cell) and
the inferred noise level for a single active zone of the synapse
from photoreceptor to LMC. The hatching shows the signal
spectra required to whiten the total output over the largest
possible range while maintaining the input contrast variance
〈C2〉 = 0.1, as discussed in the text. At right, the resulting
information capacities as a function of the photon counting
rates in the photoreceptors. From de Ruyter van Steveninck
& Laughlin (1996).

formation has been transmitted across a synapse, and in
the process is converted from a continuous voltage signal
into discrete events corresponding to the release of neuro-
transmitter vesicles at the synapse. As a result, there is
a new limit to information transmission that comes from
viewing the large monopolar cell as a “vesicle counter.”

[This discussion needs to be fleshed out. It’s also the
second independent use of max ent in this section, which
makes me worry that leaving max ent to an Appendix
may be a mistake, although it also comes up earlier ..
this is a pretty big organizational isse. Also was think-
ing of being explicit about max ent for counting, above,
which would make things easier here! If every vesicle
makes a measurable, deterministic contribution to the
cell’s response (a generous assumption), then the large
monopolar cell’s response is equivalent to reporting how
many vesicles are counted in a small window of time
corresponding to the photoreceptor time resolution. We
don’t know the distribution of these counts, but we can
estimate (from other experiments, with uncertainty) the
mean count, and we know that there is a maximum en-
tropy for any count distribution once we fix the mean
(see, for example, Appendix A.8). No mechanism at the
synapse can transmit more information than this limit.
Remarkably, the fly operates within a factor of two of
this limit, and the agreement might be even better but
for uncertainties in the vesicle counting rate.

[This section needs a summary and conclusion!]

To a remarkable extent, Shannon’s original work provides a com-
plete and accessible guide to the foundations of the subject (Shan-
non 1948). Seldom has something genuinely new emerged so fully
in one (admittedly long, two part) paper. For a modern text-
book account, the standard is set by Cover & Thomas (1991). An
fascinating if idiosyncratic treatment of Shannon’s ideas is given
by Brillouin (1962). A recent textbook that emphasizes connec-
tions between information theory and statistical physics is Mézard
& Montanari (2009). The brief discussion of four letter words is
based on Stephens & Bialek (2010).
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Mézard & Montanari 2009: Information, Physics and Com-
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I haven’t said anything about error correcting codes. I don’t see, in
the short run, how to connect these elegant ideas to real biological
phenomena. On the other hand, they are so interesting ... at the
very least I will need to give references, and some commentary
about why we should be trying to think about this.

B. Does biology care about bits?

The question for this section has been with us almost
since Shannon’s original work. One the one hand, the
few examples we have seen in the last section certainly
suggest that organisms are squeezing more bits out of
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their hardware than we might naively have expected, per-
haps even coming close to physical limits on information
transmission. On the other hand, the usual view of in-
formation theory is as a theory for communication, with
its most sophisticated developments in the context of er-
ror correcting codes, which seem of little relevance to
the natural (as opposed to the engineered) world. Here
we’ll review old ideas about the connection of informa-
tion to gambling, and see how closely related ideas have
reappeared in thinking about the life strategies of bac-
terial populations. Then we’ll step back and try to look
more generally at the connections among information, bi-
ological function and evolutionary fitness, and argue that
evolution really can select for biological mechanisms that
are efficient in an information theoretic sense.

To start, let us consider a simple game; this may seem
like a strange topic for a physics course, but please bear
with me! I will flip a coin, and you bet on whether it
will come up heads or tails. If you get it right, I double
your money. If you’re wrong, you lose what you bet. If
this is a fair coin, so that heads and tails each come up
half the time, there really isn’t anything to analyze, what
happens is “just chance.” But if you know, for example,
that this is a biased coin, and that the probability of
heads really is 60%, you might be tempted to put all of
your money on heads. On average, if you bet one dollar
you will receive 2 × (0.6) = 1.2 dollars in return, which
sounds good. Indeed, if we play only once then this is
what you should do, since it will maximize your expected
return.

But what happens if we are going to play repeatedly,
which you might think is a better metaphor for life? Now
if you put all your money on heads, there is a 40% chance
that, in one flip, you’ll lose it all. Suppose that instead
you put a fraction f of your money on heads and a frac-
tion 1−f on tails. If we introduce a binary variable n = 1
for heads and n = 0 for tails, then on the ith flip your
winnings will change by a factor

Gi = 2× [fni + (1− f)(1− ni)] , (742)

where ni marks what happens on the ith flip. After N
successive flips you will have a gain

Gtotal(N) = 2N
N∏

i=1

[fni + (1− f)(1− ni)] , (743)

where we are assuming that you consistently put a frac-
tion f of your accumulated winnings down as a bet on

heads, and the remainder on tails.
To keep going, we want to write the product in Eq

(743) as the exponential of a sum. It’s useful to notice
that, becuase ni is either 0 or 1, we have

fni+(1−f)(1−ni) = exp [ni ln(f) + (1− ni) ln(1− f)] .
(744)

This means that we can write the total gain

Gtotal(N) = 2N
N∏

i=1

[fni + (1− f)(1− ni)]

= 2N
N∏

i=1

exp [ni ln(f) + (1− ni) ln(1− f)]

(745)

= exp [NΛ(f ; {ni})] , (746)

where

Λ(f ; {ni}) = ln 2 +
1

N

N∑

i=1

[ni ln(f) + (1− ni) ln(1− f)]

(747)
Written this way, Λ(f ; {ni}) define a rate of exponential
growth for your winnings. But Λ(f ; {ni}) depends not
only on your betting strategy, summarized by the fraction
f that you put on heads, but also on the sequence of
heads and tails that come up in the game, denoted by
{ni}. The key point is that, if we play many times, so
we can think about the limit N → ∞, this dependence
on the details of the flips goes away.

We recall that, for any well behaved random vari-
able, the average over N observations must approach the
mean computed from the probability distribution as N
becomes large. In the present case, if ni is a binary vari-
able that takes the value ni = 1 with probability p and
ni = 0 with probability 1 − p, then as N becomes large
we should have

1

N

N∑

i=1

ni → p, (748)

and similarly

1

N

N∑

i=1

(1− ni) → 1− p. (749)

We can use this to evaluate the long term growth of your
winnings, simplifying the results of Eq (747):
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1

N
lnGtotal(N) ≡ Λ(f) = ln 2 +

1

N

N∑

i=1

[ni ln(f) + (1− ni) ln(1− f)] (750)

= ln 2 +

(
1

N

N∑

i=1

ni

)
ln(f) +

(
1

N

N∑

i=1

(1− ni)

)
ln(1− f)

→ ln 2 + p ln(f) + (1− p) ln(1− f), (751)

where again p is the probability of heads. To maximize
the growth rate Λ(f), as usual we differentiate and set
the result to zero:

Λ(f) = ln 2 + p ln(f) + (1− p) ln(1− f)

dΛ(f)

df
= p

1

f
+ (1− p)(−1)

1

1− f
; (752)

dΛ(f)

df

∣∣∣∣∣
f=fopt

= 0

⇒ 0 = p
1

fopt
+ (1− p)(−1)

1

1− fopt
(753)

1− p

1− fopt
=

p

fopt
, (754)

or more simply fopt = p. This is an interesting result:
you maximize the rate at which your winnings will grow
by “matching” the fraction of your resources that you
bet on heads to the probability that the coin will come
up heads, and similarly for tails.

Problem 144: Check that fopt = p is a maximum, and not a
minimum, of Λ(f).

Problem 145: If we bet only once, then in this simple game the
maximum mean payoff is obtained by betting on the most likely
outcome. On the other hand, as we play many times—more pre-
cisely, in the limit that we play infinitely many times—what we
have seen is that a sort of matching strategy, or “proportional gam-
bling” maximizes the growth rate. Explore the crossover between
these limits. You might start with some simple simulations, and
then see if you can make analytic progress, perhaps saying some-
thing about the leading 1/N corrections at large N . I am leaving
this deliberately vague and open ended, hoping that you will play
around.

Something even more interesting happens when we
evaluate the optimal growth rate, that is Λopt = Λ(fopt):

Λopt = Λ(f = p) (755)

= ln 2 + p ln(p) + (1− p) ln(1− p) (756)

= ln 2− [−p ln(p)− (1− p) ln(1− p)] . (757)

These terms should be starting to look familiar. The
term ln 2 is the entropy for a binary variable (heads/tails)
if you don’t know anything about what to expect, and

hence the two alternatives are equally likely. In contrast,
the term in brackets,

−p ln(p)− (1− p) ln(1− p),

is the entropy of a binary variable if you know that the
two alternatives come up with probabilities p and 1− p.
Thus the optimal growth rate is the difference in entropy
between what might happen with an arbitrary coin and
what you know will happen with this coin. In other
words, the maximum rate at which your winnings can
grow in a simple gambling game is equal to the infor-
mation that you have about the outcome of a single coin
flip.
This connection between information theory and gam-

bling was discovered in the 1950s by Kelly, who was
searching for some interpretation of Shannon’s work that
didn’t refer to the process of communication. Obviously
what we have worked out here is a very simple and spe-
cial case, and we need to do much more in order to claim
that the connection is general. But before launching into
this let me emphasize something about Kelly’s result.
At some intuitive level, we can all agree that if we know
more about the outcome of the coin flip (or the horse
race, or the stock market, or ... ) then we should be
able to make more money. In a very general context,
Shannon proved that “know more” should be quantified
by various entropy–like quantities, but it’s not obvious
that the knowledge measured by Shannon’s bits is actu-
ally the useful knowledge when it comes time to make a
bet. Even if bits are the right measure, the connection
between information and the growth of winnings could
have been much more vague; you could imagine, for ex-
ample, that the growth rate is bounded by some func-
tion of the information, and that this bound might or
might not be realizable with feasible strategies. In con-
trast to these pessimistic alternatives, Kelly showed that
the maximum growth rate is the information, and his
proof is constructive so we actually know how to achieve
this maximum. This really is quite astonishing.
Let’s try to generalize what what we have done. Sup-

pose that on each trial i, there are many possible out-

comes, µ = 1, 2, · · · ,K; we’ll write n(µ)
i = 1 if on the ith

trial the outcome is µ, and n(µ)
i = 0 otherwise. Further,

let’s say that you bet a fraction of your assets fµ on each
of the possible outcomes µ, and if µ actually happens
then each dollar bet on this outcome becomes gµ dollars;
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all money bet on things that don’t happen is lost. If you
need an example of this sort of game, think of a horse
race in which you get something back only if you pick the
winner. We’ll assume that the different outcomes occur
with probability pµ, but we won’t assume anything about
the relationship between these odds and the payoffs gµ.

Having defined all the factors, the analog of Eq (743),
is

Gtotal(N) =
N∏

i=1

[
K∑

µ=1

fµgµn
(µ)
i

]
. (758)

Now we can follow the same steps as before:

lnGtotal(N) =
N∑

i=1

ln

[
K∑

µ=1

fµgµn
(µ)
i

]
(759)

=
N∑

i=1

K∑

µ=1

n(µ)
i ln(fµgµ) (760)

1

N
lnGtotal(N) =

K∑

µ=1

[
1

N

N∑

i=1

n(µ)
i

]
ln(fµgµ) (761)

→ Λ({fµ}) =
K∑

µ=1

pµ ln(fµgµ). (762)

We want to maximize the growth rate Λ, subject to the
normalization condition that the fractions of our assets
placed on all the options add up (

∑
µ fµ = 1), so we

introduce a Lagrange multiplier α and find the maximum
of the function

Λ̃({fµ}) =
K∑

µ=1

pµ ln(fµgµ)− α

[
K∑

µ=1

fµ − 1

]
. (763)

The equations for the maximum are, as usual,

∂Λ̃({fµ})
∂fµ

∣∣∣∣∣
{fµ}={fopt

µ }

= 0 (764)

⇒ 0 =
pµ

fopt
µ

− α, (765)

fopt
µ =

pµ
α
; (766)

since
∑

µ fµ =
∑

µ pµ = 1, we must have α = 1, so that

fopt
µ = pµ. (767)

Substituting, we find the maximum growth rate

Λopt =
K∑

µ=1

pµ ln(pµgµ). (768)

The first interesting thing is that we recover from
the simpler heads/tails problem the idea of proportional
gambling [Eq (767)]: you maximize the rate at which

your winnings will grow by “matching” the fraction of
your resources that you bet on each horse in the race to
the probability that this horse will win. Strangely, this is
independent of the rewards or gains as expressed in the
parameters {gµ}.
[At some point should make a connection between pro-

portional gambling and “matching” behavior .. is this
understood?]
The second point is that we can see what it means for

the odds to be truly fair. If our opponent in this game
(the track operator) sets the returns in inverse propor-
tion to the probability that each horse wins, gµ = 1/pµ,
then the maximum growth rate of our winnings, Λopt, is
exactly zero.
This notion of fairness leads us to an information the-

oretic interpretation of Λopt. Notice that we have done
our calculation on the assumption that we have perfect
knowledge of the distribution {pµ}. Perhaps the track
operators have less knowledge, and so they set the odds
as if the distribution were something else, which we can
call {qµ}. More generally, we can define

qµ =
1

Z

1

gµ
, (769)

with Z chosen so that
∑

µ qµ = 1. If Z = 1, then the
payoffs {gµ} are fair in the distribution {qµ}, while if
Z < 1 the track operators are keeping something for
themselves (as they are wont to do). Then we can see
that

Λopt = − lnZ +
K∑

µ=1

pµ ln

(
pµ
qµ

)
. (770)

You should recognize the second term as the Kullback–
Leibler divergence between the probability distributions
p ≡ {pµ} and q ≡ {qµ}, from Eq (656).

DKL(p||q) ≡
K∑

µ=1

pµ ln

(
pµ
qµ

)
. (771)

We recall that the KL divergence measures the cost
of coding signals with the wrong distribution. Equation
(770) shows us that better knowledge of the probability
distribution doesn’t just allow us to make shorter codes.
The amount by which we can compress the data describ-
ing the sequence of winners in the horse race is exactly
the amount by which our winnings can grow. More pre-
cisely, if we can build a shorter code than the one built
implicitly by the track operators, then we will gain ex-
actly in proportion to this shortening. Thus, in this con-
text, we literally get paid for constructing more efficient
representations of the data (!).
We have connected the growth rate of winnings to the

efficiency with we can represent data, but this isn’t quite
as compelling as a direct connection to how much infor-
mation we have about the outcome of the game, which
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is where we started in the case of coin flips; let’s see if
we can do better. Imagine that, on each trial i, we have
access to some signal xi that tells us something about the
likely outcome. More precisely, when we observe xi, the
probability that the outcome will be µ on trial i is not
pµ but rather some conditional probability p(µ|xi); if the
signals x are themselves chosen from some distribution
P (x), then for consistency we must have

pµ =

∫
dxP (x)p(µ|x). (772)

To use the extra information provided by the signal x,
you will adjust your strategy to bet a fraction fµ(xi)
on the outcome µ given that you have ‘heard’ xi. How
does the extra information provided by x improve your
winnings?
To compute the growth of winnings in the presence of

extra information, we proceed along the same lines as
before, to find the analog of Eq (762):

Λ[{fµ(x)}] =
∫

dxP (x)
K∑

µ=1

p(µ|x) ln[fµ(x)gµ]. (773)

Now we need to maximize this, choosing strategies that
are defined by the functions fµ(x), where for each x we
have the constraint that

∑
µ fµ(x) = 1. Once again

the solution to this optimization problem is proportional
gambling, but now the proportions are conditioned on
your knowledge, so that the analog of Eq (767) becomes

fopt
µ (x) = p(µ|x). (774)

This determines the optimal growth rate,

Λopt =

∫
dxP (x)

K∑

µ=1

p(µ|x) ln[p(µ|x)gµ]. (775)

Problem 146: Fill in the steps leading to the derivation of
Λ[{fµ(x)}] in Eq (773) and the consequences of optimizing this
functional, Eq’s (774) and (775).

The important result is the gain in growth rate that is
possible by virtue of having access to the signal x, that

is the difference between Λopt in Eq (775) and Eq (768):

∆Λopt =

∫
dxP (x)

K∑

µ=1

p(µ|x) ln[p(µ|x)gµ]

−
K∑

µ=1

pµ ln[pµgµ] (776)

=

∫
dxP (x)

K∑

µ=1

p(µ|x) ln[p(µ|x)gµ]

−
∫

dxP (x)
K∑

µ=1

p(µ|x) ln[pµgµ] (777)

=

∫
dxP (x)

K∑

µ=1

p(µ|x) ln
[
p(µ|x)
pµ

]
. (778)

We see that the details of the payoffs gµ drop out, and
that the gain in growth rate is exactly the mutual infor-
mation between the signal x and the outcomes µ.
Once again information translates directly into the (in-

creased) rate at which capital can grow. Thus, the ab-
stract measure of information has a clear impact on very
down to earth measures of performance in a real world
task. But, beyond metaphor,83 what does this have to
do with life?
The most direct connection between life and gambling

is through the phenomenon of persistence. Many bac-
teria have two distinct lifestyles. In one (for example),
they grow quickly in most environments, but are very
susceptible to being killed by antibiotics. In the other,
they grow very slowly, but survive the antibiotics. This
is almost exactly the horse race—if the bacterium bets
correctly, it grows, but if it bets incorrectly it dies (or
grows at rates far below what is possible). Absent any
direct measurements on the environment, a population
of genetically identical bacteria will maximize its growth
rate by a form of proportional gambling, so that even
in a healthy person, not taking antibiotics, we should
see that some of the resident bacteria persist in a state
of slow growth and (eventual) antibiotic resistance;84 the
fraction of bacteria in this states reflects the population’s
estimate of the probability that they will encounter the
hostile environment of antibiotics [do we know anything
about whether bacteria are doing this correctly?]. We
also see that gaining information about the environment
opens the possibility of faster growth, in precise propor-
tion to the information gained.

83 Life is a gamble, etc..
84 Here “resistance” is used colloquially. Technically, antibiotic re-

sistance refers to a trait which is encoded genetically, and hence
inheritable, rather than a lifestyle choice. The (choosable) state
in which bacteria grow slowly but are not killed by antibiotics is
called “persistent.”



223

In a world of two alternatives, there is not much in-
formation to gain. There are examples of bacteria that
choose among a wider variety of lifestyles, and these phe-
nomena (including the simple example of two alterna-
tives) are called ‘phenotypic switching.’ In the approxi-
mation that for each environment there is only one phe-
notype which grows, phenotypic switching is exactly the
horse racing problem.

Problem 147: Something based on phenotypic switching ..
look through Kussell et al for ideas.

The example of phenotypic switching makes a nice map
back to the early work about gambling, but is perhaps
still a bit too simple. Let’s try to be more general. Imag-
ine a bacterium that lives in an environment in which
the concentrations of nutrients are fluctuating (slowly, so
we don’t have to worry about dynamics). In order to
make use of the currently available nutrients, the bac-
terium must express the relevant enzymes involved in
metabolism. Let’s simplify and assume that there is one
nutrient or substrate at concentration s and one relevant
gene at expression level g. The bacterium will then grow
at some rate r(s, g) that depends both on the state of the
world (s) and on its internal state (g).
The growth rate of the bacterium is a compromise be-

tween two effects. On the one hand, growth requires
metabolism of the available nutrient, and so growth
should be faster if there is either more nutrient or more
enzyme. On the other hand, making the enzyme itself
takes resources, and this should slow the growth; in the
limit of small nutrient concentrations, this cost can be-
come dominant, and growth would stop if the cell tried to
make too much enzyme. This scenario is shown schemat-
ically in Fig 140.

Problem 148: A simple fitness landscape. The schematic
in Fig 140 is based on a simple model. Suppose that growth is
precisely proportional to the rate at which the enzyme degrades the
substrate. In a Michaelis–Menten kinetic scheme for the enzyme
[poiner to earlier discussion of MM kinetics], this means that the
rate of degradation (in molecules per second) will be

V = Vmaxg
sfree

K + sfree
, (779)

where g is the number of copies of the enzyme molecule, Vmax is
the maximum rate at which the enzyme can run, sfree is the con-
centration of the substrate free in solution, and K is the ‘Michaelis
constant’ that sets the scale for half–saturation of the enzyme. The
total substrate concentration is the sum of that free in solution and
bound to the enzyme,

s = sfree +
1

Ω
g

sfree
K + sfree

, (780)

FIG. 140 A schematic of bacterial growth rate as a function
of available substrate concentration and enzyme expression
level. The growth rate is a compromise between metabolizing
the substrate and the cost of making the enzyme. The thin
white line [redraw!] traces the optimal setting of expression
level as a function of substrate availability.

where Ω is the cell volume. If the growth rate is proportional to the
metabolic rate, less a correction for the cost of making the enzymes,
we should have

r(s, g) = αg
sfree

K + sfree
− βg. (781)

Solve for sfree to rewrite r(s, g) explicitly in terms of s. Then
show that by proper choice of units, there is only one arbitrary
parameter. What is the meaning of this remaining parameter?
Make some reasonable choices, and plot your own version of Fig
140.

Imagine a bacterium whose life is governed by Fig 140.
As the available substrate concentration fluctuates, one
possibility is that all bacteria carefully adjust their en-
zyme expression levels to achieve optimal growth rate
under each condition. An extreme alternative is that dif-
ferent bacteria in the population choose their expression
levels at random out of some distribution, and hope that
some of them by chance have made good choices, much as
in the proportional gambling scenario. In the first case,
the expression level carries an enormous amount of infor-
mation about the concentration of available substrate—
indeed, if we imagine that the optimum is traced per-
fectly, then knowing the expression level would tell us
the exact substrate concentration, and this represents an
infinite amount of information (!). In contrast, the gam-
bling strategy involves no correlation of the internal and
external states, and hence no information in conveyed.
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Evidently, the average growth rate across an ensemble
of environments will be larger if the bacteria can adjust
their expression levels perfectly, but maybe this is so ob-
vious as not to be interesting. We know that there is
some average growth rate which can be achieved with no
information about the outside world, and that an infi-
nite amount of information would allow the population
to grow faster. What happens in between?

The mutual information between the internal state g
and the external world s can be written as

I(g; s) =

∫
dsP (s)

∫
dg P (g|s) log2

[
P (g|s)
P (g)

]
. (782)

We can make I(g; s) as small as we like by letting P (g|s)
approach P (g). But suppose that we want to maintain
some average growth rate in the ensemble of environ-
ments defined by P (s). This average growth rate is

〈r〉 =
∫

dsP (s)

∫
dg P (g|s)r(s, g). (783)

Now it seems clear that not all conditional distributions
P (g|s) are consistent with a given 〈r〉. What we would
like to show is that there is a minimum value of I(g; s)
consistent with 〈r〉.
The problem we have is a constrained minimization, so

as usual we introduce a Lagrange multiplier and minimize

F [P (g|s)] ≡ I(g; s)− λ〈r〉 −
∫

ds µ(s)

∫
dg P (g|s),

(784)
where the second set of Lagrange multipliers µ(s) en-
forces normalization of the distributions P (g|s) at each
value of s. Finding the minimum in this case is straight-
forward. The key step is to evaluate the derivative of the
information with respect to the conditional distribution:

δI(g; s)

δP (g|s) =
δ

δP (g|s)

∫
dsP (s)

∫
dg P (g|s) log2

[
P (g|s)
P (g)

]
(785)

= P (s) log2

[
P (g|s)
P (g)

]
+

1

ln 2
P (s)P (g|s) · 1

P (g|s) −
1

ln 2

∫
ds′ P (s′)P (g|s′) 1

P (g)

δP (g)

δP (g|s) (786)

= P (s) log2

[
P (g|s)
P (g)

]
+

1

ln 2
P (s)− 1

ln 2
P (g)

1

P (g)
P (s)

(787)

= P (s) log2

[
P (g|s)
P (g)

]
, (788)

which is nice because all the messy bits cancel out. Now we can solve our full problem:

0 =
δF [P (g|s)]
δP (g|s) (789)

=
δ

δP (g|s)

[
I(g; s)− λ

∫
dsP (s)

∫
dg P (g|s)r(s, g)−

∫
ds µ(s)

∫
dg P (g|s)

]
(790)

= P (s) log2

[
P (g|s)
P (g)

]
− λP (s)r(s, g)− µ(s) (791)

log2

[
P (g|s)
P (g)

]
= λr(s, g) +

µ(s)

P (s)
(792)

P (g|s) = 1

Z(s)
P (g) exp [βr(s, g)] , (793)

where β = λ ln 2, and Z(s) = exp[ln 2µ(s)/P (s)] is a
normalization constant,

Z(s) =

∫
dg P (g) exp [βr(s, g)] , (794)

and of course we must obey

P (g) =

∫
dsP (s)P (g|s). (795)

Notice that our solution for P (g|s) is (roughly) a Boltz-
mann distribution, where −r(g, s) plays the role of the
energy and β is the inverse temperature. As expected
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FIG. 141 Mean growth rate as a function of the mutual in-
formation between expression levels and substrate availability
for the system in Fig 140. We assume that the (log) substrate
is chosen from a distribution that is uniform over the 16–fold
range shown in Fig 140, and then we solve for the optimal
P (g|s) using Eq’s (793–794).

from this analogy, we can write the information and av-
erage growth rate as derivatives,

I(g; s) = λ〈r〉 −
∫

dsP (s) log2 Z(s), (796)

〈r〉 =
∫

dsP (s)
d lnZ(s)

dβ
. (797)

The Boltzmann form of the optimal solution in Eq
(793) helps our intuition. At small β, the distribution
P (g|s) is almost the same as P (g), so that very little
information is conveyed between internal and external
states. In contrast, as λ̃ becomes large, the distribution
P (g|s) becomes sharply peaked around the value expres-
sion level gopt(s) that maximizes the growth rate. Vary-
ing β should trace out a curve of mean growth rate vs. in-
formation, and this is shown in Fig 141. We see from the
derivation that this curve represents the maximum mean
growth rate achievable given a certain amount of mu-
tual information, or alternatively the minimum amount
of information required to achieve a certain mean growth
rate, Imin(〈r〉).

Problem 149: Asymptotics of growth rate vs informa-
tion. The precise form of the relationship between the mean
growth rate and the minimum information depends, of course, on
details of the function r(s, g). Show that the behavior at large val-
ues of the minimum information is more nearly universal. To do

this, develop an asymptotic expansion at large values of λ,

P (g|s) =
1

Z(s)
P (g) exp

[
λ̃r(s, g)

]

≈
1

Z(s)
P (g) exp

[
λ̃r(s, gopt(s)) +

λ̃

2
A(g − gopt(s))

2

]
,

(798)

A =
∂2r(s, g)

∂g2

∣∣∣∣∣
g=gopt(s)

(799)

and use this expansion to evaluate Z(s), from which you can cal-
culate Imin(〈r〉). Can you generalize your discussion to the case
where there are many substrates and many genes to control?

It is important to take seriously the scales in Fig 141.
It could have been that the full growth advantage de-
rived from controlling expression levels was achievable
with only a small fraction of a bit, or conversely that
it required many tens of bits. In fact, for this simple
problem the answer is that cells can make use of more
than one bit, but not too much more. This means that
(near–)optimal growth requires more than just turning a
gene on and off, and presumably this is even more clear
if we think about more realistic situations where there
are multiple substrates and multiple genes. As we will
see in the next section, the noise levels measured for the
control of gene expression set a limit of ∼ 1 − 3 bits to
the information that can be transmitted through these
control elements. Thus, the amount of information that
cells need in order to optimize their growth in varying en-
vironments is plausibly close to the maximum they can
transmit, and this limit in turn is set by the number of
molecules that the cell is devoting this these tasks.
Just to be clear, it’s useful to think about the alter-

natives. If information is cheap, so that it is easy for
cells to transmit many bits, then evolution selects for
mechanisms that drive the system upward in the infor-
mation/fitness plane of Fig 141. But if information itself
is hard to come by, evolutionary pressure (which really
only acts to increase growth rates) must necessarily drive
cells outward along the information axis.
Sometimes the fact that organisms have to be flexible

and survive in a fluctuating environment is offered as a
qualitative argument against the possibility of optimiza-
tion. Indeed, if the environment fluctuates, it may not
be advantageous for organisms to drive toward “perfect”
performance under any one set of conditions. But the
argument we have given here shows that strategies for
dealing with varied environments are themselves subject
to optimization, making the most of a limited amount of
information and eventually being pushed by selection to
gather more bits.
In the problem of horse races, or phenotypic switching,

information translated directly into a growth rate. Here
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we see that, more generally, there is a minimum amount
of information needed to achieve a given average growth
rate. In both of these cases, information is necessary and
permissive, but not sufficient. Thus organisms can grow
faster if they gather and represent more information, but
this is not guaranteed—they might make poor use of the
information, and fail to reach the bound on their growth
rate. We have focused here on achieving a certain aver-
age growth rate, but it should be clear that the whole
discussion can be transposed to other domains. For ex-
ample, if I ask you to point at a target that can appear
at random in your visual field, and reward you in pro-
portion to how close you come to the exact position of
the target, then in order to collect a certain level of av-
erage reward your brain must represent some minimum
amount of information about the target location. Quite
generally, we can imagine plotting some “biological” mea-
sure of performance—probability of catching a mate, nu-
tritional value extracted from picking fruit, growth rate,
happiness, ... —versus the amount of information that
the organism has about the relevant variables. This “in-
formation/fitness” plane will be divided by a curve which
separates the possible from the impossible, since without
a certain minimum level of information, higher fitness is
impossible.

Problem 150: Information and motor control. Give a
simple example, maybe from smooth pursuit?

In the information theory literature, the sort of bounds
we are computing here go by the name of “rate–
distortion” curves. For example, if we measure image
quality by some complicated perceptual metric, then to
have images of a certain quality, on average, we will need
to transmit a minimum number of bits. In this spirit,
we can think about more complicated situations, such as
organisms foraging or acting in response to sensory stim-
uli and collecting rewards. Although one is not rewarded
specifically for bits, the message of rate–distortion theory
is that to collect rewards at some desired rate will always
require a minimum number of bits of information.

In constructing a rate distortion curve, we implicitly
define some bits as being more relevant than others.
Thus if I need to match my state to that of the envi-
ronment, presumably some environmental variables need
to be tracked more accurately than others; since the rate
distortion curves gives the minimum number of bits, I
need to get this right and put the precision (extra bits)
in the right place. This is important, because it means
that we have a framework for assigning value to bits. To
be concrete, in Fig 794 it is possible to imagine an infinite

variety of mechanisms that gather the same number of
bits but fail to achieve the maximum mean growth rate,
either because the use the bits incorrectly or because they
have gathered the wrong bits. Bits in and of themselves
are not guaranteed to be useful, but to do useful things
there is a minimum number of bits that we need.
An interesting if unfinished connection of rate–

distortion theory to biological systems is the case of pro-
tein structure. If I want to describe protein structures
with high precision, I need to tell you where every atom
is located. But if sequence determines structure, then
to some accuracy I just need to tell you the amino acid
sequence, which is at most log2(20) bits per amino acid,
and many fewer per atom. In fact, as we have discussed
in Section III.A, many different sequences generate es-
sentially the same structure, so there must be an even
shorter description. Thus, if we imagine taking the en-
semble of real protein structures, there must be a descrip-
tion in very few bits that nonetheless generates rather
small errors in predicting the positions of the atoms.
Finding the optimally compact description (i.e., along
the true rate–distortion curve) would be a huge help in
understanding protein folding, because the joint table of
sequences and (compactly described) structures would be
much smaller. There is even an intuition that there must
be such a compact representation with high accuracy in
order to make folding rapid, essentially because the num-
ber of states needed for an accurate description should
be connected to the number of states that the protein
much “search” through as it folds. I am not sure how to
make this rigorous, but it’s interesting.

Problem 151: Clustering structures. Give an example of
constructing rate–distortion curves via clustering ... maybe some-
thing plausibly connected to molecular structures?

We can search for compact descriptions of pro-
tein structure by approximating the local path of the
α−carbon backbone as moves on a discrete lattice, mak-
ing the lattic progressive more complex. We can do better
by moving off the lattice to cluster the natural dihedral
angles describing the path from one amino acid to the
next Be sure we talk about φ,ψ description of proteins
before this, and point back]; results are shown in Fig 142.
Indeed, by the time we have assigned 10 or 20 states per
amino acid, we can reconstruct structures with 1 − 2 Å
rms accuracy.
Another very specific connection between biology and

bits is in the case of embryonic development. In the sim-
plest model of morphogen gradients, each independently
“reads out” the local concentration of the morphogen(s),
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we find that the relat ionship is a lmos t  <c.r.m.s.> = 

k(Complexi ty)  -w2. In re t rospect ,  such  a s imple de- 

p e n d e n c e  of  c.r.m.s, on complexi ty  can be  quite  

easily explained,  as follows. 

A s s u m e  that res idues  1 to i - 1 of a prote in  have 

b e e n  fit perfec t ly  by  a mode l  of complexi ty  m. What  

is the average dis tance f rom the fit posi t ion of  res idue 

i to its actual  posi t ion? Residue i lies s o m e w h e r e  on 

a sphere  of  rad ius  b, the fixed b o n d  length, centered 

on a tom i - 1. The m possible  fit posi t ions for a tom 

i are, we  will assume,  evenly dis t r ibuted on the 

surface of  this sphere,  wh ich  has a surface area 4/rb 2. 

On  average, the surface area per  state will be  41rb2/m, 
and  the separat ion of states along the surface of the 

sphere  will scale as x/(47rb2/nl). This separat ion is 

p ropor t iona l  to the accuracy (c.r.m.s. deviation) with 
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Figure 3. (a) Values of <c.r.m.s.>, the sequence length weighted average c.r.m.s, deviations for best fits to all proteins 
in our database, are plotted as a function of model complexit)~ The diamonds are all the naive models from Table 1. 
The crosses correspond to our optimized 4-state models, and 6 and W to our and Rooman's selected 6-state models 
(Rooman et al., 1991). Beyond a certain point, added complexity improves accuracy very little. Optimized models show 
marked improvement over unoptimized models of the same complexit)~ (b) Values of <c.r.m.s.> are plotted against 
complexity on a log-log scale. A linear least-squares fit gives <c.r.m.s.> =6.59 (complexity) -°51~, very close to 
<c.r.m.s.> = k(complexity) ./2 predicted by a simple analysis (see the text). 
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Discussion 

The relationship between complexity 
and accuracy 

We have found the accuracy of fit of lattice and 
naive off-lattice models to X-ray structures to follow 
a simple law: 

(c.r.m.s.> ~ (Complexity) -'/2 

This indicates that increasing model complexity, 
above a certain point, yields little improvement  in 

accuracy Other measures of accuracy, however, can 
distinguish be tween models with similar average 

c.r.m.s, fits. For instance, when using a simple lattice 
representation of protein structure, a tetrahedral 

lattice is preferable to a cubic lattice. In addition to 
having a complexity 3 /5  of that of the cubic lattice, 

the tetrahedral lattice preserves X-ray contacts 
slightly better with a 78.2% preserved, against 77.6% 

for the cubic. The average c.r.m.s, fit for the cubic 
lattice is better, at 2.84 A against 3.63/~. Neverthe- 

less, for most prediction strategies, which rely on 
residue-residue contacts, the value for X-ray contacts 
is likely to be more important.  Thus, even though the 

cubic lattice is capable of representing protein 

structures more accurately than the tetrahedral, 
there are likely to be many  conformations on the 
cubic lattice which have a high percentage of X-ray 

contacts correct, but  are inaccurate in a c.r.m.s, sense. 

The reason for the better  than expected preservation 
of X-ray contacts by the tetrahedral lattice is not clear. 

One explanation is that the 109.5 ° pseudo-bond angle 
of the tetrahedral lattice allows a more natural 

representation of certain protein structural features, 
in particular, 13-strands. Indeed, the tetrahedral 

lattice preserves an average of 80.2% of X-ray 13 
structure. It seems likely that the geometry  of a 
tetrahedral lattice allows not only actual X-ray 

13-strands to be preserved, but  also s t rand-s t rand 
contacts. 

Another result of these studies is that optimized 

off-lattice models can, for the same complexity, 
represent X-ray protein conformations much more 

accurately than lattice models. For example, any one 

of our optimized 4-state models is considerably more 
accurate than the (5-state) cubic lattice. A rationally 

selected set of 6-states, either ours or those described 
by Rooman et al. (1991), is as good as a naive 18- 

state model. Clearly, any attempt to predict protein 

Simple-4 B 

I mba (RMS=3.90A) 2pcy (RMS=2.20A) 

18 State 

r °  . .  

lmba (RMS=l.56A) 2pcy (RMS=0.98A) 

Opt imized 4-State Set H R oo m an  6-State 

) 

lmba (RMS=l.88A) 2pcy (RMS=2.30A) lmba (RMS=l.58A) 2pcy (RMS=l.69A) 

Figure 6. This shows fitted models (broken lines) superimposed over the X-ray conformations (continuous lines) of 
myoglobin (1 mba) and plastocyanin (1 pcy). Note the difference between a naive 4-state model (upper left) and an 
optimized 4-state model (lower left). The improvement in fit for the all c(-protein, 1 mba, is remarkable. There is no 
improvement in fit for the all-13 protein, 1 pcy. On the right-hand side, we compare the fits of an 18-state model and a "hand" 
optimized 6-state model (Rooman et al., 1991). 1 mba is fitted almost as well by the simple model as by the complex one, 
whereas plastocyanin is fit significantly better by the complex model. However, for many purposes, the poorer fit of the 
6-state model is still adequate. 0 10 20 30 40 50 60
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FIG. 142 Rate–distortion curve (or its moral equivalent) for
protein structures, from Park and Levitt (1995). The path
of the α−carbon backbone is approximated by a discrete set
of local ‘moves’ along the chain, which is roughly equivalent
to forcing the structure to live on a lattice. Diamonds cor-
respond to lattices with different structures (e.g., 3 possible
moves on a tetrahedral lattice); + and W correspond to dis-
crete approximations obtained by clustering known structures
based on the Ramachandran angles at each site. Plotted on
the y−axis is the root mean square error in the positions of
all the α−carbons along the chain. Inset shows two examples
of protein structures, compared with their discrete approxi-
mations.

and makes decisions—most importantly, about the reg-
ulation of gene expression—based on this local measure-
ment, as in Fig 143. In this model, the only thing that
a cell knows about its position in the embryo is the mor-
phogen concentration, and so the information that cells
have about position can be no larger than the informa-
tion that they extract about this concentration. In effect
there is a communication channel from the morphogen
to the expression levels of the genes which defines the
blueprint for development, and the information that can
be transmitted along this channel sets a bound on the
complexity and reliability of the blueprint. As an exam-
ple, if we haveN rows of cell along one axis of the embryo,
and each row reliably adopts a distinct fate that we can
‘see’ by looking at the expression levels of a handful of
genes, then (again, in the simplest model) there must
be log2 N bits of information transmitted through the
regulatory network that takes the morphogens as input
and gives the gene expression levels as output. As in the
discussion of growth rates, this becomes interesting be-
cause, as we shall see, the information capacity of gene
regulatory elements is quite limited. Rough estimates of
the relevant quantities in the Drosophila embryo suggest
that the embryo might indeed be forming patterns near
the limits set by the information capacity of gene regu-
lation.

What happens if things are more complicated than in
Fig 143? In particular, we know about plenty of systems
which form patterns spontaneously, without any analog
of the “maternal” signal to break the translational sym-
metry. It is important to realize that while patterns can
form spontaneously, information can’t really be created,
only transmitted. In a crystal, for example, once we know
that one atom is in a particular position we can predict
the position of other atoms, but this is only because of
the bonds that connect the atoms. Because all the atoms
undergo Brownian motion, the transmission of informa-
tion is not perfect, and knowledge of one atomic position
provides only a limited number of bits about the position
of another atom; this limit on information transmission
becomes tighter as the temperature—and hence the noise
level in the “communication channel” which connects the
distant atoms—becomes larger, until the crystal melts
and there is no information transmitted over long dis-
tances.

Problem 152: Transmitting positional information in a
crystal. Take the students through an explicit calculation of the
mutual information between positions of atoms in a harmonic solid.

In non–equilibrium systems, such as the Rayleigh–
Bernard convection cell shown in Fig 144, we see spatial
patterns in which some local variable such as the temper-
ature, fluid density or velocity at one position predicts

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

primary
morphogen

concentration 
(C)

target gene
expression

level
(G)

!!"# !!"!$ ! !"!$ !"# !"#$ !"% !"%$ !"&

!

!"%

!"'

!"(

!")

#

!!"# !!"!$ ! !"!$ !"# !"#$ !"% !"%$ !"&

!

!"%

!"'

!"(

!")

#

!!"# !!"!$ ! !"!$ !"# !"#$ !"% !"%$ !"&

!

!"%

!"'

!"(

!")

#

!!"# !!"!$ ! !"!$ !"# !"#$ !"% !"%$ !"&

!

!"%

!"'

!"(

!")

#

!!"# !!"!$ ! !"!$ !"# !"#$ !"% !"%$ !"&

!

!"%

!"'

!"(

!")

#

!!"# !!"!$ ! !"!$ !"# !"#$ !"% !"%$ !"&

!

!"%

!"'

!"(

!")

#

!!"# !!"!$ ! !"!$ !"# !"#$ !"% !"%$ !"&

!

!"%

!"'

!"(

!")

#

!!"# !!"!$ ! !"!$ !"# !"#$ !"% !"%$ !"&

!

!"%

!"'

!"(

!")

#

!!"# !!"!$ ! !"!$ !"# !"#$ !"% !"%$ !"&

!

!"%

!"'

!"(

!")

#

!!"# !!"!$ ! !"!$ !"# !"#$ !"% !"%$ !"&

!

!"%

!"'

!"(

!")

#

!!"# !!"!$ ! !"!$ !"# !"#$ !"% !"%$ !"&

!

!"%

!"'

!"(

!")

#

!!"# !!"!$ ! !"!$ !"# !"#$ !"% !"%$ !"&

!

!"%

!"'

!"(

!")

#

!!"# !!"!$ ! !"!$ !"# !"#$ !"% !"%$ !"&

!

!"%

!"'

!"(

!")

#

!!"# !!"!$ ! !"!$ !"# !"#$ !"% !"%$ !"&

!

!"%

!"'

!"(

!")

#

!!"# !!"!$ ! !"!$ !"# !"#$ !"% !"%$ !"&

!

!"%

!"'

!"(

!")

#

!!"# !!"!$ ! !"!$ !"# !"#$ !"% !"%$ !"&

!

!"%

!"'

!"(

!")

#

G

C

input/output
relation in
each cell

position (x)

I(x;G) ≤ I(C;G)

FIG. 143 Information flow in a “feed–forward” model of ge-
netic control in the early embryo. The concentration C of the
primary morphogen depends on position x, and each cell re-
sponds independently by modulating the expression level G of
some target gene (or genes). In this simple view, information
about position only reaches the gene expression level through
the intermediary of the primary morphogen concentration,
and hence we have I(x;G) ≤ I(C;G).
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FIG. 144 This looks like a perfect crystal of beads, but it
actually is a small (∼ 10 cm diameter) container filled with
carbon dioxide at high pressure, and heated from below. The
image is formed by passing light through the gas, sometimes
called a ‘shadowgraph.’ The temperatures at the top and
bottom of the container are held very constant (to within a
few thousandths of a degree) so that the patterns will not
be disrupted by variations in conditions; similarly, the top
and bottom of the container are extremely flat (smooth to
within the wavelength of light), and the whole system is held
horizontal with high precision so that the direction of gravity
is aligned with the axis of symmetry through the center of the
circle. From E Bodenschatz et al (1991).

the value of the corresponding variable at another posi-
tion. If we call this local variable φ(x), then if we imagine
a large ensemble of snapshots like the one in Fig 144, we
can build up the distribution functional P [φ(1x)]. The
statement that we have a periodic pattern, for example,
is the statement that if we look at two points separated by
an appropriately chosen vector 1d, then φ(1x) ≈ φ(1x+ 1d).
But if we point to the first point 1x at random, we can
get a broad range of values for φ1 ≡ φ(1x), drawn from
a distribution P1(φ1). Similarly, if we are choosing 1x at

random then φ2 ≡ φ(1x + 1d) is also broadly distributed;
in fact, it must come from the same distribution as φ1.
But once we know φ1, if there is a periodic pattern then
the distribution P (φ2|φ1) must be sharply peaked around
φ1 = φ2, and hence very different from the “prior” distri-
bution of φ2. But this is exactly the condition for there to
be mutual information between φ1 and φ2. Thus, the ex-
istence of a spatial pattern is equivalent to the presence of
mutual information between the local variables at distant
points. Where does this information come from? As with
the bonds connecting the atoms in the crystal, it must be
transmitted through the dynamics of the system, which
connect points only to their immediate neighbors.

In a strict interpretation of the concept of positional
information in embryo, we actually require more than
mutual information between local variables at distant

points. We require that the value of some local vari-
able(s), typically the expression levels of several genes,
tell us about the location of the point where we have
observed them. In this way, cells would “know” their po-
sition in the embryo by virtue of their expression levels,
and these signals could drive further processes in a way
that is appropriate to the cell’s location—not just rela-
tive to other cells, but in absolute terms.85 If we call the
local variables {gi}, for gene expression levels, then the
positional information is I(1x; {gi}. But the local vari-
ables at point x are controlled by a set of inputs which
may include external, maternally supplied morphogens,
the expression levels {gi} in neighboring cells, and per-
haps other variables as well. We can always write the
distribution of expression levels at one point in terms of
this inputs,

P ({gi}|x) =
∫

d(inputs)P ({gi}|inputs)P (inputs|x).
(800)

Noise in the control of gene expression corresponds to
the fact that the distribution P ({gi}|inputs) is not in-
finitely narrow. Now because, at any one point, informa-
tion flows from x to the inputs to the {gi}, we must have
I(x; {gi}) ≤ I(inputs; {gi}), and this is true no matter
how complicated the inputs might be. More importantly,
as hinted at in the analysis of the first synapse in fly vi-
sion (Fig 139), any input/output device has a maximum
amount of information it can transmit that is determined
by its noise level. Thus, if we think of all the whole net-
work of interactions that result in the regulation of the
gene expression levels {gi}, the noise in this network de-
termines a maximum value for I(inputs; {gi}), and this
sets a limit to the amount of positional information that
cells in the embryo can acquire and encode with these
genes.

Problem 153: The data processing inequality. What we
need in the previous paragraph is a special case of a more general
inequality .. derive it.

To summarize, the reliability and complexity of the
patterns that can form during embryonic development

85 This is certainly what “positional information” means in the
usual descriptions of the concept; see the discussion of the in-
formation carried by Hunchback expression levels in the fly em-
bryo, surrounding Fig 136. There are almost no measurements
of this information, in bits, so it remains possible that real cells
know much more about their relative position than about their
absolute position. This wouldn’t change the spirit of what I am
saying here, but the details would matter. This is one of many
open questions about information flow in the embryo.
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are limited by the amount of positional information that
cells can acquire and represent. This information in turn
is limited by the “capacity” of the genetic or biochemi-
cal networks whose outputs encode the positional infor-
mation. Therefore, if real networks operate in a regime
where this capacity is small, the complexity of body plans
will be limited by the ability of the organism to squeeze
as much information as possible out of these systems.

Most of the examples we have considered thus far have
the feature that the information is “about” something
that has obvious relevance for the organism. Can we
find some more general way at arriving at such notions
of relevant? It is useful to have in mind an organism
collecting a stream of data, whether the organism is like
us, with eyes and ear, or like a bacterium, sensing the
concentrations of various molecules in its external and
internal environment. Of all these data, the only part
we can use to guide our actions (and eventually collect
rewards, reproduce, etc.) is the part that has predictive
power, since by the time we act we are already in the
future. Thus we can ask how to squeeze, out of all the
bits we collect, only those bits which are relevant for
prediction.
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FIG. 145 A schematic of the prediction problem. We observe
a time series, and at some moment (now) we look back at
a segment of the recent past with duration T , Xpast. From
this, we try to infer something about what will evolve in the
future.

[I am worried that this goes a little quickly.] More con-
cretely, as in Fig 145, if we observe a time series through
a window of duration T (that is, for times −T < t ≤ 0),
then to represent the data Xpast we have collected re-
quires S(T ) bits, where S is the entropy, but the infor-

mation that these data provide about the future Xfuture

(i.e., at times t > 0) is given by some I(Xpast;Xfuture) ≡
Ipred(T ) / S(T ). In particular, while for large T the
entropy S(T ) is expected to become extensive, the pre-
dictive information Ipred(T ) always is subextensive. Thus
we expect that the data Xpast can be compressed signifi-
cantly into some internal representationXint without los-
ing too much of the relevant information about Xfuture.
Formally, we can construct the optimal version of this
mapping by solving

max
Xpast→Xint

[I(Xint;Xfuture)− λI(Xint;Xpast)] , (801)

where Xpast → Xint is the rule for creating the internal
representation and λ is a Lagrange multiplier. This sort
of problem has been dubbed an ‘information bottleneck,’
because we try to preserve the relevant information while
squeezing the input data through a narrow channel.

Problem 154: Predictive information is subextensive.
If we observe a stationary stochastic process, x(t), on the interval
t1 < t ≤ t1 + T , the entropy of the distribution P [x(t)] depends
only on T , not t1; let’s call this entropy S(T ).

(a.) Use your intuition from statistical mechanics to explain why
we expect S(T ) to grow extensively, that is S(T ) ∝ T at large T .
More formally, show that at large T

S(T ) → ST + S1(T ), (802)

where

lim
T→∞

S1(T )

T
= 0. (803)

Thus, although S1(T ) can grow with T , it must grow more slowly
than T itself—it is “subextensive.”

(b.) Consider the case where time is discrete, and x is Marko-
vian, so that x(t+1) depends on x(t), but no earlier history. Show
that, in this case, S1(T ) is just a constant.

(c.) Consider the case where Xpast ≡ x(−T < t ≤ 0) and
Xfuture ≡ x(0 < t < T ′). Show how the predictive information
Ipred(T, T ′) ≡ I(Xpast;Xfuture) is related the function S(T ); you
should be able to do this in general, without the Markov assump-
tion. Show further that there a finite limit as the duration of the
future becomes infinite, and that this limit Ipred(T ) is subexten-
sive.

In general, we should consider the mapping Xpast →
Xint to be probabilistic, so we can describe it by some
conditional distribution P (Xint|Xpast). Then the quan-
tity we are trying to maximize becomes
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−F =
∑

Xint,Xpast

P (Xint|Xpast)P (Xpast) log2

[
P (Xint|Xpast)

P (Xint)

]

−λ
∑

Xint,Xfuture

P (Xint|Xfuture)P (Xfuture) log2

[
P (Xint|Xfuture)

P (Xint)

]
. (804)

This is written as if our choice of representation Xint

depends directly on the future, but of course this isn’t
true; any correlation between what we write down and
what happens in the future is inherited from the data
that we collected in the past,

P (Xint|Xfuture) =
∑

Xpast

P (Xint|Xpast)P (Xpast|Xfuture).

(805)
In addition, we have

P (Xint) =
∑

Xpast

P (Xint|Xpast)P (Xpast). (806)

As usual, we have to take the derivative of F with re-
spect to the distribution P (Xint|Xpast), being careful to
add a Lagrange multiplier µ(Xpast) that fixes the nor-
malization for each value of Xpast), and then we set the
derivative to zero to find an extremum. Since the opti-
mization of F is independent of multiplicative factors, we
can make things simpler by taking natural logs instead
of logs base 2. Then the algebra is as follows:

0 =
δ

δP (Xint|Xpast)



−F −
∑

Xpast

µ(Xpast)
∑

Xint

P (Xint|Xpast)



 (807)

= P (Xpast) ln

[
P (Xint|Xpast)

P (Xint)

]
− λ

∑

Xfuture

P (Xpast|Xfuture)P (Xfuture) ln

[
P (Xint|Xfuture)

P (Xint)

]
− µ(Xpast). (808)

To proceed, it would be useful to divide through by a factor of P (Xpast), at which point we have

ln

[
P (Xint|Xpast)

P (Xint)

]
= λ

∑

Xfuture

P (Xfuture|Xpast) ln

[
P (Xint|Xfuture)

P (Xint)

]
+ µ̃(Xpast), (809)

where µ̃(Xpast) = µ(Xpast)/P (Xpast). Further, since on the right we have a conditional distribution of Xfuture given
Xpast, it would be nice to rearrange the ratio inside the logarithm,

P (Xint|Xfuture)

P (Xint)
=

P (Xfuture|Xint)

P (Xfuture)
=

P (Xfuture|Xint)

P (Xfuture|Xpast)
· P (Xfuture|Xpast)

P (Xfuture)
, (810)

so that, when we substitute we find

ln

[
P (Xint|Xpast)

P (Xint)

]
= λ

∑

Xfuture

P (Xfuture|Xpast) ln

[
P (Xfuture|Xint)

P (Xfuture|Xpast)

]

+λ
∑

Xfuture

P (Xfuture|Xpast) ln

[
P (Xfuture|Xpast)

P (Xfuture)

]
+ µ̃(Xpast). (811)

We recognize the first term on the right as being the
(negative) Kullback–Leibler divergence between the dis-
tribution of futures given the past, and the distribution

of futures given our representationXint. Further, the sec-
ond term depends only on Xpast, and so can be absorbed
into µ̃(Xpast). Thus, when the dust settles, we have

P (Xint|Xpast) =
P (Xint)

Z(Xpast;λ)
exp

(
− λDKL [P (Xfuture|Xpast)||Xfuture|Xint)]

)
, (812)

where Z(Xpast;λ) is a normalization constant. This isn’t a solution to our problem, but rather a self–consistent
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equation that the solution has to satisfy. The problem we
are solving is an example of selective compression, and
the particular formulation of trading bits vs. bits has
come to be called the “information bottleneck” problem.

Problem 155: Fill in all the details leading from Eq (807) to
Eq (812).

We should think of Equation (812) as being like the
result in Eq (794), but instead of adjusting an inter-
nal state in relation to the “potential” formed by the
growth rate, here the effective potential is the (negative)
Kullback–Leibler divergence, which measures the simi-
larity between the distributions of futures given the ac-
tual past and given our compressed representation of the
past. This means that if two past histories lead to simi-
lar distributions of futures, they should be mapped into
the same value of Xint. This makes sense, since we are
trying to throw away any information that doesn’t have
predictive power. When λ is very large, differences in
the expected future need to be very small before we are
willing to ignore them, while at small λ it is more impor-
tant that our description be compact, to we are willing
to make coarser categories. As in rate–distortion theory,
there is no single right answer, but rather a curve which
defines the maximum amount of predictive information
we can capture given that we are willing to write down
a certain number of bits about the past, and along this
curve there is a one parameter family of strategies for
mapping our observations on the past into some internal
representation Xint.

Problem 156: Predictive information and optimal filter-
ing. Imagine that we observe a Gaussian stochastic process [x(t)]
that consists of a correlated signal [s(t)] in a background of white
noise [η(t)], that is x(t) = s(t) + η(t), where

〈s(t)s(t′)〉 = σ2 exp
(
−|t− t′|/τc

)
(813)

〈η(t)η(t′)〉 = N0δ(t− t′). (814)

Recall (or see Section A.2) that the full probability distribution for
the function x(t) is

P [x(t)] =
1

Z
exp

[
−
1

2

∫
dt

∫
dt′ x(t)K(t− t′)x(t′)

]
, (815)

where Z is a normalization constant.
(a.) Construct the kernel K(τ) explicitly. Be careful about the

behavior near τ = 0.
(b.) Break the data x(t) into a past Xpast ≡ x(t < 0) and a

future Xfuture ≡ x(t > 0), relative to the time t = 0. Show that

P [x(t)] can be rewritten so that the only term that mixes past and
future is of the form

[∫ 0

−∞
dt g(−t)x(t)

]
×

[∫ ∞

0
dt′ g(t′)x(t′)

]
, (816)

where g(t) = exp(−t/τ0), with τ0 = τc(1 + σ2τc/N0)−1/2. More
formally, if we define

z =

∫ 0

−∞
dt g(−t)x(t), (817)

show that
P (Xfuture|Xpast) = P (Xfuture|z). (818)

Explain why the optimal internal representation of the predictive
information, Xint, can only depend on z.

(c.) Suppose that we are given the past data x(t ≤ 0), and in-
stead of being asked to predict the future, you are asked to make
the best estimate of the underlying signal s(t = 0). [Connect back
to problem in Chapter 1] Show that this optimal estimate is pro-
portional to z.

As you just showed in the last problem, the optimal
representation of predictive information is equivalent, at
least in simple cases, to the separation of signals from

all 64 nouns that appear
as objects of “to fire”

missile
rocket
bullet
gun
...

officer
aide
chief

manager
...

FIG. 146 A precursor of the information bottleneck problem,
from Lee et al (1993). In one year of the Associated Press
news reports, there are 64 nouns (Xnoun) which appear as
the direct object of the verb “to fire,” and these nouns are
paired with 2147 distinct verbs (Xverb). Following the ideas
in the text, imagine compressing the description of the nouns,
Xnoun → Xint, while trying to preserve the information that
the compressed description conveys about the verb which ap-
pears with the noun. That is, maximize I(Xint;Xverb) while
holding I(Xint;Xnoun) fixed. Here we show the solution to
the problem when I(Xint;Xnoun) ≈ 1 bit supports two dis-
tinct values of Xint; what we list are the nouns that map
to the two values of Xint with high probability. We see that
this classifies the nouns by their meaning, separating weapons
(firing a missile) from job titles (firing a manager). Impor-
tantly, this is based only on the co–occurrence of the nouns
with verbs in sentences; there is no supervisory signal which
distinguishes the different senses of the verb.
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noise. In Section IV.D we will see that extracting the
predictive information from other kinds of time series is
equivalent to learning the underlying parameters or rules
that the data obey. In a somewhat more fanciful exam-
ple, we can think of Xpast as a word in a sentence, and
Xfuture as the next word; then the mapping Xpast → Xint

is equivalent to making clusters of words. When λ is
small, there are very few clusters, and they correspond
very closely to parts of speech. As λ becomes larger, we
start to discern categories of words that seem to have
meaning. Indeed the first exercise of this sort was to
choose not two successive words as past and future, but
rather the noun and verb in the same sentence, and then
the impression (still subjective) that the resulting clus-
ters of nouns have similar meanings is even stronger, as
seen in Fig 146. It is tempting to suggest that the opti-
mal representation of predictive information is extracting
“meaning” from the statistics of sentences. [perhaps ex-
plain that some people are horrified by this suggestion?]

[Maybe say something about Tagkopolous et al (2008)?
What about different ideas of predictive coding from
Laughlin, Rao, ... ? Is this the place to show evidence
(depending on how much we have!) that neurons pro-
vide efficient representations of predictive information, or
does this go in the next section? What about a reminder
that the rules of synaptic plasticity seem to know about
causality, and hence might serve to build representations
that favor predictive information?]

Let me try to pull the different arguments of this sec-
tion together, even if imperfectly. What we really care
about is how organisms can maximize some measure
of performance—ultimately, their reproductive success—
given access to some limited set of resources. Within any
broad class of possible biological mechanisms, there is
an optimum that divides the fitness/resources plane into
possible and impossible regions, as in the upper right
quadrant of Fig 147; evolutionary pressure drives organ-
isms toward this boundary. But we have seen that, for
any measure of fitness or adaptive value, achieving some
criterion level of performance always requires some mini-
mum number of bits; this is the content of rate–distortion
theory. Thus there is a plane (in the upper left quadrant
of Fig 147) of fitness vs. information, and again there
is a curve that divides the possible from the impossible.
Importantly, the information that an organism can use to
gain a fitness advantage—even in the simple example of
adjusting gene expression levels to match the availability
of nutrients—is always predictive information, because
the consequences of actions come after they are decided
upon.

We know that bits are not free. In simple examples,
such as the Gaussian channel in Section ??, the infor-
mation that can be transmitted depends on the signal to
noise ratio, and this in turn depends on the resources the
organism can devote, whether we are counting action po-
tentials or molecules. If we think about the bits that will

be used to direct an action, then there are many costs—
the cost of acquiring the information, of representing the
information, and the more obvious physical costs of car-
rying out the resulting actions, but we always can assign
these costs to the symbols at the entrance to the com-
munication channel. The channel capacity separates the
information/resources plane into accessible and inacces-
sible regions, as in the lower right quadrant of Fig 147.
Ideas about metabolically efficient neural codes [perhaps
should be more explicit here?], for example, can be seen
as efforts to calculate this curve in specific models. Of
course the information we are talking about now is in-
formation that we actually collect, and this is informa-
tion about the past. To close the connections among the
different quantities, we need the information bottleneck,
which tells us that—given the structure of the world we
live in—having a certain number of bits of information
about the future requires capturing some minimum num-
ber of bits about the past.
To summarize, if an organism wants to achieve a cer-

tain mean fitness, it needs a minimum number of bits of
predictive power, and this requires collecting a minimum
number of bits about the past, which in turn necessitates
some minimum cost or available resources. Usually we

forbidden

resources 

adaptive value

biologically

optimal 

performance

information

about the past

forbidden
channel coding

limit

forbidden

information

about the future

rate-distortion

 limit

information

bottleneck

FIG. 147 Connecting the different optimization principles
(Bialek et al 2007). Lines indicate curves of optimal perfor-
mance, separating allowed from forbidden (hashed) regions of
each quadrant. In the upper right quadrant is the biologi-
cally relevant notion of optimization, maximizing fitness or
adaptive value at fixed resources. But actions that achieve a
given level of adaptive value require a minimum number of
bits, and since actions occur after plans these are bits about
the future (upper left). On the other hand, the organism
has to “pay” for bits, and hence there is a minimum resource
costs for any representation of information (lower right). Fi-
nally, given some bits (necessarily obtained from observations
on the past), there is some maximum number of bits of pre-
dictive power (lower left). To find a point on the biological
optimum one can try to follow a path through the other three
quadrants, as indicated by the arrows.
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think of evolution as operating in the tradeoff between
resources and fitness, but this has echoes in the other
quadrants of Fig 147, where information theoretic bounds
are at work. These connections provide a path whereby
evolution can select for mechanisms that approach these
bounds, even thought evolution itself doesn’t know about
bits.

The connection between information and gambling goes back to
Kelly (1956). Connections of these ideas to fitness in fluctuating
environments are discussed by Bergstromm & Lachmann (2005),
Kussell & Leibler (2005), and more generally by Rivoire & Leibler
(2011). The specific case of persistence in bacteria has been ex-
plored by Balaban et al (2004) and Kussell et al (2005); for a review
see Gefen & Balaban (2009). The analogy to rate–distortion the-
ory, demonstrating a minimum number of bits required to achieve a
criterion mean growth rate, is from Taylor et al (2007); for a treat-
ment of rate–distortion theory itself, again see Cover & Thomas
(1991), in the refs to Section IV.A. Although they didn’t explic-
itly use the language of rate–distortion theory, Park and Levitt
(1995) explored the compression of protein structures into a small
set of local, discrete states, asking how the complexity of this rep-
resentation related to its accuracy. For a first try at connecting
information flow and embryonic pattern formation, see Tkačik et
al (2008). The beautiful convection patterns in Fig 144 are from
Bodenscahtz et al (1991).
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C. Optimizing information flow

We have seen that organisms should care about bits—
for every criterion level of performance that a system
wants to achieve, there is a minimum number of bits that
it needs. If bits are cheap, or easy to acquire, then this
need for a minimum number of bits is true but not much
of a constraint. On the other hand, if the physical con-
straints under which organisms operate imply severe lim-
its on information transmission, then the minimum num-
ber of bits may approach the maximum number available,
and strategies that maximize efficiency in this sense may
be critical to biological function.
One of the central ideas in thinking about the efficiency

with which bits can be collected and transmitted is that
what we mean by efficient (and, in the extreme, opti-
mal) depends on context, as indicated schematically in



234

Fig 148. In the top panel we see a typical sigmoidal in-
put/output relation, which might describe the expression
level of a gene vs. the concentration of a transcription
factor, the probability of spiking in a neuron as a func-
tion of the intensity of the sensory stimulus, ... . In the
bottom panel we see different possibilities for the distri-
butions out of which the input signals might be drawn.
For the two distributions in blue, the input signals are
confined to the saturated regions of the input/output re-
lation, leaving the output almost always in the fully ‘off’
or ‘on’ states. In these situations, the output is always
the same, and is unaffected by the changes in the input
that actually occur with reasonable probability, and the
system is essentially useless. More subtly, for the distri-
bution in green, input signals are in the middle of the
middle of the input/output relation, where the slope of
the input/output relation is maximal, but the dynamic
range of these variations is small, so that the variations
in output are only a small fraction of what is possible,
and these variations might well be obscured by any rea-
sonable level of noise. Finally, for the distribution in red,
the dynamic range of the likely inputs is just big enough
to push the system through the full dynamic range of
the input/output relation, generating large (maximal?)
variations in the output.
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FIG. 148 At top, an example of an input/output relation.
At bottom, different possible probability distributions for the
inputs. As described in the text, the blue and green distribu-
tions are poorly matched to the input/output relation, while
the red distribution seems to be a better match.

While it is easy for everyone to agree that, in Fig
148, the blue and green distributions of inputs are poorly
matched to the input/output relation, and the red dis-

tribution is well matched, it takes a little more courage
(and courts more controversy) to make a precise mathe-
matical statement about what constitutes a good match,
or the “best” match. What we will try out as a defi-
nition of “best” is that outputs should provide as much
information as possible about the inputs.
Let’s start with input x, chosen from a distribution

PX(x), and assume that this is converted into one output
y by a system that has an input/output relation g(x) but
also some added noise,

y = g(x) + ξ. (819)

Notice that when we plot an input/output relation, as
in Fig 148, we (implicitly) are referring to the average
behavior of the system, since realistically there must be
some level of noise and hence the input and output are
related only probabilistically; we now make this explicit
by adding the noise ξ. To keep things simple, let’s assume
that this noise is Gaussian, with some variance σ2 and
as usual zero mean. In principle, the variance of the
output noise could depend upon the value of the input,
and this will be important below, so we’ll write σ2

y(x) to
remind us that we are talking about the variance of the
output (hence the subscript), but this may depend upon
the input.
In order to compute the amount of information that

y provides abut x, we need various probability distribu-
tions. Specifically, we want to evaluate

I(y;x) =

∫
dx

∫
dy P (x, y) log2

[
P (x, y)

PX(x)PY (y)

]
(820)

=

∫
dx

∫
dy P (x, y) log2

[
P (y|x)
PY (y)

]
. (821)

It is the conditional distribution P (y|x) that describes,
in the most general setting, the probabilistic relationship
between input and output. The overall distribution of
outputs is given by

PY (y) =

∫
dxP (y|x)PX(x). (822)

With the hypothesis that the noise ξ is Gaussian, Eq
(819) tells us that

P (y|x) = 1√
2πσ2

y(x)
exp

[
− (y − g(x))2

2σ2
y(x)

]
. (823)

The information can be written (as usual) as the dif-
ference between two entropies,
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I(y;x) =

∫
dx

∫
dy P (x, y) log2

[
P (y|x)
PY (y)

]

= −
∫

dy PY (y) log2 PY (y)−
∫

dxPX(x)

[
−
∫

dy P (y|x) log2 P (y|x)
]
. (824)

But the conditional distribution P (y|x) is Gaussian, with variance σ2
y(x), so we can substitute for the conditional

entropy from Eq (701) to give

I(y;x) = −
∫

dy PY (y) log2 PY (y)−
1

2 ln 2

∫
dxPX(x) ln[2πeσ2

y(x)]. (825)

The distribution of outputs PY (y) is broadened by two effects. First, as x varies, the mean value of y changes.
Second, even with x fixed, noise causes variations in y. But if the noise is small, the first effect should dominate, and
this will simplify our problem. Formally,

PY (y) =

∫
dxPX(x)P (y|x) =

∫
dxPX(x)

1√
2πσ2

y(x)
exp

[
− (y − g(x))2

2σ2
y(x)

]
(826)

=

∫
dz

∣∣∣∣
dz

dx

∣∣∣∣
−1

PX(x = g−1(z))
1√

2πσ2
y(z)

exp

[
− (y − z)2

2σ2
y(z)

]
, (827)

where we have changed variables to z = g(x), which is allowed if the input/output relation is monotonic. But now
we can view the integral as an average over a distribution of z, and we know that if the noise is small we can always
write

∫
dz F (z)

1√
2πσ2

y(z)
exp

[
− (y − z)2

2σ2
y(z)

]
≈ F (z = y) +

1

2
σ2
y(z = y)

d2F (z)

dz2

∣∣∣∣
z=y

+ · · · , (828)

for any function F (z). Keeping just the leading term, at
small noise levels we have

PY (y) ≈
[∣∣∣∣

dz

dx

∣∣∣∣
−1

PX(x = g−1(z))

]

z=y

. (829)

This looks complicated, but it’s not. In fact it is the same
as ignoring the noise all together and saying that there is
some deterministic transformation from x to y, y = g(x),
in which case we must have

PX(x)dx = PY (y)dy. (830)

By the same reasoning, we can also view the variance
σ2
y(x) as being a function not of the input x but rather

of the output y, so we’ll write σ2
y(y).

Problem 157: Details of the small noise approximation,
part one. Show that Eq (830) really is the same as Eq (829).

In the small noise approximation, then, the mutual
information between x and y thus can be written as

I(y;x) ≈ −
∫

dy PY (y) log2 PY (y)

− 1

2 ln 2

∫
dy PY (y) ln[2πeσ

2
y(y)]. (831)

Now it’s clear that, given the noise level, we can maxi-
mize the mutual information by varying the distribution
of outputs PY (y). Notice that we started with the prob-
lem of varying the distribution of inputs, but now things
are formulated in terms of the distribution of outputs; Eq
(830) tells us that these are equivalent in the low noise
limit. To do the optimization correctly, however, we have
to add a Lagrange multiplier that fixes the normalization
of the distribution. Thus we are interested in the func-
tional

Ĩ ≡ I(y;x)− µ

∫
dy PY (y). (832)

As usual, to optimize we set the derivative equal to zero:
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δĨ

δPY (y)

∣∣∣∣∣
PY (y)=Popt(y)

= 0 (833)

⇒ 0 = − 1

ln 2
[lnPopt(y) + 1]− 1

2 ln 2
ln[2πeσ2

y(y)]− µ (834)

lnPopt(y) = −1

2
ln[2πeσ2

y(y)]− (1 + µ ln 2) (835)

Popt(y) =
1√

2πeσ2
y(y)

e−(1+µ ln 2). (836)

We can write this more simply by gathering together the
various constants,

Popt(y) =
1

Z

1

σy
, (837)

where Z must be chosen so that the distribution is nor-
malized, so

Z =

∫
dy

σy
. (838)

With this result for the optimal distribution, the mutual
information is

Iopt = log2

[
Z√
2πe

]
. (839)

Problem 158: Extrema of the mutual information. Once
again we need to check that we have found an optimum, rather
than some other type of extremum, in the dependence of the mu-
tual information on the distribution of outputs, Eq (831). You can
do this explicitly by computing second (functional) derivatives, or
by appealing to general convexity properties of the entropy. Notice
that our ability to write the information so simply as a functional
of the output distribution alone is a feature of the low noise approx-
imation. More generally, we should view the mutual information
as a functional of the input distribution P (x) and the conditional
distribution(s) P (y|x). Show that, in this more general setting,
once P (y|x) is known, the mutual information has a well defined
maximum as a functional of P (x).

Problem 159: Details of the small noise approximation,
part two. Carry out the small noise approximation to the next
leading order in the noise level σ2

y . Step by step, you should find
P (y) and then an expression for the information I(y;x). What can
you say about the problem of optimizing I(y;x) in this case?

The result for the optimal distribution of outputs, Eq
(837), is telling us something sensible: we should use the
different outputs y in inverse proportion to how noisy
they are. Suppose, however, that the noise level is con-
stant. Then what we find is that the distribution of out-
puts should be uniform. How can the system do this?

Recall that in the low noise limit, the relationship be-
tween input and output is nearly deterministic, so we
have Eq (830), PY (y)dy = PX(x)dx. But we also have
that y = g(x), in this approximation. If PY (y) is uni-
form, this means that

PY (y) =
1

ymax − ymin
, (840)

and hence

dy

dx
=

dg(x)

dx
= (ymax − ymin)P (x) (841)

g(x) = (ymax − ymin)

∫ x

xmin

dx′ P (x′). (842)

Thus, in this simple limit, the optimal input/output re-
lation is proportional to the cumulative probability dis-
tribution of the input signals.

Problem 160: How general is Eq (842)? We have derived
Eq (842) by assuming that the noise is additive, Gaussian, small,
and finally has a variance that is constant across the range of inputs
or outputs. Show that you can relax the assumption of Gaussianity
(while keeping the noise small, additive, and independent of inputs)
and still obtain the same result for the optimal input/output rela-
tion.

Equation (842) makes clear that any theory which
involves optimizing information transmission or effi-
ciency of representation inevitably predicts that the in-
put/output relation must be matched to the statistics of
the inputs. Here the matching is simple: in the right
units we could just read off the distribution of inputs by
looking at the (differentiated) input/output relation. Al-
though this is obviously an over–simplified problem, it is
tempting to test the predictions, and this is exactly what
Laughlin did in the context of the fly’s visual system.
Laughlin built an electronic photodetector with aper-

ture and spectral sensitivity matched to those of the fly
retina, and used this to scan natural scenes, sampling the
distribution of input light intensities P (I) as it would
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FIG. 149 Input/output relations of large monopolar cells
compared with the prediction of Eq (842), from Laughlin
(1981). Brief changes in light intensity relative to a mean
background produce transient voltage changes in the LMCs
(inset), and the peaks of these responses are taken as the cell’s
output. Normalized responses are compared to the cumula-
tive probability distribution of light intensities, as described
in the text.

appear at the input to these neurons. In parallel he
characterized the second order neurons of the fly visual
system—the large monopolar cells which receive direct
synaptic input from the photoreceptors, and which we
have seen before in [pointers!]—by measuring the peak
voltage response to flashes of light. The agreement with
Eq (842) was remarkable, as shown in Fig 149, especially
when we remember that there are no free parameters.
While there are obvious open questions, this is a really
beautiful result that inspires us to take these ideas more
seriously.

This simple model automatically carries some predic-
tions about adaptation to overall light levels. If we live
in a world with diffuse light sources that are not directly
visible, then the intensity which reaches us at a point is
the product of the effective brightness of the source and
some local reflectances. As is it gets dark outside the re-
flectances don’t change—these are material properties—
and so we expect that the distribution P (I) will look
the same except for scaling. Equivalently, if we view the
input as the log of the intensity, then to a good approx-
imation P (log I) just shifts linearly along the log I axis
as mean light intensity goes up and down. But then
the optimal input/output relation g(I) would exhibit a
similar invariant shape with shifts along the input axis
when expressed as a function of log I, and this is in rough
agreement with experiments on light/dark adaptation in
a wide variety of visual neurons [show a figure that illus-
trates this!].

As I have emphasized before, the problems of signals,
noise and information flow in the nervous system have

analogs within the biochemical and genetic machinery of
single cells. For the simple problem of one input and
one output, we can move beyond analogy and actually
use the same equations to describe these very different
biological systems.
Suppose that we have a single transcription factor that

controls the expression of one target gene. Now we can
think of the input x as the concentration of the transcrip-
tion factor, and the output y as the expression level of
the gene. As in Laughlin’s discussion of the fly retina,
we are (perhaps dangerously) ignoring dynamics. In the
context of gene regulation this probably is best seen as a
quasi–steady state approximation, in which the changes
in transcription factor concentration are either slow or in-
frequent, so that the resulting gene expression level has
a chance to find its appropriate steady level in response.
We have discussed the problems of noise in the control

of gene expression in Section II.B, and a crucial feature
of that discussion is that the noise levels cannot be con-
stant. In the simplest case, we are counting molecules,
and counting zero molecules allows for no variance, while
counting the maximum number of molecules leaves lots
of room for variation. For the problem at hand, this
means—because of Eq (837)—that the distribution of
outputs that maximizes information transmission can’t
be uniform. To find the form of the optimal distribution
we need to recall some of our earlier discussion about
noise.
We have identified (at least) three noise sources in the

regulation of gene expression. One term is the shot noise
in the synthesis and degradation of the mRNA or protein
(output noise). The second is the randomness in the ar-
rival of transcription factor molecules at their target site
(input noise), and the third is from the kinetics of the
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FIG. 150 Optimal distributions of (output) gene expression
levels. As described in the text, we maximize the transmission
of information from a single transcription factor to a single
target gene. Different curves correspond to relative contribu-
tions from input and output noise, as in Eq (845).
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‘switching’ events that occur on binding of the transcrip-
tion factors. We have argued that cells can reduce the
impact of this last term by proper choice of parameters,
leaving two fundamental sources of noise. The shot noise
generates a variance at the output proportional to the
mean, while the random arrivals are equivalent to a fluc-
tuation in input concentration (δc/c)2 ∝ 1/c. Putting
these together we have [from the discussion leading to
Eq (376)] the variance in the expression level

σ2
g(c) = αḡ(c) +

B

c
·
∣∣∣∣
dḡ(c)

d ln c

∣∣∣∣
2

, (843)

where α and B are constants, and ḡ(c) is the mean ex-
pression level as a function of the input transcription
factor concentration c; as usual we will normalize the
measurements of expression levels so that the maximum
ḡ(c) = 1. Finally, if we can assume that the input/output
relation is well approximated by a Hill function,

ḡ(c) =
cn

cn +Kn
, (844)

then we can write the variance as a function of the mean,
as in Eq (376),

σ2
g(ḡ) = αḡ + βḡ2−1/n(1− ḡ)2+1/n. (845)

The parameter A = β/α measure the relative importance
of input and output noise; large A means that the input
noise is dominant near the midpoint of the input/output
relation.

In Figure 150 we see the results for the optimal dis-
tributions of expression levels, derived using the general
result of Eq (837) with the noise variance from Eq (845).
We hold the cooperatvity fixed (n = 5) and consider
what happens as we change the relative importance of
the input and output noise (A). As long as output noise
is dominant, A < 1, the optimal distribution is mono-
tonically decreasing. If we take the results seriously, the
distribution has a singularity as we approach zero expres-
sion level. There is no physical reason why this can’t hap-
pen, but we also can’t trust our calculation here since at
some point the noise σ ∝

√
ḡ will become larger than the

mean as ḡ → 0. Nonetheless, it’s clear that when output
noise is dominant, the optimal distribution of expression
levels is relatively featureless, biased toward low expres-
sion levels. The strength of this bias is considerable so
that the probability of having more than half–maximal
activation,

∫ 1
1/2 dg P (g), is a bit less than 30%.

At larger values of A, where input noise is more im-
portant, the optimal distribution of expression levels be-
comes bimodal. This is especially interesting, because ex-
treme bimodality corresponds to a simple on/off switch.
Intuitively, true switch–like behavior runs counter to the
idea that information transmission is being maximized:

FIG. 151 Distributions of Hunchback expression levels in the
early fruit fly embryo (Tkačik et al 2008). In red, the distribu-
tion predicted by optimizing information transmission given
the measured input/output relation and noise in the control
of Hb by Bcd. In black, with error bars, the distribution
measured experimentally.

we might expect that maximizing information transmis-
sion involves making extensive use of intermediate ex-
pression levels, while building a reliable switch means ex-
actly the opposite, avoiding intermediate levels. In fact,
few of classic examples of “genetic switches” are perfect,
and here we see that maximizing information transmis-
sion can lead to relatively low probabilities of occupying
intermediate levels, just depending on the structure of
the noise in the system.
We can bring this theoretical discussion down to earth

by considering a real system. As discussed in Section
II.B, there are measurements on the input/output rela-
tion and noise level for the control of the hunchback gene
by the transcription factor Bicoid in the early Drosophila
embryo. If we take the formalism above seriously, we
can use these measurements to predict, with no free pa-
rameters, the distribution of hunchback expression levels,
which can also be extracted from the experiments. To
do this correctly, we should go beyond the small noise
approximation and solve the full optimization problem
numerically; the results are shown in Fig 151.
Figure 151 is the direct analog of Laughlin’s result in

the fly retina. As in that case, the agreement of the-
ory and experiment is very good, and again it should be
emphasized that there are no free parameters—these are
not models we are fitting to data, but quantitative pre-
dictions from theory. One can go further, and show from
the data that the actual amount of information86 being
transmitted from Bicoid to Hunchabck is 0.88 ± 0.09 of

86 This is a good place to remember the technical difficulties in-
volved in estimating information from finite samples of data. See
Appendix A.9.
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FIG. 152 Changes in information transmission from Bcd to
Hb if we scale all noise variances by a factor F , from Tkačik
et al (2008). This is equivalent to scaling all the numbers of
molecules by a factor 1/F . At each noise level we compute
the maximum information transmission, as described in the
text. Limiting behaviors in the small and large noise approx-
imations are shown for reference. The real system (in red,
with error bar) is in an intermediate regime, although close
to the small noise limit.

the limit set by the measured noise levels. Thus, going
back to the remarks in Section 1.5, we can see directly
that the system is operating near its optimum. This op-
timum corresponds to significantly more than one bit,
which means that intermediate expression levels, beyond
an on/off switch, are being used reliably. Finally, since
we understand how the absolute numbers of molecules
influence the noise level in the system (see, again, Sec-
tion II.B), we can compute that more bits would be
very expensive—doubling the information would require
twenty times as many molecules, as shown in Fig 152.

Problem 161: Information flow through calcium bind-
ing proteins. Many biological processes are regulated by calcium.
Typically the regulatory process begins with calcium binding to a
protein. In almost all cases, there are multiple binding sites, and
these sites interact cooperatively. We’d like to understand some-
thing about the signals, noise and information flow in such reg-
ulatory systems; not much has been done in this aream so this
is a deliberately open ended problem. Consider the simple model
shown in Fig 153. This is a dimeric protein with four states, cor-
responding to empty and filled Ca++ binding sites on each of the
two monomers. The sites interact, since the rate of unbinding from
one site depends on the occupancy of the other site.

(a.) Calculate the equilibrium probability of occupying each of
the states in Fig 153. Use these results to plot the fraction of
occupied binding sites as a function of the calcium concentration c.
You should be able to choose units which eliminate all parameters
except for the dimensionless constant F . Show that for F = 1 your
results are equivalent to having two independent binding sites, and
that the fraction of occupied sites becomes more strongly sigmoidal
or switch–like as F becomes larger. Cooperativity means, in this

context, that the free energy change upon binding of a calcium ion
to one site is increased by occupancy of the other site. Relate the
parameter F to this free energy difference or interaction energy.
Can interaction energies of just a few times kBT make a difference
in the shape of the plot of occupancy vs. concentration? See also
the discussion of cooperativity in Appendix A.4.

(b.) Suppose that we have N copies of this protein in the cell,
all experiencing the same calcium concentration. Let the number
of molecules with no bound calcium be n0, the number with one
bound calcium be n1, and the number with two bound calcium
be n2; of course

∑
j nj = N . Use your results from Problem 1

to calculate the mean values of each nj and the covariance matrix
Cjk = 〈δnjδnk〉. Verify that the determinant of the covariance
matrix is zero in this formulation. Why is this true? Notice that
we’re only asking here about the fluctuations that you would see
in a single snapshot of the molecules, not about the dynamics or
spectrum of this noise.

(c.) It is widely assumed that in systems such as this, only the
state with full occupancy of the binding sites is really “active.”
In practice what this means is that the calcium binding protein is
associated with some other protein, such as an enzyme, and the
enzyme becomes active only when both Ca++ are bound. Thus,
the output of the system is something proportional to n2. Calcu-
late the change in the mean 〈n2〉 that results from a small change
in calcium concentration c → c + δc. Compare this with the vari-
ance 〈(δn2)2〉 to compute a signal–to–noise ratio, or the equivalent
noise level δcrms in the calcium concentration itself. Plot your re-
sults. Again, you should be able to put everything into unitless
form, leaving only the parameter F . Does making the system more
switch–like by increasing F makes it more sensitive to small changes
in concentration, as you might expect? Are there competing effects
which could result in better performance at smaller F?

(d.) Suppose that molecules with one bound calcium also are
active. Then the output activity of the system is proportional to
some mixture of n1 and n2, which we can write as A = (1−a)n2+
an1; note that a = 0 brings us back to the case where only doubly–
bound states are active. Compute sensitivity of the mean activity,
∂〈A〉/∂c and the variance 〈(δA)2〉. If the system is operating at
a particular calcium concentration c, can you lower the effective
noise level

δcrms ≡
√

〈(δA)2〉
∣∣∣∣
∂〈A〉
∂c

∣∣∣∣
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FIG. 153 Model of calcium binding to a dimeric protein. The
rate at which calcium binds to each site, k+ is assumed to
be the same and independent of the occupancy of the other
site. The unbinding rates, however, are different depending
on whether the other site is empty (k−) or filled (k−/F ).
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by choosing a (= 0? Can you lower the noise level at all calcium
concentrations using the same value of a, or are there tradeoffs?

(e.) One way to think about the effective noise level δcrms is
that it sets a scale for the smallest concentration differences that
can be detected. If we imagine that c can range from zero up to
some maximum cmax, then it seems natural to say that number of
different levels of concentration that can be distinguished is given
by

Nlevels =

∫ cmax

0

dc

δcrms(c)
, (846)

where we note explicitly that the noise level depends on the
background concentration. The number of distinguishable lev-
els should translate into an information transmission (in bits) of
I ∼ log2(Nlevels), and this is almost right in the limit that the
noise is small. Show how a rigorous version of this argument can
be constructed by analogy with the derivation of Eq’s (838) and
(839). Calculate I for the system discussed above. Does think-
ing about the information transmitted, rather than just the noise
level, help you to decide whether there is a uniquely best mixture
of activity from the singly– and doubly–bound states? What is the
impact of the cooperativity (here captured by the parameter F ) on
the information transmission?

(f.) Some things to explore: Your results above suggest that,
at least under some conditions, it would be useful if the system
“reads out” some combination of the singly– and doubly–occupied
states. Can you find hints in the literature of the predicted par-
tial activation? For concreteness, focus on the case of calmodulin.
Our discussion above is for snapshots of the molecules, so ‘noise’
just means the total variance. Suppose that the readout scheme
effectively averages over a time longer than the times required for
transitions among the different states. Then you need to compute
the spectral density of the noise, and follow the path we discussed in
the context of bacterial chemotaxis. Is there anything qualitatively
new here, or just a change in details?

One of many questions left open in Laughlin’s original
discussion is the time scale on which the matching should
occur. One could imagine that there is a well defined
distribution of input signals, stable on very long time
scales, in which case the matching could occur through
evolution. Another possibility is that the distribution is
learned during the lifetime of the individual organism,
perhaps largely during the development of the brain to
adulthood. Finally one could think about mechanisms
of adaptation that would allow neurons to adjust their
input/output relations in real time, tracking changes in
the input distribution. It seems likely that the correct
answer is all of the above. But the last possibility, real
time tracking of the input distribution, is interesting be-
cause it opens the possibility for new experimental tests.

We know that some level of real time matching occurs,
as in the example of light and dark adaptation in the
visual system. We can think of this as neurons adjusting
their input/output relations to match the mean of the
input distribution. The real question, then, is whether
there is adaptation to the distribution, or just to the
mean. Actually, there is also a question abut the world
we live in, which is whether there are other features of
the distribution that change slowly enough to be worth
tracking in this sense.

epochs of high variance

!!"

!!#

!"

#

"

!#

!"

epochs of low variance

!! !" !# !$ % $ # " !
&%

!#

&%
!'

&%
!$

&%
!&

&%
%

&%
&

(
)*
+
,
+
-.-
/0
12
3
4
5
-/
0

5-64,.1,78.-/9231:)751;1&<

data

Gaussian

FIG. 154 This is a placeholder .. should replace with real
data, e.g. sounds from the songbird colony. Intermittency
in natural sounds. Top trace shows the alternating “loud”
and “soft” period characteristic of natural sounds. Probabil-
ity distribution of the instantaneous signal amplitude is far
from Gaussian, having long, nearly exponential tails. Need to
illustrate more clearly that these tails are removed by local
variance normalization!

As an example, we know that many signals that reach
our sensory systems come from distributions that have
long tails (cf Fig 154). In some cases (e.g., in olfac-
tion, where the signal—odorant concentration—is a pas-
sive tracer of a turbulent flow) there are clear physical
reasons for these tails, and indeed its been an important
theoretical physics problem to understand this behav-
ior quantitatively. In most cases, the tails arise through
some form of intermittency. Thus, we can think of the
distribution of signals as being approximately Gaussian,
but the variance of this Gaussian itself fluctuates; sam-
ples from the tail of the distribution arise in places where
the variance is large. This scenario also holds for images
of the natural world, so that there are regions of high
variance and regions of low variance. The possibility of
such “variance normalization” in images suggests that
the visual system could code more efficiently by adapt-
ing to the local variance, in addition to the local mean
(light and dark adaptation).
Adaptation to local variance, or more generally adap-

tation to input statistics beyond the mean, definitely hap-
pens at many stages of neural processing (Fig 155). The
earliest experiments looked the responses of retinal gan-
glion cells to sudden changes in the variance of their in-
puts, and showed that there is a pattern very similar
to what one sees with sudden changes in mean. More
ambitious experiments on the motion–sensitive neurons
in the fly visual system mapped the input/output rela-
tion when inputs were drawn from different distributions,
and found that the input/output relation scales in pro-
portion to the dynamic range of inputs, which is what
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FIG. 155 At left, adaptation of retinal ganglion cells to sud-
den changes in the variance of light intensity (Smirnakis et al
1997). At right top, input/output relations for the fly motion–
sensitive neuron H1 measured when inputs are drawn from
different distributions (Brenner et al 2000). To be precise one
has to define the input as a filtered version of the velocity,
and the methods for determining these filters are discussed in
Appendix A.7. At right bottom, the input/output relations
collapse when expressed a function of the stimulus in units of
its standard deviation.

one expects from the matching principle if noise levels
are small; it was also checked that the precise propor-
tionality constant in the scaling relation served to maxi-
mize information transmission. Further, if you suddenly
switch from one distribution to another, you can ‘catch’
the system using the wrong code and transmitting less
information, but the adaptation to the new distribution
is very fast, close to the limit set by the need to collect
enough samples that you are sure there was a change.
Related observations have been in many systems, from
low level sensory neurons up to mammalian cortex. [Do
we want to say more here? Maybe work on how such
adaptation is a property of individual neurons, so it is a
building block of neural computation? At least pointers
to the fact that these effects are so fast that calling them
“adaptation” raises some questions.]

I think the adaptation experiments are important be-
cause they give a whole new way of testing the ideas
about matching between the input/output relation and
the distribution of inputs—by changing the input dis-
tribution, if you believe the theory, we should drive
changes in the input/output relation, and it seems that
this works. Can we imagine a similar experiment in the
genetic or biochemical systems? In truth, there are few
cases (aside from embryonic development) where we have
quantitative measurements on the distributions of inputs
under moderately natural conditions. If we change the
distribution, then for the case of gene regulation one
imagines that input/output relations could change in re-

sponse only on evolutionary time scales, but at least for
bacteria such evolutionary experiments are now quite fea-
sible. Certainly there are models for network evolution
that use information theoretic quantities as a surrogate
for fitness, and these models are generating interesting
predictions, as shown in Fig [include a figure from Fran-
cois & Siggia simulations]. It would be exciting to see
laboratory evolution experiments that are the analog of
the neural experiments in Fig 155.
So far the discussion is about one input and one out-

put, in single genes or neurons. Almost all the really
interesting systems, however, involve populations or net-
works of these elements. Indeed, one of the earliest ideas
about optimizing information transmission in neural cod-
ing is that interactions among neighboring neurons in the
retina serve to reduce the redundancy of the signals that
they transmit, thus making better use of their capacity.
To get a feeling for how redundancy reduction works,

consider a system in which there are N receptor cells
that produce signals xi, and these feed into a layer of
N output neurons that take linear combinations of their
inputs and add noise, so that the outputs of the system
are

yi =
∑

j

Wijxj + ηi, (847)

and shown schematically in Fig 847. In the simplest case
the noise will be Gaussian and independent in each out-
put neuron, 〈ηiηj〉 = δijσ2. Let’s also assume, again for
simplicity, that the distribution of the xs is also Gaussian,
with zero mean and a covariance matrix 〈xixj〉 = Cij.
Then following the arguments in Section IV.A, the infor-
mation that the outputs provide about the inputs is

I(1y; 1x) =
1

2
Tr log2

(
1+

1

σ2
WCWT

)
, (848)

where WT denotes the transpose of the matrix W . We
can chose the matrix W , which defines the “receptive
fields” of the output neurons [point back to first discus-
sion of receptive fields; check!] to maximize the infor-
mation, but we need a constraint, since other wise the
answer is always to make W larger so we can overwhelm
the noise. A natural constraint, then, is to fix the overall
dynamic range of the output signal,

∑

i

〈y2i 〉 = Tr
(
WCWT

)
+Nσ2. (849)

But if we go into a basis where WCWT is diagonal, then
the information becomes

I(1y; 1x) =
1

2

∑

µ

log2

(
1 +

Λµ

σ2

)
, (850)

where the Λµ are the eigenvalues of the matrix WCWT ,
and the constraint is that the sum of these eigenvalues
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must be constant. Then it is clear from the convexity of
the logarithm that the best we can do is to have all of
the eigenvalues be equal, which means that WCWT is
proportional to the unit matrix. But (leaving aside the
contribution from the noise), WCWT is the correlation
matrix of the output signals. Thus, in this simple model,
we maximize information transmission by removing all
of the correlations in the input, and making the outputs
independent of one another.

Problem 162: Convexity and equalization. Show explic-
itly that if we want to maximize

I =
1

2

∑

µ

log2(1 + Λ̃µ), (851)

subject to the constraint
∑

µ

Λ̃µ = C, (852)

then the solution is to have all the {Λ̃µ} be equal, that is Λ̃µ = Λ0.
[I’d like to get the students to think more about the implications
of this ...]

In the retina, we expect that correlations, and perhaps
also the transformations from input to output, are trans-
lation invariant. Thus if the receptor cell i is at position
ri, perhaps on a lattice, and the output neurons are on
the same lattice, we should have

Cij = C(ri − rj), (853)

Wij = W (ri − rj). (854)

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

W13 W23 W33 W43 W53 W63

FIG. 156 A schematic network, after Eq (847). The xj pro-
vide inputs to the yi, with weights Wij. All connections are
present, but the connections from x3 are highlighted.

SNR = 10

SNR = 2

SNR = 0.1

FIG. 157 Cross–sections through the optimal matrices Wij

in the problem with noise, from Atick & Redlich (1990).
The correlation function is assumed to be exponential, Cij ∝
exp(−|i − j|/ξ), with ξ = 50, much longer than the range of
interactions shown here. At high SNR, the solution looks like
a differentiator, which decorrelates the signals, while at low
SNR the solution integrates to suppress noise.

Then the condition for independence at the outputs be-
comes

δij ∝
∑

km

WikCkmWjm (855)

=
∑

km

W (ri − rk)C(rk − rm)W (rj − rm). (856)

We approximate the sums as integrals, so that

δij ≈
∫

d2r′
∫

d2r′′ W (ri − r′)C(r′ − r′′)W (rj − r′′)

(857)

=

∫
d2k

(2π)2
|W̃ (k)|2S(k)eik·(ri−rj), (858)

where W̃ (k) is the Fourier transform of W (r), and we
identify the Fourier transform of the correlation function
C(r) as the power spectrum S(k). To satisfy this con-
dition |W̃ (k)|2S(k) must be constant, independent of k,
and if W (r) is symmetric in space this means that

W̃ (k) ∝ 1√
S(k)

. (859)

We expect that the power spectrum of correlations in
the inputs to the retina fall off at high frequencies, which
means that the optimal weights W have the form of a
filter which does the opposite, attenuating the low fre-
quencies and enhancing high frequencies. In fact, exper-
iments show that the power spectrum of contrast in nat-
ural scenes is scale invariant, so that S(k) ∝ |k|−α, with
the exponent α close to 2. Then the optimal weights W
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should actually vanish as k → 0, which means that the
output of the retina should be insensitive to spatially uni-
form illumination; on the other hand, the output should
overemphasize gradients or edges. By including the ef-
fects of noise (as in the problem below), one can see a
crossover to spatial averaging at low SNR; see Fig 157.
Qualitatively this is all correct: at high signal–to–noise
ratios we can see this enhancement of edges not just in the
responses of retinal ganglion cells but also in our percep-
tion, through the phenomenon of Mach bands [figures?],
and this spatial differentiation gives way to integration
as we lower the light levels and hence the SNR.

Problem 163: Redundancy reduction vs noise reduc-
tion. Equation (859) suggests that at large k, where the power
spectrum of input signals should be small, the weight in transfer-
ring these signals to the output should be large. This can’t be
completely right, since we expect that at very high (spatial) fre-
quencies, signals will be lost in a background of noise. Go back
to the start of this analysis and assume that the signals xi already
have a little bit of noise attached to them (as with photon shot
noise in vision) so that

yi =
∑

j

Wij(xj + ξj) + ηi, (860)

where everything is as before but 〈ξiξj〉 = δijσ2
0 . Follow the out-

line above and derive the form of the weights Wij that optimize
information transmission at fixed output variance. Verify that as
σ0 → 0 you recover the simple picture in which the optimal Wij

serve to remove correlations. Show, in contrast, that as σ0 becomes
large, the optimal solution involves averaging over multiple inputs
to beat down the noise.

Problem 164: Information available at the retina. Give
a problem that takes the students through the calculation in Rud-
erman & Bialek (1994), showing that with reasonable assumptions
natural scenes provide only ∼ 1 bit per cone in the fovea.

[Do we want to talk about coding/whitening in the
time domain, maybe the results on filtering at the recep-
tor/LMC synapse? Could argue by analogy with spatial
whitening, give a problem to work out details.]

Maybe a simpler example of these ideas is provided
by color processing. Roughly speaking, at one point in
space our retina takes three samples, corresponding to
the signals in the three different cones. These three sig-
nals are correlated, both because the absorption spectra
of the pigments in the different cones overlap and be-
cause the reflectance spectra of the objects around us
are rather smooth functions of wavelength.87 By anal-
ogy with what we have seen thus far, if the retina is un-
der pressure to maximize information transmission then

87 In fact this is the same effect. The reflectance properties of most
naturally occurring objects in our terrestrial environment are
determined by the absorption spectra of organic pigments, and
these tend to be broad; see Section [**] and Appendix [**].

it should send these signals to the brain in some decor-
related form. Early guesses about the form of the cor-
relations among the different cone signals suggested that
the three decorrelated signals would correspond roughly
to the sum of all the inputs (the total light intensity, ig-
noring color), an approximately “red minus green” signal,
and a “blue minus yellow” signal. In fact it is known that
neurons throughout the visual system follow this pattern
of “opponent” color processing [feels like there should be
something about experiments demonstrating color oppo-
nency, but I don’t know how quantitatively one can make
comparisons, so ...??].
To do a more quantitative analysis one has to get away

from traditional color photography, because (for exam-
ple) the three channels in a CCD camera don’t have wave-
length sensitivities that correspond exactly to that of our
cones. Instead one can take hyperspectral images, essen-
tially measuring the spectrum of light at each point in the
scene, and then construct the expected signals that will
be seen by each cone, known the absorption spectra of the
three cone pigments. This analysis shows, quite remark-
ably, that the rough intuition about opponent processing
is nearly exact, with the decorrelated signals being almost
perfect integer combinations of the cone signals: if the
three cone signals are L, M and S for the long, medium
and short wavelengths, then the decorrelated signals are
! = L+M+ S (light intensity), α = L+M− 2S (blue
minus yellow), and β = L−M (red minus green), where
the coefficients are unity with an accuracy of ∼ 1%. Fur-
ther, this linear transformation serves to generate truly
independent signals, even though the underlying distri-
butions are not Gaussian; see Fig 158. These very clean
results come from a delicate interplay between the sta-
tistical structure of the world and the properties of our
visual pigments. I don’t know how accurately the coeffi-
cients in opponent color processing have been measured,
but this is a striking prediction that certainly captures
the qualitative behavior of the system and deserves to be
tested more quantitatively.
In the example of Fig 157, the optimal weights for

transforming receptor signals into neural output corre-
spond to a “center–surround” structure in which an out-
put neuron at point r gives a positive weight to the
receptor cell at point r, and a negative weight to its
neighbors. Alternatively, we can think that all weights
from receptors to neurons are positive, and the output
neurons inhibit one another before sending their signals
on to the brain. In our retinae things are complicated,
because the transformation from photoreceptors to gan-
glion cells involves several intermediate cells, but in some
simpler creatures such as the horseshoe crab the picture
of “lateral inhibition” seems to be correct, and indeed
the horseshoe crab was the first retina in which recep-
tive fields were measured. Lateral inhibition is thought
to be a general neural mechanism for “sharpening” the
responses to stimuli that vary across an array of neu-
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FIG. 158 Statistical structure of color images, from Ruder-
man et al (1998). Top left shows a color image of one scene
analyzed by hyperspectral imaging. From the raw data, one
constructs the signals L, M and S corresponding to the (log)
photon capture rates by each of the types of cones, and then
rotates into the basis defined by % (upper right), α (lower
left), and β (lower right), as described in the text; images are
shown in these three projections after thresholding for clarity.
The three images are uncorrelated.

rons, and we have seen that this sharpening is essential
in decorrelating signals and enhancing the efficiency of
information transmission. Could there be an analog of
this for the transmission of information through genetic
or biochemical networks? If we go back to the case of
Bicoid regulating the expression of Hunchback, we know
that this is just one piece of a larger network in which
the primary morphogen Bicoid feeds into a collection of
gap genes, which in turn interact with one another. Be-
cause transcription factors tend to be either activators or
repressors, in the absence of any other effects all of the
target genes would have correlated expression levels and
hence provide redundant data about the concentration of
the input. This redundancy can be removed by lateral
inhibition, and that is what we see in the gap gene net-
work (Fig 159). The challenge is to take this quantitative
analogy and turn it into a quantitative theory.

The representations of data constructed by the ner-
vous system might be efficient in the sense we have con-
sidered here, but they have a more obvious feature—
they are built from discrete action potentials or spikes.
If we look with some reasonably fine time resolution,
∆τ < 10ms, then since the average spike rates are less
than 100 spikes/s, at any moment the typical neuron is
silent. In this sense, the code is “sparse.” It is this
sparseness which, among other things, makes it possi-
ble to decode spike trains using linear filters, as in Eq
(729). Spikes are expensive, requiring substantial energy
expenditure, and perhaps it is this cost which drives the
brain toward the construction of sparse representations.

bicoid

caudal

hunchback giantknirpskruppel

FIG. 159 The gap gene network in the Drosophila embryo.
Need to check and see how much of this has been discussed
already, although this is a nice place to put this ... .

If we take the idea of linear reconstruction seriously,
then if the sensory input is s(t)—for example sound pres-
sure as a function of time in the auditory system—we
would like to have a family of neurons labeled by µ that
spike at times {tµi } such that

sest(t) =
∑

µ

∑

i

fµ(t− tµi ) (861)

is as close as possible to the true signal. Notice that in
this system the input is s(t) and the output is the set
of spikes {tµi }. If we imagine adjusting the input/output
relations, the mapping s(t) → {tµi } will change, perhaps
in complicated ways. But suppose we knew the functions
fµ(τ). Then there would be “best times” tµi for each spike
so that the match between sest(t) and s(t) is as close
as possible. We could imagine searching through some
large space of input/output relations to find one that
puts the spikes at these best times, or we could use the
times themselves as our description of the input/outpute
relation. Conversely, if we knew the spike times, we could
adjust the filters fµ(τ), as in our previous discussions.
Can we do both problems, subject to a constraint on
the total number of spikes? This is hard, but by slightly
softening the problem—allowing each term in Eq (861) to
have a varying amplitude—it becomes tractable. [Can we
say something about whether the softening makes much
difference in the end? Need to ask Lewicki for details.]

Figure 160 shows the results of this approach applied
to a small population of neurons “trained” to provide an
efficient representation of natural sounds. There are sev-
eral interesting features in these results. First, the filters
fµ(τ) are localized in time; although they are “tuned” to
particular frequencies, they are more like a wavelet than
a Fourier representation, with support over a window
of time that scales inversely with the characteristic fre-
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quency. The filters also a very asymmetric shape, with a
sharp attack and a slower decay. If we look through mea-
surements of the impulse responses of neurons emerging
from the mammalian ear, we see exactly these structures,
and one can even find cells that overlay the predicted fil-
ters almost perfectly.88 Importantly, these structures are
lost if one tries to build representations of very different
sound ensembles.

By allowing for different total numbers of spikes, or
limiting the time resolution with which the spikes are
placed, one can construct codes of different qualities. For
these different codes it is relatively easy to put an upper
bound on the entropy of the spike trains, and to mea-
sure the errors between sest(t) and the true s(t); putting
these together one obtains the rate–distortion curve for

FIG. 160 Ingredients for an efficient representation of nat-
ural sounds, as in Eq (861), from Smith & Lewicki (2006).
At left, the functions fµ(τ) in red, compared with the im-
pulse responses of single neurons in the cat auditory nerve in
blue; grey scale bars are 5ms long. All these filters are band
pass, so that their Fourier transforms f̃µ(ω) have maximum
magnitude at some characteristic frequency and fall to half
maximal over some bandwidth. At right, a scatter plot of
bandwidths vs characteristic frequencies for the filters (red)
and auditory neurons (small blue dots); filters trained on dif-
ferent ensembles (black circles and green triangles) have very
different behavior.

88 One needs to be careful here. The impulse responses of the neu-
rons are measured by the reverse correlation method (see Ap-
pendix A.7) which, ideally, extracts a filter characteristic of the
encoding of sounds into spikes. In contrast, the filtrs fµ(τ) are
characteristic of the decoding process. One can circumvent this
problem by using reverse correlation to analyze the model code,
with almost identical results. This suggests that the model, at
least, is operating in a regime where the coding and decoding
filters are similar. This happens exactly in the limit where all
spikes are statistically independent from one another, so that
there is no redundancy. Thus, the search for efficient codes may
also drive the emergence of simplicity in decoding.

this family of codes. Applied to ensembles of human
speech, the results are comparable to or better than con-
ventional coding schemes. It does indeed seem that na-
ture has found an efficient class of codes, not just in ab-
stract terms.
Is there more we want to say here? What about predic-

tive information? I’d love to say something about this, if
we know enough ... .

Laughlin’s classic paper on matching input/output relations to the
distribution of inputs still is very much worth reading, thirty years
later (Laughlin 1981). The corresponding analysis for a genetic reg-
ulatory element is by Tkačik et al (2008a), with more theoretical
exploration in Tkačik et al (2008b). The literature on informa-
tion transmission in biochemical and genetic networks is growing
rapidly; for examples see Ziv et al (2007), Mugler et al (2008),
Yu et al (2008) and Tostvein & ten Wolde (2009). For a detailed
model of calcium signaling via the protein calmodulin (of relevance
to Problem **), see Pepke et al (2010).
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power spectra of natural images were approximately scale invariant.
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ample, Shapley & Victor (1981). The work on image statistics
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of visual inputs beyond the mean light intensity (Smirnakis et al
1997). Brenner et al (2000) describe experiments mapping the in-
put/output relations of the fly’s motion–sensitive visual neurons
when inputs are drawn from different distributions, demonstrating
that this adaptation served to optimize information transmission,
and Fairhall et al (2001) explored the dynamics of this process,
showing that one could “catch” the system using the wrong code
and transmitting less information.
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Tkačik et al 2009: Optimizing information flow in small genetic
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Perhaps the most obvious evidence that the energy costs of spik-
ing are significant is the fact that functional magnetic resonance
imaging (fMRI) of the brian actually works: what one “sees” in
these experiments are the changes in blood oxygenation that re-
flect the metabolic load associated with neural activity (Ogawa
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D. Gathering information and making models

The world around us, thankfully, is a rather structured
place. Whether we are doing a careful experiment in the
laboratory or taking a walk through the woods, the sig-
nals that arrive at our brains are far from random noise;
there seem to be some underlying regularities or rules.
Surely one task that all organisms must face is the learn-
ing or extraction of these rules and regularities, making
models of the world, either explicitly or implicitly. In this
section, we will explore how learning and making models
is related to the general problem of efficient representa-
tion.

Perhaps the simplest example of learning a rule is fit-
ting a function to data—we believe in advance that the
rule belongs to a class of possible rules that can be pa-
rameterized, and as we collect data we learn the values of
the parameters. This is something we all learned about
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FIG. 161 Fitting to polynomials. We have a collection of data
points (black circles), {xn, yn}, and we try to fit these data
with polynomials of different degree K, with K = 1, 5, 20.
We see that as the degree of the polynomial—what we think
of intuitively as the complexity of our model—increases, we
can get closer to the data points, but at the same time we
are introducing wild fluctuations which seem unlikely to be
correct. In fact, K = 5 is the correct answer, since the data
points were generated by choosing the xn at random, evaluat-
ing some fixed fifth–order polynomial, and then adding noise.
To claim that we understand how to learn, we have to find a
principled way of convincing ourselves that it’s better to keep
the poorer fit with the simpler model.

in our physics lab classes (see Fig 161 for a reminder),
and even this simple example introduces us to many deep
issues. First, data usually come with some level of noise,
and because of this any model really is (at least implic-
itly) a model of the probability distribution out of which
the data are being drawn, rather than just a functional
relationship. Indeed, one could argue that the general
problem is always the problem of learning such distribu-
tions, and any rigid or deterministic rules emerge as a
limit in which the noise becomes small or is beaten down
by a large number of observations. The second point is
that we would like to compare different models, often
with different numbers of parameters. We have an in-
tuition that simpler models are better, and we want to
make this intuition precise—is it just a subjective pref-
erence, or is the search for simplicity something we can
ground in more basic principles? A related point is that
where the classical curve fitting exercises involve mod-
els with a limited number of parameters, we might want
to go beyond this restriction and consider the possibility
that the data are described by functions that are merely
‘smooth’ to some degree. Finally, we would like to quan-
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tify how much we are learning—and how much can be
learned—about the underlying rules given a limited set
of data. If there are limits to how much we can learn,
is it possible that biology has constructed learning ma-
chines which are efficient in some absolute sense, pushing
up against these limits? So, let’s plunge in ...

Imagine that we observe two streams of data x and y,
or equivalently a stream of pairs (x1, y1), (x2, y2), · · · ,
(xN, yN). Assume that we know in advance that the x’s
are drawn independently and at random from a distri-
bution P (x), while the y’s are noisy versions of some
function acting on x,

yn = f(xn;α) + ηn, (862)

where f(x;α) is one function from a class of functions pa-
rameterized by α ≡ {α1, · · · ,αK} and ηn is noise, which
for simplicity we will assume is Gaussian with known
variance σ2. We can even start with a very simple case,
where the function class is just a linear combination of
basis functions, so that

f(x;α) =
K∑

µ=1

αµφµ(x). (863)

The usual problem is to estimate, from N pairs {xi, yi},
the values of the parameters α; in favorable cases such as
this we might even be able to find an effective regression
formula. Probably you were taught that the way to do
this is to compute χ2,

χ2 =
∑

n

∣∣∣∣yn − f(xn;α)

∣∣∣∣
2

, (864)

and then minimize to find the correct parameters α. You
may or may not have been taught why this is the right
thing to do, and this is what we would like to understand
here.

If we assume that our model, Eq (862), is correct,
what is the probability that we observe the data points
{xn, yn}? Let’s start by asking about the locations of the
points xn where we get samples of the functional rela-
tionship between x and y. In the standard examples of
curve fitting, the examples are given to us and there is
nothing more to say; thus, we might as well assume that
the points xn are chosen randomly and independently out
of some distribution P (x), perhaps just the uniform dis-
tribution on some interval. One might ask if there is a
good choice for the next xn+1, perhaps a point that will
give us the maximal information about the underlying
parameters α. This is the problem faced in the design of
experiments—how do we choose what to measure given
what we already know?—but let’s leave this aside for the
moment.
If we assume that the points {xn} are chosen out of

some distribution, then conveniently our model in Eq
(862) is a statement about the conditional probability
distribution of yn given xn. Specifically, yn is a Gaussian
random variable with a mean value of f(xn;α) and a
variance of σ2, so that

P (yn|xn,α) =
1√
2πσ2

exp

[
− (yn − f(xn;α))2

2σ2

]
. (865)

By hypothesis, the noise on every point is independent,
which means that

P ({yn}|{xn},α) =
N∏

n=1

P (yn|xn,α). (866)

Now we can put things together to write the probability
of the data given the parameters of the underlying model,

P ({xn, yn}|α) =

[
N∏

n=1

P (yn|xn,α)

]
×
[
∏

n

P (xn)

]
(867)

=

[
∏

n

P (xn)

]
N∏

n=1

1√
2πσ2

exp

[
− (yn − f(xn;α))2

2σ2

]
(868)

= exp

[
N∑

n=1

lnP (xn)−
N

2
ln(2πσ2)− χ2

2σ2

]
(869)

where we identify χ2 from Eq (864). Notice that the
only place where the parameters appear is in χ2, and
P ∝ e−χ2/2σ2

. Thus, finding parameters which minimize
χ2 also serves to maximize the probability that our model

could have given rise to the data. This sounds like a good
thing to do, and certainly maximizing the probability
of the data (usually called “maximum likelihood”) feels
more fundamental than minimizing χ2. But what are we



249

really accomplishing by maximizing P?
We recall from Section IV.A that the entropy is the

expectation value of − logP , and that it is possible to
encode signals so that the amount of “space” required
to specify each signal uniquely is on average equal to
the entropy. In such optimal encodings, each possible
signal s drawn from P (s) can be encoded in a space of
− log2 P (s) bits. Thus, any model probability distribu-
tion implicitly defines a scheme for coding signals that
are drawn from that distribution, so if we make sure that
our data have high probability in the distribution (small
values of − logP ) then we also are making sure that our
code or representation of these data is compact. What
this means is that good old fashioned curve fitting re-
ally is all about finding efficient representations of data,
which is the same principle that we discussed in the pre-
vious section in contexts ranging from the regulation of
gene expression to neural coding. To be clear, in the
earlier discussion we took for granted some physical or
resource constraint (e.g., the noise level or limited num-
ber of molecules) and tried to transmit as much infor-
mation as possible. Here we do the problem the other
way, searching for a representation of the data that will

require the minimum set of resources.
If we follow this notion of efficient representation a

little further we can do better than just maximizing χ2.
The claim that a model provides a code for the data is
not complete, because at some point we have to represent
our knowledge of the model itself. One idea is to do
this explicitly—estimate how accurately you know each
of the parameters, and then count how many bits you’ll
need to write down the parameters to that accuracy and
add this to the length of your code. Another idea is
more implicit—you don’t really know the parameters, all
you do is estimate them from the data, so it’s not so
obvious that you should separate coding the data from
coding the parameters, although this might emerge as
an approximation. In this view what we should do is
to integrate over all possible values of the parameters,
weighted by some prior knowledge, and thus compute
the probability that our data could have arisen from the
class of models we are considering.
To carry out this program of computing the total prob-

ability of the data given the model class we need to do
the integral

P ({xi, yi}|class) =
∫

dKαP (α)P [{xi, yi}|α] (870)

=

∫
dKαP (α) exp

[
−N

2
ln(2πσ2)− 1

2σ2
χ2(α; {xi, yi})

] [∏

n

P (xn)

]
, (871)

where P (α) is the a priori distribution of parameters, maybe just a uniform distribution on some bounded region.
But remember that χ2 as we have defined it is a sum over data points, which means it (typically) will be proportional
to N . Thus, at large N we are doing an integral in which the exponential has terms proportional to N—and so we
should use a saddle point approximation. To implement this approximation let’s write

P ({xi, yi}|class) = exp

[
−N

2
ln(2πσ2)

] [∏

n

P (xn)

]∫
dKα e−Nf(α), (872)

where the effective “energy per data point” is

f(α) =
1

2Nσ2
χ2(α; {xi, yi})−

1

N
lnP (α) (873)

The saddle point approximation is that
∫

dKα e−Nf(α)

≈ e−Nf(α∗)(2π)K/2 exp

[
−1

2
ln det (NH)

]
,(874)

where α∗ is the value of α at which f(α) minimized, and

the Hessian H is the matrix of second derivatives of f at
this point,

Hµν =
∂2f(α)

∂αµ∂αν

∣∣∣∣∣
α=α∗

. (875)

At large N , f(α) is dominated by χ2, so α∗ must be close
to the point where χ2 is minimized. Putting the pieces
together, we have
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− lnP ({xi, yi}|class) ≈
N

2
ln(2πσ2)−

N∑

i=1

lnP (xi) +
χ2
min

2σ2
+ lnP (α∗)− K

2
ln 2πσ2 +

1

2
ln det (NH) . (876)

Note that H is a K×K matrix, and so det(NH) = NK det(H). This allow us to group together terms based on their
N dependence,

− lnP ({xi, yi}|class) ≈ −
N∑

i=1

lnP (xi) +
χ2
min

2σ2
+

N

2
ln(2πσ2) +

K

2
lnN + · · · , (877)

where the first three terms are ∝ N , and the terms · · ·
(including things we have neglected in the saddle point
approximation) are constant or decreasing as N → ∞.
Again, the negative log probability measures the length
of the shortest code for {xi, yi} that can be generated
given the class of models.

In Equation (877), the first term averages to N times
the entropy of the distribution P (x), which makes sense
since by hypothesis the x’s are being chosen at random.
The second and third terms are as before, the length
of the code required to describe the deviations of the
data from the predictions of the best fit model; this also
grows in proportion to N . The fourth term must be re-
lated to coding our knowledge of the model itself, since
it is proportional to the number of parameters. We can
understand the (1/2) lnN because each parameter is de-
termined to an accuracy of ∼ 1/

√
N , as in Fig 162, so

if we start with a parameter space of size ∼ 1 there is
a reduction in volume by a factor of

√
N and hence a

decrease in entropy (gain in information) by (1/2) lnN .
Finally, the terms · · · don’t grow with N .

Problem 165: Deriving the code length in a class of
models. Fill in the details leading to Eq (877). Find an explicit
form for the terms · · · , and show that they do not grow with N .
What assumptions do you need to make about the prior distribu-
tion P (α) in order to make this work?

What is crucial about the term (K/2) lnN is that it de-
pends explicitly on the number of parameters. In general
we expect that by considering models with more parame-
ters we can get a better fit to the data, which means that
χ2 can be reduced by considering more complex model
classes. But we know intuitively that this has to stop—
we don’t want to use arbitrarily complex models, even if
they do provide a good fit to what we have seen. It is at-
tractive, then, that if we look for the shortest code which
can be generated by a class of models, there is an implicit
penalty or coding cost for increased complexity. It is in-
teresting from a physicist’s point of view that this term
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FIG. 162 Confidence limits on the estimation of mean and
variance for a Gaussian distribution. In several independent
experiments, we choose N = 10 (blue), N = 100 (green), or
N = 1000 points out of a Gaussian distribution with zero
mean and unit variance. We estimate the mean and variance
from the data in the usual way, and draw error ellipses on the
parameters that should contain 95% of the weight. We see
that the linear dimensions of these ellipses shrink by ∼ 1/

√
10

as N increase by a factor of 10. The (log) area inside the el-
lipses measures the entropy of our uncertainty in parameters,
and decreases in this area correspond to gains in information.

emerges essentially from consideration of phase space or
volumes in model space. It thus is an entropy–like quan-
tity in its own right, and the selection of the best model
class could be thought of as a tradeoff between this en-
tropy and the “energy” measured by χ2, a view to which
we return below.
Thus Eq (877) tells that we have a natural penalty for

the complexity of our model. While this term is linear
in the number of parameters, it is only logarithmic in
the number of data points. In contrast, χ2

min decreases
with the number of parameters and is linear in the num-
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ber of data point. In this way, the penalty for complex-
ity becomes (relatively) less important the more data we
gather: if we have only a few data points then although
we could lower χ2 by fitting every wiggle, the phase space
factor pushes us away from this solution toward simpler
models; if, however, the wiggles are consistent as we col-
lect more data, then this factor becomes less important
and we can move to the more complex models.

To see that these words really correspond to a quantita-
tive theory, we have to generate a data set and go through
the process of fitting via minimization of the ‘code length’
in Eq (877). For simplicity let’s consider polynomial
functions. We can pick a polynomial by choosing co-
efficients aµ at random, say in the interval −1 < a < 1,
where

f(x) =
Ktrue∑

µ=0

aµx
µ. (878)

We’ll confine our attention to the range −5 < x < 5; in
this range the function f(x) has some overall dynamic
range (measured, for example, by its variance over this
interval), and we’ll assume the noise variance σ2 is one
percent of this ‘signal’ variance. Then we can generate
points according to

yn = f(xn) + ηn, (879)

and try to fit. Fitting to any polynomial of degree K
by minimizing χ2 is a standard exercise, and in this way
we find χ2

min(K). Then we can find the value of K that
minimizes the total code length in Eq (877); this last
step is just a competition between χ2

min(K)/σ2 and (K+
1) lnN . The results of this exercise are shown in Fig 163.

What we see in Fig 163 is that our qualitative descrip-
tion of the competition between complexity and good-
ness of fit really works. First we note that with a large
number of data points, minimizing the code length ze-
roes in on the correct order of the underlying polynomial
(K → Ktrue), despite the presence of noise that one could
‘fit’ using more complex models. Next, we see that for
smaller numbers of data points, the shortest code is bi-
ased toward simpler models. In the limit that we only
have a handful of data points, the shortest code is often
a straight line (K = 1). Put another way, we start with a
bias toward simple models, and only as we uncover more
data can we support the adding of greater complexity.

Problem 166: Fitting and complexity. Generate a version
of Fig 163 for yourself, doing a simulation which follows the steps
outlined in the text. If you do this in MATLAB, you’ll find the
command polyfit to be useful. Some things to keep in mind:

(a.) Start with a small version of the problem, e.g. fitting to
N = 20 data points.

(b.) Plot some of your intermediate results, just to get a feeling
for what is going on. In particular, plot χ2

min as a function of K,
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FIG. 163 Fitting to polynomials, part two. Choose the coef-
ficients of a polynomial with degree 10 at random, and then
choose points at random in the interval −5 < x < 5; there
is added noise [as in Eq (862)] with a standard deviation set
to be 1/10 of the overall dynamic range of the function f(x).
We then try to fit polynomials of order K, and find the value
of K that minimizes the ‘code length’ in Eq (877). Since the
result depends both on the particular value of the polynomial
coefficients and on the particular points xn that we happen to
sample, we choose 500 examples and look at the mean (points)
and standard deviation (error bars) across this ensemble of ex-
amples. Although the optimal order of the polynomial in any
given example is, of course, an integer, fractional values arise
from averaging over many examples.

verifying that higher order polynomials always give “better” fits in
the sense of smaller χ2.

(c.) Notice that χ2
min is a function of K and N , but also a

function of the particular points {xi, yi} you have “observed” in
the experiment and of the particular parameters {aµ} that spec-
ify the real function you are trying to learn. When you choose a
different set of parameters and test points {xi}, from the same dis-
tribution, how different is the minimum “energy per data point”
εmin = χ2

min/(Nσ2) as a function of K? What happens to this
variability as N gets larger?

(d.) Perhaps the most important thing is to verify that mini-
mizing the code length really does control the complexity of the
fit, selecting a nontrivial optimum K. Convince yourself that, as
in Fig 163, the optimal K is small than Ktrue for small data sets,
and approaches Ktrue as you analyze larger data sets.

There are many reasons to prefer simpler models, and
certainly the idea that we entertain more complex models
only as we collect more data is in accord with our sense
of how we understand the world. But all of this can seem
a little soft and squishy. Indeed, given the evident com-
plexity of life and the world around us, one might start
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to suspect that the preference for simple models is not an
objective principle, but rather a subjective choice made
by humans—and more often by scientists than by humans
in general.89 Even some technical discussions leave this
impression of subjectivity, suggesting that while there
must be a tradeoff between goodness of fit and complex-
ity, the structure of this tradeoff is something that we
are free to choose, perhaps inventing a new “penalty for
complexity” tuned to the details of each problem. As
physicists we are raised to be suspicious of overly com-
plex models, but again this preference for simplicity is
often couched in (surprisingly) soft words about the ele-
gance or brevity of the equations that describe the model.
What we have seen here is that all of this can be made
much more precise.

The power of information theory in this context is that,
by consistently measuring code lengths in bits we don’t
have to discuss our ‘preference for simplicity’ as a sepa-
rate principle from goodness of fit. Deviations from the
model (badness of fit) and the complexity of the model
both add bits to the overall code length, and the relative
contributions are calculable with no adjustable constants.
The absence of unknown constants is important, since if
we had to specify weights for the different terms we would
once again inject subjectivity into the discussion of just
how much we care about simplicity. Instead, we have
one principle (search for the most compact description)
and everything else follows. In particular, what follows is
that limited experience (small N) biases us toward sim-
pler models, while as we accumulate more experiences
(ultimately, as N → ∞) we can admit more complex
descriptions of the world.

This is a very satisfying picture, and I am inclined to
say that we can declare victory—we understand what we
are doing when we make models, why simple models are
preferable, and how the support for more complex models
emerges. Nonetheless, there are several loose ends, and
I’m not sure that I know how to tie them all up.

The first and most obvious problem is that our discus-
sion makes sense as long as we specify in advance a class
of models, and more seriously a hierarchy of such classes
with increasing complexity. It’s not at all obvious how
to do this. Worse yet, plausible but wrong ways of do-
ing this can lead to weird results, for example if we have
a function well described by a Fourier series with just
a few terms, but we try fitting polynomials. Simplicity
and complexity have meaning as code lengths only if we
have a defined ensemble of possibilities to choose from, in
much the same way that Shannon’s original discussion of

89 One could add that even among scientists, physicists have a spe-
cial affinity for simple models, often to the point of being the
punchline in jokes, as in “ ... consider the case of the spherical
horse.”

the information gained on hearing the answer to a ques-
tion (Section IV.A) starts with the assumption that we
know the distribution out of which answers will be drawn.
A second, and perhaps related, problem is that we are

discussing models with a finite number of parameters. It
might seem more natural, for example, to imagine that
the relationship between x and y is just some smooth
function, not necessarily describable with a finite num-
ber of parameters; that is, f(x) should live in a func-
tion space and not in a finite dimensional vector space.
Now we have to specify a prior distribution not on the
parameters, as with P (α) above, but on the functions
themselves P [f(x)]. The simplest version of this prob-
lem is not with functional relations but just with prob-
ability distributions: suppose that we observe a set of
points x1, x2, · · · , xN , which we assume are drawn ran-
domly and independently out of a distribution Q(x); how
do we estimate Q? If the distribution we are looking for
belongs to a family with a finite number of parameters,
we proceed as before, but if all we know is that Q(x) is
a smooth function then we have to specify a prior prob-
ability distribution on this space of distributions. From
a physicist’s point of view, probability distributions on
such function spaces are just scalar field theories, and
one can carry a fair bit of technology over to do real com-
putations. The lesson from these computations is that,
with some reasonable priors to implement what we mean
by “smooth,” everything works as it does in the case of
finite parameters, but the prior does matter.

Problem 167: Taming the singularities. The basic problem
in trying to learn a continuous probability distribution is to explain
why, having observed a set of points x1, x2, · · · , xN , we shouldn’t
just guess that the distribution is of the form

Q(x) ∼
1

N

N∑

i=1

δ(x− xi), (880)

which of course generates precisely the data we have observed with
maximal (infinite!) probability density. We all know that this is the
wrong answer, and the role of priors on the space of distributions
is to express this knowledge. A very different approach to taming
the singularities is sometimes called Kernel density estimation, in
which we search for a probability distribution in the form

Q(x) =
1

K

K∑

j=1

1

0
F

(
x− yj

0

)
, (881)

where 0 is again a characteristic length scale, F (z) is some ‘blob–
like’ function, and the yj are the centers of the blobs; F is normal-
ized so that

∫
dz F (z) = 1. For concreteness let

F (z) =
1

√
2π

e−z2/2. (882)

If we let K = N (generally not such a good idea), then it should
be clear that the model which generates the data with the highest
probability is one in which the kernel centers are on top of the data
points, yi = xi for all i. It should also be clear that this probability
of the data increases for smaller 0, diverging as 0 → 0. But we
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know that, to get control over complexity, we should compute the
total probability of generating the data in this class of model. In
this case the parameters of the model are the kernel centers {yi}.
Assume that everything happens in a box, so that 0 < x < L,
and and similarly for {yi}; by translation invariance the prior on
the ys should be flat in this box. Calculate the total probability
that this class of models generates the data in the limit 0 → 0. Is
the answer finite? If so, this means that the phase space factors
are just strong enough to compensate for the ‘goodness of fit’ and
prevent anything from diverging in this limit. Can you find any
other approximations that allow you to say anything about the
optimal value of 0?

Quite generally, when we compute the total probability

that a model can generate data, we are doing integrals
like

P ({xi}|model class) =

∫
DQP [Q(x)]

N∏

i=1

Q(xi), (883)

where P [Q(x)] is the probability distribution function(al)
on the space of distributions. It embodies all our prior
knowledge, in whatever form—that the distribution can
be described by a few parameters, or merely that it is
smooth in some sense. To understand what is happening
in this integral, it is useful to measure possible distribu-
tions Q(x) relative to the true distribution Qtrue(x),

P ({xi}|model class) =

[
N∏

i=1

Qtrue(xi)

]∫
DQP [Q(x)]

N∏

i=1

[
Q(xi)

Qtrue(xi)

]
. (884)

We can collect the product into an exponential,

P ({xi}|model class) =

[
N∏

i=1

Qtrue(xi)

]∫
DQP [Q(x)] exp

[
N

1

N

N∑

i=1

ln

(
Q(xi)

Qtrue(xi)

)]
, (885)

and we recognize that the average over data points xi approaches, at large N , an average over the true distribution,

P ({xi}|model class) →
[

N∏

i=1

Qtrue(xi)

]∫
DQP [Q(x)] exp

[
N

∫
dxQtrue(x) ln

(
Q(x)

Qtrue(x)

)]
(886)

=

[
N∏

i=1

Qtrue(xi)

]∫
dεN (ε)e−Nε, (887)

where

ε =

∫
dxQtrue(x) ln

(
Qtrue(x)

Q(x)

)
(888)

is the Kullback–Leibler divergence between the distribu-
tion Q(x) and the true distribution, and

N (ε) =

∫
DQP [Q(x)]δ

[
ε−

∫
dxQtrue(x) ln

(
Qtrue(x)

Q(x)

)]
(889)

counts the (weighted) volume in model space that is at
KL divegence ε away from the right answer. Now ε, which
is a “goodness of fit” between the model and the data,
can be thought of as an energy, while the (log) volume in
model space is an entropy, N (ε) = eS(ε). If we imagine
the the model space has a finite but large dimensionality
K, then we expect that the entropy will be extensive,

S(ε) = Ks(ε). So, when the dust settles,

P ({xi}|model class) ∝
∫

dε exp

[
−N

(
ε− K

N
s(ε)

)]
.

(890)
Thus, at large N , the integral is dominated by the min-
imum of the free energy density, f = ε − Ts(ε), where
the role of temperature is played by T = K/N . This
calculation makes explicit the idea that learning really is
statistical mechanics in the space of models, and that see-
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ing more examples is like like lowering the temperature,
‘cooling’ the system into an ordered state around the
right answer. Depending on space of possible models, and
hence the function s(ε), there can be phase transitions—a
sudden jump, as we collect more examples, from wander-
ing around in model space to having a compelling fit to
the data.
What would it mean to have a phase transition in

learning? As we accumulate more examples, we are low-
ering the effective temperature in the equivalent statis-
tical mechanics problem. At first this doesn’t do very
much, in the same way that lowering the temperature of
water from 100 ◦C to 30 ◦C doesn’t do very much much.
But, at some point, a relatively small change in the num-
ber of examples we have seen produces a huge change in
the distribution over models, freezing into a small volume
surrounding the correct answer. This would be some-
thing like the subjective “aha!” experience, where we
suddenly seem understand something or master a skill
after a very period of experience or training. Although
we have all (I hope) experienced this phenomenon, it is
not so easy to study quantitatively, and so I think we
have no idea whether the statistical mechanics approach
to learning provides a useful guide to understanding this
effect.

It is interesting to look at the history of studies in an-
imal learning in the light of these results. Already in the
1920s and 30s it was clear that, at certain tasks, animals
could exhibit “sudden” rather than gradual learning. Al-
though this was well before Hebb, and decades before
the observation of changes in synaptic strength driven
by the correlation between pre– and post–synaptic neu-
rons (see Section [point back to previous chapter; be sure
it’s there!]), there was a general view that learning relied
upon statistical association, and thus should be a contin-
uous process. Thus there was a question whether sudden
learning represents a new mechanism, beyond associa-
tive processes. The mapping of learning onto a statistical
mechanics problem reminds us that when there are many
degrees of freedom, continuous dynamics can have nearly
discontinuous consequences.

Before leaving the image of energy/entropy competi-
tion behind, we should note a caveat. In getting to Eq
(890), we have first allowed N to become very large,
so that averages over samples can be replaced by av-
erages over the underlying distribution, and then used
the resulting formulae with finite N to say something
about how learning proceeds. Evidently this is danger-
ous. It also was controversial when it first emerged, since
the results seemed to conflict with an approach by com-
puter scientists which emphasized bounds on the learning
curve. To explain how all this was resolved would take
us far afield, so I’ll point to the references at the end
of this section. When the dust settles, there is a well
defined approximation that leads to Eq (890), and the
resulting predictions can be made rigorous and shown to

be consistent with known bounds.
It would be good to connect these ideas with exper-

iment. To what extent is our (or other animals’) per-
formance in situations where we learn understandable
in terms of these theoretical structures? A big prob-
lem here is what to measure. In the examples discussed
above, what is being learned is a probability distribu-
tion, or some set of parameters describing the data that
we observe. It’s not so easy to ask even a human subject
to report on their current estimates of these parameters,
and it’s completely unclear how we would do this in sim-
pler organisms. In practice, subjects are usually asked
to make a decision; in classical work on pigeons the deci-
sion is to peck or not to peck at a target, and for humans
subjects are simply asked a yes/no question, or asked to
push one of a small set of buttons. Evidently the band-
width of these experiments is limited—although we may
be continuously updating an internal model with many
parameters, what we report is on the order of one bit,
yes or no.
One context that comes closer to the theoretical discus-

sion, albeit in a simple form, concerns making decisions
when the alternatives come with unequal probabilities.
This harkens back to out earliest topic, a human ob-
server waiting for a dim flash of light in a dark room.
As we discussed in that context, optimal decisions, de-
ciding that a signal is convincingly above the background
of noise, are achieved by setting a threshold that depends
on the probability that the signal is present [need a def-
inite pointer]. If this probability can change over time,
then it must be learned. More prosaically, if we have
to choose between two alternatives even in a limit where
they are fully distinguishable, but the rewards for the
different choices vary probabilistically, then we have to
learn something about the underlying probabilities of re-
ward in order to develop a sensible strategy. These sorts
of experiment have attracted interest because they might
connect to our economic behavior, and because they pro-
vide settings in which we can search for the neural corre-
lates of the subject’s estimate of probability and value.90

There is a classical literature showing that human ob-
servers adjust their criteria for detecting signals to the
probability that the signals occur. The question about
learning is really how long it takes the subject to make
this adjustment. In the simplest case, the probability
changes suddenly, and we look for a change in behavior
in response. If the only behavioral output is a decision
among two alternatives, we as observers also need to go

90 I think it is fair to say that the concept of “value” has attracted
more attention in this context, because it seems more connected
to economics. Indeed, there is now a whole field described as
“neuro–economics.” But perhaps the probabilistic nature of our
inferences, even in the economic context, have been given less
attention than they deserve.



255

through an inference process to decide when is the first
sign of a response. In such an experiment, we have a com-
plete probabilistic description of the trajectory taken by
the sensory stimuli or rewards, so at any moment we can
calculate the probability that the signals being shown are
consistent with constant parameters or a recent, sudden
change. Given the responses of the subject, we can also
ask for the moment at which we see the first statisti-
cal sign of a change in behavior. In experiments where
rats experience changing reward probabilities, the change
in behavior occurs at times so soon after the changes
in probability that the best evidence for the change is
modest, corresponding to probabilities in the range 0.1
to 0.9; only rarely (in ∼ 20% of trials) do rats wait to
reach 99% certainty. On these very short time scales, the
rate at which the rat collects rewards changes very little,
suggesting that changes in strategy really are driven by
learning the underlying probabilities, rather than tinker-
ing until rewards accumulate.

In a similar spirit, we can do a longer experiment,
with the probabilities jumping among different levels,
and track the dynamics of the behavior. [Have to decide
how much to say here. Would like to connect with result
from Corrado et al suggesting that filtering of experience
to generate internal model of probability is near–optimal.
Could do the calculation in a simple case, then point to

efficiency

FIG. 164 Tracking the changing probabilities of reward, from
Corrado et al (2005). At top, the local frequencies of choosing
one of two alternatives (solid) and being rewarded (dashed),
when the probability of this choice being rewarded jumps
among different levels as shown (thin line); frequencies are
computed from discrete events by smoothing with the Gaus-
sian kernel shown in the inset. At bottom left, the filter in-
ferred from the relationship between rewards and subsequent
choices. At bottom right, the efficiency of collecting rewards
averaged over the whole session, assuming that the subject
implements a filter with the times constants as shown. The
subjects’ behaviors are best fit by parameters that generate
efficiencies within one percent of the optimum.

also differs greatly between subjects. Fourth, there is little corre-
lation between the two parameters; some records of shallow slope
begin early and some begin late; conversely, some records with
steep slope begin early and some late. Finally, it is not uncommon
for the level of behavior to decrease later on, well below the level
it had when it first appeared, as indicated by downward deflections
in the slope of the cumulative record.

A second way to visualize the acquisition of conditioned respond-
ing is to plot the pecks on each trial (Fig. 3). This plot is the
(discrete) derivative of the cumulative record plot. In some cases,
it is readily intelligible (Fig. 3 Upper), whereas in others, the
trial-to-trial variability in the number of pecks, makes it hard to see
what is going on (Fig. 3 Lower). Other disadvantages of this
visualization are that the parameters of acquisition (latency, abrupt-
ness, and asymptote) are not so readily visible, and, finally, one
cannot make more than one plot per figure, to show differences and
similarities between subjects.

Quantifying Acquisition
In quantifying the appearance of conditioned behavior in individual
subjects, we want to know at least three things: (i) how long it took
for it to appear; (ii) how abruptly it attained its asymptotic level; and
(iii) what the asymptotic level was. We now describe how to obtain
these parameters from each kind of plot, beginning with the second
kind.

Our approach to these questions is descriptive rather than
model-driven. We use two different representations to test whether

the conclusions one draws about acquisition depend on the choice
of a representation.

We summarize the plots of pecks versus trials by fitting a
continuous function to the data. The Weibull function is often used
to summarize psychometric plots. When applied to the pecks-
versus-trial data, the function is

Pecks ! A!1 " 2"#!Trials!L$S%$.

Its parameters, A, L, and S, correspond to the aspects of acquisition
just mentioned: asymptote (A), latency (L), and abruptness of
onset (S).

Different values for the S parameter of the Weibull function
cause it to assume widely different forms so it can approximate most
monotonically increasing data sets. WhenS is close to 1, it approx-
imates the inverse exponential. When S is &1.5, it is sigmoidal;
asymmetrically so for values around 2, and symmetrically for values
of 4 and higher. As S goes to infinity, it becomes a step function.
Roughly speaking, the higher the value of S, the more abrupt the
rise. However, it is important to bear in mind that this measure of
abruptness is normalized to the L of behavioral onset, because S is
the power to which the ratio Trials!L is raised. When the onset L
is short, low values ofS may be found in data that show a rapid initial
rise in the level of performance (for example, see Fig. 7).

Summarizing the Pecks versus Trials plots with Weibull functions
allows one to plot the results from all subjects on a single graph.
Such a plot (Fig. 4) confirms the impression one has from the plot
of the cumulative records: acquisition is generally abrupt, there are
striking between subject differences in both onset latency and
asymptotic level, and these differences do not covary.

The Weibull function is monotonic; it cannot capture multistep
changes in behavior, particularly when these postacquisition steps
are both up and down. For that result, our second approach, based

Fig. 1. Group-average (n ' 20 pigeons) rate of key pecking (the conditioned
response in the pigeon autoshaping paradigm) as a function of number of
sessions (with 50 trials per session). Coordinate frame and jagged data line were
traced from Gamzu and Williams (figure 2 in ref. 10, p. 227). We have superposed
a Weibull function approximation (smooth curve), to show that this function,y '
A {1 " 2ˆ " [(x!L)ˆS]} can capture the kind of prolonged increase seen in these
averages. A is the asymptote and L is the onset latency or location (the value of
x at which y is half of its asymptotic value). Note the value (1.4) of the shape
parameter S, which determines the shape and steepness of the function.

Fig. 2. The cumulative number of pecks versus the number of trials for the
nine birds in Condition CR!CS6!IT9.

Fig. 3. TwoexamplesofPecksversusTrialsplots.Thedashedcurve ineachpanel
is the best-fitting Weibull function. (Upper) The subject did not respond at all for
(40 trials; then, within the space of(10 trials, it transitioned to making between
5 and 15 pecks on each trial. These data are summarized fairly well by the
best-fitting Weibull function. (Lower) The subject did not respond at all for the
first 30 trials; then, it began to make between zero and three pecks per trial. This
pattern of weak and highly intermittent responding persisted for 600 more trials.
Although the plot is visually confusing, the Weibull function again captures the
structure of the data. The asymptote is at 0.5 pecks per trial because the subject
did not peck on substantially more than half the trials. The function rises with
step-like abruptness, because after the first trial on which there was a peck (Trial
30), therewasnofurther increase intheweakandintermittentpeckingtendency.
In fact, there was a modest decrease after Trial 200.
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also differs greatly between subjects. Fourth, there is little corre-
lation between the two parameters; some records of shallow slope
begin early and some begin late; conversely, some records with
steep slope begin early and some late. Finally, it is not uncommon
for the level of behavior to decrease later on, well below the level
it had when it first appeared, as indicated by downward deflections
in the slope of the cumulative record.

A second way to visualize the acquisition of conditioned respond-
ing is to plot the pecks on each trial (Fig. 3). This plot is the
(discrete) derivative of the cumulative record plot. In some cases,
it is readily intelligible (Fig. 3 Upper), whereas in others, the
trial-to-trial variability in the number of pecks, makes it hard to see
what is going on (Fig. 3 Lower). Other disadvantages of this
visualization are that the parameters of acquisition (latency, abrupt-
ness, and asymptote) are not so readily visible, and, finally, one
cannot make more than one plot per figure, to show differences and
similarities between subjects.

Quantifying Acquisition
In quantifying the appearance of conditioned behavior in individual
subjects, we want to know at least three things: (i) how long it took
for it to appear; (ii) how abruptly it attained its asymptotic level; and
(iii) what the asymptotic level was. We now describe how to obtain
these parameters from each kind of plot, beginning with the second
kind.

Our approach to these questions is descriptive rather than
model-driven. We use two different representations to test whether

the conclusions one draws about acquisition depend on the choice
of a representation.

We summarize the plots of pecks versus trials by fitting a
continuous function to the data. The Weibull function is often used
to summarize psychometric plots. When applied to the pecks-
versus-trial data, the function is

Pecks ! A!1 " 2"#!Trials!L$S%$.

Its parameters, A, L, and S, correspond to the aspects of acquisition
just mentioned: asymptote (A), latency (L), and abruptness of
onset (S).

Different values for the S parameter of the Weibull function
cause it to assume widely different forms so it can approximate most
monotonically increasing data sets. WhenS is close to 1, it approx-
imates the inverse exponential. When S is &1.5, it is sigmoidal;
asymmetrically so for values around 2, and symmetrically for values
of 4 and higher. As S goes to infinity, it becomes a step function.
Roughly speaking, the higher the value of S, the more abrupt the
rise. However, it is important to bear in mind that this measure of
abruptness is normalized to the L of behavioral onset, because S is
the power to which the ratio Trials!L is raised. When the onset L
is short, low values ofS may be found in data that show a rapid initial
rise in the level of performance (for example, see Fig. 7).

Summarizing the Pecks versus Trials plots with Weibull functions
allows one to plot the results from all subjects on a single graph.
Such a plot (Fig. 4) confirms the impression one has from the plot
of the cumulative records: acquisition is generally abrupt, there are
striking between subject differences in both onset latency and
asymptotic level, and these differences do not covary.

The Weibull function is monotonic; it cannot capture multistep
changes in behavior, particularly when these postacquisition steps
are both up and down. For that result, our second approach, based

Fig. 1. Group-average (n ' 20 pigeons) rate of key pecking (the conditioned
response in the pigeon autoshaping paradigm) as a function of number of
sessions (with 50 trials per session). Coordinate frame and jagged data line were
traced from Gamzu and Williams (figure 2 in ref. 10, p. 227). We have superposed
a Weibull function approximation (smooth curve), to show that this function,y '
A {1 " 2ˆ " [(x!L)ˆS]} can capture the kind of prolonged increase seen in these
averages. A is the asymptote and L is the onset latency or location (the value of
x at which y is half of its asymptotic value). Note the value (1.4) of the shape
parameter S, which determines the shape and steepness of the function.

Fig. 2. The cumulative number of pecks versus the number of trials for the
nine birds in Condition CR!CS6!IT9.

Fig. 3. TwoexamplesofPecksversusTrialsplots.Thedashedcurve ineachpanel
is the best-fitting Weibull function. (Upper) The subject did not respond at all for
(40 trials; then, within the space of(10 trials, it transitioned to making between
5 and 15 pecks on each trial. These data are summarized fairly well by the
best-fitting Weibull function. (Lower) The subject did not respond at all for the
first 30 trials; then, it began to make between zero and three pecks per trial. This
pattern of weak and highly intermittent responding persisted for 600 more trials.
Although the plot is visually confusing, the Weibull function again captures the
structure of the data. The asymptote is at 0.5 pecks per trial because the subject
did not peck on substantially more than half the trials. The function rises with
step-like abruptness, because after the first trial on which there was a peck (Trial
30), therewasnofurther increase intheweakandintermittentpeckingtendency.
In fact, there was a modest decrease after Trial 200.
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FIG. 165 Learning curves in individuals vs groups (Gallistel
et al 2004). [Need to give a full explanation of the exper-
iment!] At left, average performance in a large population
of birds improves gradually and very slowly, requiring many
hundreds of trials before reaching its half maximal level. At
right, performance measured in one individual bird is noisy
(because we have access only to the number of pecks as a be-
havioral output), but makes a relatively sudden transition to
near saturating performance as the animal experiences ∼ 10
additional examples.

Fig 164 ... Need to digest the paper better, though.]
One approach to adding bandwidth to experiments on

learning is to average over many subjects, so that the
performance after N examples can be measured as a real
number (e.g., the probability of subjects getting the right
answer) even though the data from individuals is dis-
crete (yes/no answers). But, as emphasized in Fig 165,
this can be misleading. Individual subjects seem to learn
simple tasks abruptly, but with transitions after different
numbers of trials, so that average “learning curves” are
smooth and gradual. This is interesting, because more
abrupt learning reminds us of performance as a func-
tion of signal–to–noise ratio in discrimination tasks, and
because theory along the lines described above often pre-
dicts relatively rapid learning when the space of possibil-
ities is small. The variations across individuals may then
reflect differences in how the ‘small problem’ posed by
the particular experimental situation is weighted within
the much larger set of possible behaviors available to the
organism. But much needs to be done to make this pre-
cise.
Another approach to increasing the bandwidth of be-

havioral experiments is to look at continuous motor out-
puts rather than decisions. An example is if we have
to move an object through a medium that generate an
unknown, anisotropic mobility tensor; as we practice, we
learn more about the parameters of our environment and
can move more accurately. Importantly, each trial of such
an experiment generates an entire movement trajectory
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rather than just a single discrete decision. Analysis of
these trajectories can reveal how the errors we make in
one trial influence the change of our internal model on the
next trial. [Should have a figure—maybe combine some-
thing from Shadmehr et al plus saccadic latency vs proba-
bility?] Although this emphasizes learning of parameters
that influence the movement itself, the fact that some
movements are made in extraordinary precise relations
to sensory inputs (e.g., as we follow a moving target with
our eyes), and that we can learn to anticipate the need
for such movements (e.g., as targets follow predictable
trajectories), suggests that analysis of continuous move-
ments should more generally provide us with a path to
examine more details of the brain’s internal model of the
world. A simple version of this idea is that the latency for
us to move our eyes toward one of two suddenly appear-
ing targets depends on the relative probabilities of the
targets—we move more quickly toward targets of higher
probability, as shown in Fig 166, and it is tempting to
think that the latency of movement gives us a readout of
the brain’s estimate of this probability. Again, there is
much to do here.

Thus far our examples of learning have been “passive.”
That is, the learner experiences a data stream from which
inferences can be drawn, but there is no way for the
learner to shape the data stream, selecting observations
which might be especially informative. [Give a discussion
of infotaxis. This is interesting both as an active learning
problem and as an example where gathering information
substitutes effectively for “goal–directed behavior.]

Finally, a theoretical point. We have emphasized that

FIG. 166 Latency for saccadic eye movements to targets of
varying probability, from Carpenter & Williams (1995). Sub-
jects are asked to move their eyes to a target which appears
at a random time after they fixate on a small spot. The tar-
get is either to the left or right, with varying probabilities
in blocks of trials. For two subjects (filled and empty sym-
bols), one collects all the trials in which the subject move to
a target of probability p, and computes the mean latency of
the eye movement. Do we want to say anything about the
distribution of latencies?

learning a model amounts to building an efficient repre-
sentation of the data we have observed, and hence the
“goal” of learning is no different than the goals proposed
in the previous section for the transmission of informa-
tion through neural or genetic networks. This theoret-
ical unity is attractive. But one might worry—why do
we care about representing what we have observed in the
past? What matters, to follow the discussion at the end
of Section IV.B, is what is of use in guiding our actions in
the future. Thus, presumably we learn models that de-
scribe data collected in the past because we expect these
models to still be true in the future, and this allows us
to make successful predictions. How does this connect to
our ideas about efficient representation?
We recall from Section IV.B that the predictive infor-

mation in a time series, that is the information which ob-
servations on the past provide about the future, is equal
to the subextensive component of the entropy. In the
course of evaluating the probability of data given a class
of models, in Eq (877), we have implicitly calculated this
subextensive entropy. Specifically, we found that the neg-
ative log probability of a set of data at N time points
had a term proportional to N (the extensive piece), and
a term that grows only logarithmically with N (the lead-
ing subextensive piece), as in Eq [**]. Thus, when we are
observing a time series from which we can learn a model
with K parameters, there is a subextensive entropy and
hence predictive information ∼ (K/2) log2 N bits. The
“meaning” of this predictive information is precisely that
we know something about the parameters underlying the
data, and on the hypothesis that these parameters are
constant we can predict something about the future.

Problem 168: Predictive information in learning. [One
more problem with the details.]

When we observe N data points, the total amount of
information we have collected is a number of bits propor-
tional to N . But in the case we are considering, there are
just ∼ (K/2) log2 N bits of information about the future.
If we can separate these predictive bits from the nonpre-
dictive background, we will have learned the parameters
of the underlying model. Thus, compressing the data
while preserving the predictive information is exactly the
same problem as learning. Interestingly, if we live in a
world described by a complex model (large K), then the
amount of predictive information is much larger than the
information needed to describe the present.
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I think that our modern understanding of the preference for simple
models, as explained here, is quite important, well known in certain
circles, but less widely appreciated than it should be. Part of the
difficulty is the presence of many independent threads in the liter-
ature. Rissanen had a very clear point of view which is essentially
that presented here, although in different language; sources go back
at least to Rissanen (1978), with a summary in Rissanen (1989).
The problem became more urgent with the emergence of neural
networks, which could be viewed as models with very large num-
bers of parameters. In this context, MacKay (1992) understood
the critical role of ‘Occam factors,’ the integrals over parameter
values that favor simpler models; see also his marvelous textbook
(MacKay 2003). Balasubramanian (1997) generalized these ideas
and translated them into physicists’ language, showing how the
Occam factors can be thought of as entropy in the space of mod-
els. Certainly I learned a lot from talking to Balasubramanian,
and from working out these ideas in the context of a field theoretic
approach to learning distributions (Bialek et al 1996). For the case
of the spherical horse, see Devine & Cohen (1992).

Balasubramanian 1997: Statistical inference, Occam’s razor,
and statistical mechanics on the space of probability dis-
tributions. V Balasubramanian, Neural Comp 9, 349–368
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Bialek et al 1996: Field theories for learning probability distri-
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The study of neural networks also led to a very explicit formulation
of learning as a statistical mechanics problem (Levin et al 1990).
Within this framework it was discovered that there could be phase
transitions in the learning of large models (Seung et al 1992), and
these can be understood as a competition between energy (goodness
of the fit) and entropy in the space of models; the effective temper-
ature is the inverse of the number of examples we have seen, so the
system ‘cools’ as we collect more data. Meanwhile the computer
scientists have developed approaches to learning rules and distri-
butions that focused on rigorous bounds—given that we have seen
N examples, can we guarantee that our inferences are within ε of
the correct model with probability 1 − δ? These ideas have their
origins in Vapnik and Chernovonenkis (1971) and Valiant (1984).
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Do we ned a pointer back to Green and Swets, or some other refer-
ence about changing criteria in relation to changing probabilities?
The analysis of the response to sudden changes in probability is by
Gallistel et al (2001). The experiments on fluctuating probabilities
with primate subjects are by Sugrue et al (2004), and the analysis
in Fig 164 is by Corrado et al (2005). For views on the emerging
ideas of neuro–economics, see Glimcher (2003) and Camerer et al
(2005). Measurements on learning through trial–by–trial analysis
of continuous movement trajectories were pioneered by Thorough-
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E. Perspectives

Optimizing information transmission, or maximizing
the efficiency with which information is represented, is
the sort of abstract, general principle that physicists find
appealing. At the same time, this abstraction makes us
suspicious about its relevance to the nitty–gritty of life.
Thus, while information is essential for survival, surely
much of what organisms do is bound up in the fact that
some bits are more useful than others, and in the chal-
lenges of acting rather than just collecting data. In this
Chapter I have tried to show both how interesting pre-
dictions flow from the abstract principles, and how these
principles connect, sometimes surprisingly, to the more
quotidian facts of life. It is surely too early, in this as
in any other section of the course, to decide if some can-
didate theoretical principles are “right,” and in any case
I am not a disinterested observer. What I would like to
emphasize here is that thinking about the optimization of
information transmission has been productive, not least
because it suggests genuinely new kinds of experiments.
In many systems, these experiments have generated in-
teresting results, independent of the theoretical motiva-
tion. In many other systems, even the first generation of
experiments remains to be done.

Perhaps the most important point about information
theoretic optimization principles is that they force us
to think about biological systems in context. Whereas
classical biology routinely considered organisms in their
natural setting, as biology has modernized and become
more mechanistic, we see more and more work on sys-
tems shorn of their context. To give an example, it may
be that the best studied example of the regulation of gene
expression is the lac operon in E. coli. But how much do
we know about the distribution of lactose concentrations
encountered by these cells in their natural environments?
We know that, under many conditions, the total number
of lac repressor proteins in the cell is small, but what
is the dynamic range of this number over the lifetime of
the organism? Vastly more is known about the details
of the DNA sequences that are targeted by transcription
factors involved in the regulation of metabolic genes than
is known about the real world variations in nutrient con-
ditions that create the need for metabolic regulation.

In the case of neural information processing, the
ethologists—who often study systems specialized for the
processing of particular sense data, such as bird song or
bat echolocation—provided a persistent reminder about
the importance of the natural context in understanding
biological function. Perhaps our human abilities to deal
with a seemingly much wider range of data and tasks
generated some resistance to thinking that lessons from

a barn owl or an electric fish could be of relevance to how
we explore higher brain function. The claim that at least
some aspects of neural circuitry are arranged to generate
efficient representations of incoming sense data provided
a counterpoint, suggesting that even for a “general pur-
pose” sensory system, context matters. By now there
is a whole subfield of neuroscience focused on the struc-
ture and processing of natural signals, a field which we
might think of as a modern, quantitative development of
the early work in ethology. Because our sense organs are
such high quality devices, there are substantial experi-
mental challenges in characterizing their natural inputs
and in delivering controlled versions of these natural sig-
nals in the laboratory. Precisely because natural signals
are rich and complex, analyzing neural responses to these
signals poses significant theoretical challenges (see, for
example, Appendix A.7). Progress on these experimen-
tal and theoretical problems is giving us more powerful
tools with which to explore the brain, again independent
of the sometimes distant motivation from optimization
principles.
Thinking about information flow encourages us to ask

about the structure of natural behavioral outputs, as well
as natural sensory inputs. In the attempt to quantify
animal (and human) behavior in the laboratory, there
has been a tradition of constraining this behavior to a
small, discrete set of alternatives, and this has been enor-
mously powerful, not least because such constrained ex-
periments are amenable to analyses in terms of signals
and noise as in our initial discussion of photon count-
ing in vision. Similarly, experiments on the control of
gene expression in single celled organisms often have fo-
cused on the “switch” in expression patterns associated
with a sudden transition from one nutrient source to an-
other. Even the ethologists tended to categorize, col-
lapsing whole ranges of behavior onto a limited space of
discrete choices. But behavior, from single cells to entire
humans, is vastly richer than choosing among discrete
alternatives. As the technology for monitoring behavior
improves, it becomes possible to ask if the continuous
variations in natural behaviors are just noise, or are re-
lated systematically to the goals and context. Even if
behavior really is composed of choice among a small set
of stereotyped possibilities—such as running and tum-
bling in E. coli—the timing of these choices can convey
information about the sensory inputs that drive them.
We have the impression that we are bombarded by

complex data, and that our behaviors are relatively lim-
ited. But the inputs to our sensory system are highly
structured, presumably because they derive from a lim-
ited set of causes and effects in the environment, and
hence carry much less information about what is re-
ally “out there” than one might guess from the available
bandwidth; our receptors provide limited, noisy views of
these inputs, reducing the information still further (see,
for example, Problem [info in cone array]). At the other
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end, our motor outputs in fact are quire rich, even if we
tend to coarse grain and categorize these behaviors into
limited classes. Could it be that motor outputs are so
carefully shaped and timed in relation to sensory inputs
from the environment that we (and other organisms) are
making use of a large fraction of the information available
about this environment? There is a huge experimental
challenge in tracking information flow all the way from
sensory input to motor output, even in simple cases, and
in more complex cases there is a substantial theoretical
challenge in providing a framework for the analysis of
such data.

One of the most important aspects of information the-
ory is the fact that bits have value. This is why, for
example, there is a minimum number of bits we need to
send over a telephone connection to be sure that speech
is intelligible and speakers identifiable. For living organ-
isms, the value of bits depends on many details, perhaps
more detail than, as physicists, we would like to think
about. What we can say, however, is that bits which
have no predictive power are valueless, and that most of
the bits we have collected over our lifetime are in this
valueless category. Thus, separating predictive informa-
tion from the background of non–predictive clutter is a
formidable, and biologically relevant, challenge. Impor-
tantly, this very general task seems to contain within it,
as special cases, problems ranging from signal processing
to learning, problems that we usually think of as belong-
ing to different levels of biological organization with very
different mechanisms. Perhaps this is, after all, a path
to the sort of general principle we are seeking.
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