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Appendix A: Appendix

In these sections I collect things which are off the to
side, or in the background, of the main arguments made
in the text. Some readers will find the background essen-
tial, others will find the asides more interesting than what
I thought were the main points. I hope, however, that
everyone finds something useful here. As with the main
text, I try not to skip steps, and problems are embedded
in the narrative. To a large extent, the Appendices are
unedited as of September 18, 2011; for some of the newer
ones, especially, much work is needed.

1. Poisson processes

Photons from a conventional light source arrive at a
detector as a random process, specifically a Poisson pro-
cess. The defining feature of the Poisson process is that
each event (photon arrival) is independent of all the oth-
ers, given that we know the rate r(t) at which the events
occur. In these notes we’ll go through the detailed conse-
quences of this simple assumption of independence; hope-
fully some of the results are familiar. Note that many
textbook presentations make a big deal out of the dis-
tinction between a “homogeneous” Poission process, in
which the rate is a constant, r(t) = r̄, and an “inhomo-
geneous” Poisson process in which it can depend on time.
The general case isn’t that hard, so I prefer to start there.

One should perhaps note at the outset that most light
sources are not exactly Poisson, but the approximation
is very good. There are many more systems for which
the Poisson model is a decent if not excellent approxima-
tion, and so we’ll discuss all this without further reference
to photons: we are describing the statistics of arbitrary
point events which occur at times t1, t2, · · · , tN .
The rate r(t) can be thought of either as the mean

rate of events that we would observe in the neighborhood
of time t if we did the same experiment many times,

or equivalently as the probability per unit time that we
observe an event at t. Recall that there is the same dual
definition for the concentration c(x) of moelcules—either
the mean number of molecule per unit volume that we
find in the neighborhood of a point x, or the probability
per unit volume that we observe a single molecule at x.
Since the events are independent, the probability den-

sity for observing events at times t1, t2, · · · , tN must be
proportional to a product of the rates evaluated at these
times,

P [{ti}|r(τ)] ∝ r(t1)r(t2) · · · r(tN ) ≡
N∏

i=1

r(ti). (A1)

But to get the exact form of the distribution we must in-
clude a factor that measures the probability of no events
occurring at any other times. The probability of an event
occurring in a small bin of size ∆τ surrounding time t is,
by the original definition of the rate, p(t) = r(t)∆τ , so
the probability of no event must be 1 − p(t). Thus we
need to form a product of factors 1−p(t) for all times not
equal to the special ti where we observed events. Let’s
call this factor F ,

F =
∏

n !=i

[1− p(tn)]. (A2)

Then the probability of observing events in bins sur-
rounding the ti is

P [{ti}|r(τ)](∆τ)N =
1

N !
F

N∏

i=1

[r(ti)∆τ ] , (A3)

where the N ! corrects for all the different ways of assign-
ing labels 1, 2, · · · , N to the events we observe.
To proceed we pull out all the factors related to the ti

and isolate the terms independent of these times:

P [{ti}|r(τ)](∆τ)N =
1

N !
F

N∏

i=1

[r(ti)∆τ ]

=
1

N !

∏

n !=i

[1− r(tn)∆τ ]
N∏

i=1

[r(ti)∆τ ] (A4)

=
1

N !

∏

n

[1− r(tn)∆τ ]
N∏

i=1

[
r(ti)∆τ

1− r(ti)∆τ

]
; (A5)

keep in mind that
∏

n denotes a product over all possible times tn.
To simplify Eq (A5) we remember that products can be turned into sums by taking logarithms, so that

∏

n

[1− r(tn)∆τ ] = exp

(
∑

n

ln [1− r(tn)∆τ ]

)
. (A6)
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Now when we substitute back into Eq (A5) we find

P [{ti}|r(τ)](∆τ)N =
1

N !

∏

n

[1− r(tn)∆τ ]
N∏

i=1

[
r(ti)∆τ

1− r(ti)∆τ

]

=
1

N !
exp

(
∑

n

ln [1− r(tn)∆τ ]

)
N∏

i=1

[
r(ti)∆τ

1− r(ti)∆τ

]
. (A7)

We are interested in the case where the time bin ∆τ is
very small (we introduced these artificially, remember),
which means that we need to take the logarithm of num-
bers that are almost equal to one. We recall that the
Taylor series of the logarithm is

ln(1 + x) = x− 1

2
x2 +

1

3
x3 − · · · . (A8)

In this case we apply this expansion to

ln [1− r(tn)∆τ ] = −r(tn)∆τ− 1

2
[r(tn)∆τ ]2+ · · · , (A9)

so our expression for the probability can be written as

P [{ti}|r(τ)](∆τ)N =
1

N !
exp

(
∑

n

ln [1− r(tn)∆τ ]

)
N∏

i=1

[
r(ti)∆τ

1− r(ti)∆τ

]

=
1

N !
exp

(
∑

n

[−r(tn)∆τ ]− 1

2

∑

n

[−r(tn)∆τ ]2 + · · ·
)

N∏

i=1

[
r(ti)∆τ

1− r(ti)∆τ

]
. (A10)

This expression involves a sum over bins, with factors of the bin width ∆τ . We recall that this converges, as the bins
become small, to an integral:

lim
∆τ→0

∑

n

f(tn)∆τ =

∫
dt f(t), (A11)

for any smooth function f(t). In the present case this means that

lim
∆τ→0

exp

(
∑

n

[−r(tn)∆τ ]− 1

2

∑

n

[−r(tn)∆τ ]2 + · · ·
)

= exp

[
−
∫

dt r(t)− 1

2
∆τ

∫
dt r2(t) + · · ·

]
. (A12)

Now we notice that the second integral in the exponential
has an extra factor of ∆τ , which comes from the (∆τ)2

in the previous expression, but if we really let ∆τ go to
zero this must be negligible as long as the rate doesn’t
become infinite.

Similarly, we have in Eq (A10) factors like

r(ti)∆τ

1− r(ti)∆τ
,

and again as ∆τ → 0 we can expand this in powers of
∆τ and drop all but the first term. This is equivalent to
replacing the denominator of the fraction by 1. So, when
the dust clears, the expression for the probability density

of the event times becomes

P [{ti}|r(τ)] =
1

N !
exp

[
−
∫ T

0
dt r(t)

]
N∏

i=1

r(ti), (A13)

where we have set the limits on the integral to refer to the
whole duration of our observations, from t = 0 to t = T .
Note that this is a probability density for the N arrival
times t1, t2, · · · , tN and hence has units (time)−N .
It is a useful exercise to check the normalization of

the probability distribution in Eq. (A13). We want to
calculate the total probability, which involves taking the
term with N events and integrating over all N arrival
times, then summing on N . Let’s call this sum Z,
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Z ≡
∞∑

N=0

∫ T

0
dt1

∫ T

0
dt2 · · ·

∫ T

0
dtNP [{ti}|r(t)] (A14)

=
∞∑

N=0

∫ T

0
dt1

∫ T

0
dt2 · · ·

∫ T

0
dtN

1

N !
exp

[
−
∫ T

0
dt r(t)

]
N∏

i=1

r(ti). (A15)

Notice that the exponential does not depend on the {ti}
or on N , so we can take it outside the sum and integral.
Furthermore, although we have to integrate over all the
N different ti together (an N dimensional integral), the

integrand is just a product of terms that depend on each
individual ti. This means that really we have a product
of N one dimensional integrals:

Z = exp

[
−
∫ T

0
dt r(t)

] ∞∑

N=0

1

N !

∫ T

0
dt1 · · ·

∫ T

0
dtN r(t1) · · · r(tN ) (A16)

= exp

[
−
∫ T

0
dt r(t)

] ∞∑

N=0

1

N !

∫ T

0
dt1 r(t1)

∫ T

0
dt2 r(t2) · · ·

∫ T

0
dtN r(tN ) (A17)

= exp

[
−
∫ T

0
dt r(t)

] ∞∑

N=0

1

N !

[∫ T

0
dt r(t)

]N

. (A18)

Recall that the series expansion of the exponential function is

exp(x) =
∞∑

N=0

1

N !
xN , (A19)

so we can actually do the sum in Eq. (A18):

exp

[
−
∫ T

0
dt r(t)

] ∞∑

N=0

1

N !

[∫ T

0
dt r(t)

]N

= exp

[
−
∫ T

0
dt r(t)

]
× exp

[
+

∫ T

0
dt r(t)

]
(A20)

= 1, (A21)

which completes our check on the normalization of the distribution.
Next we would like to derive an expression for the distribution of counts, which we write as P (N |〈N〉) to remind us

that the shape of the distribution depends (as we will see) only on its mean. To do this we take the full probability
distribution P [{ti}|r(τ)], pick out the term involving N events, and then integrate over all the possible arrival times
of these events:

P (N |〈N〉) =
∫ T

0
dt1 · · ·

∫ T

0
dtNP [{ti}|r(τ)] (A22)

=

∫ T

0
dt1 · · ·

∫ T

0
dtN

1

N !
exp

[
−
∫ T

0
dt r(t)

]
N∏

i=1

r(ti).

(A23)

As in the discussion leading to Eq. (A18) we notice that the exponential factor can be taken outside the integral, and
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that we have a product of N one dimensional integrals rather than a full N dimensional integral:

P (N |〈N〉) =
∫ T

0
dt1 · · ·

∫ T

0
dtN

1

N !
exp

[
−
∫ T

0
dt r(t)

]
N∏

i=1

r(ti)

=
1

N !
exp

[
−
∫ T

0
dt r(t)

]∫ T

0
dt1 · · ·

∫ T

0
dtN

N∏

i=1

r(ti)

=
1

N !
exp

[
−
∫ T

0
dt r(t)

][∫ T

0
dt r(t)

]N

(A24)

≡ 1

N !
exp(−Q)QN , (A25)

where we have defined

Q =

∫ T

0
dt r(t). (A26)

In particular, the probability that no events occur in the
time from t = 0 to t = T is P (0) = exp(−Q), or

P (0|〈N〉) = exp

[
−
∫ T

0
dt r(t)

]
. (A27)

With the probability distribution of counts from Eq.
(A25), we can compute the mean and the variance of the
count. To obtain the mean we compute

〈N〉 ≡
∞∑

N=0

P (N)N (A28)

=
∞∑

N=0

1

N !
exp(−Q)QNN (A29)

= exp(−Q)
∞∑

N=0

1

N !
QNN. (A30)

Now we have already made use of the series expansion for
the exponential, Eq. (A19), and to sum this last series
we notice that

QNN = Q
∂

∂Q
QN , (A31)

so that

〈N〉 = exp(−Q)
∞∑

N=0

1

N !
QNN

= exp(−Q)
∞∑

N=0

1

N !
Q

∂

∂Q
QN (A32)

= exp(−Q)Q
∂

∂Q

∞∑

N=0

1

N !
QN (A33)

= exp(−Q)Q
∂

∂Q
exp(+Q), (A34)

where in the last step we recognize the series for the ex-
ponential. Now the derivative of the exponential is just
the exponential itself,

∂

∂Q
exp(+Q) = exp(+Q), (A35)

so that

〈N〉 = exp(−Q)Q
∂

∂Q
exp(+Q)

= exp(−Q)Q exp(+Q) = Q. (A36)

We see that the mean count is what we have called Q,
the integral of the rate.
Now we can write the count distribution directly in

terms of its mean:

P (N |〈N〉) = exp(−〈N〉) 〈N〉N

N !
, (A37)

which is what we need to start the discussion of photon
counting in vision, Eq (??).
We can do a very similar calculation to find the vari-

ance of the count distribution. We start by computing
the average of N2,

〈N2〉 =
∞∑

N=0

N2P (N). (A38)

Substituting for P (N) from Eq. (A25) and rearranging,
we have

〈N2〉 =
∞∑

N=0

N2P (N)

=
∞∑

N=0

N2 exp(−Q)
1

N !
QN (A39)

= exp(−Q)
∞∑

N=0

1

N !
N2QN . (A40)

The trick is once again to write the extra factors of N
(here N2) in terms of derivatives with respect to Q. Now
we know that

∂2

∂Q2
QN = N(N − 1)QN−2, (A41)
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so we can write

Q2 ∂2

∂Q2
QN = (N2 −N)QN , (A42)

which is almost what we want. But we can use the for-
mula in Eq. (A31) to finish the job, obtaining

N2QN = Q2 ∂2

∂Q2
QN +Q

∂

∂Q
QN . (A43)

Now we can substitute into Eq. (A40) and follow the
steps corresponding to Eq’s (A32) through (A36):

〈N2〉 = exp(−Q)
∞∑

N=0

1

N !
N2QN

= exp(−Q)
∞∑

N=0

1

N !

[
Q2 ∂2

∂Q2
QN +Q

∂

∂Q
QN

]
(A44)

= exp(−Q)Q2 ∂2

∂Q2

∞∑

N=0

1

N !
QN + exp(−Q)Q

∂

∂Q

∞∑

N=0

1

N !
QN (A45)

= exp(−Q)Q2 ∂2

∂Q2
exp(+Q) + exp(−Q)Q

∂

∂Q
exp(+Q) (A46)

= exp(−Q)Q2 exp(+Q) + exp(−Q)Q exp(+Q) (A47)

= Q2 +Q. (A48)

Now since we have already identified Q as equal to the
mean count, this means that the mean square count can
be written as

〈N2〉 = 〈N〉2 + 〈N〉. (A49)

But the variance of the count is defined by

〈(δN)2〉 ≡ 〈N2〉 − 〈N〉2 (A50)

= [〈N〉2 + 〈N〉]− 〈N〉2 = 〈N〉. (A51)

Thus the variance of the count for a Poisson process is
equal to the mean count.

The next characteristic of the Poisson process is the
interval between events. The probability per unit time
that we observe an event at time t is given by the rate,
r(t). The probability that we observe no events in the
interval [t, t+ τ) is given by

P (0) = exp

[
−
∫ t+τ

t
dt′ r(t′)

]
. (A52)

The probability per unit time that this interval is closed
by an event is again the rate, now at time t + τ . Thus
the probability per unit time that we see events at t and
t+ τ , with no events in between is given by

P (t, t+ τ) = r(t) exp

[
−
∫ t+τ

t
dt′ r(t′)

]
r(t+ τ). (A53)

In the simple case that the rate is constant, this is just
P (t, t + τ) = r2e−rτ . On the other hand, if the rate

varies, the average probability for observing two events
separated by an empty interval of duration τ is

P2(τ) =

〈
r(t) exp

[
−
∫ t+τ

t
dt′ r(t′)

]
r(t+ τ)

〉
, (A54)

where 〈· · · 〉 is an average over these variations in rate.
If we ask for the probability density of intervals, this

is really the conditional probability that the next event
will be at t + τ given that there was an event at t. To
form this conditional probability we need to divide by the
probability of an event at t, but this is just the average
rate. Again, in the simple case of constant rate, this
yields the probability density of inter–event intervals,

p(τ) = re−rτ . (A55)

This exponential form is one of the classic signatures of
a Poission process. We can think of it as arising because
the moment at which the interval closes has no memory of
the moment at which it opened, and so the probability
that there has not ben an event must be a product of
terms for the absence of an event in each small time slice
∆τ , as in the derivation above, and this product becomes
an exponential.
Our last task is to evaluate averages over Poisson pro-

cesses, such as the one in Eq (33),
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〈
∑

i

V0(t− ti)

〉
=

∞∑

N=0

∫ T

0
dt1 · · ·

∫ T

0
dtNP [{ti}|r(t)]

∑

i

V0(t− ti). (A56)

We proceed simply and systematically, looking at one
term in our sum and doing the integrals one at a time.

One term in the sum means that we choose, for ex-

ample i = 1 and one particular value of N . This term
is

∫ T

0
dt1 · · ·

∫ T

0
dtNP [{ti}|r(t)]V0(t− t1) =

∫ T

0
dt1 · · ·

∫ T

0
dtN exp

[
−
∫ T

0
dτ r(τ)

]
1

N !
r(t1)r(t2) · · · r(tN )V0(t− t1).

(A57)
Notice that the exponential factor (along the the 1/N !) is constant and comes outside the integral. Now we rearrange
the order of the integrals:

∫ T

0
dt1

∫ T

0
dt2 · · ·

∫ T

0
dtNr(t1)r(t2) · · · r(tN )V0(t− t1) =

∫ T

0
dt1 r(t1)V0(t− t1)

∫ T

0
dt2 r(t2) · · ·

∫ T

0
dtN r(tN )

(A58)

=

[∫ T

0
dt1 r(t1)V0(t− t1)

][∫ T

0
dτr(τ)

]N−1

. (A59)

But the fact that we chose i = 1 was arbitrary; we would have gotten the same answer for any i = 1, 2, · · · , N . Thus
summing over i is the same as multiplying by N . This leaves us with the sum on N , so we put everything back
together to find

〈
∑

i

V0(t− ti)

〉
= exp

[
−
∫ T

0
dτ r(τ)

][∫ T

0
dt1 r(t1)V0(t− t1)

] ∞∑

N=0

N

N !

[∫ T

0
dτ r(τ)

]N−1

(A60)

= exp

[
−
∫ T

0
dτ r(τ)

]∫ T

0
dt1 r(t1)V0(t− t1)

∞∑

N=0

1

N !

[∫ T

0
dτ r(τ)

]N

(A61)

= exp

[
−
∫ T

0
dτ r(τ)

]∫ T

0
dt1 r(t1)V0(t− t1) exp

[
+

∫ T

0
dτ r(τ)

]
(A62)

=

∫ T

0
dt1 r(t1)V0(t− t1). (A63)

Thus what we have shown is that our simple model of
summing pulses from single photons generates a voltage
that responds linearly to the light intensity,

〈V (t)〉 = VDC +

∫
dt′V0(t− t′)r(t′), (A64)

which is Eq (34) in the main text.
Actually, we have shown something more general,

which will be useful below. The expectation value we
have computed is of the form

〈∑

i

f(ti)

〉
. (A65)

What we have seen is that summing over arrival times is,

on average, equivalent to integrating over the rate,

〈∑

i

f(ti)

〉
=

∫
dτ r(τ)f(τ). (A66)

Intuitively, this makes sense: the sum over arrival times
approximates a density along the time axis, and this den-
sity is the rate, with units of (events)/(time).
Now we need to do the same calculation, but for the

correlation function of the voltage. Again we have

V (t) =
∑

i

V0(t− ti), (A67)

and we want to compute 〈V (t)V (t′)〉. Intuitively, the ar-
rival times of photons are independent of one another—
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this is the essence of the Poisson process—and so we should have

〈V (t)V (t′)〉 =
〈∑

i

V0(t− ti)
∑

j

V0(t
′ − tj)

〉
(A68)

=
∑

ij

〈V0(t− ti)V0(t
′ − tj)〉 (A69)

=
∑

i !=j

〈V0(t− ti)V0(t
′ − tj)〉+

∑

i

〈V0(t− ti)V0(t
′ − ti)〉 (A70)

=
∑

i !=j

〈V0(t− ti)〉〈V0(t
′ − tj)〉+

∑

i

〈V0(t− ti)V0(t
′ − ti)〉, (A71)

where we use the independence of ti and tj for i (= j in the last step. It’s useful to add and subtract the “diagonal”
i = j term from the sum, so that

〈V (t)V (t′)〉 =
∑

i !=j

〈V0(t− ti)〉〈V0(t
′ − tj)〉+

∑

i

〈V0(t− ti)〉〈V0(t
′ − ti)〉

+
∑

i

〈V0(t− ti)V0(t
′ − ti)〉 −

∑

i

〈V0(t− ti)〉〈V0(t
′ − ti)〉 (A72)

=
∑

ij

〈V0(t− ti)〉〈V0(t
′ − tj)〉+

∑

i

[〈V0(t− ti)V0(t
′ − ti)〉 − 〈V0(t− ti)〉〈V0(t

′ − ti)〉] . (A73)

The key step now is to notice that we can rearrange the sums and expectation values in the first term,
∑

ij

〈V0(t− ti)〉〈V0(t
′ − tj)〉 =

∑

i

〈V0(t− ti)〉
∑

j

〈V0(t
′ − tj)〉 (A74)

=

〈∑

i

V0(t− ti)

〉〈∑

j

V0(t
′ − tj)

〉
(A75)

= 〈V (t)〉〈V (t′)〉, (A76)

where in the last step we recognize the voltage itself, from Eq (A67). Thus Eq (A73) can be rewritten as an equation
for the covariance of the voltage fluctuations,

〈δV (t)δV (t′)〉 ≡ 〈V (t)V (t′)〉 − 〈V (t)〉〈V (t′)〉 =
∑

i

[〈V0(t− ti)V0(t
′ − ti)〉 − 〈V0(t− ti)〉〈V0(t

′ − ti)〉] . (A77)

If we confine our attention to the simple case where the
rate is constant, r(t) = r̄, then the second term in brack-
ets must be a constant, since 〈V0(t − ti)〉 involves aver-
aging over all possible times ti, and with constant rate
all these times are equally likely. So, if we don’t worry
about constants, we can write

〈δV (t)δV (t′)〉 ∼
∑

i

〈V0(t− ti)V0(t
′ − ti)〉 (A78)

=

〈∑

i

V0(t− ti)V0(t
′ − ti)

〉
, (A79)

and now we can use Eq (A66) to give

〈δV (t)δV (t′)〉 = r̄

∫
dτ V0(t− τ)V0(t

′ − τ), (A80)

where again we are neglecting a constant.
It is especially useful to convert the correlation func-

tion of voltage fluctuations into the corresponding power
spectrum, since then any uncertainties about constants
will go away.More precisely, if we had a constant term
in the correlation function it would show up as a term
∼ δ(ω) in the power spectrum, and all we need to do is
to be sure that we drop any such terms. In general, the
power spectrum is

SV (ω) =

∫
dτ e+iωτ 〈δV (t+ τ)δV (t)〉, (A81)

and so in this case we have
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SV (ω) =

∫
dτ e+iωτ r̄

∫
dτ ′ V0(t+ τ − τ ′)V0(t− τ ′) (A82)

= r̄

∫
dτ

∫
dτ ′ e+iωτe+iω(t−τ ′)V0(t+ τ − τ ′)e−iω(t−τ ′)V0(t− τ ′) (A83)

= r̄

[∫
dτ e+iω(τ+t−τ ′)V0(τ + t− τ ′)

] [∫
dτ ′e−iω(t−τ ′)V0(t− τ ′)

]
(A84)

= r̄

∣∣∣∣Ṽ0(ω)

∣∣∣∣
2

, (A85)

where in the last step we recognize the Fourier transform
of the pulse shape V0(t). This is what we need for Eq
(58) of the main text.

Problem 169: More carefully. Fill in the details of the
calculation above, being sure to keep track of the floating constants.
Verify that, when you are careful, there is no term ∼ δ(ω) in the
power spectrum. Can you generalize this discussion to the case of
time varying rates?

Portions of this section were adapted from Rieke et al (1997).
The connection between power spectra and the shape of single pho-
ton (or more general Poisson) events is sometimes called Campell’s
theorem, and there is a classic discussion by Rice (1944–45),
reprinted in the marvelous book edited by Wax (1954); the other
articles in this book (by Chandrasekar and others) also are very
much worth reading! Feynman & Hibbs (1965) give a beautiful
discussion of how a Poisson stream of pulses comes to approximate
continuous, Gaussian noise; of course there is much more in this
book as well. For a more complete discussion of photon statistics,
and the role of coherent states, one can look to yet another classic
paper, Glauber (1963).

Feynman & Hibbs 1965: Quantum Mechanics and Path Inte-
grals. RP Feynman & AR Hibbs (McGraw–Hill, New York,
1965).

Glauber 1963: Coherent and incoherent states of the radiation
field. RJ Glauber, Phys Rev 131, 2766–2788 (1963).

Rice 1944–45: Mathematical analysis of random noise. SO Rice,
Bell Sys Tech J 23, 282–332 (1944) & 24, 46–156 (1945).

Rieke et al 1997: Spikes: Exploring the Neural Code. F Rieke,
D Warland, RR de Ruyter van Steveninck & W Bialek (MIT
Press, Cambridge, 1997).

Wax 1954: Selected Papers on Noise and Stochastic Processes.
N Wax, ed (Dover Publications, New York, 1954).

2. Correlations, power spectra and all that

Consider a function x(t) that varies in time. We would
like to describe a situation in which these variations are
random, drawn out of some distribution. But now we
need a distribution for a function, rather than for a fi-
nite set of variables. This shouldn’t bother us, since such
constructions are central to much of modern physics, for
example in the path integral approach to quantum me-
chanics. We refer to distributions of functions as “distri-
bution functionals” when we need to be precise.
One strategy for constructing distribution functionals

is to start by discretizing time, so that we have at most
a countable infinity of variables x(t1), x(t2), x(t3), · · · .
Let’s assume for simplicity that the mean value of x is
zero. Then the first nontrivial characterization of the
statistics of x is the covariance matrix,

Cij = 〈x(ti)x(tj)〉. (A86)

We recall that if a single variable y is drawn from a Gaus-
sian distribution with zero mean, then we have

P (y) =
1√
2πσ2

exp

[
− y2

2σ2

]
. (A87)

The generalization to multiple variables is

P ({xi}) =
1√

(2π)N detC
exp



−1

2

N∑

i,j=1

xi(C
−1)ijxj



 ,

(A88)
where as usual det is the determinant and (C−1)ij is the
ij element of the matrix inverse to C; if we think of the
{xi} as a vector x, then we can write, more compactly,

P ({xi}) =
1√

(2π)N detC
exp

[
−1

2
xT ·C−1·x

]
, (A89)

where xT is the transpose of the vector x. Just to be
clear, this describes a Gaussian distribution, but we have
no guarantee that x will be Gaussian.

Problem 170: Gaussian integrals. If you haven’t done these
before, now is a good time to check that the probability distribution
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FIG. 167 Covariance matrix and its inverse. At left, the co-
variance matrix in Eq (A94), with ∆t/τc = 0.1. At right,
the inverse matrix, with inset showing a 10 × 10 submatrix
surrounding the diagonal.

in Eq (A89) is normalized. This requires you to show that
∫

dNx exp

[
−
1

2
xT ·C−1·x

]
=

√
(2π)N detC. (A90)

While you’re at it, you should also show that

ln detC = Tr lnC. (A91)

This should be straightforward for the case which matters here,
where C must have well defined, positive eigenvalues.

In general the covariance matrix Cij can have an arbi-
trary structure, constrained only by symmetry and pos-
itivity of its eigenvalues. But when the index i refers to
discrete time points, we have an extra constraint that
comes from invariance under translations in time. Be-
cause there is no clock, we must have that

〈x(t)x(t′)〉 = Cx(t− t′), (A92)

with no dependence on the absolute time t or t′. As an
example, if

Cx(t− t′) = e−|t−t′|/τc , (A93)

and tn = n∆t, then

Cij = exp

[
−
(
∆t

τc

)
|i− j|

]
. (A94)

This is shown in Fig 167 for ∆t/τc = 0.1.
It is useful to look directly at the inverse matrix, also

shown in Fig 167. We see that this inverse matrix con-
sists almost entirely of zeros, except in the immediate
neighborhood of the diagonal. This tell us that the in-
verse matrix actually is the discretization of a differen-
tial operator. Reflexively, seeing that we have to com-
pute inverses and determinants of matrices, we should
think about diagonalizing C. We recall from quantum
mechanics that the eigenfunctions of an operator have to
provide a representation of the underlying symmetries.
In this case, the relevant symmetry is time translation,
so we know to look at the Fourier functions, e−iωt. In
fact, once we have the hint that we should use a Fourier
representation, we don’t need the crutch of discrete time
points any more. Let’s see how this works.
We define the Fourier transform with the conventions

x̃(ω) =

∫ ∞

−∞
dt e+iωtx(t), (A95)

x(t) =

∫ ∞

−∞

dω

2π
e−ωtx̃(ω). (A96)

Now if we compute the covariance of two frequency com-
ponents, we have

〈x̃(ω)x̃(ω′)〉 =
〈∫ ∞

−∞
dt e+iωtx(t)

∫ ∞

−∞
dt′ e+iω′t′x(t′)

〉
(A97)

=

∫ ∞

−∞
dt e+iωt

∫ ∞

−∞
dt′ e+iω′t′〈x(t)x(t′)〉 (A98)

=

∫ ∞

−∞
dt e+iωt

∫ ∞

−∞
dt′ e+iω′t′

∫ ∞

−∞

dΩ

2π
e−iΩ(t−t′)Sx(Ω),

(A99)

where we introduce the Fourier transform of the correlation function,

Sx(Ω) =

∫ ∞

−∞
dτ e+iΩτCx(τ) (A100)

Cx(t− t′) =

∫ ∞

−∞

dΩ

2π
e−iΩ(t−t′)Sx(Ω). (A101)
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Now we can rearrange the integrals in Eq (A99):

〈x̃(ω)x̃(ω′)〉 =
∫ ∞

−∞
dt e+iωt

∫ ∞

−∞
dt′ e+iω′t′

∫ ∞

−∞

dΩ

2π
e−iΩ(t−t′)Sx(Ω),

=

∫ ∞

−∞

dΩ

2π
Sx(Ω)

[∫ ∞

−∞
dt ei(ω−Ω)t

] [∫ ∞

−∞
dt′ ei(ω

′+Ω)t′
]
.

(A102)

This is moment to recall the Fourier representation
of the Dirac delta function. The delta function has the
property that

δ(z) = 0 z (= 0, (A103)∫
dz δ(z) = 1, (A104)

if the domain of the integral includes z = 0. Then

δ(z) =

∫ ∞

−∞

dq

2π
e−iqz. (A105)

Thus we recognize, in Eq (A102),
∫ ∞

−∞
dt ei(ω−Ω)t = 2πδ(ω − Ω), (A106)

∫ ∞

−∞
dt′ ei(ω

′+Ω)t′ = 2πδ(ω′ +Ω). (A107)

Substituting back into Eq (A102), we have

〈x̃(ω)x̃(ω′)〉 =
∫ ∞

−∞

dΩ

2π
Sx(Ω)

[∫ ∞

−∞
dt ei(ω−Ω)t

] [∫ ∞

−∞
dt′ ei(ω

′+Ω)t′
]
.

=

∫ ∞

−∞

dΩ

2π
Sx(Ω)2πδ(ω − Ω)2πδ(ω′ +Ω) (A108)

= Sx(ω)2πδ(ω
′ + ω). (A109)

We see that, while different time points can be correlated
with one another in complicated ways, the covariance
of frequency components has a much simpler structure:
x̃(ω) is correlated only with x̃(−ω).
This covariance structure, which couples positive and

negative frequency components, makes sense when we
realize that we are using a complex representation for
real variables. To make a real variable x(t), the Fourier
transform must obey

x̃(−ω) = x̃∗(ω), (A110)

so positive and negative frequency components are not
independent—in fact they are redundant. It might be
more natural to write Eq (A109) as

〈x̃(ω)x̃∗(ω′)〉 = Sx(ω)2πδ(ω
′ − ω), (A111)

making clear that frequency components are correlated
with themselves, not with other frequencies.
We could instead think about the real and imaginary

parts of the positive frequency components, which can be
written as

x̃Re(ω) =
1

2
[x̃(ω) + x̃(−ω)] , (A112)

and

x̃Im(ω) =
1

2i
[x̃(ω)− x̃(−ω)] . (A113)

With this representation, we can use the result in Eq
(A109):

〈x̃Re(ω)x̃Re(ω
′)〉 =

〈
1

2
[x̃(ω) + x̃(−ω)]

1

2
[x̃(ω′) + x̃(−ω′)]

〉
(A114)

=
1

4
[〈x̃(ω)x̃(ω′)〉+ 〈x̃(ω)x̃(−ω′)〉+ 〈x̃(−ω)x̃(ω′)〉+ 〈x̃(−ω)x̃(−ω′)〉] (A115)

=
Sx(ω)

4
2π [δ(ω + ω′) + δ(ω − ω′) + δ(−ω + ω′) + δ(−ω − ω′)] . (A116)
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Because we are looking only at positive frequencies, ω+ω′

can never be zero, and hence the first and last delta func-
tions can be dropped. The remaining two are actually the
same, so we have

〈x̃Re(ω)x̃Re(ω
′)〉 = 1

2
Sx(ω)2πδ(ω − ω′). (A117)

Similar calculations show that the imaginary parts of
x̃(ω) have the same variance,

〈x̃Im(ω)x̃Im(ω
′)〉 = 〈x̃Re(ω)x̃Re(ω

′)〉 (A118)

=
1

2
Sx(ω)2πδ(ω − ω′), (A119)

while real and imaginary parts are uncorrelated,

〈x̃Re(ω)x̃Im(ω
′)〉 = 0. (A120)

Problem 171: The other phase. Derive Eq’s (A119) and
(A120).

What does all this mean? We think of the random
function of time x(t) as being built out of frequency com-
ponents, and each component has a real and imaginary
part. The structure of the covariance matrix is such that
different frequency components do not covary, and this
makes sense—if we have covariation of different frequency
components then we can beat them against each other to
make a clock running at the difference frequency, and
this would violate time translation invariance. Similarly,
the fact that real and imaginary components do not co-
vary means that there is no preferred phase, which again
is consistent with (indeed, required by) time translation
invariance.
We should be able to put these results on the covari-

ance matrix together to describe the distribution func-
tional for a Gaussian function of time. Since the real and
imaginary parts are independent, let’s start with just the
real parts. We should have

P [{x̃Re(ω)}] ∝ exp

[
−1

2

∫ ∞

0

dω

2π

∫ ∞

0

dω′

2π
x̃Re(ω)A(ω, ω′)x̃Re(ω

′)

]
, (A121)

where A is the inverse of the covariance,

∫
dω′

2π
A(ω, ω′)〈x̃Re(ω

′)x̃Re(ω
′′)〉 = 2πδ(ω − ω′′).

(A122)
We can find A by substituting the explicit expression for
the covariance and doing the integrals:

2πδ(ω − ω′′) =

∫
dω′

2π
A(ω, ω′)〈x̃Re(ω

′)x̃Re(ω
′′)〉

=

∫
dω′

2π
A(ω, ω′)

1

2
Sx(ω

′)2πδ(ω′ − ω′′)

(A123)

=
1

2
A(ω, ω′′)Sx(ω

′′). (A124)

Thus, we have

A(ω, ω′′) =
1

Sx(ω′′)
4πδ(ω − ω′′). (A125)

Substituting back into Eq (A121) for the probability dis-
tribution, we have

P [{x̃Re(ω)}] ∝ exp

[
−1

2

∫ ∞

0

dω

2π

∫ ∞

0

dω′

2π
x̃Re(ω)A(ω, ω′)x̃Re(ω

′)

]
, (A126)

= exp

[
−1

2

∫ ∞

0

dω

2π

∫ ∞

0

dω′

2π
x̃Re(ω)

4πδ(ω − ω′′)

Sx(ω′′)
x̃Re(ω

′)

]
(A127)

= exp

[
−
∫ ∞

0

dω

2π

x̃2
Re(ω)

Sx(ω)

]
. (A128)

Exactly the same argument applies to the imaginary parts of the Fourier components, and these are indepen-
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dent of the real parts, so we have

P [x(t)] = P [{x̃Re(ω), x̃Im(ω)}] (A129)

∝ exp

[
−
∫ ∞

0

dω

2π

x̃2
Re(ω) + x̃2

Im(ω)

Sx(ω)

]
(A130)

=
1

Z
exp

[
−
∫ ∞

0

dω

2π

|x̃(ω)|2

Sx(ω)

]
(A131)

=
1

Z
exp

[
−1

2

∫ ∞

−∞

dω

2π

|x̃(ω)|2

Sx(ω)

]
, (A132)

where we have introduced the normalization constant Z.
It’s useful to look at the example illustrated in Fig

167. Here we have Cx(τ) = exp(−|τ |/τc), so the power
spectrum is

Sx(ω) =

∫ ∞

−∞
dτ e+iωτe−|τ |/τc (A133)

=

∫ 0

−∞
dτ e(+iω+1/τc)τ +

∫ ∞

0
dτ e(+iω−1/τc)τ

(A134)

=
1

(+iω + 1/τc)
+

1

−(+iω − 1/τc)
(A135)

=
τc

1 + iωτc
+

τc
1− iωτc

(A136)

=
2τc

1 + (ωτc)2
. (A137)

This means that the probability distribution functional
has the form

P [x(t)] =
1

Z
exp

[
−1

2

∫ ∞

−∞

dω

2π

|x̃(ω)|2

Sx(ω)

]

=
1

Z
exp

[
− 1

4τc

∫ ∞

−∞

dω

2π
[1 + (ωτc)

2]|x̃(ω)|2
]
.

(A138)

We recall that
∫ ∞

−∞

dω

2π
|x̃(ω)|2 =

∫
dt x2(t). (A139)

More subtly,
∫ ∞

−∞

dω

2π
(ωτc)

2|x̃(ω)|2 = τ2c

∫ ∞

−∞

dω

2π
| − iωx̃(ω)|2

(A140)

= τ2c

∫
dt

[
dx(t)

dt

]2
, (A141)

where we recognize −iωx̃(ω) as the Fourier transform of
dx(t)/dt. Thus we can write

P [x(t)] =
1

Z
exp

[
− 1

4τc

∫ ∞

−∞

dω

2π
[1 + (ωτc)

2]|x̃(ω)|2
]

=
1

Z
exp

[
− 1

4τc

∫
dt

(
τ2c ẋ

2(t) + x2(t)
)]

.(A142)

This shows explicitly, as promised above, that inverting
the covariance matrix gives rise to differential operators.
This example also is nice because it produces a prob-
ability distribution functional for trajectories x(t) that
reminds us of a (Euclidean) path integral in quantum
mechanics, in this case for the harmonic oscillator.
Let’s push a little further and see if we can evaluate

the normalization constant Z. By definition, we have

Z =

∫
Dx exp

[
− 1

4τc

∫
dt

(
τ2c ẋ

2(t) + x2(t)
)]

, (A143)

where
∫
Dx denotes an integral over all the functions

x(t). We have the general result for an N dimensional
Gaussian integral,

∫
dNx exp

[
−1

2
xT ·Â·x

]
=

√
(2π)N

det Â
(A144)

=
√
(2π)N exp

[
−1

2
Tr ln Â

]
,

(A145)

where Â is a matrix. Here we need to let the number
of dimensions become infinite, since we are integrating
over functions. As you may recall from discussions of
the path integral in quantum mechanics, there is some
arbitrariness about how we do this, or, more formally,
in how we define the measure Dx. A fairly standard
choice is to absorb the

√
2π, so that, in the time window

0 < t < T ,

Dx = lim
dt→0

T/dt∏

n=0

dx(tn)√
2π

, tn = n · dt. (A146)

Notice that before we send dt → 0, we have an integral
over a finite number of points, so we should be able to
carry over the results we know, and just interpret the
limits correctly.
The Gaussian functional integrals that we want to do

have the general form

∫
Dx exp

[
−1

2

∫
dt

∫
dt′x(t)K̂(t, t′)x(t′)

]
,

where K̂ is an operator. Carrying over what we know
from the case of finite matrices [Eq (A145)], we have
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∫
Dx exp

[
−1

2

∫
dt

∫
dt′x(t)K̂(t, t′)x(t′)

]
= exp

[
−1

2
Tr ln K̂

]
. (A147)

Our only problem is to say what we mean by Tr ln K̂.
Since K̂ is an operator, we can ask for its spectrum, that
is the eigenvalues and eigenfunctions. This means that
we need to solve the equations

∫ T

0
dt′K̂(t, t′)uµ(t

′) = Λµuµ(t), (A148)

where we are careful here to note that we are working in
window 0 < t < T . In the basis formed by the eigenfunc-
tions, of course K̂ is diagonal. As with matrices, when
an operator is diagonal we can take the log element by el-
ement, and then computing the trace requires us to sum
over these diagonal elements; recall that traces and de-
terminants are invariant, se we can use this convenient

basis and not worry about generality. Thus,

Tr ln K̂ =
∑

µ

ln Λµ. (A149)

How does this work for our case? First, we need to
identify the operator K̂. In the exponential of P [x(t)] we
have

∫
dt

[
τc
2

(
dx(t)

dt

)2

+
1

2τc
x2(t)

]
.

To get this into a more standard form we need to inte-
grate by parts,

∫
dt

[
τc
2

(
dx(t)

dt

)2

+
1

2τc
x2(t)

]
=

∫
dt x(t)

[
−τc

2

d2

dt2
+

1

2τc

]
x(t). (A150)

This allows us to identify We now see that our integral for Z in Eq (A143) can we written

K̂(t′, t) = δ(t′ − t)

[
−τc

2

d2

dt2
+

1

2τc

]
. (A151)

This is a linear operator, and also time translation invariant (again). So we know that the eigenfunctions are e−iωt,
and since we are in a finite window of duration T we should use only those frequency components that ‘fit’ into the
window, ωn = 2πn/T for integer n. We have

∫ T

0
dt δ(t′ − t)

[
−τc

2

d2

dt2
+

1

2τc

]
e−iωnt =

(
τcω2

n

2
+

1

2τc

)
e−iωnt

′
, (A152)

so that the eigenvalues are

Λ(ωn) =

(
τcω2

n

2
+

1

2τc

)
=

1 + (ωnτc)2

2τc
. (A153)

Notice that these are just the inverses of the power spec-
trum,

Λ(ωn) =
1

Sx(ωn)
. (A154)

This makes sense, of course, when we look back at Eq
(A132).

To finish the calculation, we have

Z = exp

[
−1

2

∑

µ

Λµ

]
(A155)

= exp

[
−1

2

∑

n

ln

(
1

Sx(ωn)

)]
(A156)

= exp

[
1

2

∑

n

lnSx(ωn)

]
. (A157)

Finally, we need to do the sum. As the time window
T becomes large, the spacing between frequency compo-
nents, ∆ω = 2π/T , become small, and we expect that the
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sum approaches an integral.91 Thus, for any function of
ωn,

∑

n

f(ωn) =
1

∆ω

∑

n

∆ωf(ωn) (A159)

→ 1

∆ω

∫
dω f(ω) (A160)

= T

∫
dω

2π
f(ω). (A161)

At last, this gives us

Z = exp

[
T

2

∫
dω

2π
lnSx(ω)

]
. (A162)

Putting the pieces together, we have the probability dis-
tribution functional for a Gaussian x(t),

P [x(t)] = exp

[
+
T

2

∫ ∞

−∞
lnSx(ω)−

1

2

∫ ∞

−∞

dω

2π

|x̃(ω)|2

Sx(ω)

]
.

(A163)
Not every case we look at will be Gaussian, but this helps
to get us started.

Problem 172: Generality. We made an effort to evaluate Z
in the specific case where Cx(τ) = e−|τ |/τc , but we wrote the final
result in a very general form, Eq (A163). Show that this slide into
generality was justified.

Problem 173: Nonzero means and signal to noise ratios.
We should be able to carry everything through in the case where
the mean x(t) is not zero. For example, if we just have background
noise described by some spectrum N (ω), then

Pnoise[x(t)] = exp

[
+
T

2

∫ ∞

−∞
lnN (ω)−

1

2

∫ ∞

−∞

dω

2π

|x̃(ω)|2

N (ω)

]
.

(A164)
If there is an added signal x0(t), the distribution functional be-
comes

Psignal[x(t)] = exp

[
+
T

2

∫ ∞

−∞
lnN (ω)−

1

2

∫ ∞

−∞

dω

2π

|x̃(ω)− x̃0(ω)|2

N (ω)

]
.

(A165)
Suppose that you observe some particular x(t), and you have to
decide whether this came from the signal or noise distribution, that
is, you have to decide whether the signal was present; for simplicity
assume that the two possibilities are equally likely a priori. As
discussed in Chapter 1, to make such decisions optimally you should
use the relative probabilities that the signal or noise could give rise
to your data. In particular, consider computing the “log likelihood
ratio,”

λ[x(t)] ≡ ln

(
Psignal[x(t)]

Pnoise[x(t)]

)
(A166)

91 There is an analogous result for summing over the states of par-
ticles in a box in quantum systems; recall that the states are
labelled by their wavevector k, and in three dimensions we have

∑

k

→ V

∫
d3k

(2π)3
, (A158)

where V is the volume of the box.

(a.) Give a simple expression for λ[x(t)]. Show that it is a linear
functional of x(t).

(b.) Show that, when the x(t) are drawn at random out of either
Psignal or Pnoise, λ[x(t)] is a Gaussian random variable. Find the
means, 〈λ〉noise and 〈λ〉signal, and the variances 〈(δλ)2〉noise and
〈(δλ)2〉signal, in the two distributions. Hint: you should see that
〈(δλ)2〉noise = 〈(δλ)2〉signal.

(c.) Sketch the distributions Pnoise(λ) and Psignal(λ). Show that
your ability to make reliable discriminations is determined only by
the signal to noise ratio,

SNR =

(
〈λ〉signal − 〈λ〉noise

)2

〈(δλ)2〉
, (A167)

and that we can write

SNR =

∫ ∞

−∞

dω

2π

|x̃0(ω)|2

N (ω)
. (A168)

(d.) In rod cells, a single photon produces a current pulse with
the approximate form x0(t) = I1(t/τ)3e−t/τ . The power spectrum
of continuous background noise is approximately N (ω) = A/[1 +
(ωτ)2]2, with the same value of τ . Evaluate the peak current, Ipeak,
and total variance of the background noise, σ2

I . A naive estimate
of the signal to noise ratio is just SNRnaive = (Ipeak/σI)2. Show
that the optimal signal to noise ratio, computed from Eq (A168),
is larger. Why?

Is there anything more to say here? Maybe some dis-
cussion of “states” of molecules and correlation func-
tions? Perhaps some references.

3. Electronic transition in large molecules

In this section we’ll outline an honest calculation that
reproduces the intuition of Figs 19 and 20. We have a
system with two electronic states, which we can represent
as a spin one–half; let spin down be the ground state and
spin up be the excited state. The Born–Oppenheimer
approximation tells us that we can think of the atoms in
a molecule as moving in a potential determined by the
electronic state,92 which we denote by V↑(q) and V↓(q)
in the excited and ground states, respectively; q stands
for all the atomic coordinates (not just the one in the
sketches above). Since we are observing photon absorp-
tion, there must be a matrix element that connects the
two electronic states and couples to the electromagnetic
field; we’ll assume that, absent symmetries, this coupling
is dominated by an electric dipole term. In principle the
dipole matrix element 'd could depend upon the atomic
coordinates, but we’ll neglect this effect.93 Putting the
pieces together, we have the Hamiltonian for the molecule

H = K+
1

2
(1+σz)V↑(q)+

1

2
(1−σz)V↓(q)+ 'd· 'E(σ++σ−),

(A169)

92 As in the main text, I’ll use “atoms” and “nuclei” interchange-
ably.

93 In practice, this is a small effect. You should think about why
this is true.
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where K is the kinetic energy of the atoms. To this we
should of course add the usual Hamiltonian for the elec-
tromagnetic field.

We are interested in computing the rate at which pho-
tons of energy !Ω are absorbed, and of course we will do
this as a perturbation expansion in the term ∼ 'd. The re-
sult of such a calculation can be presented as the ‘Golden
rule’ for transition rates, but this formulation hides the
underlying dynamics. So, at the risk of being pedantic,
I’ll go through the steps that usually lead to the Golden
rule and take a detour that leads us to a formula in which
the dynamics of atomic motions are more explicit.94

We start our system in the ground state of the elec-
trons (| ↓〉), in some initial state (|i〉) of the atomic coor-
dinates, and in the presence of one photon of wavevector
'k and frequency Ω = c|'k| (polarization is an unneces-
sary complication here). As the system evolves under
the Hamiltonian H, at some time t we want to measure
the probability of finding the system in the excited state
| ↑〉, in some other state of the atoms |f〉, and absent the
photon. The general statement is that quantum states
evolve as

|ψ(0)〉 → |ψ(t)〉 = T exp

[
− i

!

∫ t

0
dτH(τ)

]
|ψ(0)〉,

(A170)

where T is the time ordering operator. Thus, for our
particular problem, the probability of starting in state
| ↓, i,'k〉 and ending in state | ↑, f, ∅〉 is given by

pi→f (t) =

∣∣∣∣∣〈∅, f, ↑ |T exp

[
− i

!

∫ t

0
dτH(τ)

]
| ↓, i,'k〉

∣∣∣∣∣

2

.

(A171)
In fact, we don’t care about the final state of the atoms,
and we can’t select their initial state—this comes out of
the Boltzmann distribution. So we really should compute

P (t) =
∑

i,f

∣∣∣∣∣〈∅, f, ↑ |T exp

[
− i

!

∫ t

0
dτH(τ)

]
| ↓, i,'k〉

∣∣∣∣∣

2

pi,

(A172)
where pi is the probability of being in the initial atomic
state i.
As usual, we will break the Hamiltonian into two

pieces, H = H0 + H1, and do perturbation theory in
H1. We choose H1 = 'd· 'E(σ+ + σ−), which is the only
term that connects the states | ↓〉 and | ↑〉. The leading
term in the perturbation series thus becomes

P (t) ≈ 1

!2
∑

i,f

∣∣∣∣∣〈∅, f, ↑ |Te−
i
!
∫ t
0 dτH0(τ)

∫ t

0
dτ ′H1(τ

′)| ↓, i,'k〉

∣∣∣∣∣

2

pi. (A173)

If we look more carefully at the amplitude, we have

〈∅, f, ↑ |Te−
i
!
∫ t
0 dτH0(τ)

∫ t

0
dτ ′H1(τ

′)| ↓, i,'k〉 =
∫ t

0
dτ ′〈f |T

(
e−

i
!
∫ t
τ′ dτH↑(τ)

)
'd·〈∅| 'E|'k〉T

(
e−

i
!
∫ τ′
0 dτH↓(τ)

)
|i〉e−iΩτ ′

,

(A174)

where τ ′ is the moment at which the term H1 ∼ σ+ acts
to flip the state from | ↓〉 to | ↑〉; the terms H↓,↑ are
defined by

H↓ = K+ V↓(q), (A175)

and similarly for H↑. The key point is that when we
square this amplitude and sum over final states, we can
identify this as a sum over a complete set of states, and
we recall that

∑

f

|f〉〈f | = 1, (A176)

the unit operator. Further, to keep things simple, let’s
assume that motion of the atoms is approximately clas-
sical. Because the terms H↑,↓ depend only on the atomic
coordinates and momenta, the classical approximation
means that we don’t have to worry about the non–
commutativity of these operators at different times, and
we can drop the formalities of time ordering. Putting
all of the terms together, we can rewrite P (t) from Eq
(A173):
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P (t) ≈ ('d·〈∅| 'E|'k〉)2

!2

∫ t

0
dτ1

∫ t

0
dτ2 e

+iΩ(τ1−τ2)
∑

i

pi〈i|e+
i
!
∫ τ1
0 dτH↓(τ)e+

i
!
∫ t
τ1

dτH↑(τ)e−
i
!
∫ t
τ2

dτH↑(τ)e−
i
!
∫ τ2
0 dτH↓(τ)|i〉

(A177)

=
('d·〈∅| 'E|'k〉)2

!2

∫ t

0
dτ1

∫ t

0
dτ2 e

+iΩ(τ1−τ2)
∑

i

pi〈i| exp
(
+
i

!

∫ τ2

τ1

dτ [H↑(τ)−H↓(τ)]

)
|i〉 (A178)

∝
∫ t

0
dτ1

∫ t

0
dτ2e

+iΩ(τ1−τ2)

〈
exp

[
+
i

!

∫ τ2

τ1

dτ ε[q(τ)]

]〉
, (A179)

where ε = H↑−H↓ = V↑−V↓ is the instantaneous energy
difference between the ground and excited states, which
fluctuates as the atomic coordinates fluctuate, and 〈· · · 〉
denotes and average over these fluctuations.

Problem 174: Missing steps. Fill in the steps leading to Eq
(A179). If you are more ambitious, try the case where the atomic
motions are fully quantum mechanical.

Notice that the integrand in Eq (A179) depends only
on the time difference τ2 − τ1. Thus, we are doing an
integral of the form

∫ t

0
dτ1

∫ t

0
dτ2 F (τ2 − τ1). (A180)

It seems natural to rewrite this integral over the (τ1, τ2)
plane in terms of an integral over the time difference and
the mean. In the limit that t is large, this yields

∫ t

0
dτ1

∫ t

0
dτ2 F (τ2 − τ1) → t

∫ ∞

−∞
dτ F (τ). (A181)

Thus, we have

P (t) ∝ t

∫ ∞

−∞
dτ e+iΩτ

〈
exp

[
− i

!

∫ τ

0
dτ ′ ε[q(τ ′)]

]〉
,

(A182)
so that the transition rate or absorption cross–section for
photons of frequency Ω becomes

σ(Ω) ∝
〈∫ ∞

−∞
dτ exp

[
+iΩτ − i

!

∫ τ

0
dτ ′ ε[q(τ ′)]

]〉
.

(A183)
Now we can recover the intuition of Fig 19 as a saddle

point approximation to the integral in Eq (A183). We
recall that the saddle point approximation is

∫
dt exp [+iφ(t)] ≈

√
2π

|φ′′(t∗)|
exp [+iφ(t∗)] , (A184)

where the time t∗ is defined by

dφ(t)

dt

∣∣∣∣∣
t=t∗

= 0. (A185)

The condition for validity of the approximation is that
the time scale

δt ∼ 1/
√
|φ′′(t∗)| (A186)

be small compared with the intrinsic time scales for vari-
ation of φ(t). As applied to Eq (A183), the saddle point
condition is

0 =
d

dτ

[
+iΩτ − i

!

∫ τ

0
dτ ′ ε[q(τ ′)]

] ∣∣∣∣∣
τ=τ∗

(A187)

= iΩ− i

!ε[q(τ∗)] (A188)

!Ω = ε[q(τ∗)]. (A189)

Thus, the saddle point condition states that the integral
defining the cross–section is dominated by moments when
the instantaneous difference between the ground and ex-
cited state energies matches the photon energy. But this
instantaneous difference ε[q] is exactly the ‘vertical’ en-
ergy difference in Fig 19. Since this integral is inside
an expectation value over the fluctuations in atomic co-
ordinates, the cross–section will be proportional to the
probability that this matching condition is obeyed.
If the sketch in Fig 19 is equivalent to a saddle point

approximation, we have to consider conditions for valid-
ity of this approximation. The time scale defined by Eq
(A186) becomes

δt ∼

∣∣∣∣∣
1

!
dε[q(τ)]

dτ

∣∣∣∣∣

−1/2

∼
√

!
ε′v

, (A190)

where ε′ is the slope of the energy difference as a func-
tion of atomic coordinates, and v is a typical velocity
for motion along these coordinates. Thus large slopes
result in smaller values of δt, and of course this time
scales as

√
!. The natural time scale of motion along

the atomic coordinates is given by vibrational periods,
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or ω−1
vib = τvib ∼ ∆/v, where Q is a typical displacement

from equilibrium. This lets us write

δt ∼
√

!
ε′v

∼

√
!ωvib

ε′Q
· Q

vωvib
∼ τvib

√
!ωvib

ε′Q
. (A191)

We see that δt / τvib if the energy ε′Q is much larger
than the energy of vibrational quanta !ωvib. But ε′Q
is the range of energy differences between the ground
and excited states that the molecule can access as it
fluctuates—and this is the width of the absorption spec-
trum. Thus, self–consistently, if we find that the width of
the spectrum is large compared to the vibrational quanta,
then our saddle point approximation is accurate.

We can go a bit further if we specialize to the case
where, as in Fig 20, the different potential surfaces are
exactly Hookean springs, that is when the dynamics of
atomic motions are harmonic oscillators. In the general
case there are many normal modes, so we would write

V↑(q) =
1

2

∑

i

ω2
i q

2
i (A192)

V↑(q) = ε0 +
1

2

∑

i

ω2
i (qi −∆i)

2. (A193)

In this case,

ε[q(t)] ≡ V↑[q(t)]− V↑[q(t)] (A194)

= ε0 +
1

2

∑

i

ω2
i ∆

2
i −

∑

i

ω2
i ∆iqi(t) (A195)

= !Ωpeak −X(t), (A196)

where the generalized coordinate X(t) is given by a
weighted combination of all the modes,

X(t) =
∑

i

ω2
i ∆iqi(t). (A197)

Equation (A183) for the absorption cross–section thus
becomes

σ(Ω) ∝
〈∫ ∞

−∞
dτ exp

[
+iΩτ − i

!

∫ τ

0
dτ ′ ε[q(τ ′)]

]〉

=

〈∫ ∞

−∞
dτ exp

[
+iΩτ − i

!

∫ τ

0
dτ ′ (!Ωpeak −X(τ ′))

]〉

=

∫ ∞

−∞
dτ e+i(Ω−Ωpeak)τ

〈
exp

[
+
i

!

∫ τ

0
dτ ′X(τ ′)

]〉
. (A198)

The key point is that, because X(t) is a sum of harmonic
oscillator coordinates, its fluctuations are drawn from a
Gaussian distribution when we compute the average 〈· · · 〉
over the equilibrium ensemble.

Problem 175: Gaussian averages. Derive Eq (A199).

We recall that, if y is a Gaussian random variable, then

〈ey〉 = exp

[
〈y〉+ 1

2
〈(δy)2〉

]
. (A199)

In the present case, the role of y is played by an integral
over the trajectory of X(t), but this shouldn’t bother us:
〈
exp

[
+
i

!

∫ τ

0
dτ ′X(τ ′)

]〉

= exp

[
1

2

〈(
i

!

∫ τ

0
dτ ′X(τ ′)

)2
〉]

(A200)

= exp

[
− 1

2!2

∫ τ

0
dτ1

∫ τ

0
dτ2〈X(τ1)X(τ2)〉

]
,

(A201)

where we start by making use of the fact that 〈X〉 = 0.
We see from Eq (A201) that the shape of the absorp-

tion spectrum is determined by the correlation function
of the modes to which the electronic transition are cou-
pled, that is CX(τ1 − τ2) = 〈X(τ1)X(τ2)〉 If these modes
have relatively slow dynamics, then the time scales τ that
enter the integral we need to do will be much shorter than
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the time scales over which this correlation function varies.
In this limit we can approximate
∫ τ

0
dτ1

∫ τ

0
dτ2〈X(τ1)X(τ2)〉 ≈

∫ τ

0
dτ1

∫ τ

0
dτ2〈X(0)X(0)〉

= 〈X2〉τ2. (A202)

Notice also that

〈X2〉 =
〈(

∑

i

ω2
i ∆iqi

)2 〉
=

∑

i

ω4
i ∆

2
i 〈q2i 〉; (A203)

in the classical limit we have 〈q2i 〉 = kBT/ω2
i , and hence

〈X2〉 = kBT
∑

i

ω2
i ∆

2
i = 2kBTλ, (A204)

where λ generalizes the reorganization energy or Stokes’
shift to the case of many modes. Finally, putting these
pieces together, we have

σ(Ω) ∝
∫ ∞

−∞
dτ exp [+i(Ω− Ωpeak)τ ]

× exp

[
− 1

2!2

∫ τ

0
dτ1

∫ τ

0
dτ2〈X(τ1)X(τ2)〉

]

(A205)

≈
∫ ∞

−∞
dτ exp

[
+i(Ω− Ωpeak)τ − τ2λkBT

!2

]
(A206)

=

√
π!2
λkBT

exp

[
− (!Ω− !Ωpeak)2

4λkBT

]
. (A207)

This result should look familiar from Eq (66).

The calculation we have done here also allows us to
look more precisely at the limits to our approximation.
The integral in Eq (A206) is a Gaussian integral over τ ,
which means that it is done exactly by the saddle point
method. The characteristic time which emerges from this
is

δt ∼ !√
λkBT

. (A208)

If the typical vibrational time scales that enter into
CX(τ) are τvib ∼ !/kBT , then the condition for valid-
ity of our approximation becomes λ 0 kBT . Tracing the
factors through, our approximate result should be valid
if the predicted width of the absorption spectrum is (in
energy units) larger than kBT , or roughly one percent
of !Ωpeak. This is a rather gentle condition, suggesting
that whenever the model of harmonic normal modes is
correct, something like the saddle point approximation
ought to work.
In fact, this calculation also gives us insight into an-

other way that our semi–classical intuition from Fig 19
can fail. If, for example, there was just a single normal
mode, we would have X = gq(t), where g = ω2∆. But
if there is just this one mode, and no other degrees of
freedom to suck energy out of this mode, we must have

〈q(t)q(t′)〉 = kBT

ω2
cos[ω(t− t′)], (A209)

so the integral [Eq (A205)] which defines the cross–
section becomes

σ(Ω) ∝
∫ ∞

−∞
dτ exp

[
+i(Ω− Ωpeak)τ − ∆2ω2kBT

2!2

∫ τ

0
dτ1

∫ τ

0
dτ2 cos(ω(τ1 − τ2))

]
(A210)

=

∫ ∞

−∞
dτ exp

[
+i(Ω− Ωpeak)τ − ∆2kBT

!2 (1− cos(ωτ))

]
. (A211)

Now we notice that the term exp[−(∆2kBT/!2) cos(ωτ)]
is periodic, and thus has a discrete Fourier expansion;
the only frequencies which appear are integer multiples
of the vibrational frequency ω. As a result,

σ(Ω) =
∑

n

Anδ(Ω− Ωpeak − nω). (A212)

Thus, in this limit of a single undamped mode, the ab-
sorption spectrum does consist of a set of sharp lines,
spaced by the vibrational quanta. In order to recover the
semi–classical picture, these resonances must be washed
out by a combination of multiple modes (so that the dis-
crete absorption lines become a dense forest) and some

dissipation corresponding to a lifetime or dephasing of
each individual mode.

Problem 176: Washing out resonances. Suppose that we
have just a single mode, but this mode is damped so that

〈q(t)q(t′)〉 =
kBT

ω2
cos[ω(t− t′)] exp

[
−γ|t− t′|

]
. (A213)

If γ ' ω, the integral in Eq (A205) which defines the absorption
cross–section is almost the integral of a period function. Thus there
will be multiple saddle points, the first (the one we have considered
in our semi–classical approximation) being close to τ = 0, and all
the others close to τ = 2πn/ω for integer n. Carry out this expan-
sion, and analyze your results. Can you see how, as γ → 0, this sum
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over saddle points gives back the discrete spectral lines? At large
γ, what enforces the smooth dependence of the cross–section on
Ω? How big does γ need to be in order that we wouldn’t see much
hint of the vibrational resonances in the absorption spectrum? Is
it possible that the vibrations are weakly damped (γ ' ω), but
there are no visible resonances in the absorption spectrum?

Say something about the quantum treatment of the
coordinate q(t), and the zero–phonon lines. Maybe a
word about the relation to the Moössbauer effect?

I think there is still more to say here. Notice that
to make things consistent we need a quantum mechani-
cal treatment of damping, which was a big puzzle some
time back. This is also related to discussions of decoher-
ence in more modern times. At the very least we need
pointers to references. One could also note that what en-
ters these computations are certain correlation functions
of the “relevant” coordinates, and so if these correlation
functions are damped (however this happens!) all will
be well. Still ... an opportunity to teach some physics
shouldn’t be missed.

Need refs to standard text on molecular spectra; maybe old refs
to solid state problem of electron–phonon couplings in impurity
spectra. The idea that coupling to a bath of oscillators could
describe dissipation in quantum mechanics goes back, at least,
to Feynman & Vernon (1963). These ideas were revitalized by
Caldeira & Leggett (1981, 1983), who were especially interested in
the impact of dissipation on quantum tunneling.

Caldeira & Leggett 1981: Influence of dissipation on quantum
tunnelling in macroscopic systems. AO Caldeira & AJ
Leggett, Phys Rev Lett 46, 211–214 (1981).

Caldeira & Leggett 1983: Quantum tunnelling in a dissipative
system. AO Caldeira & AJ Leggett, Ann Phys (NY) 149,
374–456 (1983).

Feynman & Vernon 1963: The theory of a general quantum
system interacting with a linear dissipative system. RP
Feynman & FL Vernon Jr, Ann Phys (NY) 24, 118–173
(1963).

4. Cooperativity

[Be sure to talk about the specific case of hemoglobin,
so we can point from Section II.A.]

To understand the statistical mechanics of cooperative
interactions in the binding of multiple ligands, it is useful
to start at the beginning, with the binding of a single
ligand, especially since many physics students don’t have
much experience with problems that get categorized as
“chemistry.” Suppose that we have a receptor molecule

R to which some smaller ligand molecule L can bind.
For simplicity let there just be the two states, R with its
binding site empty, and RL with the binding site filled
by an L molecule, and let us assume that every binding
event is independent, so the different receptor molecules
don’t interact. To study the dynamics of this system we
keep track of the number of receptors in the state R and
the number in state RL; these numbers, nR and nRL,
respectively, must add up to give the total number of
receptors, N .
The rate at which empty sites get filled (R → RL)

must be proportional to the number of empty sites and
to the concentration c of the ligand. The rate at which
filled sites become empty should just be proportional to
the number of filled sites. Thus

dnRL

dt
= k+cnR − k−nRL, (A214)

where k+ is the rate constant for binding and k− is the
rate constant for unbinding; note that these have differ-
ent units. Since nR + nRL = N , this becomes

dnRL

dt
= k+cN − (k− + k+c)nRL. (A215)

The equilibrium state is reached when

nRL = N
k+c

k− + k+c
. (A216)

The fraction nRL/N can also be interpreted microscopi-
cally as the probability that one receptor will be the state
RL,

PRL =
k+c

k− + k+c
=

c

K + c
, (A217)

where the equilibrium constant (or “dissociation con-
stant”) K = k−/k+.
From statistical mechanics, if we have a molecule that

can be in two states, we should calculate the probabil-
ity of being in these states by knowing the energy of
each state and using the Boltzmann distribution. Impor-
tantly, what we mean by “state,” especially when dis-
cussing large molecules, often is a large group of micro-
scopic configurations. Thus saying that there are two
states R and RL really means that we can partition the
phase space of the system into two regions, and these re-
gions are what we label as R and RL. Then, as should be
familiar, what matters is not the energy of each state but
the free energy. The free energy of the state R has one
component from the receptor molecule itself, FR, plus
a component from the ligand molecules in solution. In
the transition R → RL, the free energy of the recep-
tor changes to FRL, and the free energy of the solution
changes because one molecule of the ligand is removed.
The change in free energy when we add one molecule to
the solution defines the chemical potential µ(c). Thus,
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up to an arbitrary zero of energy, we can consider the
free energy of the two states to be FR and FRL − µ(c).
Then the probability of being in the state RL is given by
the Boltzmann distirbution,

PRL =
1

Z
exp

(
−FRL − µ(c)

kBT

)
, (A218)

where the partition function Z is given by the sum of the
Boltzmann factors over both available states,

Z = exp

(
− FR

kBT

)
+ exp

(
−FRL − µ(c)

kBT

)
. (A219)

Putting the terms together, we have

PRL =
exp [−(FRL − µ(c))/kBT ]

exp [−FR/kBT ] + exp [−(FRL − µ(c))/kBT ]

(A220)

=
eµ(c))/kBT

exp [−(FR − FRL)/kBT ] + eµ(c))/kBT
. (A221)

Notice that the only place where the ligand concentration
appears is in the chemical potential µ(c). In order for this
result to be consistent with the result from analysis of
the kinetics in Eq (A217), we must have eµ(c))/kBT ∝ c,
and you may recall that when concentrations are low—as

in ideal gases, and also ideal solutions—it is a standard
result that

µ(c) = kBT ln(c/c0), (A222)

where c0 is some reference concentration. Then we can
also identify the equilibrium constant as

K = c0 exp

(
−Fbind

kBT

)
, (A223)

where Fbind = FR − FRL is the change in free energy
when the ligand binds to the receptor.
Now suppose we have a receptor to which two ligands

can bind. There are now four states, which we can think
of as 00, 10, 01, and 11. If the each binding event is
identical and independent, then the free energies of these
states are

F00 = FR (A224)

F01 = F10 = FR − Fbind − µ(c) (A225)

F11 = FR − 2Fbind − 2µ(c). (A226)

If we calculate, for example, the probability that both
binding sites are occupied—i.e., that the molecule is in
the state 11—we have

P11 =
1

Z
e−F11/kBT (A227)

=
exp

[
−FR−2Fbind−2µ(c)

kBT

]

exp
[
− FR

kBT

]
+ 2 exp

[
−FR−Fbind−µ(c)

kBT

]
+ exp

[
−FR−2Fbind−2µ(c)

kBT

] (A228)

=
(c/K)2

1 + 2(c/K) + (c/K)2
=

(
c

c+K

)2

. (A229)

Thus, the probability of both sites being occupied is just
the square of the probability that a single binding site
will be occupied, as in Eq (A217). This makes sense,
because we assumed that binding to the two sites were
independent events.

Problem 177: Counting bound molecules. Rather than
counting the fraction of molecules in the doubly bound state, count
the number of ligands bound. Show that this is just 2× c/(c+K),
and explain why.

In fact, in many cases we see that binding of multiple
ligands to a protein molecule are not independent events.
As a start, let’s suppose that we again have two binding
sites, but the doubly bound state is stabilized (for as yet
unspecified reasons) by an extra energy ∆. Then if we
calculate the fraction of binding sites occupied, we have
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f =
1

2
[P01 + P10 + 2P11] (A230)

=
1

2

2 exp
[
−FR−Fbind−µ(c)

kBT

]
+ 2 exp

[
−FR−2Fbind−2µ(c)−∆

kBT

]

exp
[
− FR

kBT

]
+ 2 exp

[
−FR−Fbind−µ(c)

kBT

]
+ exp

[
−FR−2Fbind−2µ(c)−∆

kBT

] (A231)

=
c/K + J(c/K)2

1 + 2(c/K) + J(c/K)2
, (A232)

where J = exp(∆/kBT ). Results are shown in Fig
168. We see that, as the interaction energy increases,
the binding sites can be occupied at lower concentration,
but more importantly the steepness of the “switch” from
empty to full sites is more abrupt. This abruptness is the
signature of cooperativity.
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FIG. 168 Cooperative binding, with two binding sites that
interact. Lines show the predicted fraction of binding sites vs.
concentration, for different values of the interaction energy ∆;
from Eq (A232).

The classic example is the oxygen binding protein
hemoglobin in our blood. We now know that hemoglobin
has four protein subunits, each of which has an iron atom
which can bind one oxygen molecule. [Might be good to
show some figures from Hb!] As Hill recognized in the
early part of the twentieth century, the fraction of sites
with bound oxygen behaves more nearly as if all four
molecules had to bind together, so that

f =
cn

cn +Kn
, (A233)

with n = 4; this is still called a “Hill function” in many
contexts. As shown in Fig 169, the binding is now sig-
moidal, or more nearly switch like at larger n. Because
the natural quantity in statistical mechanics is the chemi-
cal potential and not the concentration, things look sim-
pler on a logarithmic concentration axis. Cooperative
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FIG. 169 Cooperative binding, in the Hill model. Blue lines
show the predicted fraction of binding sites vs. concentration
when binding to each site in independent. Green lines show
the case of cooperative binding to four sites, as described by
the Hill model in Eq (A233), with n = 4. At left, a linear
concentration scale; at right, a logarithmic scale.

binding corresponds to a steeper slope on these logarith-
mic plots. This is clear for the Hill function, where we
can see that

dF

dc
=

n

c
F (1− F ), (A234)

and hence

dF

d ln c

∣∣∣∣∣
F=1/2

=
n

4
, (A235)

so the slope is a direct measure of the number of
molecules forced to bind simultaneously. Few real sys-
tems are described exactly by the Hill model, but it’s
a good approximation. We should also appreciate the
power of Hill’s intuition, in seeing the connection of the
sigmoidal binding curves to the number of protein sub-
units even before much was known about these molecules.
The Hill model suggests that there is some direct in-

teraction between binding events that causes all of the
ligands to bind (or not to bind) simultaneously, which
we can think of as a limiting case of the model above,
with ∆ → ∞. In some cases, including hemoglobin,
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there is little evidence for such a direct interaction. An
alternative is to imagine that the whole system can be
in two states. In the case of hemoglobin these came to
be called ‘relaxed’ (R) and ‘tense’ (T), but in other sys-
tems there natural choices; for example, in the case of the
ion channels in rod cells that open in response to bind-
ing of cGMP, the two states might simply be the open
and closed states of the channel, as in Fig 170. To con-
tinue with this example, the channel can bind one, two
or three molecules of cGMP. If all the binding sites are
empty, the free energies of the two states are Fopen and
Fclosed. Given that the channel is closed, the binding of
a single cGMP molecule lowers the energy by an amount
F bind
closed, but in addition this takes one molecule out of

the solution and hence the free energy of the system also
goes down by µ, the chemical potential. So the total
free energy of the state with the channel closed and one
molecule bound is

Fclosed(1) = Fclosed − F bind
closed − µ (A236)

= Fclosed − F bind
closed − kBT ln(c/c0)(A237)

= Fclosed − kBT ln

(
c

Kclosed

)
, (A238)

and similarly for the open state,

Fopen(1) = Fopen − kBT ln

(
c

Kopen

)
. (A239)

The important point is that the binding energies to the
open and closed states are different. By detailed bal-
ance, this means that, as the cGMP molecules bind, they
will shift the equilibrium between open and closed. The
two state model was proposed by Monod, Wyman and
Changeaux. They made the simplifying assumption that
the only source of cooperativity among the binding events
was this shifting of equilibria, so that if the target protein
is in one state, each binding event remains independent,
and then the free energies work out as in Fig 170.

Problem 178: Cooperativity in the MWC model. Show
that the model in Fig 170 is equivalent to the statement that the
free energy difference between open and closed states has a term
proportional to the number of cGMP molecules bound. What is
this proportionality constant in terms of the other parameters?
Can you explain the connection between these two points of view
on the model?

It’s a useful exercise to work out the statistical me-
chanics of the MWC model. The partition function has
two classes of terms, coming from the two states of the
protein. In each state, we have to sum over the occupied
and unoccupied states of each binding site, but this is
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(
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FIG. 170 A model for binding of cGMP to the channels in
rod cells. Cooperativity arises not from direct interactions
among the cGMP molecules but rather because binding of
each molecule contributes to stabilizing a different structure
of the channel protein. In this case the two structures are just
the open and closed states.

relatively easy because the sites are independent. In the
notation of Fig 170, we find

Z = Zopen + Zclosed (A240)

Zopen = exp

(
−Fopen

kBT

)(
1 +

c

Kopen

)n

(A241)

Zclosed = exp

(
−Fclosed

kBT

)(
1 +

c

Kclosed

)n

,(A242)

where in the case of the cGMP–gated channels, n = 3.
The probability of being in the open state is then

Popen =
Zopen

Zopen + Zclosed
(A243)

=
(1 + c/Kopen)

n

(1 + c/Kopen)
n + L (1 + c/Kclosed)

n ,(A244)

where kBT lnL = Fopen−Fclosed is the free energy differ-
ence between open and closed states in absence of ligand
binding. In the limit that binding is much stronger to
the open state, Kopen / Kclosed, this simplifies,

Popen =
(1 + c/Kopen)

n

L+ (1 + c/Kopen)
n (A245)

=
1

1 + exp [θ − n ln(1 + c/Kopen)]
, (A246)

where θ = lnL. This is similar to the Hill model, but a
little different in detail. Distinguishing the models from
the equilibrium data alone is difficult, but clearly the
MWC model predicts that binding has an extra kinetic
step in which the protein makes the transition between
its two states; if we are lucky we can “catch” the system
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after the first ligand molecules have bound but before
this change in protein structure. Indeed, such experi-
ments were critical in understanding the mechanism of
cooperativity in hemoglobin.

Problem 179: Details of the MWC model. Fill in the
steps to Eqs (A240–A242). Then, compare the Hill model with
MWC. Show that for c ) Kopen, Eq (A246) reduces to Eq (A233).
What about at c ' Kopen? The MWC model, even in the limit
Kopen ' Kclosed, has one more parameter than the Hill model;
what does this freedom mean for the class of functions that the
MWC model can realize?

In many systems, it is not just a single class of lig-
ands that binds. For hemoglobin itself, changes in pH,
which presumably result in binding and unbinding of
protons, change the way in which oxygen binds.95 For
enzymes—proteins that catalyze a chemical reaction—it
is not just the substrate which binds and is chemically
altered, but other molecules bind as well and alter the
activity of the enzyme. It is important that these ‘other
molecules’ are binding at other sites, not directly interfer-
ing with substrate binding in enzymes or oxygen binding
in hemoglobin. From the Greek for “other site,” these
effects are called “allosteric,” and the MWC model gives
a framework for a much more general view of allostery.
In this view, all binding events are independent, but with
binding energies that depend on the overall state of the
target protein. In this way, all binding events can shift
the R/T equilibrium.

Maybe another problem? There should be a figure
with data! Tell the story about Perutz? Need to flesh
out the text to match references. Put something about
protein/DNA interactions here?

The classic paper on “Hill functions” for cooperative binding is
Hill (1910). There is some suggestion that Hill might have been the
first to derive the simpler description of independent binding, often
called the “Langmuir” isotherm; for this and more related history as
seen through the lens of drug–receptor interactions, see Colquhoun
(2006). The MWC model is due to Monod et al (1965), and a con-
temporary, competing model is due to Koshland et al (1966). Late
in his life, Perutz (1990) provided some perspective on his long ad-
venture with hemoglobin. A key step in understanding was to show,
convincingly, that there really is no direct interaction between the
binding sites, and the cooperativity was mediated entirely by the
shifting equilibrium between the R and T states (Shulman et al
1975). The MWC model leaves open the question of where the
energy for cooperativity is stored in the molecule; for a hypothesis
very much ahead of its time, see Hopfield (1973).

95 This is the “Bohr effect,” after Christian Bohr, Niels’ father.
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5. X–ray diffraction and biomolecular structure

The first detailed experimental information about the
structure of biological molecules came from X–ray diffrac-
tion measurements. We recall that if a particle scatters
from a sample, shifting its energy by !ω and its mo-
mentum by !'q, then the amplitude for this scattering
event must be proportional to the ('q, ω) spatiotemporal
Fourier component of the relevant density in the sample.
For an electromagnetic wave what matters is (roughly)
the charge density. Thus, the cross–section for elastic
(ω = 0) scattering is

σ('q) ∝
∣∣∣∣
∫

d3x ei#q·#xρ('x)

∣∣∣∣
2

. (A247)

It is useful to have in mind the geometry [ref to a Fig!]. If
the X–ray photons approach the sample collimated along
the x̂ axis, they have an initial wavevector 'k0 = kx̂,
where as usual k = 2π/λ, with λ the wavelength. If they

emerge with a final wavevector 'kf at an angle θ relative
to the x̂ axis, then 'q ≡ 'kf − 'k0, and the magnitude of
the scattering vector (or, up to a factor !, momentum
transfer) is

|'q| = |'kf − 'k0| (A248)

=
√

|'kf − 'k0|2 (A249)

=
√
|'kf |2 − 2'kf ·'k0 + |'k0|2 (A250)

=
√
k2 − 2k2 cos θ + k2 (A251)

=
√
2k2(1− cos θ) = 2k sin(θ/2). (A252)

Thus scattering by a small angle corresponds to a small
momentum transfer. The classic results about X–ray
diffraction concern the case where the density profile is
periodic, as in a crystal. If the periodicity corresponds
to displacement by d (let’s think along one dimension,
for the moment), then the density can be expressed as
a discrete Fourier series, which means [from Eq (A247)]
that σ('q) will have delta functions at |'q| = 2πn/d, with
n an integer. Combining this with Eq (A252), we find
the angles which satisfy the “Bragg condition,”

2πn/d = (4π/λ) sin(θ/2) ⇒ sin(θ/2) = nλ/2d. (A253)

[I think this is a bit off the usual way of stating the
condition (2’s in the wrong places); check!]

The first great triumph of X–ray diffraction in eluci-
dating the structure of biological molecules came with
the structure of DNA. This is an often told, and often
distorted, piece of scientific history. Watson and Crick
predicted the structure of DNA by arguing that a few
key facts about the molecule, when combined with the
rules of chemical bonding, where enough to suggest an in-
teresting structure that would have consequences for the
mechanisms of genetic inheritance. It was known that

DNA was composed of four different kinds of nucleotide
bases: adenine (A), thymine (A), guanine (G) and cyto-
sine (C). Importantly, Chargaff had surveyed the DNA
of many organisms and shown that while the ratios of A
to G, for example, vary enormously, the ratios A/T and
C/G do not. Watson and Crick realized that the molec-
ular structures of the bases are such that A and T can
form favorable hydrogen bonds, as can C and G; further,
the resulting hydrogen bonded base pairs are the same
size, and thus could fit comfortably into a long polymer,
as shown in Fig 171. Piling on top of one another, the
base pairs would also experience a favorable “stacking”
interaction among the π–bonded electrons in their rings.
Finally, if one looks carefully at all the bond angles where
the planar bases connect to the sugars and phosphate
backbone, each successive base pair must rotate relative
to its neighbor, and although there is some flexibility the
favored angle was predicted to be 2π/10 radians, or 36◦.

Adenine Thymine

Guanine Cytosine

FIG. 171 The structure of DNA, from Watson and Crick
(1953b). At left, the polymeric pattern of bases, sugars and
phosphates, and the famous double helix. At right, the pair-
ings A/T and G/C, illustrating the similar sizes of the cor-
rect pairs. Note that the donor/acceptor pattern of hydrogen
bonds discriminates against the incorrect A/C and G/T pair-
ings.

Quite independently of his collaboration with Wat-
son, Crick has been interested in the structure of heli-
cal molecules, and in the X–ray diffraction patterns that
they should produce. Thus, when Watson and Crick re-
alized that the structure of DNA might be a helix, they
were in a position to calculate what the diffraction pat-
terns should look like, and thus compare with the data
emerging from the work of Franklin, Wilkins and collab-
orators. So, let’s look at the theory of diffraction from a
helix.
It’s best to describe a helix in cylindrical coordinates:

z along the axis of the helix, r outward from its center,
and an angle φ around the axis. Helical symmetry is
the statement that translations along z are equivalent
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to rotations of the angle φ. Thus, a continuous helical
structure would have the property that

ρ(z, r, φ) = ρ(z + d, r, φ+ 2πd/.), (A254)

for any displacement d, where . is the displacement cor-
responding to a complete rotation. For a discrete helical
structure, the same equation is true, but only for values
of d that are integer multiples of a fundamental spacing
d0.

For the continuous helix, the dependence on the two
variables z and φ really collapses to a dependence on one
combined variable,

ρ(z, r, φ) = g(r, φ− 2πz/.). (A255)

We know that any function of angle can be expanded as
a discrete Fourier series,

f(φ) =
∞∑

n=−∞
f̃ne

−inφ, (A256)

so in this case we have

ρ(z, r, φ) =
∞∑

n=−∞
g̃n(r)e

−in(φ−2πz/&). (A257)

Our task is to compute
∫

d3x ei#q·#xρ('x). (A258)

In cylindrical coordinates, we can write 'q = (qz ẑ, 'q⊥), so
that 'q·'x = qzz+ q⊥r cosφ, where we choose the origin of
the angle φ to make things simple and q⊥ = |'q⊥|. Thus
we have

ei#q·#x = eiqzzeiq⊥r cosφ (A259)

= eiqzz
∞∑

n=−∞
Jn(q⊥r)e

inφ, (A260)

where [check the conventions for the definition of the
Bessel function!]

Jn(u) =

∫ 2π

0

dφ

2π
e−inφeiu cosφ (A261)

are Bessel functions. Putting Eq (A260) together with
the consequences of helical symmetry in Eq (A257), we
have

∫
d3x ei#q·#xρ('x) =

∫ ∞

−∞
dz

∫ ∞

0
drr

∫ 2π

0
dφeiqzz

∞∑

n=−∞
Jn(q⊥r)e

inφ
∞∑

m=−∞
g̃m(r)e−im(φ−2πz/&) (A262)

=
∞∑

n,m−∞

∫ ∞

−∞
dz eiqzze−i2πmz/&

∫ ∞

0
drr Jn(q⊥r)g̃m(r)

∫ 2π

0
einφe−imφ. (A263)

We see that the integral over φ forces m = n, and the
integral over z generates delta functions at qz = 2πn/..
Thus, for a continuous helix we expect that the X–ray
scattering cross section will behave as

σ(qz, q⊥) ∝
∞∑

n−∞
δ(qz − 2πn/.)

∣∣∣∣
∫ ∞

0
drr Jn(q⊥r)g̃n(r)

∣∣∣∣
2

.

(A264)
In particular, if most of the density sits at a distance R
from the center of the helix (which is not a bad approxi-
mation for DNA, since the phosphate groups have much
more electron density than the rest of the molecule), then

σ(qz, q⊥) ∼
∞∑

n−∞
δ(qz − 2πn/.)

∣∣∣∣Jn(q⊥R)

∣∣∣∣
2

. (A265)

Equation (A265) is telling us that diffraction from a
helix generates a series of “layer lines” at qz = 2πn/.,
and from their spacing we should be able to read off the
“pitch” of the helix, the distance . along the ẑ axis cor-
responding to a complete turn. Further, if we look along

a single layer line, we should see an intensity varying as

qz

q⊥

FIG. 172 Diffraction from continuous (left) and discrete
(right) helices; Holmes (1998).
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FIG. 173 The justly famous photograph 51, showing the
diffraction from DNA molecules pulled into a fiber, from
Franklin & Gosling (1953).

∼ |Jn(q⊥R)|2. What is important here about the Bessel
functions is that for small q⊥ we have Jn(q⊥R) ∝ (q⊥R)n,
and the first peak of the nth Bessel function occurs at a

point roughly proportional to n. The resulting pattern is
shown schematically in Fig 172.

Problem 180: Bessel functions. Verify the statements about
Bessel functions made above, in enough detail to understand the
diffraction patterns shown in Fig 172.

Let’s see what happens when we move from the contin-
uous to the discrete helix. To keep things simple, suppose
that all the density indeed is concentrated at a distance
R from the center of the helix, so that

ρ('x) =
1

R
δ(r −R)

∑

n

δ(z − nd0)δ(φ− nφ0), (A266)

where the rotation from one element to the next φ0 =
2πd0/.; notice that we don’t really require ./d0 to be an
integer. Now we have

∫
d3x ei#q·#xρ('x) =

∫ ∞

−∞
dz

∫ ∞

0
drr

∫ 2π

0
dφeiqzz

∞∑

n=−∞
Jn(q⊥r)e

inφ 1

R
δ(r −R)

∞∑

m=−∞
δ(z −md0)δ(φ−mφ0)(A267)

=
∞∑

n=−∞
Jn(q⊥R)

∞∑

m=−∞

∫ ∞

−∞
dz δ(z −md0)e

iqzz ×
∫ 2π

0
dφ δ(φ−mφ0)e

inφ (A268)

=
∞∑

n=−∞
Jn(q⊥R)

∞∑

m=−∞
eim(nφ0+qzd0) (A269)

=
∞∑

n=−∞
Jn(q⊥R)

∞∑

m=−∞
δ(nφ0 + qzd0 − 2πm) (A270)

∝
∞∑

m=−∞

∞∑

n=−∞
Jn(q⊥R)δ(qz + 2πn/.− 2πm/d0). (A271)

Thus the discrete helix involves a double sum of terms. If
we set m = 0 we have the results for the continuous helix.
But the sum over m (= 0 causes the whole “X” pattern
of the continuous helix to be repeated with centers at
(qz = 2πm/d0, q⊥ = 0); the line q⊥ = 0 is often called
the meridian, and so the extra peaks centered on (qz =
2πm/d0, q⊥ = 0) are called meridional refections. All
of this is shown in Fig 172. Just as the spacing of the
layer lines allows us to measure the helical pitch ., the
spacing of the meridional reflections allows us to measure
the spacing d0 between discrete elements along the helix.
At this point you know what Watson and Crick knew

[maybe put in the precise dates of these events, fromWat-
son’s memoir]. They had a theory of what the structure

should be, and almost certainly they had already real-
ized the implications of this structure, as they remarked
in their first paper “It has not escaped our notice that
the specific pairing we have postulated immediately sug-
gests a possible copying mechanism for the genetic ma-
terial.” They also knew that if the structure was as they
had theorized, then the diffraction pattern should display
a number of key signatures—the regularly spaced layer
lines, the “X” arrangement of their intensities, and the
meridional reflections—that would provide both qualita-
tive and quantitative confirmation of the theory. Thus
you should be able to imagine their excitement when
they saw the clean X–ray diffraction pattern from hy-
drated DNA, the famous photograph 51 taken by Ros-
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alind Franklin, Fig 173. As far as one could tell, the
proposed structure was right.

Problem 181: Discrete helices, more generally. Show that
most of what was said above can be generalized to an arbitrary
discrete helix, without assuming that the density is concentrated
at r = R. That is, use only the symmetry defined by Eq (A254)
for d = nd0.

Problem 182: Fibers vs. crystals. We have discussed the
diffraction from a helix as if there were just one molecule, and we
have not been very precise about the different between amplitudes
and intensities. Show that if there are many helices, all with their
ẑ axes aligned but with random positions and orientations in the
x̂ − ŷ plane, then the diffraction intensity from the ensemble of
molecules depends only on the structure of the individual helices,
and that all directions for the vector (q⊥ are equivalent.

It is crucial to appreciate that, contrary to what is of-
ten said in textbooks, it was not possible to “determine”
the structure of DNA by looking at diffraction patterns
like those in Fig 173. On the other hand, if you thought
you knew the structure, you could predict the diffraction
pattern—in the regime where it could be measured—and
see if you got things right. This difference between ex-
periments that support a theory, or which find something
that a theory tells us must exist, and experiments that
“discover” something unexpected or genuinely unknown
is an incredibly important distinction, often elided.

So much has been written about this moment in scien-
tific history that it would be irresponsible not to pause
and reflect. On the other hand, I am not a historian.
So let me make make just a few observations. Most im-
portantly, I think, the story of the DNA structure com-
bines so many themes in our understanding of science and
society (separately and together) that is has an almost
mythical quality, and as with the ancient myths everyone
can see something that connects to their own concerns.
There is the enormous issue of gender in the scientific
community, something for which we hardly even had a
vocabulary until decades after the event. There are the
personalities of all the individuals, both as they were in
1953 and as they developed in response to the world–
changing discovery in which they participated. There is
the tragedy of Franklin’s early death. There is the com-
petition between Cambridge and London, and the impact
of an American interloper on these very British social
structures. Finally, there are issues that are more purely
about the science, such as the interaction between theory
and experiment, physics and biology. We could wander
in this part of history for a long time. I need to come
back and see what is essential, and what can be skipped.
For now, let’s move on.

In order to actually determine the structure of a large
molecule by X–ray diffraction, we need to form crystals

of those molecules. Crystals of a protein are not like
crystals of salt or even small molecules. They are quite
soft, and contain quite a lot of water. The bonds between
proteins, for example, in a crystal are much weaker than
the bonds that hold each protein together. On the one
hand this makes growing and handling the crystals quite
difficult. On the other hand, it means that the internal
structures of the protein in the crystal is more likely to
be typical of its structure when free in solution.
We recall that being a crystal in three dimensions

means that there are vectors 'a, 'b, and 'c such that the
density is the same if we translate by integer combina-
tions of these vectors,

ρ(x) = ρ(x+ n'a+m'b+ k'c). (A272)

This means that the density can be expanded into a
Fourier series,

ρ(x) =
∑

knm

ρ̃knm exp
[
i(k 'Ga + n'Gb +m'Gc)·'x

]
,

(A273)
where the 'Gi are the “reciprocal lattice vectors.” As a
result, the X–ray scattering cross–section is a set of delta
functions or “Bragg peaks,”

σ('q) ∝
∑

knm

|ρ̃knm|2δ('q− k 'Ga − n'Gb −m'Gc). (A274)

Problem 183: Details of diffraction. Fill in the details lead-
ing to Eq (??), including the relationship between the reciprocal

lattice vectors (Gi and the real lattice vectors (a, (b, and (c.

Even if we can make a perfect measurement of σ('q),
we only learn about the magnitudes of the Fourier coef-
ficients, |ρ̃knm|2, and this isn’t sufficient to reconstruct
the density ρ('x). This is called the phase problem. For
small structures it is not such a serious problem, since the
constraint that ρ('x) has to built out of discrete atoms al-
lows us to determine the positions of the atoms from the
diffraction pattern. But for a protein, with thousands of
atoms in each unit cell of the crystal, this is hopeless.
The phase problem was solved experimentally through

the idea of “isomorphous replacement.” Suppose that we
could attach to the each molecule in the crystal one or
more very heavy atoms, in well defined (but unknown)
positions. If we can do this without disrupting the pack-
ing of the molecules into the crystal, then the positions
of the Bragg peaks will not change, but their intensities
will. If we can approximate the density profiles of the
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heavy atoms as delta functions (which should be right
unless we look at very large |'q|), then

|ρ̃knm|2 →
∣∣∣∣ρknm +

∑

µ

Zµe
i#qknm·#xµ

∣∣∣∣
2

, (A275)

where 'qknm = k 'Ga − n'Gb − m'Gc, Zµ is the charge of
the µth heavy atom and 'xµ is its position. In the simple
case of one added heavy atom, we can choose coordinates
so that its position is at the origin, and then it should
be clear that the change in intensity on adding the heavy
atom is directly sensitive to the value of cosφknm, where
φknm is the phase of the complex number ρknm. Thus,
one needs at least two different examples of adding heavy
atoms to determine the phases unambiguously.

Do we need to say more here? Show in detail how two
replacements determines the phase? Give a problem? I
honestly don’t know if one has to rely on absolute mea-
surements, as one might think naively from the equations
... check!! Say something about other approaches to the
phase problem.

The density really consists of discrete blobs corre-
sponding to atoms, and—if we can look at sufficiently
high resolution—additional density in the bonds between
atoms. For the moment let’s think just about the atoms.
Then the density has the form

ρ('x) ≈
∑

µ

fµδ('x− 'xµ), (A276)

where 'xµ is the position of the µth atom and fµ is an
effective charge or scattering density associated with that
atom. Thus the scattering cross–section behaves as

σ('q) ∼
∑

µν

fµfνe
i#q·(#xµ−#xν). (A277)

Importantly, the positions of atoms fluctuate. The time
scale of these fluctuations typically is much shorter than
the time scale of the experiment, so we will see an aver-
age,

σ('q) ∼
〈∑

µν

fµfνe
i#q·(#xµ−#xν)

〉
. (A278)

If we assume that the fluctuations in position are Gaus-
sian around some mean, then

σ('q) ∼
〈∑

µν

fµfνe
i#q·(#xµ−#xν)

〉

≡
∑

µν

fµfν

〈
ei#q·#rµν

〉
(A279)

∼
∑

µν

fµfνe
i#q·#rµνe−

1
2 |#q|

2〈(δ#rµν)
2〉, (A280)

where 'rµν = 'xµ − 'xν , and for simplicity we assume
that the fluctuations are isotropic. What we see is that

the scattering intensity at 'q is attenuated relative to
what we expect from a fixed structure, by an amount
e−

1
2 |#q|

2〈(δ#rµν)
2〉. These are called the Debye–Waller fac-

tors. Thus, although X–ray diffraction is a static method,
it is sensitive to dynamical fluctuations in structure, al-
though it can’t really distinguish between dynamics and
static disorder in the crystal.
Need to come back and see what else needs to be said,

given what we need in the main text. Is it worth talking
about other methods, such as EM and NMR? The motifs
of protein structure? ... not sure what we need or want.

You should read the classic trio of papers on DNA structure,
which appeared one after the other in the April 25, 1953 issues of
Nature: Watson & Crick (1953a), Wilkins et al (1953) and Franklin
& Gosling (1953). The foundations of helical diffraction theory had
been given just a year before by Cohcran et al (1952); a brief ac-
count is given by Holmes (1998). The astonishing realization that
the structure of DNA implies a mechanism for the transmission of
information from generation to generation was presented by Wat-
son & Crick (1953b). It is especially interesting to read their ac-
count of the questions raised by their proposal, and to see how their
brief list became the agenda for the emerging field of molecular bi-
ology over the next two decades. The rest is history, as the saying
goes, so you should read at least one history book (Judson 1979).

Cochran et al 1952: The structure of synthetic polypeptides. I.
The transform of atoms on a helix. W Cochran, FHC Crick
& V Vand, Acta Cryst 5, 581–586 (1952).

Franklin & Gosling 1953: Molecular configuration in sodium
thymonucleate. RE Franklin & RG Gosling. Nature 171,
740–741 (1953).

Holmes 1998: Fiber diffraction. KC Holmes,
http://www.mpimf-heidelberg.mpg.de/∼holmes/fibre/branden.html
(1998).

Judson 1979: The Eighth Day of Creation HF Judson (Simon
and Schuster, New York, 1979).

Watson & Crick 1953a: A structure for deoxyribose nucleic
acid. JDWatson & FHC Crick, Nature 171, 737–739 (1953).

Watson & Crick 1953b: Genetical implications of the structure
of deoxyribonucleic acid. JD Watson & FHC Crick, Nature
171, 964–967 (1953).

Wilkins et al 1953: Molecular structure of deoxypentose nucleic
acids. MHF Wilkins, AR Stokes & HR Wilson, Nature 171,
738–740 (1953).

Need classic refs about protein structure and crystallography;
more if we do more.

6. Berg and Purcell, revisited

In the spirit of Berg and Purcell’s original discussion,
the simplest example of noise in a chemical system is just
to consider the fluctuations in concentration as seen in
a small volume. To treat this rigorously, let’s remember



291

that diffusion in and out of the volume keeps the system
at equilibrium. Thus, fluctuations in the concentration
should be just like Brownian motion or Johnson noise.
What’s a little odd is that while the strength of John-
son noise is proportional to the absolute temperature,
our intuition about counting molecules and the

√
N rule

doesn’t seem to have a place for T . So, let’s see how this
works.96

If we measure the current flowing across a resistor in
thermal equilibrium at temperature T , we will find a
noise in the current that has a spectral density SI =
2kBT/R, where R is the resistance. More generally, if
we measure between two points in a circuit, and find a
frequency dependent, complex impedance Z̃(ω), then the
spectral density of current noise will be

SI(ω) = 2kBTRe

[
1

Z̃(ω)

]
, (A281)

where Re denotes the real part. In a mechanical system it
is more natural to talk about positions and forces instead
of currents and voltages. Now if we measure the position
and apply a force, we have a “mechanical response func-
tion” α̃(ω) analogous to the (inverse) impedance,

x̃(ω) = α̃(ω)F̃ (ω), (A282)

where x̃(ω) is the Fourier component97 of x(t),

x(t) =

∫ ∞

−∞

dω

2π
e−iωtx̃(ω), (A283)

and similarly for the force F̃ (ω). The analog of Eq (A281)
for Johnson noise is that the fluctuations in position x
have a spectral density

Sx(ω) =
2kBT

ω
Im [α̃(ω)] . (A284)

[It’s possible that this Appendix should also contain a
derivation of the FDT.]

Problem 184: Some details about noise spectra. You
may remember the formula for Johnson noise as SI = 4kBT/R,
rather than the factor of 2 given above. Also, there are a few
obvious differences between Eqs (A281) and (A284). Be sure you
understand all these differences. The key ingredients are that all
our integrals run over positive and negative frequencies, and that

96 In what follows I make free use of the concepts of correlation
functions, power spectra, and all that. See Appendix A.2 for a
review of these ideas.

97 Here, more than in other sections, our conventions in defining
the Fourier transform are important. Be careful about the sign
of i in the exponential!

while voltage is analogous to force, current is analogous to velocity,
not position. Check carefully that all the details work out.

In any system at thermal equilibrium, if we apply a
small force we can observe a proportionally small dis-
placement, and this is described by a linear response
function. In a mechanical system we have the function
α̃(ω), sometimes called a “complex compliance.” In mag-
netic systems, the force is an applied magnetic field and
the analog of position is the magnetization; the response
function is called the susceptibility. Electrical systems
are a bit odd because we usually discuss the current re-
sponse to voltage, but we can also think about charge
movements (see problem above). In all these cases, once
we know the linear response function we can predict the
spectral density of fluctuations in the relevant position–
like variable using Eq (A284). This is called the fluctua-
tion dissipation theorem. [Should there be an appendix
with more details, and a proof? Advice welcome.]

Problem 185: Recovering equipartition. If we go to zero
frequency, we have x̃ = α̃(0)F̃ , but this means that α̃(0) = 1/κ,
where κ is the stiffness of the system. We know from the equipar-
tition theorem that the variance in position must be related to the
stiffness,

1

2
κ〈x2〉 =

1

2
kBT. (A285)

But we can also write the variance in position as an integral over
the spectral density,

〈x2〉 =
∫ ∞

−∞

dω

2π
Sx(ω). (A286)

For these equations to be consistent, we must have

2

∫ ∞

−∞

dω

2π

1

ω
Im [α̃(ω)] = α̃(0), (A287)

which looks quite remarkable.
(a.) The frequency domain Eq (A282) is equivalent to

x(t) =

∫ ∞

−∞
dτα(τ)F (t− τ), (A288)

where

α(τ) =

∫ ∞

−∞

dω

2π
e−iωτ α̃(ω). (A289)

Causality means that α(τ < 0) = 0. What does this imply about
the analytic properties of the α̃(ω) in the complex ω plane?

(b.) Use your result in (a.) to verify Eq (A287).

Position and force, magnetization and magnetic field,
charge and voltage; all of these are “thermodynamically
conjugate” pairs of variables. More precisely, if we con-
sider an ensemble in which the force is held fixed, then
the derivative of the free energy with respect to the force
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is the mean position, and conversely. The fluctuation
dissipation theorem always refers to these pairs of vari-
ables. So, to describe fluctuations in chemical systems,
we need to know the “force” that is conjugate to the con-
centration (or the number of molecules), and this is the
chemical potential µ. To compute the response of the
concentration to changes in chemical potential, we con-
sider the diffusion equation for the concentration c('x, t)
in the presence of a varying chemical potential µ('x, t),

∂c('x, t)

∂t
= D∇·

[
∇c('x, t)− ∇µ('x)

kBT
c('x, t)

]
. (A290)

Problem 186: Connecting back. Explain how Eq (A290)
relates to the equation for diffusion in the presence of an external
potential, Eq (240). Be sure you understand the signs.

Linearizing Equation (A290) around a mean concen-
tration c̄, we have

∂c('x, t)

∂t
= D∇2c('x, t)− Dc̄

kBT
∇2µ('x). (A291)

We can solve by Fourier transforming in both space and
time,

c('x, t) =

∫
d3k

(2π)3

∫
dω

2π
e−iωte+i#k·#xc̃('k, ω), (A292)

to find

c̃('k, ω) =
Dc̄

kBT

k2

−iω +Dk2
µ̃('k, ω). (A293)

Thus there is a 'k–dependent response function,

α̃('k, ω) =
Dc̄

kBT

k2

−iω +Dk2
(A294)

from which we can use the fluctuation dissipation theo-
rem to calculate the spatiotemporal power spectrum of
concentration fluctuations,

Sc('k, ω) =
2kBT

ω
Im

[
α̃('k, ω)

]
= 2c̄

Dk2

ω2 + (Dk2)2
.

(A295)
Notice that the factors of kBT cancel: the fluctua-
tions are proportional to the temperature, but the re-
sponse function—the susceptibility of the concentration
to changes in chemical potential—is inversely propor-
tional to the temperature.
How does the result in Eq (A295) relate to our intu-

ition about the
√
N rule? Let’s think about measuring

the average concentration in a small volume, which cor-
responds to the heuristic calculation by Berg and Purcell.
To do this we construct a variable

C(t) =

∫
d3xW ('x)c('x, t), (A296)

where the weighting function W ('x) is 1/V inside a vol-
ume V , and zero outside. Then the correlation function
of C is given by

〈C(t)C(t′)〉 =
∫

d3xW ('x)

∫
d3x′W ('x′)〈c('x, t)c('x′, t)〉 (A297)

=

∫
d3xW ('x)

∫
d3x′W ('x′)

∫
d3k

(2π)3
ei

#k·(#x−#x′)

∫
dω

2π
e−iω(t−t′)Sc('k, ω) (A298)

=

∫
dω

2π
e−iω(t−t′)

∫
d3k

(2π)3
|W̃ ('k)|2Sc('k, ω), (A299)

where as usual W̃ denotes the Fourier transform of W .
If we want to identify integration with a weight W as
equivalent to computing an average over the volume V ,
then we must have W̃ (0) = 1, and W̃ ('k) must decay
to zero for k 0 1/., where . is the characteristic linear
dimension of the region over which we are averaging.

Equation (A299) allows us to identify the power spec-
trum of fluctuations in C,

SC(ω) =

∫
d3k

(2π)3
|W̃ ('k)|2Sc('k, ω). (A300)

To make progress let’s assume that the region we are
averaging over is spherically symmetric, so that

SC(ω) =

∫
d3k

(2π)3
|W̃ ('k)|2Sc('k, ω)

= c̄

∫
d3k

(2π)3
|W̃ ('k)|2 2Dk2

ω2 + (Dk2)2
(A301)

= c̄
1

(2π)3

∫ ∞

0
dk 4πk2|W̃ (k)|2 2Dk2

ω2 + (Dk2)2
.

(A302)
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Now if we want the compute the variance in C, we have

〈(δC)2〉 ≡
∫

dω

2π
SC(ω) (A303)

= c̄
1

(2π)3

∫ ∞

0
dk 4πk2|W̃ (k)|2

∫
dω

2π

2Dk2

ω2 + (Dk2)2

(A304)

= c̄
1

2π2

∫ ∞

0
dk k2|W̃ (k)|2. (A305)

As an approximation, we can say that the effect of
|W̃ (k)|2 is to cut the k integral off at k ∼ 2π/., in which
case we have

〈(δC)2〉 = c̄
1

2π2

∫ ∞

0
dk k2|W̃ (k)|2

∼ c̄
1

2π2

∫ 2π/&

0
dk k2 (A306)

∼ c̄

.3
. (A307)

Since C̄ = c̄, we can also write this as

〈(δC)2〉
C̄2

∼ 1

c̄.3
, (A308)

and we recognize N = c̄.3 as the mean number of
molecules in the sampling volume. Thus, the rigorous
calculation from the fluctuation dissipation theorem gives
us back our intuition about the fractional variance in con-
centration being 1/N .
To get the rest of the Berg–Purcell result, let’s go back

to Eq (A302) and finish computing the power spectrum
of C, in the same approximations:

SC(ω) = 2c̄
1

(2π)3

∫ ∞

0
dk 4πk2|W̃ (k)|2 Dk2

ω2 + (Dk2)2

∼ c̄

π2

∫ 2π/&

0
dk

Dk4

ω2 + (Dk2)2
. (A309)

If . is small, then the characteristic time for diffusion
across the averaging volume, τ ∼ .2/D, is also small, and
hence any frequencies that are likely to be relevant for the
cell’s measurements of concentration are low compared
with the scales on which SC(ω) has structure. Thus we
can confine our attention to the low frequency limit,

SC(ω → 0) ∼ c̄

π2

∫ 2π/&

0
dk

Dk4

(Dk2)2
=

2c̄

πD.
. (A310)

So we see that the concentration, averaged over a sam-
pling volume of linear dimension . has white noise in
time. If we average over a time τavg, then we are sensi-
tive to a bandwidth 1/τavg, and we will see a variance

〈(δC)2〉τavg ∼ 2c̄

πD.τavg
. (A311)

Rewriting this as a fractional standard deviation, we have

δCrms

C̄
=

1

C̄

√
〈(δC)2〉τavg ∼

(
2

π

)1/2 1√
D.c̄τavg

,

(A312)
which is (except for the trivial factor

√
2/π) exactly the

Berg–Purcell result.

Problem 187: Concentration fluctuations in one dimen-
sion. Repeat the analysis we have just done, but in one dimension.
Before going through a detailed calculation, you should try to an-
ticipate the answer. We still expect (from the

√
N intuition) that

〈(δC)2〉 ∝ c̄, but since concentration has units of molecules per
length in 1D, the other factors must be different. Try, for example,

〈(δC)2〉 ∼
c̄

(Dτavg)n+m
. (A313)

How are n and m constrained by dimensional analysis? Can you
argue, qualitatively, for particular values of these exponents? Fi-
nally, do the real calculation and get the analog of Eq (A311) in
one dimension. Are you surprised by the role of + (that is, by the
value of m)? Can you explain why things come out this way?

Problem 188: Correlations seen by a moving observer.
Generalize the discussion above to the case where the volume in
which we measure the concentration is moving at speed v0 in some
direction. Provide a formula for the correlations across time in
the observed noise. Show, in particular, that there is a correlation
time τc ∼ D/v20 . How does this relate to the qualitative argument,
discussed above, that bacteria must integrate for a minimum time
∼ D/v20 if they are to “outrun” diffusion?

So the Berg–Purcell argument certainly gives the right
answer for the concentration fluctuations in a small vol-
ume. But biological systems don’t actually count the
molecules in a volume. Instead, the molecules bind to
specific sites, and it is this binding which is detected, e.g.
by activating an enzymatic reaction. The Berg–Purcell
formula suggests that there is a limit to the accuracy of
sensing or signaling that comes from the physics of dif-
fusion alone, independent of these details. To see how
this can happen, we need to analyze fluctuations in the
binding of molecules to receptor sites, coupled to their
diffusion. Let’s start just with the binding events.
Consider a binding site for signaling molecules, and let

the fractional occupancy of the site be n. If we do not
worry about the discreteness of this one site, or about the
fluctuations in concentration c of the signaling molecule,
we can write a kinetic equation

dn(t)

dt
= k+c[1− n(t)]− k−n(t). (A314)

This describes the kinetics whereby the system comes
to equilibrium, and the free energy F associated with
binding is determined by detailed balance,

k+c

k−
= exp

(
F

kBT

)
. (A315)



294

If we imagine that thermal fluctuations can lead to
small changes in the rate constants, we can linearize Eq.
(A314) to obtain

dδn

dt
= −(k+c+ k−)δn+ c(1− n̄)δk+ − n̄δk−. (A316)

But from Eq. (A315) we have

δk+
k+

− δk−
k−

=
δF

kBT
. (A317)

Applying this constraint to Eq. (A316) we find that the
individual rate constant fluctuations cancel and all that
remains is the fluctuation in the thermodynamic binding
energy δF :

dδn

dt
= −(k+c+ k−)δn+ k+c(1− n̄)

δF

kBT
. (A318)

Fourier transforming, we can solve Eq. (A318) to find
the frequency dependent susceptibility of the coordinate
n to its conjugate force F ,

α̃(ω) ≡ δñ(ω)

δF̃ (ω)
=

1

kBT

k+c(1− n̄)

−iω + (k+c+ k−)
. (A319)

Now we can compute the power spectrum of fluctuations
in the occupancy n using the fluctuation dissipation the-
orem,

Sn(ω) =
2kBT

ω
Im

[
δñ(ω)

δF̃ (ω)

]
(A320)

=
2k+c(1− n̄)

ω2 + (k+c+ k−)2
. (A321)

It is convenient to rewrite this as

Sn(ω) = 〈(δn)2〉 2τc
1 + (ωτc)2

, (A322)

where the total variance is

〈(δn)2〉 =
∫

dω

2π
Sn(ω) = kBT

δñ(ω)

δF̃ (ω)

∣∣∣∣∣
ω=0

(A323)

=
k+c(1− n̄)

k+c+ k−
(A324)

= n̄(1− n̄), (A325)

and the correlation time is given by

τc =
1

k+c+ k−
. (A326)

To make sense out of these results, remember what hap-
pens if we flip a coin that is biased to produce heads a
fraction f of the time. On each trial we count either
one or zero heads, so the mean count is f and the mean
square count is also f ; the variance is f(1 − f), exactly
as in Eq (A325): when we check the occupancy of the

receptor, the outcome is determined by the equivalent of
flipping a biased coin, where the bias is determined by
the Boltzmann distribution.
The Lorentzian form of the power spectrum in Eq

(A322) is equivalent to an exponential decay of corre-
lations,

〈δn(t)δn(t′)〉 =
∫

dω

2π
e−iω(t−t′)Sn(ω) (A327)

= 〈(δn)2〉
∫

dω

2π
e−iω(t−t′) 2τc

1 + (ωτc)2
(A328)

= 〈(δn)2〉e−|t−t′|/τc . (A329)

The exponential decay of correlations is what we expect
when the transitions between the available states have no
memory. To be precise about this, if we imagine that a
system is in one state at time t = 0, and there is some
constant probability per unit time k of transitions out of
this state (with, in the simplest case, no returns to the
initial state), then the probability p(t) of still being in
the initial state at time t must obey

dp(t)

dt
= −kp(t), (A330)

and hence p(t) = e−kt. This intuition about the connec-
tion of exponential decays to the lack of memory is very
general, and should remind you of the exponential distri-
bution of times between transitions in the calculation of
chemical reaction rates (Section II.A), and of the expo-
nential distribution of times between events in a Poission
process (see Appendix A.1). In the present context, the
exponential decay of correlations tell us that the sponta-
neous transitions between the occupied and unoccupied
states of the receptor occur with constant probability per
unit time, or as Markovian jumps. The jumping rates
are just the rates k+ and k−, which means that when
we write chemical kinetic models for a whole ensemble of
molecules, we also can interpret these as Markov models
for transitions among the states of individual molecules
in the ensemble.
It is interesting that we recover the results for Marko-

vian jumping between two states without making this
microscopic model explicit. All we assume is the macro-
scopic kinetics and that the system is in thermal equi-
librium so that we can apply the fluctuation dissipation
theorem. In principle many different microscopic mod-
els can describe the molecular phenomena that are at
the basis of some observed macroscopic behavior, and we
know that many aspects of behavior in thermal equilib-
rium are independent of these details. The statistics of
fluctuations in a chemical kinetic system are an example
of this, at least near equilibrium.
The good news, then, is that fluctuations in receptor

occupancy are an inevitable consequence of the macro-
scopic, average behavior of receptor–ligand interactions,
independent of hypothesis about molecular details. The
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bad news is that the form of the results doesn’t seem
very related to the ideas of Berg and Purcell about the
precision of concentration measurements. To make these
connections clear we need to couple the dynamics of re-
ceptor occupancy to the diffusion of the ligand.

When the concentration is allowed to fluctuate we
write

dn(t)

dt
= k+c('x0, t)[1− n(t)]− k−n(t), (A331)

where the receptor is located at 'x0, and

∂c('x, t)

∂t
= D∇2c('x, t)− δ('x− 'x0)

dn(t)

dt
. (A332)

The first equation is as before, but with notation to re-
mind us that the concentration c is dynamic. The sec-
ond equation states that the ligand diffuses with diffu-
sion constant D, and when the receptor located at 'x0

increases its occupancy it removes exactly one molecule
from solution at that point.

Problem 189: Coupling diffusion and binding. In this
problem you’ll fill the details needed for the analysis of Eq’s (A331)
and (A332).

(a.) Begin by noticing that Eq (A332) is linear, so you should
be able to solve it exactly. Use Fourier transforms, both in space
and time, and then transform back to give a formal expression for

c̃((x, ω) =

∫
dt e+iωtc((x, t). (A333)

(b.) Linearize Eq (A331), in the same way that we did in the
preceding derivation, leading from Eq (A314) to (A319). Along

the way you will need an expression for c̃((x0, ω), which you can
take from (a.). When the dust settles, you should find Eq’s (A334,
A335)

Following the same steps as above, we find the linear
response function

δñ(ω)

δF̃ (ω)
=

k+c(1− n̄)

kBT

1

−iω[1 + Σ(ω)] + (k+c̄+ k−)

(A334)

Σ(ω) = k+(1− n̄)

∫
d3k

(2π)3
1

−iω +Dk2
(A335)

The “self–energy” Σ(ω) is ultraviolet divergent, which
can be traced to the delta function in Eq (A332); we
have assumed that the receptor is infinitely small. A
more realistic treatment would give the receptor a finite
size, which is equivalent to cutting off the k integrals at
some (large) Λ ∼ π/a, with a the linear dimension of the
receptor. If we imagine mechanisms which read out the
receptor occupancy average over a time τ long compared
to the correlation time τc of the noise, then the relevant
quantity is the low frequency limit of the noise spectrum.
Hence,

Σ(ω / D/a2) ≈ Σ(0) =
k+(1− n̄)

2πDa
, (A336)

and

δñ(ω)

δF̃ (ω)
=

k+c̄(1− n̄)

kBT

[
−iω

(
1 +

k+(1− n̄)

2πDa

)
+ (k+c̄+ k−)

]−1

, (A337)

where c̄ is the mean concentration. Applying the
fluctuation–dissipation theorem once again we find the
spectral density of occupancy fluctuations,

Sn(ω) ≈ 2k+c̄(1− n̄)
1 + Σ(0)

ω2(1 + Σ(0))2 + (k+c̄+ k−)2
.

(A338)
The total variance in occupancy is unchanged, since this
is an equilibrium property of the system, while coupling
to concentration fluctuations serves only to change the
kinetics.

Problem 190: Reading off the results. You should be able
to verify the statements in the last sentence without detailed cal-

culation. Explain how to “read” Eq (A338) and identify the total
variance and correlation time.

Coupling to concentration fluctuations does serve to
renormalize the correlation time of the noise,

τc → τc[1 + Σ(0)]. (A339)

The new τc can be written as

τc =
1− n̄

k−
+

n̄(1− n̄)

2πDac̄
, (A340)
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so there is a lower bound on τc, independent of the kinetic
parameters k±,

τc >
n̄(1− n̄)

2πDac̄
. (A341)

As discussed previously, the relevant quantity is the
low frequency limit of the noise spectrum,

Sn(ω = 0) = 2k+c̄(1− n̄) · 1 + Σ(0)

(k+c̄+ k−)2
(A342)

=
2n̄(1− n̄)

k+c̄+ k−
+

[n̄(1− n̄)]2

πDac̄
. (A343)

If we average for a time τ , then the root-mean-square
error in our estimate of n will be

δnrms =

√
Sn(0) ·

1

τ
, (A344)

and we see that this noise level has a minimum value
independent of the kinetic parameters k±,

δnrms >
n̄(1− n̄)√
πDac̄τ

. (A345)

To relate these results back to the discussion by Berg
and Purcell, we note that the ω = 0 response of the mean
occupancy to changes in concentration can be written as

dn̄

d ln c
= n̄(1− n̄). (A346)

Thus, the fluctuations in n are equivalent to fluctuations
in c:

δceff
c̄

= (δ ln c)eff = δnrms

(
dn̄

d ln c

)−1

=
1√

πDac̄τ
.

(A347)
Except for the factor of

√
π, this is the Berg–Purcell re-

sult once again.
A startling feature of the Berg–Purcell argument is

that (it seems) it can be used both when a is the size of
a single receptor molecule and when a is the size of the
entire bacterium. Naively, we might expect that if there
areN receptors on the surface of the cell, then the signal–
to–noise ratio for concentration measurements should be
N times better, and correspondingly the threshold for
reliable detection should be

√
N times smaller,

δceff
c̄

∼ 1√
DNac̄τ

. (A348)

On the other hand, if we use the Berg–Purcell limit and
take the linear dimensions of the detector to be the radius
R of the bacterium, we should obtain

δceff
c̄

∼ 1√
DRc̄τ

. (A349)

What is going on? Does something special happen when
N ∼ R/a, so there is a crossover between the two results?

If we imagine a very large cell, and place N = 2 two re-
ceptors on opposite sides of the cell surface, it is hard to
imagine that there is anything wrong with the argument
leading to Eq (A348). More generally, if the receptors
are far apart, it is very plausible that they report inde-
pendent measurements of the concentration, and so Eq
(A348) should be correct. On the other hand, if we imag-
ine bringing two receptors closer and closer together, at
some point they will start to interact—a molecule re-
leased from one receptor can diffuse over and bind to the
other receptor—and this interaction might lead to corre-
lations in the noise, and a break down of the simple

√
N

improvement in the threshold for reliable detection.

FIG. 174 Correlated Brownian motion, from Meiners &
Quake (1999). At left, a schematic of the experiment. The
laser beams from the bottom of the figure create two op-
tical traps, which hold the microspheres in approximately
harmonic potential wells. The optics at the top allow for
measurements of the spheres’ positions with nanometer pre-
cision. At right, measurements of the auto– and cross–
correlations of the spheres’ positions; different curves for the
cross–correlation correspond to different mean separations of
the particles, which is expected to modulate the coupling be-
tween them through the fluid.

To understand how diffusive interactions lead to cor-
relations among receptors, it is useful to think about a
simpler problem. Suppose that we have two balls in a
fluid. If they are very far apart, each one experiences
a drag force and undergoes Brownian motion, and the
Brownian fluctuations in the position of each ball are in-
dependent of those in the other. If we bring the two balls
together, however, we know that they can influence each
other through the fluid: If one ball moves at velocity v1 it
not only experiences a drag force −γv1, it also applies a
“coupling” force γc(v1−v2) to the other ball (which may
be moving at velocity v2; clearly if v1 = v2 there should
be no coupling force). If the balls are close enough that
γc is significant, then in fact the Brownian motions of
the two balls become correlated. This correlation can be
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derived from the fluctuation–dissipation theorem, and it
also makes intuitive sense since a random Brownian step
of one object applies a force to the other. We can also
see this effect experimentally, as in Fig 174.

Problem 191: Correlated Brownian motion. To make the
situation in the previous paragraph precise, consider the case where
the particles are bound by springs (so they can’t diffuse away from
each other and reduce the coupling). Then, in the overdamped
case, the equations of motion are

γ
dx1

dt
= −κx1 − γc

(
dx1

dt
−

dx2

dt

)
+ F1(t) (A350)

γ
dx2

dt
= −κx2 − γc

(
dx2

dt
−

dx1

dt

)
+ F1(t) (A351)

where κ is the stiffness of the springs (assumed identical, for sim-
plicity), and Fi(t) is an external force applied to each particle i.

(a.) Derive the linear response function matrix, α̃ij(ω) such that

x̃i(ω) =
∑

j

α̃ij(ω)F̃j(ω). (A352)

(b.) The generalization of the fluctuation dissipation theorem
to many degrees of freedom states that the “cross–spectrum” of
variables i and j, defined by

〈xi(t)xj(t
′)〉 =

∫
dω

2π
e−iω(t−t′)Sij(ω), (A353)

is given by

Sij(ω) =
2kBT

ω
Im

[
α̃ij(ω)

]
. (A354)

Use this to derive the cross–spectrum of the position fluctuations
for the two particles.

(c.) Despite the viscous coupling, the potential energy is just the
sum of contributions from the two particles. From the Boltzmann
distribution, then, the positions should be independent variables.
Use your results in (b) to show that 〈xixj〉 = δijkBT/κ. Notice that
this corresponds to the instantaneous positions of the particles, as
we would measure by taking a snapshot (with a fast camera).

(d.) Suppose that instead of taking snapshots of the positions,
we average (as in the discussion above) for a long time, so what is
relevant is the low frequency limit of the power spectra. Show that
now the correlations are nonzero, and give an explicit formula for
the covariance matrix of fluctuations in the temporally averaged
positions.

If we imagine that positions of the Brownian particles
are like receptor occupancies, and an applied force on
all the particles is like a change in concentration of the
relevant ligand, then diffusion of the ligand serves the
same coupling effect as the viscosity of the fluid and will
generate correlations among the occupancy fluctuations
of nearby receptors. These correlations mean that using
the positions or velocities of N Brownian particles to
infer the applied force is not

√
N more accurate than

using one particle, and similarly using N receptors will
not generate a concentration measurement that is

√
N

times more accurate than is obtained with one receptor.

If we have N receptors, each of size a arrayed on a
structure of linear dimension R such as a ring or a sphere,
then as N becomes large the receptors are coming closer
and closer together, and we expect that correlations be-
come stronger. If we have two detectors making measure-
ments with noise that becomes more and more strongly
correlated, at some point they start to act like one big
detector. If we work through the details of the calcula-
tions for the case of multiple receptors,98 indeed we find
that as N become large, the correlations among the dif-
ferent receptors become limiting, and the threshold for
reliable detection approaches Eq (A349): the N → ∞
receptors packed into a structure with linear dimension
R acts like one receptor of size R. If we go back to the in-
tuitive Berg–Purcell argument about counting molecules
in a volume and getting a fresh count each time the vol-
ume clears from diffusion, what this means is that pack-
ing many receptor sites into a region of size R eventually
means that we get to count the molecules in a volume
∼ R3. There are geometrical factors for different spa-
tial arrangements of the receptors, but like the

√
π in Eq

(A347) these aren’t a big deal.

Almost all of PhD students in physics have seen some cases of the
fluctuation dissipation theorem, somewhere in their statistical me-
chanics courses. Whether you have seen the general formulation
depends a bit on who taught the course, and how far you went. As
usual, an excellent discussion can be found in Landau & Lifshitz
(1977). A later volume in the Landau and Lifshitz series (Lifshitz
& Pitaevskii 1980) provides a clear discussion of concentration fluc-
tuations, in Section 89. Many people find the idea of correlations
between Brownian particles to be surprising, so it’s worth look-
ing at real experiments that measure these correlations (Meiners &
Quake 1999). [should add refs to measurements on concentration
fluctuations—Feher and Weissman?]

Landau & Lifshitz 1977: Statistical Physics. LD Landau & EM
Lifshitz (Pergamon, Oxford, 1977).

Lifshitz & Pitaevskii 1980: Statistical Physics, Part 2. EM
Lifshitz & LP Pitaevskii (Pergamon, Oxford, 1980).

Meiners & Quake 1999: Direct measurement of hydrodynamic
cross correlations between two particles in an external poten-
tial. JC Meiners & SR Quake, Phys Rev Lett 82, 2211–2214
(1999).

The idea that fluctuations in certain chemical systems could be
described using the fluctuation dissipation theorem must have oc-
curred to many people, and I remember discussing it long ago
(Bialek 1987). The emergence of experiments on noise in the con-
trol of gene expression made it more interesting to get everything
straight, so my colleagues and I did this in a series of papers (Bialek
& Setayeshgar 2005, 2008; Tkačik & Bialek 2009).

Bialek 1987: Physical limits to sensation and perception. W
Bialek, Ann Rev Biophys Biophys Chem 16, 455–478 (1987).

98 See the references at the end of this section for details.
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Bialek & Setayeshgar 2005: Physical limits to biochemical sig-
naling. W Bialek & S Setayeshgar, Proc Nat’l Acad Sci
(USA) 102, 10040–10045 (2005).

Bialek & Setayeshgar 2008: Cooperativity, sensitivity and
noise in biochemical signaling. W Bialek & S Setayeshgar,
Phys Rev Lett 100, 258101 (2008).

Tkačik & Bialek 2009: Diffusion, dimensionality and noise in
transcriptional regulation. G Tkačik & W Bialek, Phys Rev
E 79, 051901 (2009).

7. Dimensionality reduction

I am leaving this unwritten for now, in the interests of
getting something readable out more quickly. I think it
is straightforward to write. To give a sense of what goes
here, I have started to compile the references. Evidently
papers by my colleagues and myself are over–represented;
of course a full account will look at a broader literature.

Problem 192: Analysis of a sensory neuron. [Get a big
data set from Rob on H1, and use it to take the students through
reverse correlation, spike triggered covariance and (maybe) maxi-
mally informative dimensions. Have repeats so one can compare
reduced models with the real information per spike.]

Problem 193: Analysis of DNA sequences. [Get data from
Justin and take the students through a small version of the problem
(maybe the RNAP site).]

d’Avella & Bizzi 1998: Low dimensionality of surpaspinally in-
duced force fields. A d’Avella & E Bizzi, Proc Nat’l Acad
Sci (USA) 95, 7711–7714 (1998).

Bialek & de Ruyter van Steveninck 2005: Features and di-
mensions: Motion estimation in fly vision. W Bialek & R
de Ruyter van Steveninck, arXiv:q–bio/0505003 (2005).

de Boer & Kuyper 1968: Triggered correlation. E de Boer &
P Kuyper, IEEE Trans Biomed Eng 15, 169–179 (1968).

Chigirev & Bialek 2004: Optimal manifold representation of
data: An information theoretic perspective. DV Chigirev
& W Bialek, in Advances in Neural Information Processing
16, S Thrun, L Saul & B Schölkopf, eds, pp 161–168 (MIT
Press, Cambridge, 2004).

Fairhall et al 2006: Selectivity for multiple stimulus features in
retinal ganglion cells. AL Fairhall, CA Burlingame, R
Narasimhan, RA Harris, JL Puchalla & MJ Berry II, J Neu-
rophysiol 96, 2724–2738 (2006).

Kinney et al 2007: Precise physical models of protein–DNA in-
teraction from high-throughput data. JB Kinney, G Tkačik
& CG Callan Jr, Proc Natl Acad Sci (USA) 104, 501–506
(2007).

Kinney et al 2010: Using deep sequencing to characterize the
biophysical mechanism of a transcriptional regulatory se-
quence. JB Kinney, A Murugan, CG Callan Jr & EC Cox,
Proc Nat’l Acad Sci (USA) 107, 9158–9163 (2010).

Osborne et al 2005: A sensory source for motor variation. LC
Osborne, SG Lisberger & W Bialek, Nature 437, 412–416
(2005).

Rust et al 2005: Spatiotemporal elements of macaque V1 recep-
tive fields. NC Rust , O Schwartz, JA Movshon & EP Si-
moncelli, Neuron 46, 945–956 (2005).

de Ruyter van Steveninck & Bialek 1988: Real–time perfor-
mance of a movement sensitive neuron in the blowfly visual
system: Coding and information transfer in short spike se-
quences. R de Ruyter van Steveninck & W Bialek, Proc R.
Soc London Ser. B 234, 379–414 (1988).

Sanger 2000: Human arm movements described by a low–
dimensional superposition of principal components. TD
Sanger, J Neurosci 20, 1066–1072 (2000).

Sharpee et al 2004: Analyzing neural responses to natural sig-
nals: Maximally informative dimensions. T Sharpee, NC
Rust & W Bialek, Neural Comp 16, 223–250 (2004);
arXiv:physics/0212110 (2002).

Stephens et al 2008: Dimensionality and dynamics in the be-
havior of C. elegans. GJ Stephens, B Johnson–Kerner, W
Bialek & WS Ryu, PLoS Comp Bio 4, e1000028 (2008);
arXiv:0705.1548 [q–bio.OT] (2007).

Stephens et al 2011: Searching for simplicity in the analysis
of neurons and behavior. GJ Stephens, LC Osborne &
W Bialek, Proc Nat’l Acad Sci (USA) in press (2011);
arXiv.org:1012.3896 [q–bio.NC] (2010).

8. Maximum entropy

This section is a bit old. It needs to be revised in light
of what happens in Sections III.A and III.D. Be sure that
we go into RESULTS on these methods, as promised for
neurons, at least.
The problem of finding the maximum entropy given

some constraint again is familiar from statistical mechan-
ics: the Boltzmann distribution is the distribution that
has the largest possible entropy given the mean energy.
More generally, imagine that we have knowledge not of
the whole probability distribution P (D) but only of some
expectation values,

〈fi〉 =
∑

D

P (D)fi(D), (A355)

where we allow that there may be several expectation val-
ues known (i = 1, 2, ...,K). Actually there is one more
expectation value that we always know, and this is that
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the average value of one is one; the distribution is nor-
malized:

〈f0〉 =
∑

D

P (D) = 1. (A356)

Given the set of numbers {〈f0〉, 〈f1〉, · · · , 〈fK〉} as con-
straints on the probability distribution P (D), we would
like to know the largest possible value for the entropy,

and we would like to find explicitly the distribution that
provides this maximum.
The problem of maximizing a quantity subject to con-

straints is formulated using Lagrange multipliers. In this
case, we want to maximize S = −

∑
P (D) log2 P (D), so

we introduce a function S̃, with one Lagrange multiplier
λ̃i for each constraint:

S̃[P (D)] = −
∑

D

P (D) log2 P (D)−
K∑

i=0

λ̃i〈fi〉 (A357)

= − 1

ln 2

∑

D

P (D) lnP (D)−
K∑

i=0

λi

∑

D

P (D)fi(D). (A358)

Our problem, then, is to find the maximum of the function S̃, but this is easy because the probability for each value
of D appears independently. As usual, we differentiate and set the result to zero:

0 =
∂S̃

∂P (D)
= − 1

ln 2
[lnP (D) + 1]−

K∑

i=0

λ̃ifi(D). (A359)

Rearranging, we have

lnP (D) = −1−
K∑

i=0

(ln 2)λ̃ifi(D) (A360)

P (D) =
1

Z
exp

[
−

K∑

i=1

λifi(D)

]
, (A361)

where λi = (ln 2)λ̃i, and Z = exp(1 + λ0) is a normal-
ization constant. Notice that this gives us the form of
the maximum entropy distribution, but we still have to
adjust the constants {λi} so that the distribution P (D)
predicts the measured values of the expectation values in
Eq (A355).

There are several things worth saying about maximum
entropy distributions. First, we recall that if the value
of D indexes the states n of a physical system, and we
know only the expectation value of the energy,

〈E〉 =
∑

n

PnEn, (A362)

then the maximum entropy distribution is

Pn =
1

Z
exp(−λEn), (A363)

which is the Boltzmann distribution (as promised).
In this case the Lagrange multiplier λ has physical
meaning—it is the inverse temperature. Further, the
function S̃ that we introduced for convenience is the dif-
ference between the entropy and λ times the energy; if

we divide through by λ and flip the sign, then we have
the energy minus the temperature times the entropy, or
the free energy. Thus the distribution which maximizes
entropy at fixed average energy is also the distribution
which minimizes the free energy.
If we are looking at a magnetic system, for example,

and we know not just the average energy but also the
average magnetization, then a new term appears in the
exponential of the probability distribution, and we can
interpret this term as the magnetic field multiplied by
the magnetization. More generally, for every order pa-
rameter which we assume is known, the probability dis-
tribution acquires a term that adds to the energy and
can be thought of as a product of the order parameter
with its conjugate force. Again, all these remarks should
be familiar from a statistical mechanics course.
Consider the situation in which the data D are real

numbers x. Suppose that we know the mean value of x
and its variance. This is equivalent to knowledge of two
expectation values,

f̄1 = 〈x〉 =
∫

dxP (x)x, and (A364)

f̄2 = 〈x2〉 =
∫

dxP (x)x2, (A365)

so we have f1(x) = x and f2(x) = x2. Thus, from Eq.
(A361), the maximum entropy distribution is of the form

P (x) =
1

Z
exp(−λ1x− λ2x

2). (A366)
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This is a funny way of writing a more familiar ob-
ject. If we identify the parameters λ2 = 1/(2σ2) and
λ1 = −〈x〉/σ2, then we can rewrite the maximum en-
tropy distribution as the usual Gaussian,

P (x) =
1√
2πσ2

exp

[
− 1

2σ2
(x− 〈x〉)2

]
. (A367)

We recall that Gaussian distributions usually arise
through the central limit theorem: if the random vari-
ables of interest can be thought of as sums of many inde-
pendent events, then the distributions of the observable
variables converge to Gaussians. This provides us with a
‘mechanistic’ or reductionist view of why Gaussians are
so important. A very different view comes from infor-
mation theory: if all we know about a variable is the
mean and the variance, then the Gaussian distribution is
the maximum entropy distribution consistent with this
knowledge. Since the entropy measures (returning to our
physical intuition) the randomness or disorder of the sys-
tem, the Gaussian distribution describes the ‘most ran-
dom’ or ‘least structured’ distribution that can generate
the known mean and variance.

Problem 194: Less than maximum entropy. Many nat-
ural signals are strongly nonGaussian. In particular exponential
(or nearly exponential) distribution are common in studies on the
statistics of natural images and natural sounds. With the same
mean (which you can call zero) and variance, what is the differ-
ence in entropy between the exponential [P (x) ∝ exp(−λ|x|)] and
Gaussian distributions? If we imagine that this difference is rele-
vant to every pixel (or to every Fourier component) in an image, is
this significant compared to the 8 bits/pixel of a standard digital
image? What if P (x) ∝ exp(−λ|x|µ), with µ < 1?

[maybe we should put the start of networks here?]

[maybe this should be connections, more generally (in-
cluding what we have to say about counting), and that
would leave a section to address the experimental situa-
tion more specifically?]
Probability distributions that have the maximum en-

tropy form of Eq. (A361) are special not only because
of their connection to statistical mechanics, but because
they form what the statisticians call an ‘exponential fam-
ily,’ which seems like an obvious name. The important
point is that exponential families of distributions are
(almost) unique in having sufficient statistics. To un-
derstand what this means, consider the following prob-
lem: we observe a set of samples D1, D2, · · · , DN , each
of which is drawn independently and at random from a
distribution P (D|{λi}). Assume that we know the form
of this distribution but not the values of the parameters
{λi}. How can we estimate these parameters from the
set of observations {Dn}? Notice that our data set {Dn}
consists of N numbers, and N can be very large; on the
other hand there typically are a small number K / N
of parameters λi that we want to estimate. Even in this
limit, no finite amount of data will tell us the exact val-
ues of the parameters, and so we need a probabilistic
formulation: we want to compute the distribution of pa-
rameters given the data, P ({λi}|{Dn}). We do this using
Bayes’ rule,

P ({λi}|{Dn}) =
1

P ({Dn})
· P ({Dn}|{λi})P ({λi}),

(A368)
where P ({λi}) is the distribution from which the param-
eter values themselves are drawn. Then since each datum
Dn is drawn independently, we have

P ({Dn}|{λi}) =
N∏

n=1

P (Dn|{λi}). (A369)

For probability distributions of the maximum entropy
form we can proceed further, using Eq. (A361):

P ({λi}|{Dn}) =
1

P ({Dn})
· P ({Dn}|{λi})P ({λi})

=
P ({λi})
P ({Dn})

N∏

n=1

P (Dn|{λi}) (A370)

=
P ({λi})

ZNP ({Dn})

N∏

n=1

exp

[
−

K∑

i=1

λifi(Dn)

]
(A371)

=
P ({λi})

ZNP ({Dn})
exp

[
−N

K∑

i=1

λi
1

N

N∑

n=1

fi(Dn)

]
. (A372)

We see that all of the information that the data points {Dn} can give about the parameters λi is contained in
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the average values of the functions fi over the data set,
or the ‘empirical means’ f̄i,

f̄i =
1

N

N∑

n=1

fi(Dn). (A373)

More precisely, the distribution of possible parameter val-
ues consistent with the data depends not on all details of
the data, but rather only on the empirical means {f̄i},

P ({λi}|D1, D2, · · · , DN ) = P ({λi}|{f̄j}), (A374)

and a consequence of this is the information theoretic
statement

I(D1, D2, · · · , DN → {λi}) = I({f̄j} →{ λi}). (A375)

This situation is described by saying that the reduced set
of variables {f̄j} constitute sufficient statistics for learn-
ing the distribution. Thus, for distributions of this form,
the problem of compressing N data points into K << N
variables that are relevant for parameter estimation can
be solved explicitly: if we keep track of the running aver-
ages f̄i we can compress our data as we go along, and we
are guaranteed that we will never need to go back and
examine the data in more detail. A clear example is that
if we know data are drawn from a Gaussian distribution,
running estimates of the mean and variance contain all
the information available about the underlying parame-
ter values.

The Gaussian example makes it seem that the con-
cept of sufficient statistics is trivial: of course if we know
that data are chosen from a Gaussian distribution, then
to identify the distribution all we need to do is to keep
track of two moments. Far from trivial, this situation is
quite unusual. Most of the distributions that we might
write down do not have this property—even if they are
described by a finite number of parameters, we cannot
guarantee that a comparably small set of empirical ex-
pectation values captures all the information about the
parameter values. If we insist further that the sufficient
statistics be additive and permutation symmetric, then it
is a theorem that only exponential families have sufficient
statistics.

[say more about this!]
[where do we put connection of matching expectation

values to maximum likelihood?]
The generic problem of information processing, by the

brain or by a machine, is that we are faced with a huge
quantity of data and must extract those pieces that are
of interest to us. The idea of sufficient statistics is in-
triguing in part because it provides an example where
this problem of ‘extracting interesting information’ can
be solved completely: if the points D1, D2, · · · , DN are
chosen independently and at random from some distribu-
tion, the only thing which could possibly be ‘interesting’
is the structure of the distribution itself (everything else

is random, by construction), this structure is described
by a finite number of parameters, and there is an explicit
algorithm for compressing theN data points {Dn} intoK
numbers that preserve all of the interesting information.
The crucial point is that this procedure cannot exist in
general, but only for certain classes of probability distri-
butions. This is an introduction to the idea some kinds
of structure in data are learnable from random examples,
while other structures are not.
Consider the (Boltzmann) probability distribution for

the states of a system in thermal equilibrium. If we ex-
pand the Hamiltonian as a sum of terms (operators) then
the family of possible probability distributions is an ex-
ponential family in which the coupling constants for each
operator are the parameters analogous to the λi above.
In principle there could be an infinite number of these
operators, but for a given class of systems we usually
find that only a finite set are “relevant” in the renormal-
ization group sense: if we write an effective Hamiltonian
for coarse grained degrees of freedom, then only a finite
number of terms will survive the coarse graining proce-
dure. If we have only a finite number of terms in the
Hamiltonian, then the family of Boltzmann distributions
has sufficient statistics, which are just the expectation
values of the relevant operators. This means that the
expectation values of the relevant operators carry all the
information that the (coarse grained) configuration of the
system can provide about the coupling constants, which
in turn is information about the identity or microscopic
structure of the system. Thus the statement that there
are only a finite number of relevant operators is also the
statement that a finite number of expectation values car-
ries all the information about the microscopic dynamics.
The ‘if’ part of this statement is obvious: if there are
only a finite number of relevant operators, then the ex-
pectation values of these operators carry all the informa-
tion about the identity of the system. The statisticians,
through the theorem about the uniqueness of exponen-
tial families, give us the ‘only if’: a finite number of
expectation values (or correlation functions) can provide
all the information about the system only if the effective
Hamiltonian has a finite number of relevant operators. I
suspect that there is more to say along these lines.
An important example of the maximum entropy idea

arises when the data D are generated by counting. Then
the relevant variable is an integer n = 0, 1, 2, · · · , and
it is natural to imagine that what we know is the mean
count 〈n〉. One way this problem can arise is that we
are trying to communicate and are restricted to sending
discrete or quantized units. An obvious case is in opti-
cal communication, where the quanta are photons. In
the brain, quantization abounds: most neurons do not
generate continuous analog voltages but rather commu-
nicate with one another through stereotyped pulses or
spikes, and even if the voltages vary continuously trans-
mission across a synapse involves the release of a chem-
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ical transmitter which is packaged into discrete vesicles.
It can be relatively easy to measure the mean rate at
which discrete events are counted, and we might want to
know what bounds this mean rate places on the ability
of the cells to convey information. Alternatively, there is
an energetic cost associated with these discrete events—
generating the electrical currents that underlie the spike,
constructing and filling the vesicles, ... —and we might
want to characterize the mechanisms by their cost per
bit rather than their cost per event [Laughlin et al 1998,
Sarpeshkar 1998].

If we know the mean count, there is (as for the Boltz-
mann distribution) only one function f1(n) = n that can
appear in the exponential of the distribution, so that

P (n) =
1

Z
exp(−λn). (A376)

Of course we have to choose the Lagrange multiplier to fix
the mean count, and it turns out that λ = ln(1 + 1/〈n〉)
[do the calculation of λ!]; further we can find the entropy

Smax(counting) = log2(1 + 〈n〉) + 〈n〉 log2(1 + 1/〈n〉).
(A377)

The information conveyed by counting something can
never exceed the entropy of the distribution of counts,
and if we know the mean count then the entropy can
never exceed the bound in Eq. (A377). Thus, if we have a
system in which information is conveyed by counting dis-
crete events, the simple fact that we count only a limited
number of events (on average) sets a bound on how much
information can be transmitted. We will see that real
neurons and synapses approach this fundamental limit.

One might suppose that if information is coded in the
counting of discrete events, then each event carries a cer-
tain amount of information. In fact this is not quite right.

In particular, if we count a large number of events then
the maximum counting entropy becomes

Smax(counting; 〈n〉 → ∞) ∼ log2(〈n〉e), (A378)

and so we are guaranteed that the entropy (and hence
the information) per event goes to zero, although the
approach is slow. On the other hand, if events are very
rare, so that the mean count is much less than one, we
find the maximum entropy per event

1

〈n〉Smax(counting; 〈n〉 << 1) ∼ log2

(
e

〈n〉

)
, (A379)

which is arbitrarily large for small mean count. This
makes sense: rare events have an arbitrarily large ca-
pacity to surprise us and hence to convey information.
It is important to note, though, that the maximum en-
tropy per event is a monotonically decreasing function of
the mean count. Thus if we are counting spikes from a
neuron, counting in larger windows (hence larger mean
counts) is always less efficient in terms of bits per spike.
If it is more efficient to count in small time windows,

perhaps we should think not about counting but about
measuring the arrival times of the discrete events. If we
look at a total (large) time interval 0 < t < T , then we
will observe arrival times t1, t2, · · · , tN in this interval;
note that the number of events N is also a random vari-
able. We want to find the distribution P (t1, t2, · · · , tN )
that maximizes the entropy while holding fixed the aver-
age event rate. We can write the entropy of the distribu-
tion as a sum of two terms, one from the entropy of the
arrival times given the count and one from the entropy
of the counting distribution:

S = −
∞∑

N=0

∫
dN tnP (t1, t2, · · · , tN ) log2 P (t1, t2, · · · , tN ) (A380)

=
∞∑

N=0

P (N)Stime(N)−
∞∑

N=0

P (N) log2 P (N), (A381)

where we have made use of

P (t1, t2, · · · , tN ) = P (t1, t2, · · · , tN |N)P (N), (A382)

and the (conditional) entropy of the arrival times in given by

Stime(N) = −
∫

dN tnP (t1, t2, · · · , tN |N) log2 P (t1, t2, · · · , tN |N). (A383)

If all we fix is the mean count, 〈N〉 =
∑

N P (N)N ,
then the conditional distributions for the locations

of the events given the total number of events,
P (t1, t2, · · · , tN |N), are unconstrained. We can maxi-



303

mize the contribution of each of these terms to the en-
tropy [the terms in the first sum of Eq. (A381)] by mak-
ing the distributions P (t1, t2, · · · , tN |N) uniform, but it
is important to be careful about normalization. When
we integrate over all the times t1, t2, · · · , tN , we are for-
getting that the events are all identical, and hence that
permutations of the times describe the same events. Thus
the normalization condition is not

∫ T

0
dt1

∫ T

0
dt2 · · ·

∫ T

0
dtNP (t1, t2, · · · , tN |N) = 1,

(A384)
but rather

1

N !

∫ T

0
dt1

∫ T

0
dt2 · · ·

∫ T

0
dtNP (t1, t2, · · · , tN |N) = 1.

(A385)
This means that the uniform distribution must be

P (t1, t2, · · · , tN |N) =
N !

TN
, (A386)

and hence that the entropy [substituting into Eq. (A381)]
becomes

S = −
∞∑

N=0

P (N)

[
log2

(
N !

TN

)
+ log2 P (N)

]
. (A387)

Now to find the maximum entropy we proceed as before.
We introduce Lagrange multipliers to constrain the mean
count and the normalization of the distribution P (N),
which leads to the function

S̃ = −
∞∑

N=0

P (N)

[
log2

(
N !

TN

)
+ log2 P (N) + λ0 + λ1N

]
,

(A388)
and then we maximize this function by varying P (N).
As before the different Ns are not coupled, so the opti-
mization conditions are simple:

0 =
∂S̃

∂P (N)
(A389)

= − 1

ln 2

[
ln

(
N !

TN

)
+ lnP (N) + 1

]
− λ0 − λ1N,

(A390)

lnP (N) = − ln

(
N !

TN

)
− (λ1 ln 2)N − (1 + λ0 ln 2).(A391)

Combining terms and simplifying, we have

P (N) =
1

Z

(λT )N

N !
, (A392)

Z =
∞∑

N=0

(λT )N

N !
= exp(λT ). (A393)

This is the Poisson distribution.
The Poisson distribution usually is derived (as in our

discussion of photon counting) by assuming that the

probability of occurrence of an event in any small time
bin of size ∆τ is independent of events in any other bin,
and then we let ∆τ → 0 to obtain a distribution in the
continuum. This is not surprising: we have found that
the maximum entropy distribution of events given the
mean number of events (or their density 〈N〉/T ) is given
by the Poisson distribution, which corresponds to the
events being thrown down at random with some proba-
bility per unit time (again, 〈N〉/T ) and no interactions
among the events. This describes an ‘ideal gas’ of events
along a line (time). More generally, the ideal gas is the
gas with maximum entropy given its density; interactions
among the gas molecules always reduce the entropy if we
hold the density fixed.
If we have multiple variables, x1, x2, · · · , xN , then we

can go through all of the same analyses as before. In
particular, if these are continuous variables and we are
told the means and covariances among the variables, then
the maximum entropy distribution is again a Gaussian
distribution, this time the appropriate multidimensional
Gaussian. This example, like the other examples so far,
is simple in that we can give not only the form of the
distribution but we can find the values of the parameters
that will satisfy the constraints. In general this is not
so easy: think of the Boltzmann distribution, where we
would have to adjust the temperature to obtain a given
value of the average energy, but if we can give an explicit
relation between the temperature and average energy for
any system then we have solved almost all of statistical
mechanics!
[obviously this needs to be much better!] One impor-

tant example is provided by binary strings. If we label
1s by spin up and 0s by spin down, the binary string is
equivalent to an Ising chain {σi}. Fixing the probability
of a 1 is the same as fixing the mean magnetization 〈σi〉.
If, in addition, we specify the joint probability of two 1s
occurring in bins separated by n steps (for all n), this
is equivalent to fixing the spin–spin correlation function
〈σiσj〉. For simplicity, consider the case where the system
is translation invariant, so the average magnetization is
the same at all sites and the correlation function 〈σiσj〉
depends only on i−j. The maximum entropy distribution
consistent with these constraints is an Ising model,

P [{σi}] =
1

Z
exp



−h
∑

i

σi −
∑

ij

J(i− j)σiσj



 ;

(A394)
note that the interactions are pairwise (because we fix
only a two–point function) but not limited to near neigh-
bors. Obviously the problem of finding the exchange in-
teractions which match the correlation function is not so
simple.
Another interesting feature of the Ising or binary string

problem concerns higher order correlation functions. If
we have continuous variables and constrain the two–point
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correlation functions, then the maximum entropy distri-
bution is Gaussian and there are no nontrivial higher
order correlations. But if the signals we observe are dis-
crete, as in the sequence of spikes from a neuron, then the
maximum entropy distribution is an Ising model and this
model makes nontrivial predictions about the multipoint
correlations. In particular, if we record the spike trains
from K separate neurons and measure all of the pairwise
correlation functions, then the corresponding Ising model
predicts that there will be irreducible correlations among
triplets of neurons, and higher order correlations as well
[Schneidman et al 2006].

[Where did this come from?] Before closing the dis-
cussion of maximum entropy distributions, note that our
simple solution to the problem, Eq. (A361), might not
work. Taking derivatives and setting them to zero works
only if the solution to our problem is in the interior of the
domain allowed by the constraints. It is also possible that
the solution lies at the boundary of this allowed region.
This seems especially likely when we combine different
kinds of constraints, such as trying to find the maximum
entropy distribution of images consistent both with the
two–point correlation function and with the histogram of
intensity values at one point. The relevant distribution
is a 2D field theory with a (generally nonlocal) quadratic
‘kinetic energy’ and some arbitrary local potential; it is
not clear that all combinations of correlations and his-
tograms can be realized, nor that the resulting field the-
ory will be stable under renormalization; the empirical
histograms of local quantities in natural images are sta-
ble under renormalization [Ruderman and Bialek 1994].
There are many open questions here.

[why?]

9. Measuring information transmission

When we study classical mechanics, we can make a di-
rect connection between the positions and momenta that
appear in the equations of motion and the positions and
momenta of the particles that we “see,” as in the plan-
etary orbits. This connection is a little bit subtle, since
we don’t actually measure particle positions; more likely
we count the photons arriving at some detector, forming
an image, or we measure the delay in propagation of a
pulse used in radar, or ... . But one can think of classical
mechanics, in contrast to quantum mechanics, as being
the domain of physics in which these subtleties are not
important. When we move to statistical physics the con-
nection between what we write in equations and what
we observe in the world becomes more abstract. The
fundamental objects in statistical physics are probability
distributions, and as a matter of definition one cannot
measure a distribution. Instead, Nature (or even a con-
trolled experiment) provides us with samples taken out of
these distributions. This has very serious consequences

for any attempt to “measure” information flow.
In thermodynamics, entropy changes are connected to

heat flow, and so we can at least measure the difference
in entropy between two states by tracking these heat
flows. Indeed, there is a long tradition of integrating
these changes from some convenient reference to “mea-
sure” the entropy of states at intermediate temperatures.
As far as I know, there is no analog of this in the informa-
tion theoretic context. Thus, although Shannon tells us
that the entropy is a fundamental property of the distri-
bution out which signals are drawn, there is no universal
entropy meter.
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FIG. 175 The sampling problem in entropy estimation. At
left, the frequency of occurrence found from five examples
of N = 100 samples drawn out of K = 10 bins; the true
probability distribution is flat, pi = 0.1 for all i. At right,
we estimate the entropy of the distribution by identifying the
observed frequencies with probabilities. The distribution of
entropies obtained in this way, from many “experiments” with
N = 100 and K = 10, is shown as a solid line, and should be
compared with the true entropy, shown by a dashed line at
Strue = log2(10).

To get a feeling for the problem, consider Fig 175. Here
we have a variable that can take on ten possible values
(i = 1, 2, · · · , 10), all equally likely (pi = 0.1 for all i), and
we draw N = 100 samples. If we look at the frequency
with which each possibility occurs, of course we don’t see
an exactly flat distribution. Since with 10 bins and 100
samples we expect 10 samples per bin, it’s not surprising
that the fluctuations are on the scale of 1/

√
10 ∼ 30%.

These fluctuations, however, are random—they average
to zero if we do the same experiment many times. The
problem is that if we identify the frequencies of occur-
rence as our best estimates of the underlying probabili-
ties, and use these estimates to compute the entropy, we
make a systematic error, as is clear from the results in
the right panel of Fig 175.
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Problem 195: Experiment with sampling. Generate the
analog of Fig 175 but with different values for the number of pos-
sible values K, where i = 1, 2, · · · ,K. You should also try different
probability distributions (e.g., pi ∝ 1/i, Zipf’s law). Experiment.
Convince yourself that, by identifying probabilities with the ob-
served frequencies of occurrence, you always underestimate the en-
tropy.

The problem illustrated in Fig 175 might seem very
specific to the conditions of that simulation (e.g., that the
true distribution is flat, and hence the entropy is maxi-
mal, so perhaps all errors have to be biased downward?),
but in fact is very general. Let’s consider drawing sam-
ples out of a discrete set of possibilities, i = 1, 2, · · · ,K,
with probabilities p ≡ {p1, p2, · · · , pK}. If we draw N
samples all together, we will find ni examples of the out-
come i, and of course on average 〈ni〉 = Npi. Since we’re

counting random events, we expect that the variance of
the number of events of type i will be equal to the mean,
〈(δni)2〉 = 〈ni〉 = Npi. If we define the frequency of
events in the usual way as fi = ni/N , then we have

〈fi〉 = pi and 〈(δfi)2〉 =
pi
N

. (A395)

But if we identify frequencies as our best estimate of
probabilities (and we’ll see below in what sense this fa-
miliar identification is correct), we can construct a ‘naive’
estimate of the entropy,

Snaive = −
K∑

i=1

fi log2 fi. (A396)

Since the frequencies are close to the true probabilities
when the number of samples is large, we can do a Taylor
expansion around the point fi = 〈fi〉 = pi:

Snaive = −
K∑

i=1

fi log2 fi

= −
K∑

i=1

(pi + δfi) log2(pi + δfi) (A397)

= −
K∑

i=1

pi log2 pi −
K∑

i=1

[
log2 pi +

1

ln 2

]
δfi −

1

2

K∑

i=1

[
1

(ln 2)pi

]
(δfi)

2 + · · · . (A398)

The first term in the series is the true entropy. The sec-
ond term is a random error which averages to zero. The
third term, however, has a nonzero mean, since it de-
pends on the square of the fluctuations δfi. Thus when
we compute the average of our naive entropy estimate we
find

〈Snaive〉 = Strue −
1

2 ln 2

K∑

i=1

〈(δfi)2〉
pi

+ · · · (A399)

= Strue −
1

2 ln 2

K∑

i=1

pi
Npi

+ · · · (A400)

= Strue −
K

2 ln 2N
+ · · · . (A401)

Thus, no matter what the underlying true distribution,
identifying frequencies with probabilities leads to a sys-
tematic (not random!) underestimate of the entropy, and
the size of this systematic error is proportional to the
number of accessible states (K) and inversely propor-
tional to the number of samples (N).

The fact that the systematic errors have a very definite
structure suggests that we should be able to correct them.
Let us see what happens to our entropy estimates in the

“experiment” of Fig 175 as we change the number of
samples N . More precisely, suppose we have only the
N = 100 samples, but we choose n < 100 points out
of these samples, and estimate the entropy based only
on this more limited data. Equation (A401) suggests
that if we plot our entropy estimate vs. 1/n, we should
see a straight line; a higher order version of the same
calculation shows that there are quadratic corrections.
Indeed, as shown in Fig 176, this works. It is important
to note that, for all the accessible range of sample sizes,
the entropy estimate is smaller than the true entropy, and
this error is larger than our best estimate of the error
bar; this really is dangerous. On the other hand, once
we recognize the systematic dependence of the entropy
estimate on the number of samples, we can extrapolate
to recover an estimate that is correct within error bars.
What we have seen here about entropy is also true about
information, which is a difference between entropies.
It is also important to show that this extrapolation

procedure works also for real data, not just for the ide-
alized case where we choose samples independently out
of a known distribution. Decide what examples to use.
One from neurons, one from genes, one from sequences?
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FIG. 176 Entropy vs. number of samples. Starting with
N = 100 samples, as in Fig 175, we draw smaller numbers of
samples at random, compute the entropy, and search for the
systematic behavior predicted in Eq (A401). Green points
are from different subsamplings, blue circles show means and
standard deviations. Red line is a linear fit for n > N/2, and
red dashed line is a quadratic fit to all of the data shown.
Red square is the extrapolation, with an error bar

√
2 smaller

than the standard deviation found empirically at n = N/2,
and the dashed black line is Strue = log2(10).

So far one figure from neurons, Fig 177.
One might worry that entropy estimates based on ex-

trapolations are a bit heuristic. If we can really convince
ourselves that we see a clean linear dependence on 1/N ,
things are likely to be fine, but this leaves room for con-
siderable murkiness. Also, since the expansion of the
entropy estimate in powers of 1/N obviously is not fully
convergent, there is always the problem of choosing the
regime over which the asymptotic behavior is observed,
a widespread problem in fitting to such asymptotic se-
ries. While for many purposes these problems can be
dismissed, it would be nice to do better. It also is an
interesting mathematical challenge to ask if we can esti-
mate the entropy of a probability distribution even when
the number of samples we have seen is small, perhaps
even smaller than the number of possible states for the
system.

Whenever we do a Monte Carlo simulation of a physical
system in thermal equilibrium, we are in the “undersam-
pled” limit, where the number of samples we collect must
be much smaller than the number of possible states. Usu-
ally if we want to estimate entropy from Monte Carlo, we
use the identity which relates entropy to an integral of
the heat capacity, since heat capacity is related to en-

ergy fluctuations and these are easy to compute at each
temperature. Of course, if you just have samples of the
state of the system, and don’t actually know the Hamil-
tonian, you can’t compute the energy and so this doesn’t
work. Ma suggested another approach, asking how often
the system revisits the same state. In the simple case
(relevant for the microcanonical ensemble) where all K
possible states are equally likely, the probability that two
independent samples are in the same state is 1/K. But
if we have N samples, we have ∼ N2 pairs that we can
test. Thus we can get a good estimate of the probability
of occupying the same state once we observe N ∼

√
K

independent samples, far less than the number of states.
As an illustration, Fig 178 shows the frequency of coinci-
dences when we draw N samples from a uniform distri-
bution with K = 100 states.
We recall the classic problem of how many people need

to be in the room before there is a good chance of two
people have the same birthday. The answer is not 365,
but more nearly

√
365. Put another way, if we didn’t

know the length of the year, we could estimate this by
polling people about their birthdays, and keeping track
of coincidences. Long before we have sampled all pos-
sible birthdays, Fig 178 shows us that our estimate of
this coincidence probability will stabilize—which birth-
days are represented will vary from sample to sample,
but the fraction of coincidences will vary much less.
In these simple examples, the probability distribution

is uniform, and so the entropy is just the log of the num-
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FIG. 1. (a) Raw voltage records from a tungsten microelec-
trode near the cell H1 are filtered to isolate the action potentials.
The expanded scale shows a superposition of several spikes to
illustrate their stereotyped form. (b) Angular velocity of a pat-
tern moving across the fly’s visual field produces a sequence
of spikes in H1, indicated by dots. Repeated presentations pro-
duce slightly different spike sequences. For experimental meth-
ods, see Ref. [8].

Third, we are interested in the extensive component of the

entropy, and we find that a clean approach to extensivity

is visible before sampling problems set in. Finally, for

the neuron studied—the motion sensitive neuron H1 in the

fly’s visual system—we can actually collect many hours

of data.

H1 responds to motion across the entire visual field,

producing more spikes for an inward horizontal motion

and fewer spikes for an outward motion; vertical motions

are coded by other neurons [13]. These cells provide vi-

sual feedback for flight control. In the experiments an-

alyzed here, the fly is immobilized and views computer

generated images on a display oscilloscope. For simplic-

ity these images consist of vertical stripes with randomly

chosen grey levels, and this pattern takes a random walk

in the horizontal direction [14].

We begin our analysis with time bins of size Dt !
3 ms. For a window of T ! 30 ms—corresponding to

the behavioral response time of the fly [15]—Fig. 2

shows the histogram !p̃i", and the naive entropy esti-
mates. We see that there are very small finite data set

corrections (,1023), well fit by [11]

Snaive#T , Dt; size$ ! S#T , Dt$ 1
S1#T , Dt$
size

1
S2#T , Dt$
size2 . (3)

Under these conditions we feel confident that the extrapo-

lated S#T , Dt$ is the correct entropy. For sufficiently

large T , finite size corrections are larger, the contribution
of the second correction is significant, and the extrapola-

tion to infinite size is unreliable.

Ma [12] discussed the problem of entropy estimation in

the undersampled limit. For probability distributions that

are uniform on a set of N bins (as in the microcanonical

ensemble), the entropy is log2 N and the problem is to

estimate N . Ma noted that this could be done by counting

FIG. 2. The frequency of occurrence for different words in
the spike train, with Dt ! 3 ms and T ! 30 ms. Words
are placed in order so that the histogram is monotonically
decreasing; at this value of T the most likely word corresponds
to no spikes. Inset shows the dependence of the entropy,
computed from this histogram according to Eq. (1), on the
fraction of data included in the analysis. Also plotted is a least
squares fit to the form S ! S0 1 S1%size 1 S2%size2. The
intercept S0 is our extrapolation to the true value of the entropy
with infinite data [11].

198

FIG. 177 Entropy extrapolation with real neural data, from
Strong et al (1998a). From the experiment on fly motion–
sensitive neurons discussed in Figs 132 and 133, we look at
10–letter words with time resolution ∆τ = 3ms. The main
figure shows the “Zipf plot” of frequency vs. rank from the
full data set. Note that since there are sometimes (but rarely)
two spike in one 3ms bin, there are more than 1024 words.
The inset shows the estimated entropy as a function of the
(inverse) fraction of the full data set used. The line through
the data is from Eq (A401).
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FIG. 178 Estimating coincidence probability. Samples are
drawn from a distribution that is uniform over K = 100 pos-
sible states. Green dots show examples, blue circles the mean
and standard deviation across many draws of N samples, and
black dashed line is the exact answer. We see that the esti-
mate is quite good even when N ∼

√
K $ K.

ber of possible states, and this in turn is inversely pro-
portional to the probability of a coincidence. So, being
able to estimate this probability is equivalent to being
able to estimate the entropy. Thus we should be able
to generate reliable entropy estimates even in the under-
sampled regime, just by counting coincidences. This is a
beautiful idea. The challenge is to generalize this idea to
non–uniform distributions.

A better understanding of the entropy estimation prob-
lem has come through a Bayesian approach. Rather
than identifying frequencies with probabilities, we imag-
ine that the distribution itself is drawn from a distribu-
tion. To be formal, let the possible states of the system
be i = 1, 2, · · · ,K, and let the probability distribution
over these states be p1, p2, · · · , pK ≡ p. This distribu-
tion itself is drawn from some distribution function P(p).
The distribution has to be normalized, but it is tempting
to think that, other than normalization, all distributons
should be equally likely, so that

P(p) =
1

Z
δ

(
K∑

i=1

pi − 1

)
. (A402)

If we observe n1 samples in the first state, n2 samples in
the second state, and so on, then the probability of this

occurring assuming some distribution p is

P ({ni}|p) ∝
K∏

i=1

pni
i , (A403)

and so by Bayes’ rule we have

P(p|{ni}) =
P ({ni}|p)P(p)

P ({ni})
(A404)

∝ 1

Z

(
K∏

i=1

pni
i

)
δ

(
K∑

i=1

pi − 1

)
. (A405)

If we want to compute our best estimate of the distribu-
tion, we have to do the integral

p̂i =
1

Z

∫
dKp pni+1

i




∏

j !=i

p
nj

j



 δ




K∑

j=1

pj − 1



 ,

(A406)
where the normalization Z is given by

Z =

∫
dKp




K∏

j=1

p
nj

j



 δ




K∑

j=1

pj − 1



 . (A407)

To make progress we introduce the Fourier representation
of the delta function, so that, for example,

Z =

∫
dKp




K∏

j=1

p
nj

j




∫

dλ

2π
exp



+iλ
K∑

j=1

pj − iλ





(A408)

=

∫
dλ

2π
e−iλ

K∏

j=1

∫
dpj p

nj

j eiλpj . (A409)

Since we have the delta function, we are free to let the
integrals over pj run from 0 to ∞; the delta function will
enforce the constraint that pi ≤ 1 for all i. Then the key
ingredient of the calculation, then, is the integral

f(n;λ) =

∫ ∞

0
dp pneiλp. (A410)

At the end of our calculation we will have to integrate
over λ. Let’s assume that we will be able to deform the
contour of this integral into the complex λ plane in such
a way that the p integral in Eq (A410) is well behaved.
Then we can write

f(n;λ) =

∫ ∞

0
dp pneiλp (A411)

=

∫ ∞

0
dp pne−(−iλ)p =

n!

(−iλ)n+1
. (A412)
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Putting these pieces together, we have

Z =

∫
dλ

2π
e−iλ

K∏

j=1

nj!

(−iλ)nj+1
(A413)

=




K∏

j=1

nj!




∫

dλ

2π

e−iλ

(−iλ)
∑K

j=1(nj+1)
(A414)

=




K∏

j=1

nj!




∫

dλ

2π

e−iλ

(−iλ)N+K
, (A415)

where N =
∑

j nj is the total number of samples, and
as before K is the number of possible states. A similar
argument gives

p̂i =
1

Z (ni + 1)!




∏

j !=i

nj!




∫

dλ

2π

e−iλ

(−iλ)N+K+1
(A416)

=
(ni + 1)!

(∏
j !=i nj!

)

∏K
j=1 nj!

×
∫

dλ
2π

e−iλ

(−iλ)N+K+1

∫
dλ
2π

e−iλ

(−iλ)N+K

(A417)

= (ni + 1)

∫
dλ
2π

e−iλ

(−iλ)N+K+1

∫
dλ
2π

e−iλ

(−iλ)N+K

. (A418)

Thus, p̂i ∝ ni + 1, so to get the normalization right we
must have

p̂i =
ni + 1

N +K
. (A419)

This should be contrasted with the naive estimate of
probabilities based on counting frequencies, p̂i = ni/N .
The Bayesian estimate, with a ‘flat’ prior on the space
of distributions, is equivalent to the naive approach but
with one extra count in every bin. This estimate never
predicts probability zero, even in states never observed
to occur, and is in some sense ‘smoother’ than the fre-
quencies. The trick of adding such pseudocounts to the
data goes back, it seems, to Laplace, although I don’t
think he had the full Bayesian justification.

Problem 196: Normalization. Derive Eq (A419) directly by
doing the integrals in Eq (A418).

What does this have to do with entropy estimation?
Somewhat heuristically, it has been suggested that by us-
ing different numbers of pseudocounts one can improve
the quality of entropy estimation. More deeply, I think,
the Bayesian estimate gives us a very different view of
why we make systematic errors when we try to compute
entropies from data. Recall that when we use the naive

identification of frequencies with probabilities, we under-
estimate the entropy, as in Eq (A401). It is tempting
to think that we are underestimating the entropy simply
because, in a finite sample, we have not seen all the pos-
sibilities. With the Bayesian approach and a flat prior,
however, the probability distributions that we estimate
are smoother than the true distribution, and correspond-
ingly we expect that the entropy will be overestimated.
In fact this is true, but the problem really is more serious
than this.
Suppose that we don’t yet have any data. Then all we

know is that the probability distribution p will be cho-
sen out of the distribution P(p). This seems innocuous,
since this distribution is flat and hence presumably un-
biased. But we can calculate the average entropy in this
distribution,

〈S〉prior ≡
∫

dKp

(
−

K∑

i=1

pi log2 pi

)
P(p), (A420)

using the same tricks that we used above, and we find

〈S〉prior = ψ0(K + 1)− ψ0(1), (A421)

where ψ0(x) is a polygamma function,

ψm(x) =

(
d

dx

)m+1

Γ(x). (A422)

The details of the special functions are not so important.
What is important is that, when the number of states K
is large,

〈S〉prior = log2 K −O(1). (A423)

Thus, although we are choosing distributions from a flat
prior, the entropies of these distributions are biased to-
ward the maximum possible value. This bias is actually
very strong. The entropy is the average of many terms,
and although these terms can’t be completely indepen-
dent (the probabilities must sum to one), one might ex-
pect the central limit theorem to apply here, in which
case the fluctuations in the entropy will be σS ∼ 1/

√
K,

which for large K is very small indeed. What this means
is that the distributions chosen out of P(p) are over-
whelmingly biased toward having nearly maximal en-
tropy. While the prior on the distributions is flat, the
prior on entropies is narrowly concentrated around an
average entropy which, for large K, is almost log2 K.

Problem 197: Entropies in a flat prior. Derive the mean
and standard deviation of the entropy in the flat prior, P(p) from
Eq (A402). Verify Eq (A423).
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Just to make the problem clear, suppose that our sys-
tem has only two states, as with heads and tails for a coin.
Let the probability of heads be q, so that the entropy is

S(q) = −q log2(q)− (1− q) log2(1− q). (A424)

If we assume that q is chosen from some distribution
P(q), then the distribution of entropies can be found from

P (S)dS = P(q)dq (A425)

Since dS/dq = 0 at the point where S = 1bit, the dis-
tribution P (S) must be singular there unless the prior
on q itself has a compensating singularity. Thus, a prior
which is flat in q is strongly biased in S. The situation
is even worse for systems with many states, because of
phase space considerations: if we want to have low a
low entropy distribution, then many of the pi must be
confined to very small values, and this means that the
volume in p space associated with low entropy is small.
While only one distribution has precisely the maximum
entropy, there are many distributions that are close.

Problem 198: A flat prior on S. Show that, for the problem
of coin flips, having a flat prior on the entropy S is equivalent to a
prior

P(q) =

∣∣∣∣∣ log2
(

q

1− q

) ∣∣∣∣∣. (A426)

If we flip a coin N times and observe n heads, then Bayes’ rule tell
us that

PN (q|n) ∝ P(q)qn(1− q)N−n, (A427)

and we can use this to estimate the entropy

Ŝ(n,N) =

∫ 1

0
dqPN (q|n) [−q log2(q)− (1− q) log2(1− q)] .

(A428)
(a.) For N = 10, plot Ŝ(n,N) vs. n. Compare your results with

the naive estimate,

Snaive(n,N) = −
n

N
log2

( n

N

)
−
(
1−

n

N

)
log2

(
1−

n

N

)
. (A429)

(b). Suppose that you are actually flipping a coin in which the
probability of heads is qtrue ,= 1/2. Simulate N such flips, and
use your results to estimate the entropy according to both Eq’s
(A428) and (A429). How do these estimators evolve as a function
of N? Hints: Remember that we have seen the results for the naive
estimator already, and that since this is a small system (only two
states) the interesting behavior is at smaller N .

[Add figure on entropy estimation for binary variables,
with flat priors on entropy or probability.] All of this
suggests that we could do a much better job of entropy
estimation in a Bayesian framework where the P(p) is
chosen to be flat is S. I don’t know of anyone who has
given a complete solution to this problem. A partial so-
lution has been proposed by noticing that there is a well

known generalization of the flat prior, the Dirichlet fam-
ily of priors

Pβ(p) =
1

Z(β)

(
K∏

i−1

pβ−1
i

)
δ

(
K∑

i=1

pi − 1

)
. (A430)

Evidently the flat prior corresponds to β = 1, and this
is biased toward large entropies, as we have seen. As β
gets smaller, the average entropy S̄(β) of a distribution
drawn out of Pβ(p) gets smaller, but for each value of β
the distribution of entropies remains quite narrow. This
suggests that if we form the prior

P(p) =

∫ 1

0
dβ

∣∣∣∣∣
dS̄(β)

dβ

∣∣∣∣∣

−1

Pβ(p), (A431)

it will be approximately flat in entropy. This seems to
work, although it is computationally intensive. As far as
I know it gives the best results of any estimation proce-
dure so far in, for example, the analysis of neural spike
trains. If we dig into the integrals that define the entropy
estimate, it turns out that the key pieces of data are co-
incidences, in which more than one sample falls into the
same bin, and in this sense we seem to have found a gen-
eralization of Ma’s ideas to non–uniform distributions.

Problem 199: One more problem about entropy estima-
tion. [make up one more?]

Again it is important to ask whether these ideas actu-
ally work with real data. In experiments on the motion–
sensitive neuron H1 in the fly visual system, we can in
many cases collect enough data to sample the underly-
ing distributions of neural responses, so we have ground
truth. At the same time, we can look only at a small
fraction of these data and ask how well our estimation
procedure works. An example is shown in Fig 179.
Is there more to say? Or need more details in things

already said?

The idea that naive counting leads to systematic errors in entropy
estimation goes back, at least, to Miller (1955). The importance
of this for the analysis of information transmission in neurons was
emphasized by Treves and Panzeri (1995), who also brought more
sophistication to the calculation of the series expansion that we
have started here. Shortly after this, Strong et al (1998a) showed
how these extrapolation methods could be used to estimate entropy
and information in neural responses to complex, dynamic sensory
inputs. An important technical point is that Strong et al took se-
riously the 1/N behavior of the entropy estimate, but didn’t use
an analytic calculation of the slope of Sest vs 1/N ; the reason is
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FIG. 179 Estimating entropies at one slice of time in the
neural response to naturalistic stimuli, from Nemenman et al
(2004). Neural responses are discretized with ∆τ = 2ms reso-
lution, and we look at 8–letter words. The stimulus is motion
outdoors, and the motion is repeated many times; here we fo-
cus on the distribution of responses at one moment relative to
this repeat, for which we can collect up to 196 samples from
the repetitions. The open symbols show the “naive” or max-
imum likelihood estimate in which we identify the observed
frequencies with probabilities and plug in to the computation
of entropy. As expected, this estimate has a significant depen-
dence on the number of samples, but extrapolates smoothly
according to Eq (A401). In contrast, the NSB estimator based
on the prior in Eq (A431) remains constant within error bars,
always agreeing with the extrapolation.

that some seemingly possible neural responses are expected to have
probability zero, because there is a hard core repulsion (“refractori-
ness”) between spikes, but we don’t know in advance exactly how
big this effect will be. As a result, the actual number of possible
states K is uncertain, and in addition it is not true that all the sam-
ples collected in the experiment will be independent. Both these
effects leave the 1/N behavior intact, but change the slope.
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