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INTRODUCTION

Like all authors, I hope that this book will find wide
readership. At the same time, I believe that good books
are intensely personal objects. As readers, we have our
favorite books, and this is an emotional statement, laden
with context.1 Similarly, writers bring not just their
knowledge and their technical skill to the creation of a
book, but also their personalities. In writing something
which might be used as a textbook, I feel a responsibility
to provide a fair view of the field. But I won’t apologize
for giving you my view, which surely is not a consen-
sus view. Indeed, perhaps by the time there is a clear
consensus the field won’t be quite as much fun.

A. About our subject

When a PhD student in Physics picks up a textbook
about elementary particle physics, or cosmology, or con-
densed matter, there is little doubt about what will be
found inside the covers. There are questions, perhaps,
about the level and style of presentation, or about the
emphasis given to different subfields, but the overall topic
is clear. The situation is very different for books or
courses that attempt to bring the intellectual style of
physics to bear on the phenomena of life. The prob-
lem is not just in how we teach, but also in how we do
research. The community of physicists interested in bi-
ological problems is incredibly diverse, it spills over into
more amorphously defined interdisciplinary communities,
and individual physicists often are more connected to bi-
ologists working on the same system than they are to
physicists asking the same conceptual question in other

1 The book which gave me my first taste of real quantummechanics
has a special place in my library, even though it isn’t a book I
would recommend to my students. Translated from the Russian,
it looks like it was typed rather than typeset. An important
part of the story is that I found it for sale on a remainder table
in a department store. It must have been the only quantum
mechanics book ever sold by the Emporium.
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systems. None of this is necessarily good or bad, but it
can be terribly confusing for students.

Ours is not a new subject, but over its long history,
“biophysics” or “biological physics” has come to mean
many different things to different communities.2 At the
same time, for many physicists today, biophysics remains
new, and perhaps a bit foreign. There is an excitement
to working in a new field, and I hope to capture this ex-
citement. Yet our excitement, and that of our students,
sometimes is tempered by serious concerns, which can
be summarized by naive questions: Where is the bound-
ary between physics and biology? Is biophysics really
physics, or just the application of methods from physics
to the problems of biology? My biologist friends tell me
that ‘theoretical biology’ is nonsense, so what would the-
oretical physicists be doing if they got interested in this
field? In the interaction between physics and biology,
what happens to chemistry? How much biology do I
need to know in order to make progress? Why do physi-
cists and biologists seem to be speaking such different
languages? Can I be interested in biological problems
and still be a physicist, or do I have to become a biol-
ogist? Although there has been much progress over the
last decade, I still hear students (and colleagues) asking
these questions, and so it it seems worth a few pages to
place the subject of this book into context.3 The discus-
sion will start by reacting to the history of our subject,
but by the end I hope to outline a view of the field which
stands on its own as a guide to what we would like to
accomplish, both on the time scale of working through
this book and on the longer time scale of our research
agendas [not quite sure about that last phrase, but want
to say something in this spirit].

There is an old saying that “physics is what physi-
cists do.” This doesn’t sound very helpful, but it may
be getting at an important point. Academic disciplines
have a choice to define themselves either by their ob-
jects of study or by their style of inquiry. Physics (at its
best, I would like to think) is firmly in the second camp.
Physicists make it their business to ask certain kinds of

2 The use of these two different words is also problematic. I think
that, roughly speaking, “biophysics” can be used by people who
think of themselves either as physicists or biologists, while “bio-
logical physics” is an attempt to carve out a subfield of physics,
distinct from biology. The difficulty is that neither word really
points to a set of questions that everyone can agree upon. So,
we need to dig in.

3 The intellectual questions about biophysics and its relation to the
larger, separate, activities of physics and biology easily become
entangled with political and sociological problems—one does not
have to be a fanatic to realize that the setting of research agen-
das and the parcelling out of resources involves the exercise of
political power. All of us who pursued interests at the inter-
face of physics and biology before it became popular have some
personal perspectives on these issues. I will try to avoid these
political entanglements and focus on our intellectual goals.

questions about Nature, and to seek certain kinds of an-
swers. “Thinking like a physicist” means something, and
we are proud to do it; it is this, above all else, that we try
to convey to our students. We are the intellectual heirs
of Galileo, taking seriously his evocative claim that the
book of Nature is written in the language of mathematics.
Biology surely is defined by the objects of study—if

it’s not alive, biologists aren’t interested. The style of
inquiry may change, from studies of animal behavior and
anatomy to genetics and molecular structure, but the
objects remain the same. It is especially important for
physicists to appreciate the vastness of the enterprise that
is labeled ‘biology,’ and the tremendous divisions within
biology itself. A geneticist, for example, studying the dy-
namics of regulatory networks in a simple organism such
as yeast, may know absolutely nothing about the dynam-
ics of neural networks for the regulation of movement in
higher organisms, and vice versa. Not only is biology de-
fined by the objects of study, but the subfields of biology
are similarly defined, so that networks of neurons and
networks of genes are different subjects.
Differences in our view of the scientific enterprise trans-

late rather directly into different educational structures.
In physics, we (try to) teach principles and derive the
predictions for particular examples. In biology, teaching
proceeds (mostly) from example to example. Although
physics has subfields, to a remarkable extent the physics
community clings to the romantic notion that Physics
is one subject. Not only is the book of Nature written
in the language of mathematics, but there is only one
book, and we expect that if we really grasped its content
it could be summarized in very few pages. Where does
biophysics fit into this view of the world?
There is something different about life, something that

we recognize immediately as distinguishing the animate
from the inanimate. But we no longer believe that there
is a fundamental “life force” that animates a lump of in-
ert stuff. Similarly, there is no motive force which causes
superfluid helium to crawl up the sides of a container
and escape, or which causes electrical current in a su-
perconducting loop to flow forever; the phenomena of
superfluidity and superconductivity emerge as startling
consequences of well known interactions among electrons
and nuclei, interactions which usually have much more
mundane consequences. As physicists studying the phe-
nomena of life, we thus are not searching for a new force
of Nature. Rather we are trying to understand how the
same forces that usually cause carbon based materials
to look like rocks or sludge can, under some conditions,
cause material to organize itself and walk (or swim or fly)
out of the laboratory. What is special about the state of
matter that we call life? How does it come to be this way?
Different generations of physicists have approached these
mysteries in different ways.
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Looking back

Some of the giants of classical physics—Helmholtz,
Maxwell, and Rayleigh, to name a few—routinely crossed
borders among disciplines that we now distinguish as
physics, chemistry, biology, and even psychology. Some
of their forays into the phenomena of life were driven by
a desire to test the universality of physical laws, such as
the conservation of energy. A very different motivation
was that our own view of the world is determined by
what we can see and hear, and more subtly by what we
can reliably infer from the data that our sense organs col-
lect. These physicists thus were drawn to the study of the
senses; for them, there was no boundary between optics
and vision, or between acoustics and hearing. Helmholtz
in particular took a very broad view, seeing a path not
just from acoustics to the mechanics of the inner ear and
from the properties of light to the optics of the eye, but
all the way from the physical stimuli reaching our sense
organs to the nature of our perceptions, to our ability to
learn about the world, and even to what makes some
sights or sounds more pleasing than others. Reading
Helmholtz today I find myself struck by how much his
insights still guide our thinking about vision and hear-
ing, and by how the naturalness of his cross–disciplinary
discourse remains something which few modern scientists
achieve, despite all the current fanfare about the impor-
tance of multidisciplinary work. Most of all, I am struck
by his soaring ambition that physics should not stop at
the point where light hits our eyes or sound enters our
ears, and that we should search for a physics that reaches
all the way to our personal, conscious experience of the
world in all its beauty.

The rise of modern physics motivated another wave of
physicists to explore the phenomena of life. Fresh from
the triumphs of quantum mechanics, they were embold-
ened to seek new challenges and brought new concepts.
Bohr wondered aloud if the ideas of complementarity and
indeterminacy would limit our ability to understand the
microscopic events that provide the underpinnings of life.
Delbrück was searching explicitly for new principles, hop-
ing that a modern understanding of life would be as dif-
ferent from what came before as quantum mechanics was
different from classical mechanics. Schrödinger, in his in-
fluential series of lectures entitled What is Life?, seized
upon the discovery that our precious genetic inheritance
was stored in objects the size of single molecules, high-
lighting how surprising this is for a classical physicist,
and contrasted the order and complexity of life with the
ordering of crystals, outlining a strikingly modern view
of how non–equilibrium systems can generate structure
out of disorder, continuously dissipating energy.

In one view of history, there is a direct path from Bohr,
Delbrück and Schrödinger to the emergence of molecular
biology. Certainly Delbrück did play a central role, not
least because of his insistence that the community should

focus (as the physics tradition teaches us) on the simplest
examples of crucial biological phenomena, reproduction
and the transmission of genetic information. The goal of
molecular biology to reduce these phenomena to interac-
tions among a countable set of molecules surely echoed
the physicists’ search for the fundamental constituents of
matter, and perhaps the greatest success of molecular bi-
ology is the discovery that many of these basic molecules
of life are universal, shared across organisms separated
by hundreds of millions of years of evolutionary history.
Where classical biology emphasized the complexity and
diversity of life, the first generation of molecular biolo-
gists emphasized the simplicity and universality of life’s
basic mechanisms, and it is not hard to see this as an
influence of the physicists who came into the field at its
start.
Another important idea at the start of molecular biol-

ogy was that the structure of biological molecules mat-
ters. Although modern biology students, even in many
high schools, can recite ‘structure determines function,’
this was not always obvious. To imagine, in the years
immediately after World War II, that all of classical bio-
chemistry and genetics would be reconceptualized once
we could see the actual structures of proteins and DNA,
was a revolutionary vision—a vision shared only by a
handful of physicists and the most physical of chemists.
Every physicist who visits the grand old Cavendish Lab-
oratory in Cambridge should pause in the courtyard
and realize that on that ground stood the ‘MRC hut,’
where Bragg nurtured a small group of young scientists
who were trying to determine the structure of biologi-
cal molecules through a combination of X–ray diffraction
experiments and pure theory. To make a long and glo-
rious story short, they succeeded, perhaps even beyond
Bragg’s wildest dreams, and some of the most important
papers of twentieth century biology thus were written in
a physics department.
Perhaps inspired by the successes of their intellectual

ancestors, each subsequent generation of physicists of-
fered a few converts. The idea, for example, that the
flow of information through the nervous system might
be reducible to the behavior of ion channels and recep-
tors inspired one group, armed with low noise amplifiers,
intuition about the interactions of charges with protein
structure, and the theoretical tools to translate this in-
tuition into testable, quantitative predictions. The pos-
sibility of isolating a single complex of molecules that
carried out the basic functions of photosynthesis brought
another group, armed with the full battery of modern
spectroscopic methods that had emerged in solid state
physics. Understanding that the mechanical forces gen-
erated by a focused laser beam are on the same scale as
the forces generated by individual biological molecules as
they go about their business brought another generation
of physicists to our subject. The sequencing of whole
genomes, including our own, generated the sense that
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the phenomena of life could, at last, be explored com-
prehensively, and this inspired yet another group. These
examples are far from complete, but give some sense for
the diversity of challenges that drew physicists toward
problems that traditionally had been purely in the do-
main of biologists.

Through these many generations, some conventional
views arose about the nature of science at the borders
between physics and biology. First, there is a strong em-
phasis on technique. From X–ray diffraction to the ma-
nipulation of single molecules to functional imaging of
the brain, it certainly is true that physics has developed
experimental techniques that allow much more direct ex-
ploration of questions raised by biologists. Second, there
is a sense that in some larger classification system, bio-
physics is a biological science. Certainly when I was a
student, and for many years afterwards, physicists would
speak (sometimes wistfully) of colleagues who were fas-
cinated by the phenomena of life as having “become bi-
ologists.” For their part, biologists would explain that
physicists were successful in these explorations only to
the extent that they appreciated what was “biologically
important.” Finally, biophysics has come to be organized
along the lines of the traditional biological subfields. As
a result, the biophysics of neurons and the statistical me-
chanics of neural networks are separate subjects, and the
generation of physicists exploring noise in the regulation
of gene expression is disconnected from the previous gen-
eration that studied noise in ion channels.

Without taking anything away from what has been
accomplished, I believe that much has been lost in the
emergence of the conventional views about the nature
of the interaction between physics and biology. By fo-
cusing on methods, we miss the fact that, faced with the
same phenomena, physicists and biologists will ask differ-
ent questions. In speaking of biological importance, we
ignore the fact that physicists and biologists have differ-
ent definitions of understanding. By organizing ourselves
around structures that come from the history of biology,
we lose contact with the dreams of our intellectual an-
cestors that the dramatic qualitative phenomena of life
should be clues to deep theoretical insights, that there
should be a physics of life and not just the physics of this
or that particular process. It is, above all, these dreams
that I would like to rekindle in my students and in the
readers of this book.

Looking forward

At present, most questions about how things work in
biological systems are viewed as questions that must be
answered by experimental discovery. The situation in
physics is very different, in that theory and experiment
are more equal partners. In each area of physics we have
a set of general theoretical principles, all interconnected,

which define what is possible; the path to confidence in
any of these principles is built on a series of beautiful,
quantitative experiments that have extended the enve-
lope of what we can measure and know about the world.
Beyond providing explanations for what has been seen,
these principles provide a framework for exploring, some-
times playfully, what ought to be seen. In many cases
these predictions are sufficiently startling that to observe
the predicted phenomena (a new particle, a new phase
of matter, fluctuations in the radiation left over from the
big bang, ...) still constitutes a dramatic experimental
discovery.
Can we imagine a physics of biological systems that

reaches the level of predictive power that has become the
standard in other areas of physics? Can we reconcile
the physicists’ desire for unifying theoretical principles
with the obvious diversity of life’s mechanisms? Could
such theories engage meaningfully with the myriad exper-
imental details of particular systems, yet still be deriv-
able from succinct and abstract principles that transcend
these details? For me, the answer to all of these ques-
tions is an enthusiastic “yes,” and I hope that this book
will succeed in conveying both my enthusiasm and the
reasons that lie behind it.
I have emphasized that, in the physics tradition, our

subject should be defined by the kinds of questions we
ask, but I haven’t given you a list of these questions.
Worse yet, this emphasis on questions and concepts
might leave us floating, disconnected from the data. It
is, after all, the phenomena of life which are so dra-
matic and which demand our attention, so we should
start there. There are so many beautiful things about
life, however, that is can be difficult to choose a concrete
starting point. Before explaining the choices I made in
writing this book, I want to emphasize that there are
many equally good choices. Indeed, if we choose almost
any of life’s phenomena—the development of an embryo,
our appreciation of music, the ability of bacteria to live
in diverse environments, the way that ants find their way
home in the hot desert—we can see glimpses of funda-
mental questions even in the seemingly most mundane
events.
It is a remarkable thing that, pulling on the threads

of one biological phenomenon, we can unravel so many
general physics questions. In any one case, some prob-
lems will be presented in purer form than others, but in
many ways everything is there. Thus, if we think hard
about how crabs digest their food (to choose a partic-
ularly prosaic example), we will find ourselves worrying
about how biological systems manage to find the right
operating point in very large parameter spaces. This
problem, as we will see in Chapter Three, arises in many
different systems, across levels of organization from sin-
gle protein molecules to short–term memory in the brain.
Thus, in an odd way, everything is fair game. The chal-
lenge is not to find the most important or “fundamental”
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phenomenon, but rather to see through any one of many
interesting and beautiful phenomena to the deep physics
problems that are hiding underneath the often formidable
complexity of these systems.

The first problem, as noted above, is that there really
is something different about being alive, and we’d like to
know what this is—in the same way that we know what
it is for a collection of atoms to be solid, for a collection
of electrons to be superconducting, or for the vacuum to
be confining (of quarks). This “What is life?” question
harkens back to Schrödinger, and one might think that
the molecular biology which arose in the decades after
his manifesto would have answered his question, but this
isn’t clear. Looking around, we more or less immediately
identify things which are alive, and the criteria that we
use in making this discrimination between animate and
inanimate matter surely have nothing to do with DNA
or proteins. Even more strongly, we notice that things
are alive long before we see them reproduce, so although
self–reproduction might seem like a defining character-
istic, it doesn’t seem essential to our recognition of the
living state. Being alive is a macroscopic state, while
things like DNA and the machinery of self–reproduction
are components of the microscopic mechanism by which
this state is generated and maintained.4 While we have
made much progress on identifying microscopic mecha-
nisms, we have made rather less progress on identify-
ing the “order parameters” that are characteristic of the
macroscopic state.

Asking for the order parameters of the living state is a
hard problem, and not terribly well posed. One way to
make progress is to realize that as we make more quanti-
tative models of particular biological systems, these mod-
els belong to families: we can imagine a whole class of sys-
tems, with varying parameters, of which the one we are
studying is just one example. Presumably, most of these
possible systems are not functional, living things. What
then is special about the regions of parameter space that
describe real biological systems? This is a more manage-
able question, and can be asked at many different levels
of biological organization. If there is a principle that
differentiates the genuinely biological parts of parameter
space from the rest, then we can elevate this principle to
a theory from which the properties of the biological sys-
tem could be calculated a priori, as we do in other areas

4 More precisely, all the molecular components of life that we know
about comprise one way of generating and maintaining the state
that we recognize as being alive. We don’t know if there are other
ways, perhaps realized on other planets. This remark might once
have seemed like science fiction, and perhaps it still is, but the
discovery of planets orbiting distant stars has led many people to
take these issues much more seriously. Designing a search for life
on other planets gives us an opportunity to think more carefully
about what it means to be alive.

of physics.
If real biological systems occupy only a small region

in the space of possible systems, we have to understand
the dynamics by which systems find their way to these
special parameters. At one extreme, this is the problem
of the origin of life. At the opposite extreme, we have
the phenomena of physiological adaptation, whereby cells
and systems adjust their behavior in relation to varying
conditions or demands from the environment, sometimes
in fractions of a second. In between we have learning
and evolution. Adaptation, learning and evolution rep-
resent very different mechanisms, on different but per-
haps overlapping time scales, for accomplishing a com-
mon goal, tuning the parameters of a biological system
to match the problems that organisms need to solve as
they try to survive and reproduce. What is the character
of these dynamics? Are the systems that we see around
us more or less “equilibrated” in these dynamics, or are
today’s organisms strongly constrained by the nature of
the dynamics itself? Put another way, if evolution is
implementing an algorithm for finding better organisms,
are the functional behaviors of modern biological sys-
tems significantly shaped by the algorithm itself, or can
we say that the algorithm solves a well defined problem,
and what we see in life are the solutions to this problem?
In order to survive in the world, organisms do indeed

have to solve a wide variety of problems. Many of these
are really physics problems: converting energy from one
form to another, sensing weak signals from the environ-
ment, controlling complex dynamical systems, transmit-
ting information reliably from one place to another, or
across generations, controlling the rates of thermally ac-
tivated processes, predicting the trajectory of multidi-
mensional signals, and so on. While it’s obvious (now!)
that everything which happens in living systems is con-
strained by the laws of physics, these physics problems
in the life of the organism highlight these constraints and
provide a special path for physics to inform our thinking
about the phenomena of life.
Identifying all the physics problems that organisms

need to solve is not so easy. Thinking about how sin-
gle celled organisms, with sizes on the scale of one mi-
cron, manage to move through water, we quickly get to
problems that have the look and feel of problems that
we might find in Landau and Lifshitz. On the other
hand, it really was a remarkable discovery that all cells
have built Maxwell demons, and that our description of
a wide variety of biochemical processes can be unified
by this observation (see Section II.D). Efforts in this
direction can be very rewarding, however, because we
identify questions that connect functionally important
behaviors—things organisms really care about, and for
which evolution might select—with basic physical prin-
ciples. Physics shows us what is hard about these prob-
lems, and where organisms face real challenges. In some
cases, physics also places limits on what is possible, and
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this gives us an opportunity to put the performance of
biological systems on an absolute scale. This makes pre-
cise our intuition that organisms are really very good at
solving some very difficult problems.

[I would like this paragraph to be better, but will come
back to this.] To summarize, the business of life involves
solving physics problems, and these problems provide us
with a natural subject matter. In particular, these prob-
lems focus our attention on the concept of “function,”
which is not part of the conventional physics vocabulary,5

but clearly is essential if we want to speak meaningfully
about life. Of the possible mechanisms for solving these
problems, most combinations of the available ingredi-
ents probably don’t work, and specifying this functional
ensemble provides a manageable approach to the larger
question of what characterizes the living state. Adapta-
tion, learning and evolution allow organisms to find these
special regions of parameter space, and the dynamics of
these processes provide another natural set of problems.

If you are excited about problems at the interface of physics and bi-
ology, you must read Schrödinger’s “little book” What is Life?. To
get a sense of the excitement and spirit of adventure that our intel-
lectual ancestors brought to the subject, you should also look at the
remarkable essays by Bohr (1933) and Delbrück (1949). Delbrück
reflected on those early ideas some years later (1970), as did his
colleagues and collaborators (Cairns et al 1966). For a more pro-
fessional history of the emergence of modern molecular biology from
these physicists’ musings, see Judson (1979).

Bohr 1933: Light and life. N Bohr, Nature 131, 421–423 (1933).

Cairns et al 1966: Phage and the Origins of Molecular Biology,
J Cairns, GS Stent & JD Watson, eds (Cold Spring Harbor
Press, Cold Spring Harbor NY, 1966).

Delbrück 1949: A physicist looks at biology. M Delbrück, Trans
Conn Acad Arts Sci 38, 173–190 (1949). Reprinted in
Cairns et al (1966), pp 9–22.

Delbrück 1970: A physicist’s renewed look at biology: twenty
years later. M Delbrück, Science 168, 1312–1315 (1970).

Judson 1979: The Eighth Day of Creation HF Judson (Simon
and Schuster, New York, 1979).

Schrödinger 1944: What is Life? E Schrödinger (Cambridge
University Press, Cambridge, 1944).

5 This isn’t quite fair. In thermodynamics we distinguish “useful
work,” provides a notion of function, at least in the limited con-
text of heat engines. But we need something much more general
if we want to capture the full range of problems that organisms
have to solve.

B. About this book

This book has its origins in a course that I have taught
for several years at Princeton. It is aimed at PhD stu-
dents in Physics, although a sizable number of brave
undergraduates have also taken the course, as well as a
handful of graduate students from biology, engineering,
applied math, etc.. Bits and pieces have been tested in
shorter courses, sometimes for quite different audiences,
at the Marine Biological Laboratory, at Les Houches,
at the Boulder Summer School on Condensed Matter
Physics, at “Sapienza” Universitá di Roma, and at the
Rockefeller University.
In early incarnations, the course consisted of a series

of case studies—problems where physicists have tried to
think about some particular biological system. The hope
was that in each case study we might catch a glimpse
of some deeper and more general ideas. As the course
evolved, I tried to shift the balance from examples toward
principles. The difficulty, of course, is that we don’t know
the principles, we just have candidates. At some point I
decided that this was OK, and that trying to articulate
the principles was important even if we get them wrong.
I believe that, almost by definition, something we will
recognize as a theoretical physics of biological systems
will have to cut across the standard subfields of biology,
organizing our understanding of very different systems as
instantiations of the same underlying ideas.
Although we are searching for principles, we start by

being fascinated with the phenomena of life. Thus, the
course starts with one particular biological phenomenon
that holds, I think, an obvious appeal for physicists, and
this is the ability of the visual system to count single pho-
tons. As we explore this phenomenon, we’ll meet some
important facts about biological systems, we’ll see some
methods and concepts that have wide application, and
we’ll identify and sharpen a series of questions that we
can recognize as physics problems. The really beautiful
measurements that people have made in this system also
provide a compelling antidote to the physicists’ prejudice
that experiments on biological systems are necessarily
messy; indeed, I think these measurements set a stan-
dard for quantitative experiments on biological systems
that should be more widely appreciated and emulated.6

6 Perhaps surprisingly, many biologists share the expectation that
their measurements will be noisy. Indeed, some biologists insist
that physicists have to get used to this, and that this is a fun-
damental difference between physics and biology. Certainly it
is a difference between the sciences as they are practiced, but
the claim that there is something essentially sloppy about life is
deeper, and deserves more scrutiny. One not so hidden agenda
in my course is to teach physics students that it is possible to un-
cover precise, quantitative facts about biological systems in the
same way that we can uncover precise quantitative facts about
non–biological systems, and that this precision matters.
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Another crucial feature of the photon counting problem
is that it cuts across almost all levels of biological orga-
nization, from the quantum dynamics of single molecules
to the macroscopic dynamics of human cognition.

Having introduced ourselves in some detail to one par-
ticular biological phenomenon, we proceed to explore
three candidate principles: the importance of noise, the
need for living systems to function without fine tuning of
parameters, and the possibility that many of the differ-
ent problems solved by living organisms are just differ-
ent aspects of one big problem about the representation
of information. Each of these ideas is something which
many people have explored, and I hope to make clear that
these ideas have generated real successes. The greatest
successes, however, have been when these theoretical dis-
cussions are grounded in experiments on particular bio-
logical systems. As a result, the literature is fragmented
along lines defined by the historical subfields of biology.
The goal here is to present the discussion in the physics
style, organized around principles from which we can de-
rive predictions for particular examples.

My choice of candidate principles is personal, and I
don’t expect that everyone in the field will agree with me
(see above). More importantly, the choice of examples is
not meant to be canonical, but illustrative. In choosing
these examples, I had three criteria. First, I had to un-
derstand what was going on, and of course this biases me
toward cases which my friends and I have studied in the
past. I apologize for this limitation, and hope that I have
been able to do justice at least to some fraction of the
field. Second, I want to emphasize the tremendous range
of physics ideas which are relevant in thinking about the
phenomena of life. Many students are given the impres-
sion, implicitly or explicitly, that to do biophysics one can
get away with knowing less ‘real physics’ than in other
subfields, and I think this is a disastrous misconception.
Finally, if the whole program of finding principles is go-
ing to work, then it must be that a single principle really
does illuminate the functioning of seemingly very differ-
ent biological systems. Thus I make a special effort to
be sure that the set of examples for each principle cuts
across the subfields of biology, in particular across the
great divide between molecular and cellular biology on
the one hand and neurobiology on the other.

In trying to provide some perspective on our subject,
in the previous section, I mentioned a number of now
classic topics from across more than a century of interac-
tion between physics and biology. I don’t think it’s right
to teach by visiting these topics one after the other, for
reasons which I hope are clear by now. On the other
hand, it would be weird to take a whole course on bio-
physics and come out without having learned about these
things. So I have tried to weave some of the classics into
the conceptual framework of the course, perhaps some-
times in surprising places. There also are many beautiful
things which I have left out, and again I apologize to peo-

ple who will find that I neglected matters close to their
hearts. Sometimes the neglect reflects nothing more than
my ignorance, but in some cases it is more subtle. I felt
strongly that everything I discuss should fit together into
a larger picture, and that it is almost disrespectful to give
a laundry list of wonderful but undigested results. Thus,
much was left unsaid.
I assume that readers (as with my students) have a

strong physics background, and are comfortable with the
associated mathematical tools. While many different ar-
eas of physics make an appearance, the most frequent ref-
erences are to ideas from statistical mechanics. In prac-
tice, this is the area where at least U.S. students have
the largest variance in their preparation. As a result, in
places where my experience suggests that students will
need help, I have not been shy to include (perhaps id-
iosyncratic) expositions of relevant physics topics that
are not especially restricted to the biophysical context,
since this is, after all, a physics course. Some more tech-
nical asides are presented as appendices. Throughout the
text, and especially in the appendices, I try very hard to
avoid saying “it can be shown that;” the resulting text is
longer, but I hope more useful.
No matter how much we may be searching for deep the-

oretical principles, in the physics tradition, we do need
a grasp of the facts. But when we teach particle physics
we don’t start by reading from the particle data book,
so similarly I don’t start by reciting the “biological back-
ground.” Rather, we plunge right in, and as we encounter
things that need explaining, I try to explain them. I do
want to emphasize (maybe this is especially meaningful
coming from a theorist!) the importance of mastering
the experimental facts about systems that we find in-
teresting. I think we should avoid talking about how
“physicists need to learn the biology,” since “biology”
could mean either the study of living systems or the aca-
demic discipline practiced in biology departments, and
these need not be the same thing. We must know what
has been measured, assess these data with informed skep-
ticism, and use the results to guide our thinking as we ask
our own new and interesting questions. I hope I manage
to strike the right balance.
The most important comment about the structure of

the book concerns the problems. I cannot overstate the
importance of doing problems as a component of learn-
ing. One should go further, getting into the habit of
calculating as one reads, checking that you understand
all the steps of an argument and that things make sense
when you plug in the numbers or make order of mag-
nitude estimates. For all these reasons, I have chosen
(following Landau and Lifshitz) to embed the problems
in the text, rather than relegating them to the ends of
chapters. In some places the problems are small, re-
ally just reminding you to fill in some missing steps be-
fore going on to the next topic. At the opposite ex-
treme, some problems are small research projects. Be-
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cause progress in biophysics depends on intimate inter-
action between theory and experiment, some of the prob-
lems ask you to analyze real data, which can be found at
http://www.princeton.edu/∼wbialek/PHY562/data.

Let me also say a few words about references. Refer-
ences to the original literature serve multiple functions,
especially in textbooks. Most obviously, I should cite
the papers that most influenced my own thinking about
the subject, acknowledging my intellectual debts. Since
this text is based on a course for PhD students, cita-
tions also help launch the student into the current lit-
erature, marking the start of paths that can carry you
well beyond digested, textbook discussions. In another
direction, references point back to classic papers, papers
worth reading decades after they were published, papers
that can provide inspiration. Importantly, all of these
constitute subjective criteria for inclusion on the refer-
ence list, and so I think it is appropriate to collect refer-
ences with some commentary, as you have already seen
at the end of the previous section. Let me note that the
reference list should not be viewed as a rough draft of
the history of the subject, nor as an attempt to establish
objective priorities for some work over others.

C. About this draft

This is not the final draft of the book. I know there are
things that need to be fixed, but I have been pushing to
get the text to the point where I won’t be embarrassed by
letting other people look at it (I hope!). My own concerns
about the state of the text include the following:

1. All the figures are placeholders. Some are grabbed
from published papers, while others are bad pho-
tographs of what I sketched on the blackboard.
There is work to be done in bringing all of this
up to a standard of clarity and consistency.

2. I have pushed through the text several times, but I
haven’t really had a chance to look at the balance
of topics. I worry that things which I know best
have grown out of proportion to other topics, and I
could use some advice. There is a related question
about which things belong in the main text and
which can be safely pushed to the Appendices.

3. There are places where I just haven’t finished, even
if I am pretty sure what needs to be done. This has
been a very long project, but I fully expect readers
to give advice that will necessitate further revision.
Thus, I thought it might be OK to let people see
things even with the gaps—perhaps you even have
ideas about how to fill them in. These problem
areas of the text are flagged in red. In some places
these are small (I think) nagging questions, while
in other areas there are bigger sections missing.

4. I have been working hard on the opening parts of
chapters and sections, trying to provide more con-
text and a guide to what is coming. The ends of
many sections still seem a bit abrupt, however, sug-
gesting that I might have stopped when I was ex-
hausted by the topic rather than when I reached a
conclusion. This will get fixed.

At this stage of the project, all input is welcome. I hope
you will read sympathetically as well as critically, but get-
ting things right is important, so feel free to bash away.
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ber of the NEC Research Institute, and a visiting lecturer
at Princeton. Dawon Kahng and Joe Giordmaine were
responsible for creating the enlightened environment at
NEC, which lasted for a marvelous decade, while David
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portunity to interact with students while still enjoying
the support of an industrial research laboratory dedi-
cated to basic science was quite magical. During this
period, frequent discussions with Albert Libchaber were
also important, as he insisted that explorations at the in-
terface of physics and biology be ambitious but still crisp
and decisive—a demanding combination.

Although the wonders of life in industrial labs have
largely disappeared, the pleasures of teaching at Prince-
ton have continued and grown. I am especially grateful
to my colleagues in the Physics department for welcom-
ing the intellectual challenges posed by the phenomena
of life as being central to physics itself, rather than being
“applications” of physics to another field. The result has
been the coalescence of a very special community, and I
hope that some of what I have learned from this commu-
nity is recorded faithfully in this book. John Hopfield’s
role in making all this happen—by setting an example
for what could be done, by being an explicit (and hor-
rifyingly witty) provocateur, and by being a quiet but
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it a pleasure to thank him. I don’t think that even John
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theory group” at Princeton, but with Curt Callan and
Ned Wingreen, we have managed to do it, and we have
been joined by a succession of young colleagues who have
held the Lewis–Sigler Fellowship—M Desai, J England
and M Kaschube—all of whom have added enormously
to our community. Curt deserves special thanks, for his
leadership and even more for the energy and enthusiasm
he brings to seminars and discussions, engaging with the
details but also reminding us that theoretical physics has
lofty aspirations.

Everyone who has tried to write a book based on their
teaching experience knows the enormous difference be-
tween a good set of lecture notes and the final product.
I very much appreciate Arthur Wightman’s suggestion,
long ago, that this transition would be worth the effort.
Ingrid Gnerlich, my editor at Princeton University Press,
has consistently provided the right combination of en-
couragement and gentle reminders of looming (and pass-
ing) deadlines. The idea of actually finishing (!) started
to crystallize during a wonderful sabbatical in Rome, and
has been greatly helped along by visiting professorships
at the Rockefeller University and most recently at The
Graduate Center of the City University of New York.

Both in Rome and in New York, stimuli from colleagues
and from the surrounding cities have proved delightfully
synergistic.
Despite my reservations (see above), I am much more

comfortable with this draft than I was with the previous
one, and this is the result of wonderful input on short
notice from several colleagues. Rob Phillips brought ob-
jectivity, and the proper amount of scathing humor, alert-
ing me to a variety of problems. Thomas Gregor, Justin
Kinney and Fred Rieke gave generously of their exper-
tise, and Rob de Ruyter provided yet more of the in-
sight, craftsmanship and knowledge of scientific history
that I have so much enjoyed in our long collaboration.
My thanks to all of them.
It often is remarked that theory is a relatively inexpen-

sive activity, so that we theorists are less dependent on
raising money than are our experimentalist friends. But
theory is a communal activity, and all the members of
the community need salaries. Because I have benefited
so much from the stimulation provided by the scientists
around me, I am especially grateful for the steady sup-
port my colleagues and I have received from the National
Science Foundation, and for the generosity of Princeton
University in bringing all of us together. In particular,
Denise Caldwell, Kenneth Whang and especially Kras-
tan Blagoev deserve our thanks for helping to insure that
this kind of science has a home at the NSF, even in dif-
ficult times. The Burroughs–Wellcome Fund, the WM
Keck Foundation, and the Swartz Foundation have also
been extremely generous, sometimes leaping in where the
usual angels feared to tread.
Finally, while the product of the scientific enterprise

must have meaning outside our individual feelings, the
process of science is intensely personal. When we col-
laborate or even just learn from one another, we share
not just our ideas about the next step in a small project,
but our hopes and dreams for efforts that could occupy
a substantial fraction of a lifetime. To make progress we
admit to one another how little we understand, and how
we struggle even to formulate the questions. For want of
a better word, collaboration is an intimate activity. Col-
leagues become friends, friendships deepen, we come to
care not just about ideas and results but about one an-
other. It is, by any measure, a privileged life. If this text
helps some readers to find their way to such enjoyment,
I will have repaid a small fraction of my debt.

William Bialek
September 18, 2011
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I. PHOTON COUNTING IN VISION

Imagine sitting quietly in a dark room, staring straight
ahead. A light flashes. Do you see it? Surely if the flash
is bright enough the answer is yes, but how dim can the
flash be before we fail? Do we fail abruptly, so that there
is a well defined threshold—lights brighter than threshold
are always seen, lights dimmer than threshold are never
seen—or is the transition from seeing to not seeing some-
how more gradual? These questions are classical exam-
ples of “psychophysics,” studies on the relationship be-
tween perception and the physical variables in the world
around us, and have a history reaching back at least into
the nineteenth century.

In 1911, the physicist Lorentz was sitting in a lecture
that included an estimate of the “minimum visible,” the
energy of the dimmest flash of light that could be consis-
tently and reliably perceived by human observers. But
by 1911 we knew that light was composed of photons,
and if the light is of well defined frequency or wavelength
then the energy E of the flash is equivalent to an eas-
ily calculable number of photons n, n = E/!ω. Doing
this calculation, Lorentz found that just visible flashes
of light correspond to roughly 100 photons incident on
our eyeball. Turning to his physiologist colleague Zwaa-
dermaker, Lorentz asked if much of the light incident on
the cornea might get lost (scattered or absorbed) on its
way through the gooey interior of the eyeball, or if the
experiments could be off by as much as a factor of ten.
In other words, is it possible that the real limit to human
vision is the counting of single photons?

Lorentz’ suggestion really is quite astonishing. If cor-
rect, it would mean that the boundaries of our perception
are set by basic laws of physics, and that we reach the
limits of what is possible. Further, if the visual system
really is sensitive to individual light quanta, then some of
the irreducible randomness of quantum events should be
evident in our perceptions of the world around us, which
is a startling thought.

In this Chapter, we will see that humans (and other
animals) really can detect the arrival of individual pho-
tons at the retina. Tracing through the many steps from
photon arrival to perception we will see a sampling of
the physics problems posed by biological systems, rang-
ing from the dynamics of single molecules through am-
plification and adaptation in biochemical reaction net-
works, coding and computation in neural networks, all
the way to learning and cognition. For photon counting
some of these problems are solved, but even in this well
studied case many problems are open and ripe for new
theoretical and experimental work. The problem of pho-
ton counting also introduces us to methods and concepts
of much broader applicability. We begin by exploring
the phenomenology, aiming at the formulation of the key
physics problems. By the end of the Chapter I hope to
have formulated an approach to the exploration of bio-

logical systems more generally, and identified some of the
larger questions that will occupy us in Chapters to come.

A. Posing the problem

One of the fundamental features of quantum mechan-
ics is randomness. If we watch a single molecule and ask
if absorbs a photon, this is a random process, with some
probability per unit time related to the light intensity.
The emission of photons is also random, so that a typical
light source does not deliver a fixed number of photons.
Thus, when we look at a flash of light, the number of
photons that will be absorbed by the sensitive cells in
our retina is a random number, not because biology is
noisy but because of the physics governing the interac-
tion of light and matter. One way of testing whether
we can count single photons, then, is to see if we can
detect the signatures of this quantum randomness in our
perceptions. This line of reasoning came to fruition in ex-
periments by Hecht, Shlaer and Pirenne (in New York)
and by van der Velden (in the Netherlands) in the early
1940s. [Need to check what was done by Barnes & Cz-
erny, between Lorentz and 1940s]
What we think of classically as the intensity of a beam

of light is proportional to the mean number of photons
per second that arrive at some region where they can be
counted.7 For most conventional light sources, however,
the stream of photons is not regular, but completely ran-
dom. Thus, in any very small window of time dt, there is
a probability rdt that a photon will be counted, where r is
the mean counting rate or light intensity, and the events
in different time windows are independent of one another.
These are the defining characteristics of a “Poisson pro-
cess,” which is the maximally random sequence of point
events in time—if we think of the times at which photons
are counted as being like the positions of particles, then
the sequence of photon counts is like an ideal gas, with
no correlations or “interactions” among the particles at
different positions.
As explained in detail in Appendix A.1, if events occur

as a Poisson process with rate r, then if we count the
events over some time T , the mean number of counts will
be M = rT , but the probability that we actually obtain
a count of n will be given by the Poisson distribution,

P (n|M) = e−M Mn

n!
. (1)

In our case, the mean number of photons that will be
counted at the retina is proportional to the classical in-
tensity of the light flash, M = αI, where the constant

7 More precisely, we can measure the mean number of photons per
second per unit area.
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FIG. 1 Probability of seeing calculated from Eq. (2), where
the intnesity I is measured as the mean number of photons
incident on the cornea, so that α is dimensionless. Curves are
shown for different values of the threshold photon count K
and the scaling factor α. Note the distinct shapes for different
K, but when we change α at fixed K we just translate the
curve along the the log intensity axis, as shown by the red
dashed arrow.

α includes all the messy details of what happens to the
light on its way through the eyeball.8 Thus, when we
deliver the “same” flash of light again and again, the ac-
tual physical stimulus to the retina will fluctuate, and it
is plausible that our perceptions will fluctuate as well.

Let’s be a bit more precise about all of this. In the
simplest view, you would be willing to say “yes, I saw
the flash” once you had countedK photons. Equation (1)
tell us the probability of counting exactly n photons given
the mean, and the mean is connected to the intensity of
the flash by M = αI. Thus we predict that there is a
probability of seeing a flash of intensity I,

Psee(I) =
∞∑

n=K

P (n|M = αI) = e−αI
∞∑

n=K

(αI)n

n!
. (2)

So, if we sit in a dark room and watch as dim lights are
flashed, we expect that our perceptions will fluctuate—
sometimes we see the flash and sometimes we don’t—but
there will be an orderly dependence of the probability of
seeing on the intensity, given by Eq (2). Importantly, if

8 The units for light intensity are especially problematic. Today
we know that we should measure the number of photons arriv-
ing per second, per unit area, but many of the units were set
before this was understood. Also, if we have a broad spectrum
of wavelengths, we might want to weight the contributions from
different wavelengths not just by their contribution to the total
energy but by their contribution to the overall appearance of
brightness. Thus, some of the complications have honest origins.

we plot Psee vs. log I, as in Fig. 1, then the shape of the
curve depends crucially on the threshold photon count
K, but changing the unknown constant α just translates
the curve along the x–axis. So we have a chance to mea-
sure the thresholdK by looking at the shape of the curve;
more fundamentally we might say we are testing the hy-
pothesis that the probabilistic nature of our perceptions
is determined by the physics of photon counting.

Problem 1: Photon statistics, part one. There are two
reasons why the arrival of photons might be described by a Pois-
son process. The first is a very general “law of small numbers”
argument. Imagine a general point process in which events occur
at times {ti}, with some correlations among the events. Assume
that these correlations die away with some correlation time, so that
events i and j are independent if |ti−tj| " τc. Explain qualitatively
why, if we select events out of the original sequence at random, then
if we select a sufficiently small fraction of these events the result-
ing sparse sequence will be approximately Poisson. What is the
condition for the Poisson approximation to be a good one? What
does this have to do with why, for example, the light which reaches
us from an incandescent light bulb comes in a Poisson stream of
photons?

Problem 2: How many sources of randomness? As noted
above, the defining feature of a Poisson process is the independence
of events at different times, and typical light sources generate a
stream of photons whose arrival times approximate a Poisson pro-
cess. But when we count these photons, we don’t catch every one.
Show that if the photon arrivals are a Poisson process with rate
r, and we count a fraction f these, selected at random, then the
times at which events are counted will also be a Poisson process,
with rate fr. Why doesn’t the random selection of events to be
counted result in some “extra” variance beyond expectations for
the Poisson process?

Hecht, Shlaer and Pirenne did exactly the experiment
we are analyzing. Subjects (the three co–authors) sat in a
dark room, and reported whether they did or did not see
a dim flash of light. For each setting of the intensity, there
were many trials, and responses were variable, but the
subjects were forced to say yes or no, with no “maybe.”
Thus, it was possible to measure at each intensity the
probability that the subject would say yes, and this is
plotted in Fig 2.
The first nontrivial result of these experiments is that

human perception of dim light flashes really is probabilis-
tic. No matter how hard we try, there is a range of light
intensities in which our perceptions fluctuate from flash
to flash of the same intensity, seeing one and missing an-
other. Quantitatively, the plot of probability of seeing
vs log(intensity) is fit very well by the predictions from
the Poisson statistics of photon arrivals. In particular,
Hecht, Shlaer and Pirenne found a beautiful fit in the
range from K = 5 to K = 7; subjects of different age
had very different values for α (as must be true if light
transmission through the eye gets worse with age) but
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FIG. 2 Probability of seeing calculated from Eq. (2), with the
threshold photon count K = 6, compared with experimental
results from Hecht, Shlaer and Pirenne. For each observer we
can find the value of α that provides the best fit, and then
plot all the data on a common scale as shown here. Error bars
are computed on the assumption that each trial is indepen-
dent, which probably generates errors bars that are slightly
too small.

similar values of K. In Fig 2 I’ve shown all three ob-
servers’ data fit to K = 6, along with error bars (absent
in the original paper); although one could do better by
allowing each person to have a different value of K, it’s
not clear that this would be supported by the statistics.
The different values of α, however, are quite important.
Details aside, the frequency of seeing experiment

brings forward a beautiful idea: the probabilistic na-
ture of our perceptions just reflects the physics of ran-
dom photon arrivals. An absolutely crucial point is that
Hecht, Shlaer and Pirenne chose stimulus conditions such
that the 5 to 7 photons needed for seeing are distributed
across a broad area on the retina, an area that contains
hundreds of photoreceptor cells [perhaps this needs to
be clearer?] Thus the probability of one receptor (rod)
cell getting more than one photon is very small. The
experiments on human behavior therefore indicate that
individual photoreceptor cells generate reliable responses
to single photons. In fact, vision begins (as we discuss in
more detail soon) with the absorption of light by the vi-
sual pigment rhodopsin, and so sensitivity to single pho-
tons means that each cell is capable of responding to a
single molecular event. This is a wonderful example of us-
ing macroscopic experiments to draw conclusions about
single cells and their microscopic mechanisms.

Problem 3: Simulating a Poisson process. Much of what
we want to know about Poisson processes can be determined ana-
lytically (see Appendix A.1). Thus if we do simulations we know

what answer we should get (!). This provides us with an opportu-
nity to exercise our skills, even if we don’t get any new answers. In
particular, doing a simulation is never enough; you have to analyze
the results, just as you analyze the results of an experiment. Now
is as good a time as any to get started. If you are comfortable do-
ing everything in a programming language like C or Fortran, that’s
great. On the other hand, high–level languages such as MAT-
LAB or Mathematica have certain advantages. Here you should
use MATLAB to simulate a Poisson process, and then analyze the
results to be sure that you actually did what you expected to do.
[Before finalizing, check on the use of free version of MATLAB,
Octave.]

(a) MATLAB has a command rand that generates random num-
bers with a uniform distribution from 0 to 1. Consider a time
window of length T , and divide this window into many small bins
of size dt. In each bin you can use rand to generate a number
which you can compare with a threshold—if the random number
is above threshold you put an event in the bin, and you can adjust
the threshold to set the average number of events in the window.
You might choose T = 103 sec and arrange that the average rate
of the events is r̄ ∼ 10 per second; note that you should be able
to relate the threshold to the mean rate r̄ analytically. Notice that
this implements (in the limit dt → 0) the definition of the Poisson
process as independent point events.

(b) The next step is to check that the events you have made
really do obey Poisson statistics. Start by counting events in win-
dows of some size τ . What is the mean count? The variance? Do
you have enough data to fill in the whole probability distribution
Pτ (n) for counting n of events in the window? How do all of these
things change as you change τ? What if you go back and make
events with a different average rate? Do your numerical results
agree with the theoretical expressions? In answering this ques-
tion, you could try to generate sufficiently large data sets that the
agreement between theory and experiment is almost perfect, but
you could also make smaller data sets and ask if the agreement is
good within some estimated error bars; this will force you to think
about how to put error bars on a probability distribution. [Do we
need to have some more about error bars somewhere in the text?]
You should also make a histogram (hist should help) of the times
between successive events; this should be an exponential function,
and you should work to get this into a form where it is a properly
normalized probability density. Relate the mean rate of the events
to the shape of this distribution, and check this in your data.

(c) Instead of deciding within each bin about the presence or ab-
sence of an event, use the command rand to choose N random times
in the big window T . Examine as before the statistics of counts
in windows of size τ % T . Do you still have an approximately
Poisson process? Why? Do you see connections to the statistical
mechanics of ideal gases and the equivalence of ensembles?

Problem 4: Photon statistics, part two. The other reason
why we might find photon arrivals to be a Poisson process comes
from a very specific quantum mechanical argument about coherent
states. This argument may be familiar from your quantum me-
chanics courses, but this is a good time to review. If you are not
familiar with the description of the harmonic oscillator in terms
of raising and lowering or creation and annihilation operators, try
the next problem, which derives many of the same conclusions by
making explicit use of wave functions.

(a.) We recall that modes of the electromagnetic field (in a free
space, in a cavity, or in a laser) are described by harmonic oscilla-
tors. The Hamiltonian of a harmonic oscillator with frequency ω
can be written as

H = !ω(a†a+ 1/2), (3)

where a† and a are the creation and annihilation operators that
connect states with different numbers of quanta,

a†|n〉 =
√
n+ 1|n+ 1〉, (4)

a|n〉 =
√
n|n− 1〉. (5)

There is a special family of states called coherent states, defined as
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eigenstates of the annihilation operator,

a|α〉 = α|α〉. (6)

If we write the coherent state as a superposition of states with
different numbers of quanta,

|α〉 =
∞∑

n=0

ψn|n〉, (7)

then you can use the defining Eq (6) to give a recursion relation
for the ψn. Solve this, and show that the probability of counting
n quanta in this state is given by the Poisson distribution, that is

Pα(n) ≡
∣∣∣∣〈n|α〉

∣∣∣∣
2

= |ψn|2 = e−M Mn

n!
, (8)

where the mean number of quanta is M = |α|2.
(b.) The specialness of the coherent states relates to their dy-

namics and to their representation in position space. For the dy-
namics, recall that any quantum mechanical state |φ〉 evolves in
time according to

i!d|φ〉
dt

= H|φ〉. (9)

Show that if the system starts in a coherent state |α(0)〉 at time
t = 0, it remains in a coherent state for all time. Find α(t).

(c.) If we go back to the mechanical realization of the harmonic
oscillator as a mass m hanging from a spring, the Hamiltonian is

H =
1

2m
p2 +

mω2

2
q2, (10)

where p and q are the momentum and position of the mass. Remind
yourself of the relationship between the creation and annihilation
operators and the position and momentum operators (q̂, p̂).. In
position space, the ground state is a Gaussian wave function,

〈q|0〉 =
1

(2πσ2)1/4
exp

(
−

q2

4σ2

)
, (11)

where the variance of the zero point motion σ2 = !/(4mω). The
ground state is also a “minimum uncertainty wave packet,” so
called because the variance of position and the variance of mo-
mentum have a product that is the minimum value allowed by the
uncertainty principle; show that this is true. Consider the state
|ψ(q0)〉 obtained by displacing the ground state to a position q0,

|ψ(q0)〉 = eiq0p̂|0〉. (12)

Show that this is a minimum uncertainty wave packet, and also a
coherent state. Find the relationship between the coherent state
parameter α and the displacement q0.

(d.) Put all of these steps together to show that the coherent
state is a minimum uncertainty wave packet with expected values
of the position and momentum that follow the classical equations
of motion.

Problem 5: Photon statistics, part two, with wave func-
tions. Work out a problem that gives the essence of the above using
wave functions, without referring to a and a†.

There is a very important point in the background of
this discussion. By placing results from all three ob-
servers on the same plot, and fitting with the same value
of K, we are claiming that there is something repro-
ducible, from individual to individual, about our per-
ceptions. On the other hand, the fact that each observer
has a different value for α means that there are individ-
ual differences, even in this simplest of tasks. Happily,
what seems to be reproducible is something that feels

like a fundamental property of the system, the number
of photons we need to count in order to be sure that we
saw something. But suppose that we just plot the prob-
ability of seeing vs the (raw) intensity of the light flash.
If we average across individuals with different αs, we will
obtain a result which does not correspond to the theory,
and this failure might even lead us to believe that the
visual system does not count single photons. This shows
us that (a) finding what is reproducible can be difficult,
and (b) averaging across an ensemble of individuals can
be qualitativelymisleading. Here we see these conclusions
in the context of human behavior, but it seems likely that
similar issues arise in the behavior of single cells. The dif-
ference is that techniques for monitoring the behavior of
single cells (e.g., bacteria), as opposed to averages over
populations of cells, have emerged much more recently.
As an example, it still is almost impossible to monitor,
in real time, the metabolism of single cells, whereas si-
multaneous measurements on many metabolic reactions,
averaged over populations of cells, have become common.
We still have much to learn from these older experiments!

Problem 6: Averaging over observers. Go back to the
original paper by Hecht, Shlaer and Pirenne9 and use their data to
plot, vs. the intensity of the light flash, the probability of seeing
averaged over all three observers. Does this look anything like what
you find for individual observers? Can you simulate this effect, say
in a larger population of subjects, by assuming that the factor α is
drawn from a distribution? Explore this a bit, and see how badly
misled you could be. This is not too complicated, I hope, but
deliberately open ended.

Before moving on, a few more remarks about the his-
tory. [I have some concern that this is a bit colloquial,
and maybe more like notes to add to the references than
substance for the text. Feedback is welcome here.] It’s
worth noting that van der Velden’s seminal paper was
published in Dutch, a reminder of a time when anglo-
phone cultural hegemony was not yet complete. Also
(maybe more relevant for us), it was published in a
physics journal. The physics community in the Nether-
lands during this period had a very active interest in
problems of noise, and van der Velden’s work was in this
tradition. In contrast, Hecht was a distinguished con-
tributor to understanding vision but had worked within
a “photochemical” view which he would soon abandon as
inconsistent with the detectability of single photons and
hence single molecules of activated rhodopsin. Parallel

9 As will be true throughout the text, references are found at the
end of the section.
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FIG. 3 (a) A single rod photoreceptor cell from a toad, in a
suction pipette. Viewing is with infrared light, and the bright
bar is a stimulus of 500 nm light. (b) Equivalent electrical
circuit for recording the current across the cell membrane [re-
ally needs to be redrawn, with labels!]. (c) Mean current
in response to light flashes of varying intensity. Smallest re-
sponse is to flashes that deliver a mean ∼ 4 photons, succes-
sive flashes are brighter by factors of 4. (d) Current responses
to repeated dim light flashes at times indicated by the tick
marks. Note the apparently distinct classes of responses to
zero, one or two photons. From Rieke & Baylor (1998).

to this work, Rose and de Vries (independently) empha-
sized that noise due to the random arrival of photons at
the retina also would limit the reliability of perception
at intensities well above the point where things become
barely visible. In particular, de Vries saw these issues as
part of the larger problem of understanding the physical
limits to biological function, and I think his perspective
on the interaction of physics and biology was far ahead
of its time.

It took many years before anyone could measure di-
rectly the responses of photoreceptors to single photons.
It was done first in the (invertebrate) horseshoe crab [be
sure to add refs to Fuortes & Yeandle; maybe show a fig-
ure?], and eventually by Baylor and coworkers in toads
and then in monkeys. The complication in the lower ver-
tebrate systems is that the cells are coupled together, so
that the retina can do something like adjusting the size
of pixels as a function of light intensity. This means that
the nice big current generated by one cell is spread as a
small voltage in many cells, so the usual method of mea-
suring the voltage across the membrane of one cell won’t
work; you have to suck the cell into a pipette and collect
the current, as seen in Fig 3.

Problem 7: Gigaseals. As we will see, the currents that
are relevant in biological systems are on the order of picoAmps.

Although the response of rods to single photons is slow, many pro-
cesses in the nervous system occur on the millisecond times scale.
Show that if we want to resolve picoAmps in milliseconds, then the
leakage resistance (e.g. between rod cell membrane and the pipette
in Fig 3) must be ∼ 109 ohm, to prevent the signal being lost in
Johnson noise.

In complete darkness, there is a ‘standing current’ of
roughly 20 pA flowing through the membrane of the rod
cell’s outer segment. You should keep in mind that cur-
rents in biological systems are carried not by electrons or
holes, as in solids, but by ions moving through water; we
will learn more about this below [be sure we do!]. In the
rod cell, the standing current is carried largely by sodium
ions, although there are contributions from other ions as
well. This is a hint that the channels in the membrane
that allow the ions to pass are not especially selective for
one ion over the other. The current which flows across
the membrane of course has to go somewhere, and in fact
the circuit is completed within the rod cell itself, so that
what flows across the outer segment of the cell is com-
pensated by flow across the inner segment [improve the
figures to show this clearly]. When the rod cell is ex-
posed to light, the standing current is reduced, and with
sufficiently bright flashes it is turned off all together.
As in any circuit, current flow generates changes in

the voltage across the cell membrane. Near the bottom
of the cell [should point to better schematic, one figure
with everything we need for this paragraph] there are
special channels that allow calcium ions to flow into the
cell in response to these voltage changes, and calcium
in turn triggers the fusion of vesicles with the cell mem-
brane. These vesicles are filled with a small molecule, a
neurotransmitter, which can then diffuse across a small
cleft and bind to receptors on the surface of neighbor-
ing cells; these receptors then respond (in the simplest
case) by opening channels in the membrane of this sec-
ond cell, allowing currents to flow. In this way, currents
and voltages in one cell are converted, via a chemical in-
termediate, into currents and voltages in the next cell,
and so on through the nervous system. The place where
two cells connect in this way is called a synapse, and in
the retina the rod cells form synapses onto a class of cells
called bipolar cells. More about this later, but for now
you should keep in mind that the electrical signal we are
looking at in the rod cell is the first in a sequence of elec-
trical signals that ultimately are transmitted along the
cells in the optic nerve, connecting the eye to the brain
and hence providing the input for visual perception.
Very dim flashes of light seem to produce a quantized

reduction in the standing current, and the magnitude
of these current pulses is roughly 1 pA, as seen in Fig
3. When we look closely at the standing current, we
see that it is fluctuating, so that there is a continuous
background noise of ∼ 0.1 pA, so the quantal events are
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FIG. 4 A closer look at the currents in toad rods. At left,
five instances in which the rod is exposed to a dim flash at
t = 0. It looks as if two of these flashes delivered two photons
(peak current ∼ 2 pA), one delivered one photon (peak cur-
rent ∼ 1 pA), and two delivered zero. The top panel shows the
raw current traces, and the bottom panel shows what happens
when we smooth with a 100ms window to remove some of the
high frequency noise. At right, the distribution of smoothed
currents at the moment tpeak when the average current peaks;
the data (circles) are accumulated from 350 flashes in one cell,
and the error bars indicate standard errors of the mean due
to this finite sample size. Solid green line is the fit to Eq
(19), composed of contributions from n = 0, n = 1, · · · pho-
ton events, shown red. Dashed blue lines divide the range of
observed currents into the most likely assignments to different
photon counts. These data are from unpublished experiments
by FM Rieke at the University of Washington; many thanks
to Fred for providing the data in raw form.

easily detected. It takes a bit of work to convince your-
self that these events really are the responses to single
photons. Perhaps the most direct experiment is to mea-
sure the cross–section for generating the quantal events,
and compare this with the absorption cross–section of the
rod, showing that a little more than 2/3 of the photons
which are absorbed produce current pulses. In response
to steady dim light, we can observe a continuous stream
of pulses, the rate of the pulses is proportional to the
light intensity, and the intervals between pulses are dis-
tributed exponentially, as expected if they represent the
responses to single photons (cf Section A.1).

Problem 8: Are they really single photon responses?
Work out a problem to ask what aspects of experiments in Fig
4 are the smoking gun. In particular, if one pulse were from the
coincidence of two photons, how would the distribution of peak
heights shift with changing flash intensity?

When you look at the currents flowing across the rod
cell membrane, the statement that single photon events

are detectable above background noise seems pretty ob-
vious, but it would be good to be careful about what we
mean here. In Fig 4 we take a closer look at the currents
flowing in response to dim flashes of light. These data
were recorded with a very high bandwidth, so you can see
a lot of high frequency noise. Nonetheless, in these five
flashes, it’s pretty clear that twice the cell counted zero
photons, once it counted one photon (for a peak current
∼ 1 pA) and twice it counted two photons; this becomes
even clearer if we smooth the data to get rid of some of
the noise. Still, these are anecdotes, and one would like
to be more quantitative.
Even in the absence of light there are fluctuations in

the current, and for simplicity let’s imagine that this
background noise is Gaussian with some variance σ2

0 . The
simplest way to decide whether we saw something is to
look at the rod current at one moment in time, say at
t = tpeak ∼ 2 s after the flash, where on average the cur-
rent is at its peak. Then given that no photons were
counted, this current i should be drawn out of the prob-
ability distribution

P (i|n = 0) =
1√
2πσ2

0

exp

[
− i2

2σ2
0

]
. (13)

If one photon is counted, then there should be a mean
current 〈i〉 = i1, but there is still some noise. Plausibly
the noise has two pieces—first, the background noise still
is present, with its variance σ2

0 , and in addition the am-
plitude of the single photon response itself can fluctuate;
we assume that these fluctuations are also Gaussian and
independent of the background, so they just add σ2

1 to
the variance. Thus we expect that, in response to one
photon, the current will be drawn from the distribution

P (i|n = 1) =
1√

2π(σ2
0 + σ2

1)
exp

[
− (i− i1)2

2(σ2
0 + σ2

1)

]
. (14)

If each single photon event is independent of the others,
then we can generalize this to get the distribution of cur-
rents expected in response of n = 2 photons, [need to
explain additions of variances for multiphoton responses]

P (i|n = 2) =
1√

2π(σ2
0 + 2σ2

1)
exp

[
− (i− 2i1)2

2(σ2
0 + 2σ2

1)

]
,

(15)
and more generally n photons,

P (i|n) = 1√
2π(σ2

0 + nσ2
1)

exp

[
− (i− ni1)2

2(σ2
0 + nσ2

1)

]
. (16)

Finally, since we know that the photon count n should
be drawn out of the Poisson distribution, we can write
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the expected distribution of currents as

P (i) =
∞∑

n=0

P (i|n)P (n) (17)

=
∞∑

n=0

P (i|n)e−n̄ n̄
n

n!
(18)

=
∞∑

n=0

n̄n

n!

e−n̄

√
2π(σ2

0 + nσ2
1)

exp

[
− (i− ni1)2

2(σ2
0 + nσ2

1)

]
.(19)

In Fig 4, we see that this really gives a very good descrip-
tion of the distribution that we observe when we sample
the currents in response to a large number of flashes.

Problem 9: Exploring the sampling problem. The data
that we see in Fig 4 are not a perfect fit to our model. On the other
hand, there are only 350 samples that we are using to estimate
the shape of the underlying probability distribution. This is an
example of a problem that you will meet many times in comparing
theory and experiment; perhaps you have some experience from
physics lab courses which is relevant here. We will return to these
issues of sampling and fitting nearer the end of the course, when
we have some more powerful mathematical tools, but for now let
me encourage you to play a bit. Use the model that leads to Eq
(19) to generate samples of the peak current, and then use these
samples to estimate the probability distribution. For simplicity,
assume that i1 = 1, σ0 = 0.1, σ1 = 0.2, and n̄ = 1. Notice that
since the current is continuous, you have to make bins along the
current axis; smaller bins reveal more structure, but also generate
noisier results because the number of counts in each bin is smaller.
As you experiment with different size bins and different numbers
of samples, try to develop some feeling for whether the agreement
between theory and experiment in Fig 4 really is convincing.

Seeing this distribution, and especially seeing analyti-
cally how it is constructed, it is tempting to draw lines
along the current axis in the ‘troughs’ of the distribution,
and say that (for example) when we observe a current of
less then 0.5 pA, this reflects zero photons. Is this the
right way for us—or for the toad’s brain—to interpret
these data? To be precise, suppose that we want to set a
threshold for deciding between n = 0 and n = 1 photon.
Where should we put this threshold to be sure that we
get the right answer as often as possible?
Suppose we set our threshold at some current i = θ.

If there really were zero photons absorbed, then if by
chance i > θ we will incorrectly say that there was one
photon. This error has a probability

P (say n = 1|n = 0) =

∫ ∞

θ
di P (i|n = 0). (20)

On the other hand, if there really was one photon, but
by chance the current was less than the threshold, then
we’ll say 0 when we should have said 1, and this has a
probability

P (say n = 0|n = 1) =

∫ θ

−∞
di P (i|n = 1). (21)

There could be errors in which we confuse two photons
for zero photons, but looking at Fig 4 it seems that these
higher order errors are negligible. So then the total prob-
ability of making a mistake in the n = 0 vs. n = 1
decision is

Perror(θ) = P (say n = 1|n = 0)P (n = 0) + P (say n = 0|n = 1)P (n = 1) (22)

= P (n = 0)

∫ ∞

θ
di P (i|n = 0) + P (n = 1)

∫ θ

−∞
di P (i|n = 1). (23)

We can minimize the probability of error in the usual way by taking the derivative and setting the result to zero at
the optimal setting of the threshold, θ = θ∗:

dPerror(θ)

dθ
= P (n = 0)

d

dθ

∫ ∞

θ
di P (i|n = 0) + P (n = 1)

d

dθ

∫ θ

−∞
di P (i|n = 1) (24)

= P (n = 0)(−1)P (i = θ|n = 0) + P (n = 1)P (i = θ|n = 1); (25)

dPerror(θ)

dθ

∣∣∣∣∣
θ=θ∗

= 0 ⇒ P (i = θ∗|n = 0)P (n = 0) = P (i = θ∗|n = 1)P (n = 1). (26)

This result has a simple interpretation. Given that we
have observed some current i, we can calculate the prob-
ability that n photons were detected using Bayes’ rule for

conditional probabilities:

P (n|i) = P (i|n)P (n)

P (i)
. (27)
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The combination P (i|n = 0)P (n = 0) thus is propor-
tional to the probability that the observed current i was
generated by counting n = 0 photons, and similarly the
combination P (i|n = 1)P (n = 1) is proportional to the
probability that the observed current was generated by
counting n = 1 photons. The optimal setting of the
threshold, from Eq (26), is when these two probabilities
are equal. Another way to say this is that for each observ-
able current i we should compute the probability P (n|i),
and then our “best guess” about the photon count n is
the one which maximizes this probability. This guess is
best in the sense that it minimizes the total probability
of errors. This is how we draw the boundaries shown
by dashed lines in Fig 4 [Check details! Also introduce
names for these things—maximum likelihood, maximum
a posterioi probability, ... . This is also a place to antici-
pate the role of prior expectations in setting thresholds!]

Problem 10: More careful discrimination. You observe
some variable x (e.g., the current flowing across the rod cell
membrane) that is chosen either from the probability distribution
P (x|+) or from the distribution P (x|−). Your task is to look at
a particular x and decide whether it came from the + or the −
distribution. Rather than just setting a threshold, as in the dis-
cussion above, suppose that when you see x you assign it to the +
distribution with a probability p(x). You might think this is a good
idea since, if you’re not completely sure of the right answer, you
can hedge your bets by a little bit of random guessing. Express the
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FIG. 5 Schematic of discrimination in the presence of noise.
We have two possible signals, A and B, and we measure some-
thing, for example the current flowing across a cell membrane.
Given either A or B, the current fluctuates. As explained in
the text, the overall probability of confusing A with B is min-
imized if we draw a threshold at the point where the proba-
bility distributions cross, and identify all currents larger than
this threshold as being B, all currents smaller than threshold
as being A. Because the distributions overlap, it is not pos-
sible to avoid errors, and the area of the red shaded region
counts the probability that we will misidentify A as B.

probability of a correct answer in terms of p(x); this is a functional
Pcorrect[p(x)]. Now solve the optimization problem for the function
p(x), maximizing Pcorrect. Show that the solution is deterministic
[p(x) = 1 or p(x) = 0], so that if the goal is to be correct as often
as possible you shouldn’t hesitate to make a crisp assignment even
at values of x where you aren’t sure (!). Hint: Usually, you would
try to maximize the Pcorrect by solving the variational equation
δPcorrect/δp(x) = 0. You should find that, in this case, this ap-
proach doesn’t work. What does this mean? Remember that p(x)
is a probability, and hence can’t take on arbitrary values.

Once we have found the decision rules that minimize
the probability of error, we can ask about the error prob-
ability itself. As schematized in Fig 5, we can calculate
this by integrating the relevant probability distributions
on the ‘wrong sides’ of the threshold. For Fig 4, this
error probability is less than three percent. Thus, un-
der these conditions, we can look at the current flowing
across the rod cell membrane and decide whether we saw
n = 0, 1, 2 · · · photons with a precision such that we are
wrong only on a few flashes out of one hundred. In fact,
we might even be able to do better if instead of looking at
the current at one moment in time we look at the whole
trajectory of current vs. time, but to do this analysis we
need a few more mathematical tools. Even without such
a more sophisticated analysis, it’s clear that these cells
really are acting as near perfect photon counters, at least
over some range of conditions.

Problem 11: Asymptotic error probabilities. Should add
a problem deriving the asymptotic probabilities of errors at high
signal–to–noise ratios, including effects of prior probability.

A slight problem in our simple identification of the
probability of seeing with the probability of counting K
photons is that van der Velden found a threshold photon
count of K = 2, which is completely inconsistent with
the K = 5− 7 found by Hecht, Shlaer and Pirenne. Bar-
low explained this discrepancy by noting that even when
counting single photons we may have to discriminate (as
in photomultipliers) against a background of dark noise.
Hecht, Shlaer and Pirenne inserted blanks in their ex-

periments to be sure that you almost never say “I saw
it” when nothing is there, which means you have to set
a high threshold to discriminate against any background
noise. On the other hand, van der Velden was willing
to allow for some false positive responses, so his subjects
could afford to set a lower threshold. Qualitatively, as
shown in Fig 6, this makes sense, but to be a quantita-
tive explanation the noise has to be at the right level.
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FIG. 6 Trading of errors in the presence of noise. We observe
some quantity that fluctuates even in the absence of a sig-
nal. When we add the signal these fluctuations continue, but
the overall distribution of the observable is shifted. If set a
threshold, declaring the signal is present whenever the thresh-
old is exceeded, then we can trade between the two kinds of
errors. At low thresholds, we never miss a signal, but there
will be many false alarms. At high thresholds, there are few
false alarms, but we miss most of the signals too. At some in-
termediate setting of the threshold, the total number of errors
will be minimized.

One of the key ideas in the analysis of signals and noise
is “referring noise to the input,” and we will meet this
concept many times in what follows [more specific point-
ers]. Imagine that we have a system to measure some-
thing (here, the intensity of light, but it could be any-
thing), and it has a very small amount of noise somewhere
along the path from input to output. In many systems
we will also find, along the path from input to output,
an amplifier that makes all of the signals larger. But the
amplifier doesn’t “know” which of its inputs are signal
and which are noise, so everything is amplified. Thus, a
small noise near the input can become a large noise near
the output, but the size of this noise at the output does
not, by itself, tell us how hard it will be to detect signals
at the input. What we can do is to imagine that the
whole system is noiseless, and that any noise we see at
the output really was injected at the input, and thus fol-
lowed exactly the same path as the signals we are trying
to detect. Then we can ask how big this effective input
noise needs to be in order to account for the output noise.

If the qualitative picture of Fig 6 is correct, then the
minimum number of photons that we need in order to
say “I saw it” should be reduced if we allow the observer
the option of saying “I’m pretty sure I saw it,” in effect
taking control over the trade between misses and false
alarms. Barlow showed that this worked, quantitatively.

In the case of counting photons, we can think of the
effective input noise as being nothing more than extra

“dark” photons, also drawn from a Poisson distribution.
Thus if in the relevant window of time for detecting the
light flash there are an average of 10 dark photons, for
example, then because the variance of the Poisson distri-
bution is equal to the mean, there will be fluctuations on
the scale of

√
10 counts. To be very sure that we have

seen something, we need an extra K real photons, with
K '

√
10. Barlow’s argument was that we could un-

derstand the need for K ∼ 6 in the Hecht, Shaler and
Pirenne experiments if indeed there were a noise source
in the visual system that was equivalent to counting an
extra ten photons over the window in time and area of
the retina that was being stimulated. What could this
noise be?
In the frequency of seeing experiments, as noted above,

the flash of light illuminated roughly 500 receptor cells
on the retina, and subsequent experiments showed that
one could find essentially the same threshold number
of photons when the flash covered many thousands of
cells. Furthermore, experiments with different durations
for the flash show that human observers are integrat-
ing over ∼ 0.1 s in order to make their decisions about
whether they saw something. Thus, the “dark noise”
in the system seems to equivalent, roughly, to 0.1 photon
per receptor cell per second, or less. To place this number
in perspective, it is important to note that vision begins
when the pigment molecule rhodopsin absorbs light and
changes its structure to trigger some sequence of events
in the receptor cell. We will learn much more about the
dynamics of rhodopsin and the cascade of events respon-
sible for converting this molecular event into electrical
signals that can be transmitted to the brain, but for now
we should note that if rhodopsin can change its struc-
ture by absorbing a photon, there must also be some
(small) probability that this same structural change or
“isomerization” will happen as the result of a thermal
fluctuation. If this does happen, then it will trigger a
response that is identical to that triggered by a real pho-
ton. Further, such rare, thermally activated events really
are Poisson processes (see Section II.A), so that ther-
mal activation of rhodopsin would contribute exactly a
“dark light” of the sort we have been trying to estimate
as a background noise in the visual system. But there
are roughly one billion rhodopsin molecules per receptor
cell, so that a dark noise of ∼ 0.1 per second per cell
corresponds to a rate of once per ∼ 1000 years for the
spontaneous isomerization of rhodopsin.
One of the key points here is that Barlow’s explanation

works only if people actually can adjust the “threshold”
K in response to different situations. The realization
that this is possible was part of the more general recog-
nition that detecting a sensory signal does not involve
a true threshold between (for example) seeing and not
seeing. Instead, all sensory tasks involve a discrimina-
tion between signal and noise, and hence there are dif-
ferent strategies which provide different ways of trading
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off among the different kinds of errors. Notice that this
picture matches what we know from the physics lab.

Problem 12: Simple analysis of dark noise. Suppose that
we observe events drawn out of a Poisson distribution, and we can
count these events perfectly. Assume that the mean number of
events has two contributions, n̄ = n̄dark + n̄flash, where n̄flash = 0
if there is no light flash and n̄flash = N if there is a flash. As an ob-
server, you have the right to set a criterion, so that you declare the
flash to be present only if you count n ≥ K events. As you change
K, you change the errors that you make—when K is small you of-
ten say you saw something when nothing was there, but of hardly
ever miss a real flash, while at large K the situation is reversed.
The conventional way of describing this is to plot the fraction of
“hits” (probability that you correctly identify a real flash) against
the probability of a false alarm (i.e., the probability that you say
a flash is present when it isn’t), with the criterion changing along
the curve. Plot this “receiver operating characteristic” for the case
n̄dark = 10 and N = 10. Hold n̄dark fixed and change N to see how
the curvse changes. Explain which slice through this set of curves
was measured by Hecht et al, and the relationship of this analysis
to what we saw in Fig 2.

There are classic experiments to show that people will
adjust their thresholds automatically when we change
the a priori probabilities of the signal being present, as
expected for optimal performance. This can be done
without any explicit instructions—you don’t have to tell
someone that you are changing the probabilities—and it
works in all sensory modalities, not just vision. At least
implicitly, then, people learn something about probabil-
ities and adjust their criteria appropriately. Threshold
adjustments also can be driven by changing the rewards
for correct answers or the penalties for wrong answers.
In this view, it is likely that Hecht et al. drove their
observers to high thresholds by having a large effective
penalty for false positive detections. Although it’s not
a huge literature, people have since manipulated these
penalties and rewards in frequency of seeing experiments,
with the expected results. Perhaps more dramatically,
modern quantum optics techniques have been used to
manipulate the statistics of photon arrivals at the retina,
so that the tradeoffs among the different kinds of errors
are changed ... again with the expected results.10

Not only did Baylor and coworkers detect the single
photon responses from toad photoreceptor cells, they also
found that single receptor cells in the dark show spon-
taneous photon–like events roughly at the right rate to
be the source of dark noise identified by Barlow. If you

10 It is perhaps too much to go through all of these results here,
beautiful as they are. To explore, see the references at the end
of the section.
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FIG. 7 [fill in the caption] From Aho et al (1988).

look closely you can find one of these spontaneous events
in the earlier illustration of the rod cell responses to dim
flashes, Fig 3. Just to be clear, Barlow identified a max-
imum dark noise level; anything higher and the observed
reliable detection is impossible. The fact that the real
rod cells have essentially this level of dark noise means
that the visual system is operating near the limits of re-
liability set by thermal noise in the input. It would be
nice to give a more direct test of this idea.
In the lab we often lower the noise level of photode-

tectors by cooling them. This should work in vision too,
since one can verify that the rate of spontaneous photon–
like events in the rod cell current is strongly tempera-
ture dependent, increasing by a factor of roughly four
for every ten degree increase in temperature. Changing
temperature isn’t so easy in humans, but it does work
with cold blooded animals like frogs and toads. To set
the stage, it is worth noting that one species of toad in
particular (Bufo bufo) manages to catch its prey under
conditions so dark that human observers cannot see the
toad, much less the prey [add the reference!]. So, Aho et
al. convinced toads to strike with their tongues at small
worm–like objects illuminated by very dim lights, and
measured how the threshold for reliable striking varied
with temperature, as shown in Fig 7. Because one can
actually make measurements on the retina itself, it is
possible to calibrate light intensities as the rate at which
rhodopsin molecules are absorbing photons and isomer-
izing, and the toad’s responses are almost deterministic
once this rate is r ∼ 10−11 s−1 in experiments at 15 ◦C,
and responses are detectable at intensities a factor of
three to five below this. For comparison, the rate of ther-
mal isomerizations at this temperature is ∼ 5×10−12 s−1.
If the dark noise consists of rhodopsin molecules spon-

taneously isomerizing at a rate rd, then the mean number
of dark events will be nd = rdTNrNc, where T ∼ 1 s is the
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relevant integration time for the decision, Nr ∼ 3×109 is
the number of rhodopsin molecules per cell in this retina,
and Nc ∼ 4, 500 is the number of receptor cells that are
illuminated by the image of the worm–like object. Sim-
ilarly, the mean number of real events is n = rTNrNc,
and reliable detection requires n >

√
nd, or

r >

√
rd

TNrNc
∼ 6× 10−13 s−1. (28)

Thus, if the toad knows exactly which part of the retina
it should be looking at, then it should reach a signal–
to–noise ratio of one at light intensities a factor of ten
below the nominal dark noise level. But there is no way
to be sure where to look before the target appears, and
the toad probably needs a rather higher signal–to–noise
ratio before it is willing to strike. Thus it is plausible that
the threshold light intensities in this experiment should
be comparable to the dark noise level, as observed.

One can do an experiment very similar to the one with
toads using human subjects (who say yes or no, rather
than sticking out their tongues), asking for a response to
small targets illuminated by steady, dim lights. Frogs will
spontaneously jump at dimly illuminated patch of the
ceiling, in an attempt to escape from an otherwise dark
box. Combining theses experiments, with the frogs held
at temperatures from 10 to 20 ◦C, one can span a range of
almost two orders of magnitude in the thermal isomeriza-
tion rate of rhodopsin. It’s not clear whether individual
organisms hold their integration times T fixed as temper-
ature is varied, or if the experiments on different organ-
isms correspond to asking for integration over a similar
total number of rhodopsin molecules (NrNc). Nonethe-
less, it satisfying to see, in Fig 8, that the “threshold”
light intensity, where response occur 50% of the time, is
varying systematically with the dark noise level. It is cer-
tainly true that operating at lower temperatures allows

the detection of dimmer lights, or equivalently more reli-
able detection of the same light intensity,11 as expected if
the dominant noise source was thermal in origin. These
experiments support the hypothesis that visual process-
ing in dim lights really is limited by input noise and not
by any inefficiencies of the brain.

Problem 13: Getting a feel for the brain’s problem. Let’s
go back to Problem 3, where you simulated a Poisson process.

(a) If you use the strategy of making small bins ∆τ and testing
a random number in each bin against a threshold, then it should
be no problem to generalize this to the case where the threshold is
different at different times, so you are simulating a Poisson process
in which the rate is varying as a function of time. As an example,
consider a two second interval in which the counting rate has some
background (like the dark noise in rods) value rdark except in a
100 msec window where the rate is higher, say r = rdark + rsignal.
Remember that for one rod cell, rdark is∼ 0.02 sec−1, while humans
can see flashes which have rsignal ∼ 0.01 sec−1 if they can integrate
over 1000 rods. Try to simulate events in this parameter range and
actually look at examples, perhaps plotted with x’s to show you
where the events occur on a single trial.

(b) Can you tell the difference between a trial where you have
rsignal = 0.01 sec−1 and one in which rsignal = 0? Does it matter
whether you know when to expect the extra events? In effect these
plots give a picture of the problem that the brain has to solve in
the Hecht–Shaler–Pirenne experiment, or at least an approximate
picture.

(c) Sitting in a dark room to repeat the HSP experiment would
take a long time, but maybe you can go from your simulations here
to design a psychophysical experiment simple enough that you can
do it on one another. Can you measure the reliability of discrimi-
nation between the different patterns of x’s that correspond to the
signal being present or absent? Do you see an effect of “know-
ing when to look”? Do people seem to get better with practice?
Can you calculate the theoretical limit to how well one can do this
task? Do people get anywhere near this limit? This is an open
ended problem.

Problem 14: A better analysis? Go back to the original pa-
per by Aho et (1988) and see if you can give a more compelling com-
parison between thresholds and spontaneous isomerization rates.
From Eq (28), we expect that the light intensity required for some
criterion level of reliability scales as the square root of the dark
noise level, but also depends on the total number of rhodospin
molecules over which the subject must integrate. Can you esti-
mate this quantity for the experiments on frogs and humans? Does
this lead to an improved version of Fig 8? Again, this is an open
ended problem.

The dominant role of spontaneous isomerization as a
source of dark noise leads to a wonderfully counterin-
tuitive result, namely that the photoreceptor which is

11 The sign of this prediction is important. If we were looking for
more reliable behaviors at higher temperatures, there could be
many reasons for this, such as quicker responses of the muscles.
Instead, the prediction is that we should see more reliable be-
havior as you cool down—all the way down to the temperature
where behavior stops—and this is what is observed.
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designed to maximize the signal–to–noise ratio for de-
tection of dim lights will allow a significant number of
photons to pass by undetected. Consider a rod photore-
ceptor cell of length &, with concentration C of rhodopsin;
let the absorption cross section of rhodopsin be σ. [Do
I need to explain the definition of cross sections, and/or
the derivation of Beer’s law?] As a photon passes along
the length of rod, the probability that it will be absorbed
(and, presumably, counted) is p = 1 − exp(−Cσ&), sug-
gesting that we should make C or & larger in order to
capture more of the photons. But, as we increase C or
&, we are increasing the number of rhodopsin molecules,
Nrh = CA&, with A the area of the cell, so we we also
increase the rate of dark noise events, which occurs at a
rate rdark per molecule.

If we integrate over a time τ , we will see a mean num-
ber of dark events (spontaneous isomerizations) n̄dark =
rdarkτNrh. The actual number will fluctuate, with a stan-
dard deviation δn =

√
n̄dark. On the other hand, if

nflash photons are incident on the cell, the mean number
counted will be n̄count = nflashp. Putting these factors
together we can define a signal–to–noise ratio

SNR ≡ n̄count

δn
= nflash

[1− exp(−Cσ&)]√
CA&rdarkτ

. (29)

The absorption cross section σ and the spontaneous iso-
merization rate rdark are properties of the rhodopsin
molecule, but as the rod cell assembles itself, it can adjust
both its length & and the concentration C of rhodopsin;
in fact these enter together, as the product C&. When
C& is larger, photons are captured more efficiently and
this leads to an increase in the numerator, but there also
are more rhodopsin molecules and hence more dark noise,
which leads to an increase in the denominator. Viewed
as a function of C&, the signal–to–noise ratio has a max-
imum at which these competing effects balance; working
out the numbers one finds that the maximum is reached
when C& ∼ 1.26/σ, and we note that all the other param-
eters have dropped out. In particular, this means that
the probability of an incident photon not being absorbed
is 1 − p = exp(−Cσ&) ∼ e−1.26 ∼ 0.28. Thus, to maxi-
mize the signal–to–noise ratio for detecting dim flashes of
light, nearly 30% of photons should pass through the rod
without being absorbed (!). Say something about how
this compares with experiment!

Problem 15: Escape from the tradeoff. Derive for yourself
the numerical factor (C))opt ∼ 1.26/σ. Can you see any way to
design an eye which gets around this tradeoff between more efficient
counting and extra dark noise? Hint: Think about what you see
looking into a cat’s eyes at night.
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FIG. 9 Results of experiments in which observers are asked
to rate the intensity of dim flashes, including blanks, on a
scale from 0 to 6. Main figure shows that the variance of the
ratings at fixed intensity is equal to the mean, as expected if
the ratings are Poisson distributed. Insets show that the full
distribution is approximately Poisson (upper) and that the
mean rating is linearly related to the flash intensity, measured
here as the mean number of photons delivered to the cornea.
From Sakitt (1972).

If this is all correct, it should be possible to coax human
subjects into giving responses that reflect the counting
of individual photons, rather than just the summation
of multiple counts up to some threshold of confidence or
reliability. Suppose we ask observers not to say yes or no,
but rather to rate the apparent intensity of the flash, say
on a scale from 0 to 7. Remarkably, as shown in Fig 9,
in response to very dim flashes interspersed with blanks,
at least some observers will generate rating that, given
the intensity, are approximately Poisson distributed: the
variance of the ratings is essentially equal to the mean,
and even the full distribution of ratings over hundreds
of trials is close to Poisson. Further, the mean rating is
linearly related to the light intensity, with an offset that
agrees with other measurements of the dark noise level.
Thus, the observers behaves exactly as if she can give a
rating that is equal to the number of photons counted.
This astonishing result would be almost too good to be
true were it not that some observers deviate from this
ideal behavior—they starting counting at two or three,
but otherwise follow all the same rules.
While the phenomena of photon counting are very

beautiful, one might worry that this represents just a
very small corner of vision. Does the visual system con-
tinue to count photons reliably even when it’s not com-
pletely dark outside? To answer this let’s look at vision
in a rather different animal, as in Fig 10. When you look
down on the head of a fly, you see—almost to the exclu-
sion of anything else—the large compound eyes. Each
little hexagon that you see on the fly’s head is a sepa-
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FIG. 10 The fly’s eye(s). At left a photograph taken by H
Leertouwer at the Rijksuniversiteit Groningen, showing (even
in this poor reproduction) the hexagonal lattice of lenses in
the compound eye. This is the blowfly Calliphora vicina. At
right, a schematic of what a fly might see, due to Gary Larson.
The schematic is incorrect because each lens actually looks in
a different direction, so that whole eye (like ours) only has
one image of the visual world. In our eye the “pixelation”
of the image is enforced by the much less regular lattice of
receptors on the retina; in the fly pixelation occurs already
with the lenses.

rate lens, and in large flies there are ∼ 5, 000 lenses in
each eye, with approximately 1 receptor cell behind each
lens, and roughly 100 brain cells per lens devoted to the
processing of visual information. The lens focuses light
on the receptor, which is small enough to act as an op-
tical waveguide. Each receptor sees only a small portion
of the world, just as in our eyes; one difference between
flies and us is that diffraction is much more significant
for organisms with compound eyes—because the lenses
are so small, flies have an angular resolution of about 1◦,
while we do about 100× better. [Add figure to emphasize
similarity of two eye types.]

The last paragraph was a little sloppy (“approximately
one receptor cell”?), so let’s try to be more precise. For
flies there actually are eight receptors behind each lens.
Two provide sensitivity to polarization and some color
vision, which we will ignore here. The other six receptors
look out through the same lens in different directions, but
as one moves to neighboring lenses one finds that there is
one cell under each of six neighboring lenses which looks
in the same direction. Thus these six cells are equivalent
to one cell with six times larger photon capture cross
section, and the signals from these cells are collected and
summed in the first processing stage (the lamina); one
can even see the expected six fold improvement in signal
to noise ratio, in experiments we’ll describe shortly.12

Because diffraction is such a serious limitation, one
might expect that there would be fairly strong selection

12 Talk about the developmental biology issues raised by these ob-
servations, and the role of the photoreceptors as a model system
in developmental decision making. For example, Lubensky et al
(2011). Not sure where to put this, though.

for eyes that make the most of the opportunities within
these constraints. Indeed, there is a beautiful literature
on optimization principles for the design of the compound
eye; the topic even makes an appearance in Feynman’s
undergraduate physics lectures. Roughly speaking (Fig
11), we can think of the fly’s head as being a sphere of
radius R, and imagine that the lens are pixels of linear
dimension d on the surface. Then the geometry deter-
mines an angular resolution (in radians) of δφgeo ∼ d/R;
resolution gets better if d gets smaller. On the other
hand, diffraction through an aperture of size d creates a
blur of angular width δφdiff ∼ λ/d, where λ ∼ 500 nm
is the wavelength of the light we are trying to image;
this limit of course improves as the aperture size d gets
larger. Although one could try to give a more detailed
theory, it seems clear that the optimum is reached when
the two different limits are about equal, corresponding to
an optimal pixel size

d∗ ∼
√
λR. (30)

This is the calculation in the Feynman lectures, and
Feynman notes that it gives the right answer within 10%
in the case of a honey bee.
A decade before Feynman’s lectures, Barlow had de-

rived the same formula and went into the drawers of the
natural history museum in Cambridge to find a variety
of insects with varying head sizes, and he verified that
the pixel size really does scale with the square root of
the head radius, as shown in Fig 12. I think this work
should be more widely appreciated, and it has several fea-
tures we might like to emulate. First, it explicitly brings
measurements on many species together in a quantita-
tive way. Second, the fact that multiple species can put

FIG. 11 At left, a schematic of the compound eye, with lenses
of width d on the surface of a spherical eye with radius R. At
right, the angular resolution of the eye as a function of the
lens size, showing the geometric (δφgeo ∼ d/R) and diffraction
(δφdiff ∼ λ/d) contributions in dashed lines; the full resolution
in solid lines.
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onto the same graph is not a phenomenological statement
about, for example, scaling of one body part relative to
another, but rather is based on a clearly stated physical
principle. Finally, and most importantly for our later
discussion in this course, Barlow makes an important
transition: rather than just asking whether a biological
system approaches the physical limits to performance, he
assumes that the physical limits are reached and uses this
hypothesis to predict something else about the structure
of the system. This is, to be sure, a simple example, but
an early and interesting example nonetheless.13
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FIG. 12 The size of lenses in compound eyes as a function of
head size, across many species of insect. From Barlow (1952).

[Should also point back to Mallock!]
Pushing toward diffraction–limited optics can’t be the

whole story, since at low light levels having lots of small
pixels isn’t much good—so few photons are captured in
each pixel that one has a dramatic loss of intensity res-
olution. There must be some tradeoff between spatial
resolution and intensity resolution, and the precise form
of this tradeoff will depend on the statistical structure
of the input images (if you are looking at clouds it will
be different than looking at tree branches). The difficult
question is how to quantify the relative worth of extra res-
olution in space vs intensity, and it has been suggested

13 This example also raises an interesting question. In Fig 12, each
species of insect is represented by a single point. But not all
members of the same species are the same size, as you must have
noticed. Is the relationship between R and d that optimizes func-
tion preserved across the natural sizes variations among individ-
uals? Does it matter whether the size differences are generated
by environmental or genetic factors? This is a question about
the reproducibility of spatial structures in development, a ques-
tion we will come back to (albeit in simpler forms) in Section
III.C. It would be good, though, if someone just measured the
variations in eye dimensions across many individuals!

that the right way to do this is to count bits—design the
eye not to maximize resolution, but rather to maximize
the information that can be captured about the input
image. This approach was a semi–quantitative success,
showing how insects that fly late at night or with very
high speeds (leading to blurring by photoreceptors with
finite time resolution) should have less than diffraction
limited spatial resolving power. I still think there are
open questions here, however.
Coming back to the question of photon counting, one

can record the voltage signals in the photoreceptor cells
and detect single photon responses, as in vertebrates. If
we want to see what happens at higher counting rates,
we have to be sure that we have the receptor cells in a
state where they don’t “run down” too much because the
increased activity. In particular, the rhodopsin molecule
itself has to be recycled after it absorbs a photon. In an-
imals with backbones, this actually happens not within
the photoreceptor, but in conjunction with other cells
that form the pigment epithelium. In contrast, in inver-
tebrates the “resetting” of the rhodopsin molecule occurs
within the receptor cell and can even be driven by absorp-
tion of additional long wavelength photons. Thus, if you
want to do experiments at high photon flux on isolated
vertebrate photoreceptors, there is a real problem of run-
ning out of functional rhodospin, but this doesn’t happen
in the fly’s eye. Also, the geometry of the fly’s eye makes
it easier to do stable intracellular measurements without
too much dissection.
To set the stage for experiments at higher counting

rates, consider a simple model in which each photon ar-
riving at time ti produces a pulse V0(t − ti), and these
pulses just add to give the voltage [maybe there should
be a sketch showing the summation of pulses to give the
total voltage]

V (t) = VDC +
∑

i

V0(t− ti), (31)

where VDC is the constant voltage that one observes
across the cell membrane in the absence of light. In
Section A.1, we can find the distribution of the arrival
times {ti} on the hypothesis that the photons arrive as
a Poisson process with a time dependent rate r(t); from
Eq (A13) we have

P [{ti}|r(t)] = exp

[
−
∫ T

0
dτ r(τ)

]
1

N !
r(t1)r(t2) · · · r(tN ),

(32)
where r(t) is the rate of photon arrivals—the light inten-
sity in appropriate units. To compute the average volt-
age response to a given time dependent light intensity,
we have to do a straightforward if tedious calculation:

〈
∑

i

V0(t−ti)

〉
=

∞∑

N=0

∫ T

0
dN ti P [{ti}|r(t)]

∑

i

V0(t−ti).

(33)
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This looks a terrible mess. Actually, it’s not so bad, and
one can proceed systematically to do all of the integrals.
Once you have had some practice, this isn’t too difficult,
but the first time through it is a bit painful, so I’ll push
the details off into Section A.1, along with all the other
details about Poisson processes. When the dust settles
[leading up to Eq (A64)], the voltage responds linearly
to the light intensity,

〈V (t)〉 = VDC +

∫ ∞

−∞
dt′V0(t− t′)r(t′). (34)

In particular, if we have some background photon count-
ing rate r̄ that undergoes fractional modulations C(t), so
that

r(t) = r̄[1 + C(t)], (35)

then there is a linear response of the voltage to the con-
trast C,

〈∆V (t)〉 = r̄

∫ ∞

−∞
dt′V0(t− t′)C(t′). (36)

Recall that such integral relationships (convolutions)
simplify when we use the Fourier transform. For a func-
tion of time f(t) we will define the Fourier transform with
the conventions

f̃(ω) =

∫ ∞

−∞
dt e+iωtf(t), (37)

f(t) =

∫ ∞

−∞

dω

2π
e−iωtf̃(ω). (38)

Then, for two functions of time f(t) and g(t), we have

∫ ∞

−∞
dt e+iωt

[∫ ∞

−∞
dt′ f(t− t′)g(t′)

]
= f̃(ω)g̃(ω). (39)

Problem 16: Convolutions. Verify the “convolution theo-
rem” in Eq (39). If you need some reminders, see, for example,
Lighthill (1958).

Armed with Eq (39), we can write the response of the
photoreceptor in the frequency domain,

〈∆Ṽ (ω)〉 = r̄Ṽ0(ω)C̃(ω), (40)

so that there is a transfer function, analogous to
impedance relating current and voltage in an electrical
circuit,

T̃ (ω) ≡ 〈∆Ṽ (ω)〉
C̃(ω)

= r̄Ṽ0(ω). (41)

Recall that this transfer function is a complex number at
every frequency, so it has an amplitude and a phase,

T̃ (ω) = |T̃ (ω)|eiφT (ω). (42)

The units of T̃ are simply voltage per contrast. The in-
terpretation is that if we generate a time varying contrast
C(t) = C cos(ωt), then the voltage will also vary at fre-
quency ω,

〈∆V (t)〉 = |T̃ (ω)|C cos[ωt− φT (ω)]. (43)

[Should we have one extra problem to verify this last
equation? Or is it obvious?]
If every photon generates a voltage pulse V0(t), but the

photons arrive at random, then the voltage must fluctu-
ate. To characterize these fluctuations, we’ll use some of
the general apparatus of correlation functions and power
spectra. A review of these ideas is given in Appendix
A.2.
We want to analyze the fluctuations of the voltage

around its mean, which we will call δV (t). By definition,
the mean of this fluctuation is zero, 〈δV (t)〉 = 0. There is
a nonzero variance, 〈[δV (t)]2〉, but to give a full descrip-
tion we need to describe the covariance between fluctua-
tions at different times, 〈δV (t)δV (t′)〉. Importantly, we
are interested in systems that have no internal clock, so
this covariance or correlation can’t depend separately on
t and t′, only on the difference. More formally, if we shift
our clock by a time τ , this can’t matter, so we must have

〈δV (t)δV (t′)〉 = 〈δV (t+ τ)δV (t′ + τ)〉; (44)

this is possible only if

〈δV (t)δV (t′)〉 = CV (t− t′), (45)

where CV (t) is the “correlation function of V .” Thus,
invariance under time translations restricts the form of
the covariance. Another way of expressing time transla-
tion invariance in the description of random functions is
to say that any particular wiggle in plotting the function
is equally likely to occur at any time. This property also
is called “stationarity,” and we say that fluctuations that
have this property are stationary fluctuations.

In Fourier space, the consequence of invariance under
time translations can be stated more simply—if we com-
pute the covariance between two frequency components,
we find

〈δṼ (ω1)δṼ (ω2)〉 = 2πδ(ω1 + ω2)SV (ω1), (46)

where SV (ω) is called the power spectrum (or power spec-
tral density) of the voltage V . Remembering that δ̃V (ω)
is a complex number, it might be more natural to write
this as

〈δṼ (ω1)δṼ
∗(ω2)〉 = 2πδ(ω1 − ω2)SV (ω1). (47)
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Time translation invariance thus implies that fluctua-
tions at different frequencies are independent.14 This
makes sense, since if (for example) fluctuations at 2Hz
and 3Hz were correlated, we could form beats between
these components and generate a clock that ticks every
second. Finally, the Wiener–Khinchine theorem states
that the power spectrum and the correlation function are
a Fourier transform pair,

SV (ω) =

∫
dτ e+iωτCV (τ), (48)

CV (τ) =

∫
dω

2π
e−iωτSV (ω). (49)

Notice that

〈[∆V (t)]2〉 ≡ CV (0) =

∫
dω

2π
SV (ω). (50)

Thus we can think of each frequency component as hav-
ing a variance ∼ SV (ω), and by summing these compo-
nents we obtain the total variance.

Problem 17: More on stationarity. Consider some fluctu-
ating variable x(t) that depends on time, with 〈x(t)〉 = 0. Show
that, because of time translation invariance, higher order correla-
tions among Fourier components are constrained:

〈x̃(ω1)x̃
∗(ω2)x̃

∗(ω3)〉 ∝ 2πδ(ω1 − ω2 − ω3) (51)

〈x̃(ω1)x̃(ω2)x̃
∗(ω3)x̃

∗(ω4)〉 ∝ 2πδ(ω1 + ω2 − ω3 − ω4). (52)

If you think of x̃∗ (or x̃) as being analogous to the operators for
creation (or annihilation) of particles, explain how these relations
are related to conservation of energy for scattering in quantum
systems.

Problem 18: Brownian motion in a harmonic potential.
[The harmonic oscillator gets used more than once, of course; check
for redundancy among problems in different sections!] Consider a
particle of mass m hanging from a spring of stiffness κ, surrounded
through a fluid. The effect of the fluid is, on average, to generate a
drag force, and in addition there is a ‘Langevin force’ that describes
the random collisions of the fluid molecules with the particle, re-
sulting in Brownian motion. The equation of motion is

m
d2x(t)

dt2
+ γ

dx(t)

dt
+ κx(t) = η(t), (53)

where γ is the drag coefficient and η(t) is the Langevin force. A
standard result of statistical mechanics is that the correlation func-
tion of the Langevin force is

〈η(t)η(t′)〉 = 2γkBT δ(t− t′), (54)

where T is the absolute temperature and kB = 1.36 × 10−23 J/K
is Boltzmann’s constant.

(a.) Show that the power spectrum of the Langevin force is
Sη(ω) = 2γkBT , independent of frequency. Fluctuations with such
a constant spectrum are called ‘white noise.’

14 Caution: this is true only at second order; it is possible for dif-
ferent frequencies to be correlated when we evaluate products of
three or more terms. See the next problem for an example.

(b.) Fourier transform Eq (53) and solve, showing how x̃(ω) is
related to η̃(ω). Use this result to find an expression for the power
spectrum of fluctuations in x, Sx(ω).

(c.) Integrate the power spectrm Sx(ω) to find the total variance
in x. Verify that your result agrees with the equipartition theorem,

〈
1

2
κx2

〉
=

1

2
kBT. (55)

Hint: The integral over ω can be done by closing a contour in the
complex plane.

(d.) Show that the power spectrum of the velocity, Sv(ω), is
related to the power spectrum of position through

Sv(ω) = ω2Sx(ω). (56)

Using this result, verify the other prediction of the equipartition
theorem for this system,

〈
1

2
mv2

〉
=

1

2
kBT. (57)

Now we have a language for describing the signals and
noise in the receptor cell voltage, by going to the fre-
quency domain. What does this have to do with counting
photons? The key point is that we can do a calculation
similar to the derivation of Eq (40) for 〈∆V (t)〉 to show
that, at C = 0, the voltage will undergo fluctuations—
responding to the random arrival of photons—with power
spectrum

NV (ω) = r̄|V0(ω)|2. (58)

We call this NV because it is noise. The noise has a
spectrum shaped by the pulses V0, and the magnitude is
determined by the photon counting rate; again see Ap-
pendix A.1 for details.
Notice that both the transfer function and noise spec-

trum depend on the details of V0(t). In particular, be-
cause this pulse has finite width in time, the transfer
function gets smaller at higher frequencies. Thus if you
watch a flickering light, the strength of the signal trans-
mitted by your photoreceptor cells will decrease with in-
creasing frequency.
The crucial point is that, for an ideal photon counter,

although higher frequency signals are attenuated the
signal–to–noise ratio actually doesn’t depend on fre-
quency. Thus if we form the ratio

|T̃ (ω)|2

NV (ω)
=

|r̄Ṽ0(ω)|2

r̄|V0(ω)|2
= r̄, (59)

we just recover the photon counting rate, independent
of details. Since this is proportional to the signal–to–
noise ratio for detecting contrast modulations C̃(ω), we
expect that real photodetectors will give less that this
ideal value. [Should be able to make a crisper statement
here—is it a theorem? Prove it, or give the proof as a
problem?]
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Problem 19: Frequency vs counting rate. [Need to give
more guidance through this problem! Step by step ...] If we are
counting photons at an average rate r̄, you might think that it is
easier to detect variations in light intensity at a frequency ω % r̄
than at higher frequencies, ω " r̄; after all, in the high frequency
case, the light changes from bright to dim and back even before (on
average) a single photon has been counted. But Eq (59) states that
the signal–to–noise ratio for detecting contrast in an ideal photon
counter is independent of frequency, counter to this intuition. Can
you produce a simple simulation to verify the predictions of Eq
(59)? As a hint, you should think about observing the photon
arrivals over a time T such that r̄T " 1. Also, if you are looking
for light intensity variations of the form r(t) = r̄[1 + C cos(ωt)],
you should process the photon arrival times {ti} to form a signal
s =

∑
i cos(ωti).

So now we have a way of testing the photoreceptors:
Measure the transfer function T̃ (ω) and the noise spec-
trumNV (ω), form the ratio |T̃ (ω)|2/NV (ω), and compare
this with the actual photon counting rate r̄. This was
done for the fly photoreceptors, with the results shown in
Fig 13. It’s interesting to look back at the original papers
and understand how they calibrated the measurement of
r̄ (I’ll leave this as an exercise for you!). [This account of
the experiments is too glib. I will go back to expand and
clarify. Rob has also offered new versions of the figures.]

What we see in Fig 13 is that, over some range of
frequencies, the performance of the fly photoreceptors is
close to the level expected for an ideal photon counter.
It’s interesting to see how this evolves as we change the
mean light intensity, as shown in Fig 14. The perfor-
mance of the receptors tracks the physical optimum up

FIG. 13 Signal and noise in fly photoreceptors, with experi-
ments at four different mean light intensities, from de Ruyter
van Steveninck & Laughlin (1996b). (a) Transfer function
|T̃ (ω)|2 from contrast to voltage. (b) Power spectrum of
voltage noise, NV (ω). (c) The ratio |T̃ (ω)|2/NV (ω), which
would equal the photon counting rate if the system were ideal;
dashed lines show the actual counting rates.

FIG. 14 Performance of fly photoreceptors vs light intensity.
[Should redraw this, and label with consistent notation.] Hav-
ing measured the quantity λeff = |T̃ (ω)|2/NV (ω), as in Fig
13, we plot the maximum value (typically at relatively low
frequencies) vs the actual photon counting rate r̄. We see
that, over an enormous dynamic range, the signal–to–noise
ratio tracks the value expected for an ideal photon counter.

to counting rates of r̄ ∼ 105 photons/s. Since the inte-
gration time of the receptors is ∼ 10ms, this means that
the cell can count, almost perfectly, up to about 1000.
An important point about these results is that they

wouldn’t work if the simple model were literally true. At
low photon counting rates r̄, the pulse V0 has an am-
plitude of several milliVolts, as you can work out from
panel (a) in Fig 13. If we count ∼ 103 events, this should
produce a signal of several Volts, which is absolutely im-
possible in a real cell! What happens is that the system
has an automatic gain control which reduces the size of
the pulse V0 as the light intensity is increased. Remark-
ably, this gain control or adaptation occurs while pre-
serving (indeed, enabling) nearly ideal photon counting.
Thus as the lights go up, the response to each photon
become smaller (and, if you look closely, faster), but no
less reliable.

Problem 20: Looking at the data. Explain how the data
in Fig 13 provide evidence for the adaption of the pulse V0 with
changes in the mean light intensity.

[This seems a little brief! Maybe there should be a
summary of what has happened, what we conclude ...
also explain where the loose ends remain vs where things
are solid.] These observations on the ability of the visual
system to count single photons—down to the limit set by
thermal noise in rhodopsin and up to counting rates of
∼ 105 s−1—raise questions at several different levels:
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1. At the level of single molecules, we will see that
the performance of the visual system depends crucially
on the dynamics of rhodopsin itself. In particular, the
structural response of the molecule to photon absorption
is astonishingly fast, while the dark noise level means that
the rate of spontaneous structural changes is extremely
slow.
2. At the level of single cells, there are challenges in un-

derstanding how a network of biochemical reactions con-
verts the structural changes of single rhodopsin molecules
into macroscopic electrical currents across the rod cell
membrane.
3. At the level of the retina as a whole, we would like

to understand how these signals are integrated without
being lost into the inevitable background of noise. Also
at the level of the retina, we need to understand how
single photon signals are encoded into the stereotyped
pulses that are the universal language of the brain.
4. At the level of the whole organism, there are issues

about how the brain learns to make the discriminations
that are required for optimal performance.
In the next sections we’ll look at these questions, in

order.

It is a pleasure to read classic papers, and surely Hecht et al (1942)
and van der Velden (1944) are classics, as is the discussion of dark
noise by Barlow (1956). The pre–history of the subject, includ-
ing the story about Lorentz, is covered by Bouman (1961). The
general idea that our perceptual “thresholds” are really thresholds
for discrimination against background noise with some criterion
level of reliability made its way into quantitative psychophysical
experiments in the 1950s and 60s, and this is now (happily) a stan-
dard part of experimental psychology; the canonical treatment is
by Green and Swets (1966). The origins of these ideas are an inter-
esting mix of physics and psychology, developed largely for radar
in during World War II, and a summary of this early work is in
the MIT Radar Lab series (Lawson & Uhlenbeck 1950). Another
nice mix of physics and psychology is the revisiting of the original
photon counting experiments using light sources with non–Poisson
statistics (Teich et al 1982). The idea that random arrival of pho-
tons could limit our visual perception beyond the “just visible” was
explored, early on, by de Vries (1943) and Rose (1948). Some of
the early work by de Vries and coworkers on the physics of the
sense organs (not just vision) is described in a lovely review (de
Vries 1956). As a sociological note, de Vries was an experimental
physicist with very broad interests, from biophysics to radiocarbon
dating; for a short biography see de Waard (1960).
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Single photon responses in receptor cells of the horseshoe crab were
reported by Fuortes and Yeandle (1964). The series of papers from
Baylor and co–workers on single photon responses in vertebrate rod
cells, first from toads and then from monkeys, again are classics,
well worth reading today, not least as examples of how to do quanti-
tative experiments on biological systems. Aho, Donner, Reuter and
co–workers have made a major effort to connect measurements on
rod cells and ganglion cells with the behavior of the whole organism,
using the toad as an example; among their results are the tempera-
ture dependence of dark noise (Fig 8), and the latency/anticipation
results in Section I.D. The remarkable experiments showing that
people really can count every photon are by Sakitt (1972). We will
learn more about currents and voltages in cells very soon, but for
background I have always liked Aidley’s text, now in multiple edi-
tions; as is often the case, the earlier editions can be clearer and
more compact.
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For the discussion of compound eyes, useful background is con-
tained in Stavenga and Hardie (1989), and in the beautiful com-
pilation of insect brain anatomy by Strausfeld (1976), although
this is hard to find; as an alternative there is an online atlas,
http://flybrain.neurobio.arizona.edu/Flybrain/html/. There
is also the more recent Land & Nilsson (2002). Evidently Larson
(2003) is an imperfect guide to these matters. Everyone should have
a copy of the Feynman lectures (Feynman et al 1963), and check
the chapters on vision. The early work by Barlow (1952) deserves
more appreciation, as noted in the main text, and the realization
that diffraction must be important for insect eyes goes back to
Mallock (1894). For a gentle introduction to the wider set of ideas
about scaling relations between different body parts, see McMa-
hon & Bonner (1983). The experiments on signal–to–noise ratio in
fly photoreceptors are by de Ruyter van Steveninck and Laughlin
(1996a, 1996b). For a review of relevant ideas in Fourier analysis
and related matters, see Appendix A.2 and Lighthill (1958). You
should come back to the ideas of Snyder et al (Snyder 1977, Snyder
et al 1977) near the end of the book, after we have covered some
of the basics of information theory.
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Finally, a few reviews that place the results on photon counting
into a broader context.
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FIG. 15 Schematic structure of rhodopsin, showing the or-
ganic pigment retinal nestled in a pocket formed by the sur-
rounding opsin protein. This conformation of the retinal is
called 11–cis, since there is a rotation around the bond be-
tween carbons numbered 11 and 12 (starting at the lower right
in the ring). Insets illustrate the conventions in such chemical
structures, with carbons at nodes of the skeleton, and hydro-
gens not shown, but sufficient to make sure that each carbon
forms four bonds.

B. Single molecule dynamics

To a remarkable extent, our ability to see in the dark
is limited by the properties of rhodopsin itself, essen-
tially because everything else works so well. Rhodopsin
consists of a medium sized organic pigment, retinal, en-
veloped by a large protein, opsin (cf Fig 15). The pri-
mary photo–induced reaction is isomerization of the reti-
nal, which ultimately couples to structural changes in the
protein. The effort to understand the dynamics of these
processes goes back to Wald’s isolation of retinal (a vi-
tamin A derivative) in the 1930s, his discovery of the
isomerization, and the identification of numerous states
through which the molecule cycles. The field was given
a big boost by the discovery that there are bacterial
rhodopsins, some of which serve a sensory function while
others are energy transducing molecules, using the en-
ergy of the absorbed photon to pump protons across the
cell membrane; the resulting difference in electrochem-
ical potential for protons is a universal intermediate in
cellular energy conversion, not just in bacteria but in us
as well. [Maybe a pointer to channel rhodopsins would
be good here too.]
By now we know much more than Wald did about the

structure of the rhodopsin molecule [need to point to a
better figure, more details].
While there are many remarkable features of the

rhodopsin molecule, we would like to understand those
particular features that contribute to the reliability of
photon counting. First among these is the very low spon-
taneous isomerization rate, roughly once per thousand
years. As we have seen, these photon–like events provide
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FIG. 16 Isomerization of retinal, the primary event at the
start of vision. The π–bonds among the carbons favor pla-
nar structures, but there are still alternative conformations.
The 11–cis conformation is the ground state of rhodopsin,
and after photon absorption the molecule converts to the all–
trans configuration. These different structures have different
absorption spectra, as well as other, more subtle differences.
Thus we can monitor the progress of the transition 11–cis →
all–trans essentially by watching the molecule change color,
albeit only slightly. [Show the spectra!]

the dominant noise source that limits our ability to see in
the dark, so there is a clear advantage to having the low-
est possible rate. When we look at the molecules them-
selves, purified from the retina, we can “see” the isomer-
ization reaction because the initial 11–cis state and the
final all–trans states (see Fig 16) have different absorp-
tion spectra [add this to the figure]. For rhodopsin itself,
the spontaneous isomerization rate is too slow to observe
in a bulk experiment. If we isolate the pigment retinal,
however, we find that it has a spontaneous isomerization
rate of ∼ 1/yr, so that a bottle of 11–cis retinal is quite
stable, but the decay to all–trans is observable.

How can we understand that rhodopsin has a spon-
taneous isomerization rate 1000× less than that of reti-
nal? The spontaneous isomerization is thermally acti-
vated, and has a large “activation energy” as estimated
from the temperature dependence of the dark noise.15

It seems reasonable that placing the retinal molecule
into the pocket formed by the protein opsin would raise
the activation energy, essentially because parts of the
protein need to be pushed out of the way in order
for the retinal to rotate and isomerize. Although this
sounds plausible, it’s probably wrong. If we write the

15 I am assuming here that the ideas of activation energy and Arrhe-
nius behavior of chemical reaction rates are familiar. For more
on this, see Section II.A.

dark isomerization rate as r = Ae−Eact/kBT , retinal and
rhodopsin have the same value of the activation energy
Eact = 21.9 ± 1.6 kcal/mole [this is from measurements
on rods; give the number in useful units! maybe foot-
note about difficulties of units] within experimental er-
ror, but different values of the prefactor A. If we look at
photoreceptor cells that are used for daytime vision—the
cones, which also provide us with sensitivity to colors, as
discussed below [check where this gets done!]—the dark
noise level is higher (presumably single photon counting
is unnecessary in bright light), but again this is a differ-
ence in the prefactor, not in the activation energy. As
we will see when we discuss the theory of reaction rates
in Section II.A, understanding prefactors is much harder
than understanding activation energies, and I think we
don’t really have a compelling theoretical picture that ex-
plains the difference between retinal and rhodopsin.[Fred
Rieke gave me some pointers I have to chase down before
deciding on that last sentence!]
The isolated retinal pigment isomerization at a rate

that is faster than rhodopsin. On the other hand, if
we excite the isolated retinal with a very short pulse of
light, and follow the resulting changes in absorption spec-
trum, these photo–induced dynamics are not especially
fast, with isomerization occurring at a rate ∼ 109 s−1.
Although this is fast compared to the reactions that we
can see directly, it is actually so slow that it is com-
parable to the rate at which the molecule will re–emit
the photon. We recall from quantum mechanics that the
spontaneous emission rates from electronic excited states
are constrained by sum rules if they are dipole–allowed.
This means that emission lifetimes for visible photons are
order 1 nanosecond for almost all of the simple cases. In
a big molecule, there can be some re–arrangement of the
molecular structure before the photon is emitted (see the
discussion below), and this results in the emitted or fluo-
rescent photon being of longer wavelength. Nonetheless,
the natural time scale is nanoseconds, and the isomeriza-
tion of retinal is not fast enough to prevent fluorescence
and truly capture the energy of the photon with high
probability.

Problem 21: Why nanoseconds? Explain why spontaneous
emission of visible photons typically occurs with a rate ∼ 109 s−1.
[Need to explain where to start!]

Now fluorescence is a disaster for visual pigment—not
only don’t you get to count the photon where it was ab-
sorbed, it might get counted somewhere else, blurring the
image. In fact rhodopsin does not fluoresce: The quan-
tum yield or branching ratio for fluorescence is ∼ 10−5.
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FIG. 17 [This needs to be redrawn; maybe two figures to
make different points? Convert all the units once and for all?]
Femtosecond dynamics of rhodopsin, from Wang et al (1994).
At left, schematic potential energy surfaces in the electronic
ground and excited states. At right, panel (A) shows tran-
sient absorption spectra following a 35 fs pulse of 500 nm light.
Panel (B) shows the magnitude of the Fourier transform of
the time dependent absorption at each of several wavelengths,
illustrating the oscillations expected if the vibrational dynam-
ics is coherent. You might like to convert the kcal/mol and
cm−1 into more conventional physical units!

If we imagine the molecule sitting in the excited state,
transitioning to the ground state via fluorescence at a
rate ∼ 109 s−1, then to have a branching ratio of 10−5 the
competing process must have a rate of ∼ 1014 s−1. Thus,
the rhodopsin molecule must leave the excited state by
some process on a time scale of ∼ 10 femtoseconds, which
is extraordinarily fast. Indeed, for many years, every
time people built faster pulsed lasers, they went back to
rhodopsin to look at the initial events, culminating in the
direct demonstration of femtosecond isomerization, mak-
ing this one of the fastest molecular events ever observed.

The 11–cis and all trans configurations of retinal have
different absorption spectra, and this is why we can ob-
serve the events following photon absorption as an evo-
lution of the spectrum. The basic design of such ex-
periments is to excite the molecules with a brief pulse
of light, elevating them into the excited state, and then
probe with another brief pulse after some delay. In the
simplest version, one repeats the experiment many times
with different choices of the delay and the energy or wave-
length of the probe pulse. An example of the results from
such an experiment are shown in Fig 17. The first thing
to notice is that the absorption at a wavelength of 550 nm,
characteristic of the all–trans structure, rises very quickly
after the pulse which excites the system, certainly within
tens of femtoseconds. In fact this experiment reveals all
sorts of interesting structure, to which we will return be-
low.

The combination of faster photon induced isomeriza-
tion and slower thermal isomerization means that the

protein opsin acts as an electronic state selective cata-
lyst: ground state reactions are inhibited, excited state
reactions accelerated, each by orders of magnitude. It is
fair to say that if these state dependent changes in re-
action rate did not occur—that is, if the properties of
rhodopsin were those of retinal—then we simply would
not be able to see in the dark of night.

Problem 22: What would vision be like if ... ? Imagine that
the spontaneous isomerization rate and quantum yield for photo–
isomerization in rhodopsin were equal to those in retinal. Estimate,
quantitatively, what this would mean for our ability to see at night.
[we should try to connect with real intensities at dusk etc.]

In order to make sense out of all of this, and get started
in understanding how rhodopsin achieves its function, we
need to understand something about electronic transi-
tions in large molecules, as opposed to the case of atoms
that we all learned about in our quantum mechanics
classes. The absorption of a photon by an atom involves
a transition between two electronic states, and this is also
true for a large molecule. But for the atom the absorp-
tion line is very narrow, while for big molecules it is very
broad. For rhodopsin, there is a nice of way of measur-
ing the absorption spectrum over a very large dynamic
range, and this is to use the rod cell as a sensor. In-
stead of asking how much light is absorbed, we can try
assuming16 that all absorbed photons have a constant
probability of generating a pulse of current at the rod’s
output, and so we can adjust the light intensity at each
wavelength to produce the same current. If the absorp-
tion is stronger, we need less light, and conversely more
light if the absorption is weaker. The results of such an
experiment are shown in Fig 18. It is beautiful that in
this way one can follow the long wavelength tail of the
spectrum down to cross–sections that are ∼ 10−5 of the
peak. More qualitatively, we see that the width of the
spectrum, say at half maximum, is roughly 20% of the
peak photon energy, which is enormous in contrast with
atomic absorption lines.
As an aside, the fact that one can follow the sensitivity

of the photoreceptor cell deep into the long wavelength
tail opens the possibility of asking a very different ques-
tion about the function of these cells (and all cells). We
recall that every cell in our bodies has the same genetic

16 This assumption can also be checked. It’s true, but I think there
have not been very careful measurements in the long wavelength
tail, where something interesting might happen.
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material, and hence the instructions for making all pos-
sible proteins. In particular, all photoreceptor cells have
the ability to make all visual pigments. But the different
classes of receptors—rods and the three kinds of cones—
make different pigments, corresponding to different pro-
teins surrounding more or less the same retinal molecule,
and the resulting differences in absorption spectra pro-
vide the basis for color vision. If a single cone couldn’t
reliably turn on the expression of one rhodopsin gene,
and turn off all of the others, then the retina wouldn’t
be able to generate a mix of spectral sensitivities, and we
wouldn’t see colors. But how “off” is “off”?

In a macaque monkey (not so different from us in these
matters), “red” cones have their peak sensitivity at a
wavelength ∼ 570 nm, but at this wavelength the “blue”
cones have sensitivities that are ∼ 105× reduced rela-
tive to their own peak. Since the peak absorption cross–
sections are comparable, this tells us that the relative
concentration of red pigments in the blue cones must be
less than 10−5. That is, the cell makes at least 105 times
as much of the correct protein as it does of the incorrect
proteins, which I always thought was pretty impressive.17

Returning to the absorption spectrum itself, we realize
that a full treatment would describe molecules by doing
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FIG. 18 Sensitivity of the rod photoreceptor as a function of
wavelength. This is measured, as explained in the text, by
adjusting the intensity of light to give a criterion output, so
that very low sensitivity corresponds to shining a bright light,
rather than measuring a small output. Redrawn from Baylor
et al (1979a).

17 Many thanks to Denis Baylor for reminding me of this argument.
Since there are ∼ 109 rhodopsins in one cell, errors of even one
part in 105 would mean that there are thousands of “wrong”
molecules floating around. I wonder if this is true, or if the true
errors are even smaller. [Apparently there is evidence that some
cones are less precise about what defines “off;” should check this!]

FIG. 19 Schematic of the electronic states in a large molecule,
highlighting their coupling to motion of the nuclei. The sketch
show two states, with photon absorption (in blue) driving
transitions between them. If we think in semi–classical terms,
as explained in the text, then these transitions are ‘too fast’
for the atoms to move, and hence are vertical on such plots
(the Franck–Condon approximation). Because the atomic co-
ordinates fluctuate, as indicated by the Boltzmann distribu-
tion, the energy of the photon required to drive the transition
also fluctuates, and this broadens the absorption spectrum.

the quantum mechanics of a combined system of elec-
trons and nuclei. But the nuclei are very much heavier
than the electrons, and hence move more slowly. More
rigorously, the large ratio of masses means that we can
think of solving the quantum mechanics of the electrons
with the nuclei in fixed position, and then for each such
atomic configuration the energy of the electrons con-
tributes to the potential energy; as the nuclei move in
this potential (whether classically or quantum mechan-
ically) the electrons follow adiabatically.18 This is the
Born–Oppenheimer approximation, which is at the heart
of all attempts to understand molecular dynamics.19

Figure 19 shows the energy of two different electronic
states, plotted schematically against (one of the) atomic
coordinates. In the ground state, we know that there is
some arrangement of the atoms that minimizes the en-

18 Because the electrons (mostly) follow the nuclei, I will use “nu-
clei” and “atoms” interchangeably in what follows.

19 I assume that most readers know something about the Born–
Oppenheimer approximation, since it is a pretty classical subject.
It is also one of the first adiabatic approximations in quantum
mechanics. It took many years to realize that some very in-
teresting things can happen in the adiabatic limit, notably the
appearance of non–trivial phase factors in the adiabatic evolu-
tion of wave functions. Some of these ‘complications’ (to use a
word from one of original papers) were actually discovered in the
context of the Born–Oppenheimer approximation itself, but now
we know that this circle of ideas is much bigger, extending out
to quantum optics and quite exotic field theories.
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ergy, and that in the neighborhood of this minimum the
potential surface must look roughly like that of a system
of Hookean springs. Once we lift the electrons into the
first excited state, there is again some configuration of
the atoms that minimizes the energy (unless absorbing
one photon is enough to break the molecule apart!), but
unless there is some symmetry this equilibrium configu-
ration will be different than in the ground state, and the
stiffness of the spring holding the molecule in this equi-
librium configuration also will be different. Hence in Fig
19, the energy surfaces for the ground and excited states
are shown displaced and with different curvatures.

It is important to realize that sketches such as that in
Fig 19 are approximations in many senses. Most impor-
tantly, this sketch involves only one coordinate. You may
be familiar with a similar idea in the context of chemical
reactions, where out of all the atoms that move during
the reaction we focus on one “reaction coordinate” that
forms a path from the reactants to products; for more
about this see Section II.A. One view is that this is
just a convenience—we can’t draw in many dimensions,
so we just draw one, and interpret the figure cautiously.
Another view is that the dynamics are effectively one di-
mensional, either because there is a separation of time
scales, or because we can change coordinates to isolate,
for example, a single coordinate that couples to the differ-
ence in energy between the ground and excited electronic
states. The cost of this reduction in dimensionality might
be a more complex dynamics along this one dimension,
for example with a “viscosity” that is strongly frequency
dependent, which again means that we need to be cau-
tious in interpreting the picture that we draw. In what
follows I’ll start by being relatively informal, and try to
become more precise as we go along.

In the limit that the atoms are infinitely heavy, they
don’t move appreciably during the time required for an
electronic transition. On the other hand, the positions
of the atoms still have to come out of the Boltzmann
distribution, since the molecule is in equilibrium with
its environment at temperature T . In this limit, we can
think of transitions between electronic states as occurring
without atomic motion, corresponding to vertical lines
on the schematic in Fig 19. If the photon happens to ar-
rive when the atomic configuration is a bit to the left of
the equilibrium point, then as drawn the photon energy
needs to be larger in order to drive the transition; if the
configuration is a bit to the right, then the photon en-

ergy is smaller. In this way, the Boltzmann distribution
of atomic positions is translated into a broadening of the
absorption line. In particular, the transition can occur
with a photon that has very little energy if we happen
to catch a molecule in the rightward tail of the Boltz-
mann distribution: the electronic transition can be made
up partly from the energy of the photon and partly from
energy that is “borrowed” from the thermal bath. As a
result, the absorption spectrum should have a tail at long
wavelengths, and this tail will be strongly temperature
dependent, and this is observed in rhodopsin and other
large molecules. Since our perception of color depends on
the relative absorption of light by rhodopsins with differ-
ent spectra, this means that there must be wavelengths
such that the apparent color of the light will depend on
temperature [need a pointer and refs for this .. maybe
tell the story of de Vries and the hot tub?]
Concretely, if we imagine that the potential surfaces

are perfect Hookean springs, but with displaced equilib-
rium positions, then we can relate the width of the spec-
trum directly to the magnitude of this displacement. In
the ground state we have the potential

Vg(q) =
1

2
κq2, (60)

and in the excited state we have

Ve(q) = ε+
1

2
κ(q −∆)2, (61)

where ε is the minimum energy difference between the
two electronic states and ∆ is the shift in the equilib-
rium position, as indicated in Fig 20. With q fixed, the
condition for absorbing a photon is that the energy !Ω
match the difference in electronic energies,

!Ω = Ve(q)− Vg(q) = ε+
1

2
κ∆2 − κ∆q. (62)

The probability distribution of q when molecules are in
the ground state is given by

P (q) =
1

Z
exp

[
−Vg(q)

kBT

]
=

1√
2πkBT/κ

exp

[
− κq2

2kBT

]
,

(63)
so we expect the cross–section for absorbing a photon of
frequency Ω to have the form

σ(Ω) ∝
∫

dq P (q)δ

[
!Ω−

(
ε+

1

2
κ∆2 − κ∆q

)]
(64)

∝
∫

dq exp

[
− κq2

2kBT

]
δ

[
!Ω−

(
ε+

1

2
κ∆2 − κ∆q

)]
(65)

∝ exp

[
− (!Ω− !Ωpeak)2

4λkBT

]
, (66)



34

where the peak of the absorption is at

!Ωpeak = ε+ λ, (67)

and

λ =
1

2
κ∆2 (68)

is the energy required to distort the molecule into the
equilibrium configuration of the excited state if we stay
in the ground state.
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a broadening of the absorption line.
Concretely, if we imagine that the potential surfaces are perfect Hookean

springs, but with displaced equilibrium positions, then we can relate the
width of the spectrum directly to the magnitude of this displacement. In
the ground state we have the potential

V↓(q) =
1

2
κq2, (1.50)

and in the excited state we have

V↑(q) = ε+
1

2
κ(q −∆)2, (1.51)

where ε is the minimum energy difference between the two electronic states
and ∆ is the shift in the equilibrium position. With q fixed, the condition for
absorbing a photon is that the energy !Ω match the difference in electronic
energies,

!Ω = V↑(q)− V↓(q) = ε+
1

2
κ∆2 − κ∆q. (1.52)

The probability distribution of q when molecules are in the ground state is
given by

P (q) ∝ exp

[
−
V↓(q)

kBT

]
= exp

[
− κq2

2kBT

]
, (1.53)

so we expect the absorption cross–section to have the form

σ(Ω) ∼
∫

dq P (q)δ

[
!Ω−

(
ε+

1

2
κ∆2 − κ∆q

)]
(1.54)

∝
∫

dq exp

[
− κq2

2kBT

]
δ

[
!Ω−

(
ε+

1

2
κ∆2 − κ∆q

)]
(1.55)

∝ exp

[
−
(!Ω− !Ωpeak)2

4λkBT

]
, (1.56)

where the peak of the absorption is at

!Ωpeak = ε+ λ, (1.57)

and

λ =
1

2
κ∆2 (1.58)

is the energy required to distort the molecule into the equilibrium configu-
ration of the excited state if we stay in the ground state.
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The energy λ is known, in different contexts, as the reorganization energy
or the Stokes shift. If the molecule stays in the excited for a long time, we
expect that the distribution of coordinates will re–equilibrate to the Boltz-
mann distribution appropriate to V↑(q), so that the most likely coordinate
becomes q = ∆. At this coordinate, if the molecule returns to the ground
state by emitting a photon—fluorescence—the energy of this photon will be
!Ωfluor = ε−λ Thus the peak fluorescence is red shifted from the absorption
peak by 2λ. This connects the width of the absorption band to the red
shift that occurs in fluorescence, and for many molecules this prediction is
correct, quantitatively, giving us confidence in the basic picture.

finish this
It would be nice to do an honest calculation that reproduces the intuition

of Fig 1.12. We have a system with two electronic states, which we can
represent as a spin one–half; let spin down be the ground state and spin up
be the excited state. The Born–Oppenheimer approximation tells us thatprobably will mention

B–O above; be sure to
connect

we can think of the atoms in a molecule as moving in a potential determined
by the electronic state, which we denote by V↑(q) and V↓(q) in the excited
and ground states, respectively; q stands for all the atomic coordinates.
Since we are observing photon absorption, there must be a matrix element
that connects the two electronic states and couples to the electromagnetic
field; we’ll assume that, absent symmetries, this coupling is dominated by an
electric dipole term. In principle the dipole matrix element #d could depend
upon the atomic coordinates, but we’ll neglect this effect.4 Putting the piece
together, we have the Hamiltonian for the molecule

H = K+
1

2
(1 + σz)V↑(q) +

1

2
(1− σz)V↓(q) + #d· #E(σ+ + σ−), (1.59)

where K is the kinetic energy of the atoms. To this we should of course add
the usual Hamiltonian for the electromagnetic field.

We are interested in computing the rate at which photons of energy !Ω
are absorbed, and of course we will do this as a perturbation expansion in
the term ∼ #d. The result of such a calculation can be presented as the
‘Golden rule’ for transition rates, but this formulation hides the underlying
dynamics. So, at the risk of being pedantic, I’ll go through the steps that
usually lead to the Golden rule and take a detour that leads us to a formula
in which the dynamics of atomic motions are more explicit.5

4In practice, this is a small effect. You should think about why this is true.
5I am assuming something about the background of my students—that the Golden rule

is well known, but that the general tools which relate cross–sections and transition rates
to correlation functions are less well digested.
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FIG. 20 The potential surfaces of Fig 19, redrawn in the
special case where they are parabolic. Then, as in Eqs (60)
through (68), there are just a few key parameters that de-
termine the shape of the absorption spectrum and also the
fluorscence emission. Redraw figure to show that !Ωpeak =
ε+ λ; ref to Eq (67).

The energy λ is known, in different contexts, as the
reorganization energy or the Stokes shift. If the molecule
stays in the excited state for a long time, the distri-
bution of coordinates will re–equilibrate to the Boltz-
mann distribution appropriate to Ve(q), so that the most
likely coordinate becomes q = ∆. At this coordinate, if
the molecule returns to the ground state by emitting a
photon—fluorescence—the energy of this photon will be
!Ωfluor = ε − λ. Thus the peak fluorescence is at lower
energies, or red shifted from the absorption peak by an
amount 2λ, as one can read off from Fig 20. This con-
nects the width of the absorption band to the red shift
that occurs in fluorescence, and for many molecules this
prediction is correct, quantitatively, giving us confidence
in the basic picture. [I wonder if all of this needs more
figures in order to be clear?]

In the case of rhodopsin, the peak absorption is at a
wavelength of 500 nm or an energy of !Ωpeak = 2.5 eV.
The width of the spectrum is described roughly by a
Gaussian with a standard deviation of ∼ 10% of the peak
energy, so that 2λkBT ∼ (0.25 eV)2, or λ ∼ 1.25 eV.
Surely we can’t take this seriously, since this reorganiza-
tion energy is enormous, and would distort the molecule
well beyond the point where we could describe the poten-
tial surfaces by Hookean springs. Amusingly, if we took

this result literally, the peak fluorescence would be at zero
energy (!). Probably the correct conclusion is that there
is a tremendously strong coupling between excitation of
the electrons and motion of the atoms, and presumably
this is related to the fact that photon absorption leads to
very rapid structural changes.
Before proceeding, it would be nice to do an honest

calculation that reproduces the intuition of Figs 19 and
20, and this is done in Section A.3. The results of the cal-
culation show, in more detail, how the coupling of elec-
tronic states to the vibrational motion of the molecule
can shape the absorption spectrum. If there is just one
lightly damped vibrational mode, then the single sharp
absorption line which we expect from atomic physics be-
comes a sequence of lines, corresponding to changing elec-
tronic state and exciting one, two, three, ... or more vi-
brational quanta. If there are many modes, and these
modes are damped by interaction with other degrees of
freedom, these “vibronic” lines merge into a smooth spec-
trum which we can calculate in a semi–classical approxi-
mation.
The coupling of electronic transitions to vibrational

motion generates the phenomenon of Raman scattering—
a photon is inelastically scattered, making a virtual tran-
sition to the electronically excited state and dropping
back down to the ground state, leaving behind a vibra-
tional quantum [add a figure illustrating Raman scatter-
ing]. The energy shifts of the scattered photons allow us
to read off, directly, the frequencies of the relevant vi-
brational modes. With a bit more sophistication, we can
connect the strength of the different lines to the coupling
constants (e.g., the displacements ∆i along each mode,
generalizing the discussion above) that characterize the
interactions between electronic and vibrational degrees
of freedom. If everything works, it should be possible
to reconstruct the absorption spectrum from these esti-
mates of frequencies and couplings. This whole program
has been carried through for Rhodospin. Importantly, in
order to get everything right, one has to include motions
which are effectively unstable in the excited state, pre-
sumably corresponding to the torsional motions that lead
to cis–trans isomerization. [This is all a little quick. On
the other hand, there is a huge amount of detail here that
might take us away from the goal. Advice is welcome!]

Problem 23: Raman scattering. Take the students through a
simple calculation of Raman scattering ...

If we try to synthesize all of these ideas into a single
schematic, we might get something like Fig 21. If we take
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FIG. 21 Schematic model of the energy surfaces in
Rhodopsin. The ground state has minima at both the 11–
cis and the all–trans structures. A single excited state sits
above this surface. At some intermediate structure, the sur-
faces come very close. At this point, the Born–Oppenheimer
approximation breaks down, and there will be some mixing
between the two states. A molecule lifted into the excited
state by absorbing a photon slides down the upper surface,
and can pass non–adiabatically into the potential well whose
minimum is at all–trans.

this picture seriously, then after exciting the molecule
with a pulse of light, we should see the disappearance
of the absorption band associated with the 11–cis struc-
ture, the gradual appearance of the absorption from the
all–trans state, and with a little luck, stimulated emis-
sion while the excited state is occupied. All of this is
seen. Looking closely (e.g., at Fig 17), however, one sees
that spectra are oscillating in time. Rather than slid-
ing irreversibly down the potential surfaces toward their
minima, the atomic structure oscillates. More remark-
ably, detailed analysis of the time evolution of the spectra
demonstrates that there is coherent quantum mechani-
cal mixing among the relevant electronic and vibrational
states.

Our usual picture of molecules and their transitions
comes from chemical kinetics: there are reaction rates,
which represent the probability per unit time for the
molecule to make transitions among states which are dis-
tinguishable by some large scale rearrangement; these
transitions are cleanly separated from the time scales for
molecules to come to equilibrium in each state. The ini-
tial isomerization event in rhodopsin is so fast that this
approximation certainly breaks down. More profoundly,
the time scale of the isomerization is so fast that it com-
petes with the processes that destroy quantum mechan-
ical coherence among the relevant electronic and vibra-
tional states. The whole notion of an irreversible tran-
sition from one state to another necessitates the loss of
coherence between these states (recall Schrödinger’s cat),

and so in this sense the isomerization is proceeding as
rapidly as possible.
At this point what we would like to do is an honest,

if simplified calculation that generates the schematic in
Fig 21 and explains how the dynamics on these surfaces
can be so fast. As far as I know, there is no clear answer
to this challenge, although there are many detailed sim-
ulations, in the quantum chemical style, that probably
capture elements of the truth.[it would be nice to be a
little more explicit here!] The central ingredient is the
special nature of the π bonds along the retinal. In the
ground state, electron hopping between neighboring pz
orbitals lowers the energy of the system, and this effect is
maximized in planar structures where the orbitals are all
in the same orientation. But this lowering of the energy
depends on the character of the electron wave functions—
in the simplest case of bonding between two atoms, the
symmetric state (the ‘bonding orbital’) has lower energy
in proportion to the hopping matrix element, while the
anti–symmetric state (‘anti–bonding orbital’) has higher
energy, again in proportion to the matrix element. Thus,
if we excite the electrons, it is plausible that the energy of
the excited state could be reduced by structural changes
that reduce the hopping between neighboring carbons,
which happens if the molecule rotates to become non–
planar. In this way we can understand why there is a
force for rotation in the excited state, and why there is
another local minimum in the ground state at the 11–cis
structure.

Problem 24: Energy levels in conjugated molecules. The
simplest model for a conjugated molecule is that the electrons which
form the π orbitals can sit on each carbon atom with some energy
that we can set to zero, and they can hop from one atom to its
neighbors. Note that there is one relevant electron per carbon
atom. If we write the Hamiltonian for the electrons as a matrix,
then for a ring of six carbons (benzene) we have

H6 =





0 −t 0 0 0 −t
−t 0 −t 0 0 0
0 −t 0 −t 0 0
0 0 −t 0 −t 0
0 0 0 −t 0 −t
−t 0 0 0 −t 0




, (69)

where the “hopping matrix element” −t is negative because the
electrons can lower their energy by being shared among neighboring
atoms—this is the essence of chemical bonding! Models like this
are called tight binding models in the condensed matter physics
literature and Hückel models in the chemical literature. Notice
that they leave out any direct interactions among the electrons.
This problem is about solving Schrödinger’s equation, Hψ = Eψ,
to find the energy eigenstates and the corresponding energy levels.
Notice that for the case of benzene if we write the wave function
ψ in terms of its six components (one for each carbon atom) then
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Schrödinger’s equation becomes

−t(ψ2 + ψ6) = Eψ1 (70)

−t(ψ1 + ψ3) = Eψ2 (71)

−t(ψ2 + ψ4) = Eψ3 (72)

−t(ψ3 + ψ5) = Eψ4 (73)

−t(ψ4 + ψ6) = Eψ5 (74)

−t(ψ5 + ψ1) = Eψ6. (75)

(a.) Considering first the case of benzene, show that solutions
to the Schrödinger equation are of the form ψn ∝ exp(ikn). What
are the allowed values of the “momentum” k? Generalize to an
arbitrary N–membered ring.

(b.) What are the energies corresponding to the states labeled by
k? Because of the Pauli principle, the ground state of the molecule

is constructed by putting the electrons two–by–two (spin up and
spin down) into the lowest energy states; thus the ground state of
benzene has two electrons in each of the lowest three states. What
is the ground state energy of benzene? What about for an arbitrary
N–membered ring (with N even)? Can you explain why benzene
is especially stable?

(c.) Suppose that the bonds between carbon atoms stretch and
compress a bit, so that they become alternating single and double
bonds rather than all being equivalent. To first order, if the bond
stretches by an amount u then the hopping matrix element should
go down (the electron has farther to hop), so we write t → t −
αu; conversely, if the bond compresses, so that u is negative, the
hopping matrix element gets larger. If we have alternating long
and short (single and double) bonds, then the Hamiltonian for an
six membered ring would be

H6(u) =





0 −t+ αu 0 0 0 −t− αu
−t+ αu 0 −t− αu 0 0 0

0 −t− αu 0 −t+ αu 0 0
0 0 −t+ αu 0 −t− αu 0
0 0 0 −t− αu 0 −t+ αu

−t− αu 0 0 0 −t+ αu 0




.

(76)

Find the ground state energy of the electrons as a function of u,
and generalize to the case of N–membered rings. Does the “dimer-
ization” of the system (u -= 0) raise or lower the energy of the
electrons? Note that if your analytic skills (or patience!) give out,
this is a relatively simple numerical problem; feel free to use the
computer, but be careful to explain what units you are using when
you plot your results.

(d.) In order to have bonds alternately stretched and compressed
by an amount u, we need an energy 1

2κu
2 in each bond, where κ

is the stiffness contributed by all the other electrons that we’re not
keeping track of explicitly. Consider parameter values t = 2.5 eV,

α = 4.1 eV/Å, and κ = 21 eV/Å
2
. Should benzene have alternating

single and double bonds (u -= 0) or should all bonds be equivalent
(u = 0)?

(e.) Peierls’ theorem about one–dimensional electron systems
predicts that, for N–carbon rings with N large, the minimum total
energy will be at some non–zero u∗. Verify that this is true in this
case, and estimate u∗. How large does N have to be before it’s
“large”? What do you expect for retinal?

I could try to do a full calculation here that puts flesh
on the outline in the previous paragraph, using the tools
from the problem above. But there still is a problem even
if this works ...

Suppose that we succeed, and have a semi–quantitative
theory of the excited state dynamics of rhodopsin,
enough to understand why the quantum yield of fluo-
rescence is so low, and what role is played by quantum
coherence. We would then have to check that the barrier
between the 11–cis and the all–trans structures in Fig 21
comes out to have the right height to explain the acti-
vation energy for spontaneous isomerization. But then
how do we account for the anomalously low prefactor in

this rate, which is where, as discussed above, the protein
acts to suppress dark noise? If there is something special
about the situation in the environment of the protein
which makes possible the ultrafast, coherent dynamics
in the excited state, why does this special environment
generate almost the same barrier as for isolated retinal?
It is clear that the ingredients for understanding the

dynamics of rhodopsin—and hence for understanding
why we can see into the darkest times of night—involve
quantum mechanical ideas more related to condensed
matter physics than to conventional biochemistry, a re-
markably long distance from the psychology experiments
on human subjects that we started with. While Lorentz
could imagine that people count single quanta, surely he
couldn’t have imagined that he first steps of this process
are coherent. While these are the ingredients, it is clear
that we don’t have them put together in quite the right
way yet.
If rhodopsin were the only example of this “almost co-

herent chemistry” that would be good enough, but in fact
the other large class of photon induced events in biologi-
cal systems—photosynthesis—also proceed so rapidly as
to compete with loss of coherence, and the crucial events
again seem to happen (if you’ll pardon the partisanship)
while everything is still in the domain of physics and not
conventional chemistry. Again there are beautiful exper-
iments that present a number of theoretical challenges.20

20 As usual, a guide is found in the references at the end of this
section.
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Why biology pushes to these extremes is a good question.
How it manages to do all this with big floppy molecules
in water at roughly room temperature also is a great
question.

To get some of the early history of work on the visual pigments,
one can do worse than to read Wald’s Nobel lecture (Wald 1972).
Wald himself (along with his wife and collaborator, Ruth Hubbard)
was quite an interesting fellow, much involved in politics; to con-
nect with the previous section, his PhD adviser was Selig Hecht.
[need more about dark noise and temperature dependence?] For a
measurement of dark noise in cones, see Sampath & Baylor (2002).
The remarkable result that the quantum yield of fluorescence in
rhodopsin is ∼ 10−5 is due to Doukas et al (1984); it’s worth not-
ing that measuring this small quantum yield was possible at a time
when one could not directly observe the ultrafast processes that
are responsible for making the branching ratio this small. Direct
measurements were finally made by Mathies et al (1988), Schoen-
lein et al (1991), and Wang et al (1994), the last paper making
clear that the initial events are quantum mechanically coherent. A
detailed analysis of the Raman spectra of Rhodopsin has been done
by Loppnow & Mathies (1988).

Doukas et al 1984: Fluorescence quantum yield of visual pig-
ments: Evidence for subpicosecond isomerization rates. AG
Doukas, MR Junnarkar, RR Alfano, RH Callender, T Kak-
itani & B Honig, Proc Nat Acad Sci (USA) 81, 4790–4794
(1984).

Loppnow & Mathies 1988: Excited-state structure and isomer-
ization dynamics of the retinal chromophore in rhodopsin
from resonance Raman intensities GR Loppnow & RAMath-
ies, Biophys J 54, 35–43 (1988).

Mathies et al 1988: Direct observation of the femtosecond
excited–state cis–trans isomerization in bacteriorhodopsin.
RA Mathies, CH Brito Cruz, WT Pollard & CV Shank,
Science 240, 777–779 (1988).

Sampath & Baylor 2002: Molecular mechanisms of sponta-
neous pigment activation in retinal cones. AP Sampath &
DA Baylor, Biophys J 83, 184–193 (2002).

Schoenlein et al 1991: The first step in vision: Femtosecond
isomerization of rhodopsin. RW Schoenlein, LA Peteanu,
RA Mathies & CV Shank, Science 254, 412–415 (1991).

Wald 1972: The molecular basis of visual excitation. G
Wald, in Nobel Lectures: Physiology or Medicine 1963–
1970 (Elsevier, Amsterdam, 1972). Also available at
http://nobelprize.org.

Wang et al 1994: Vibrationally coherent photochemistry in the
femtosecond primary event of vision. Q Wang, RW Schoen-
lein, LA Peteanu, RA Mathies & CV Shank, Science 266,
422–424 (1994).

The Born–Oppenheimer approximation is discussed in almost all
quantum mechanics textbooks. For a collection of the key papers,
with commentary, on the rich phenomena that can emerge in such
adiabatic approximations, see Shapere & Wilczek (1989). Models
for coupling of electron hopping to bond stretching (as in the last
problem) were explored by Su, Schrieffer and Heeger in relation
to polyacetylene. Importantly, these models predict that the exci-
tations (e.g., upon photon absorption) are not just electrons and
holes in the usual ladder of molecular orbitals, but that there are
localized, mobile objects with unusual quantum numbers. These
mobile objects can be generated by doping, which is the basis for
conductivity in these quasi–one dimensional materials. The origi-
nal work in Su et al (1980); a good review is Heeger et al (1988).
Many people must have realized that the dynamical models being
used by condensed matter physicists for (ideally) infinite chains

might also have something to say about finite chains. For ideas in
this direction, including some specifically relevant to Rhodopsin,
see Bialek et al (1987), Vos et al (1996), and Aalberts et al (2000).

Aalberts et al 2000: Quantum coherent dynamics of molecules:
A simple scenario for ultrafast photoisomerization. DP Aal-
berts, MSL du Croo de Jongh, BF Gerke & W van Saarloos,
Phys Rev A 61, 040701 (2000).

Heeger et al 1988: Solitons in conducting polymers. AJ Heeger,
S Kivelson, JR Schrieffer & W–P Su, Rev Mod Phys 60,
781–850 (1988).

Bialek et al 1987: Simple models for the dynamics of
biomolecules: How far can we go?. W Bialek, RF
Goldstein & S Kivelson, in Structure, Dynamics and
Function of Biomolecules: The First EBSA Workshop, A
Ehrenberg, R Rigler, A Graslund & LJ Nilsson, eds, pp
65–69 (Springer–Verlag, Berlin, 1987).

Shapere & Wilczek 1989: Geometric Phases in Physics A
Shapere and F Wilczek (World Scientific, Singapore, 1989)

Su et al 1980: Soliton excitations in polyacetylene. W–P Su, JR
Schrieffer & AJ Heeger, Phys Rev B 22, 2099–2111 (1980).

Vos et al 1996: Su–Schrieffer–Heeger model applied to chains of
finite length. FLJ Vos, DP Aalberts & W van Saarloos, Phys
Rev B 53, 14922–14928 (1996).

Going beyond the case of rhodopsin, you may want to explore the
role of quantum coherence in the initial events of photosynthe-
sis; for an introduction see Fleming & van Grondelle (1994). The
first experiments focused on photo–induced electron transfer, and
looked at systems that had been genetically modified so that the
electron, once excited, had no place to go (Vos et al 1991, Vos et al
1993); this made it possible to see the coherent vibrational motion
of the molecule more clearly in spectroscopic experiments. Sub-
sequent experiments used more intact systems, but looked first at
low temperatures (Vos et al 1994a) and finally at room tempera-
ture (Vos et al 1994b). Eventually it was even possible to show that
photo–triggering of electron transfer in other systems could reveal
coherent vibrational motions (Liebl et al 1999). More or less at the
same time as the original Vos et al experiments, my colleagues and
I made the argument that photo–induced electron transfer rates
in the initial events of photosynthesis would be maximized if the
system were poised on the threshold of revealing coherent effects;
maybe (although there were uncertainties about all the parameters)
one could even strengthen this argument to claim that the observed
rates were possible only in this regime (Skourtis et al 1992). Most
recently, it has been discovered that when energy is trapped in
the “antenna pigments” of photosynthetic systems, the migration
of energy toward the reaction center (where the electron transfer
occurs) is coherent, and it has been suggested that this allows for
a more efficient exploration of space, finding the target faster than
is possible in diffusive motion (Engel et al 2007). [Decide what to
say about the large follow up literature!]

Engel et al 2007: Evidence for wavelike energy transfer through
quantum coherence in photosynthetic systems. GS En-
gel, TR Calhoun, EL Read, T–K Ahn, T Mančal, Y–C
Chengm RE Blankenship & GR Fleming, Nature 446, 782–
786 (2007).

Fleming & van Grondelle 1994: The primary steps of photo-
synthesis. GR Fleming & R van Grondelle, Physics Today
pp 48–55, February 1994.

Liebl et al 1999: Coherent reaction dynamics in a bacterial cy-
tochrome c oxidase. U Liebl, G Lipowski, M Négrerie, JC
Lambry, JL Martin & MH Vos, Nature 401, 181–184 (1999).

Skourtis et al 1992: A new look at the primary charge separa-
tion in bacterial photosynthesis. SS Skourtis, AJR DaSilva,
W Bialek & JN Onuchic, J Phys Chem 96, 8034–8041
(1992).

Vos et al 1991: Direct observation of vibrational coherence in
bacterial reaction centers using femtosecond absorption
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spectroscopy. MH Vos, JC Lambry, SJ Robles, DC You-
van, J Breton & JL Martin, Proc Nat’l Acad Sci (USA) 88,
8885–8889 (1991).

Vos et al 1993: Visualization of coherent nuclear motion in a
membrane protein by femtosecond spectroscopy. MH Vos,
F Rappaport, JC Lambry, J Breton & JL Martin, Nature
363, 320–325 (1993).

Vos et al 1994a: Coherent dynamics during the primary electron
transfer reaction in membrane–bound reaction centers of
Rhodobacter sphaeroides. MH Vos, MR Jones, CN Hunter,
J Breton, JC Lambry & JL Martin, Biochemistry 33, 6750–
6757 (1994).

Vos et al 1994b: Coherent nuclear dynamics at room tempera-
ture in bacterial reaction centers. MH Vos, MR Jones, CN
Hunter, J Breton, JC Lambry & JL Martin, Proc Nat’l Acad
Sci (USA) 91, 12701–12705 (1994).

C. Dynamics of biochemical networks

Section still needs editing, as of September 18, 2011.
The material here seems to have accreted during the
early versions of the course, and much time is spent on
things which we now know aren’t productive ... . On
the other hand, I would like to say more about, for ex-
ample, Sengupta et al (2000) on SNR in cascades and
gain–bandwidth, as well as returning to the problem of
transduction in invertebrates, e.g. theoretical work from
Shraiman, Ranganathan et al.. So, I’d like make a more
thorough overhaul here!

We have known for a long time that light is absorbed
by rhodopsin, and that light absorption leads to an elec-
trical response which is detectable as a modulation in the
current flowing across the photoreceptor cell membrane.
It is only relatively recently that we have come to under-
stand the mechanisms which link these two events. The
nature of the link is qualitatively different in different
classes of organisms. For vertebrates, including us, the
situation is as schematized in Fig 22. [it would be nice
to come back and talk about invertebrates too]

In outline, what happens is that the excited rhodopsin
changes its structure, arriving after several steps in a
state where it can act as a catalyst to change the struc-
ture of another protein called transducin (T). The acti-
vated transducin in turn activates a catalyst called phos-
phodiesterase (PDE), which breaks down cyclic guano-
sine monophospate (cGMP). Finally, cGMP binds to
channels in the cell membrane and opens the channels,
allowing current to flow (mostly carried by Na+ ions);
breaking down the cGMP thus decreases the number of
open channels and decreases the current. [This discus-
sion needs to refer to a schematic of the rod cell. Where
is this? Earlier? Here?]

In a photomultiplier, photon absorption results in the
ejection of a primary photoelectron, and then the large
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FIG. 22 The cascade leading from photon absorption to ionic
current flow in rod photoreceptors. Solid lines indicate ‘for-
ward’ steps that generate gain; dashed lines are the ‘back-
ward’ steps that shut off the process. T is the transducin
molecule, a member of the broad class of G–proteins that
couple receptors to enzymes. PDE is the enzyme phospho-
diesterase, named for the particular bond that it cuts when
it degrades cyclic guanosine monophosphate (cGMP) into
GMP. GC is the guanylate cyclase that synthesizes cGMP
from guanosine triphosphate, GTP.

electric field accelerates this electron so that when it hits
the next metal plate it ejects many electrons, and the
process repeats until at the output the number of elec-
trons is sufficiently large that it constitutes a macroscopic
current. Thus the photomultiplier really is an electron
multiplier. In the same way, the photoreceptor acts as
a molecule multiplier, so that for one excited rhodopsin
molecule there are many cGMP molecules degraded at
the output of the “enzymatic cascade.”
There are lots of interesting questions about how the

molecule multiplication actually works in rod photore-
ceptors. These questions are made more interesting by
the fact that this general scheme is ubiquitous in biologi-
cal systems. [need a schematic about G–protein coupled
receptors!] Rhodopsin is a member of a family of proteins
which share common structural features (seven alpha he-
lices that span the membrane in which the protein is
embedded) and act as receptors, usually activated by the
binding of small molecules such as hormones or odorants
rather than light. Proteins in this family interact with
proteins from another family, the G proteins, of which
transducin is an example, and the result of such interac-
tions typically is the activation of yet another enzyme, of-
ten one which synthesizes or degrades a cyclic nucleotide.
Cyclic nucleotides in turn are common intracellular mes-
sengers, not just opening ion channels but also activating
or inhibiting a variety of enzymes. This universality of
components means that understanding the mechanisms
of photon counting in rod cells is not just a curiosity for
physicists, but a place where we can provide a model for
understanding an enormous range of biological processes.
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In order to get started, we need to know a little bit
about ion channels, which form the output of the system.
We will see that even the simplest, order–of–magnitude
properties of channels raise a question about the observed
behavior of the rod cells.
Recall that the brain contains no metallic or semicon-

ductor components. Signals can still be carried by elec-
trical currents and voltages, but now currents consist of
ions, such as potassium or sodium, flowing through water
or through specialized conducting pores. These pores, or
channels, are large molecules (proteins) embedded in the
cell membrane, and can thus respond to the electric field
or voltage across the membrane as well as to the binding
of small molecules. The coupled dynamics of channels
and voltage turns each cell into a potentially complex
nonlinear dynamical system.
Imagine a spherical molecule or ion of radius a; a typi-

cal value for this radius is 0.3 nm. From Stokes’ formula
we know that if this ion moves through the water at ve-
locity v it will experience a drag force F = γv, with the
drag coefficient γ = 6πηa, where η is the viscosity; for
water η = 0.01 poise, the cgs unit poise = gm/(cm · s).
The inverse of the drag coefficient is called the mobil-
ity, µ = 1/γ, and the diffusion constant of a particle
is related to the mobility and the absolute tempera-
ture by the Einstein relation or fluctuation dissipation
theorem, D = kBTµ, with kB being Boltzmann’s con-
stant and T the absolute temperature. Since life oper-
ates in a narrow range of absolute temperatures, it is
useful to remember that at room temperature (25◦C),
kBT ∼ 4 × 10−21 J ∼ 1/40 eV. So let’s write the diffu-
sion constant in terms of the other quantities, and then
evaluate the order of magnitude:

D = kBTµ = kBT · 1
γ
=

kBT

6πηa
(77)

=
[4× 10−21 J]

6π · [0.01 gm/(cm · s)] · [0.3× 10−9 m]
(78)

∼ 2× 10−9m2/ s = 2µm2/ms. (79)

Ions and small molecules diffuse freely through water,
but cells are surrounded by a membrane that functions
as a barrier to diffusion. In particular, these membranes
are composed of lipids, which are nonpolar, and there-
fore cannot screen the charge of an ion that tries to pass
through the membrane. The water, of course, is polar
and does screen the charge, so pulling an ion out of the
water and pushing it through the membrane would re-
quire surmounting a large electrostatic energy barrier.
This barrier means that the membrane provides an enor-
mous resistance to current flow between the inside and
the outside of the cell. If this were the whole story there
would be no electrical signaling in biology. In fact, cells
construct specific pores or channels through which ions
can pass, and by regulating the state of these channels
the cell can control the flow of electric current across the
membrane. [need a sketch that goes with this discussion]

Ion channels are themselves molecules, but very large
ones—they are proteins composed of several thousand
atoms in very complex arrangements. Let’s try, however,
to ask a simple question: If we open a pore in the cell
membrane, how quickly can ions pass through? More
precisely, since the ions carry current and will move in
response to a voltage difference across the membrane,
how large is the current in response to a given voltage?
Imagine that one ion channel serves, in effect, as a hole

in the membrane. Let us pretend that ion flow through
this hole is essentially the same as through water. The
electrical current that flows through the channel is

J = qion · [ionic flux] · [channel area], (80)

where qion is the charge on one ion, and we recall that
‘flux’ measures the rate at which particles cross a unit
area, so that

ionic flux =
ions

cm2s
=

ions

cm3
· cm

s
(81)

= [ionic concentration] · [velocity of one ion]

= cv. (82)

Major current carriers such as sodium and potassium
are at concentrations of c ∼ 100 mM, or c ∼ 6 ×
1019 ions/cm3.
The next problem is to compute the typical velocity of

one ion. We are interested in a current, so this is not the
velocity of random Brownian motion but rather the aver-
age of that component of the velocity directed along the
electric field. In a viscous medium, the average velocity
is related to the applied force through the mobility, or
the inverse of the drag coefficient as above. The force on
an ion is in turn equal to the electric field times the ionic
charge, and the electric field is (roughly) the voltage dif-
ference V across the membrane divided by the thickness
& of the membrane:

v = µF = µqionE ∼ µqion
V

&
=

D

kBT
qion

V

&
. (83)

Putting the various factors together we find the current

J = qion · [ionic flux] · [channel area]
= qion · [cv] · [πd2/4] (84)

= qion ·
[
c · D

&
· qionV
kBT

]
· πd

2

4
(85)

=
π

4
qion · cd

2D

&
· qionV
kBT

, (86)

where the channel has a diameter d. If we assume that
the ion carries one electronic charge, as does sodium,
potassium, or chloride, then qion = 1.6 × 10−19 C and
qionV /(kBT ) = V/(25 mV). Typical values for the chan-
nel diameter should be comparable to the diameter of a
single ion, d ∼ 0.3 nm, and the thickness of the mem-
brane is & ∼ 5 nm. Thus
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J =
π

4
qion · cd

2D

&
· qionV
kBT

=
π

4
(1.6× 10−19 C) · (6× 1019 cm−3)(3× 10−8 cm)2(10−5 cm2/s)

50× 10−8 cm
· V

25 mV
(87)

∼ 2× 10−14 · V

mV
C/s ∼ 2× 10−11 V

Volts
Amperes, (88)

or

J = gV (89)

g ∼ 2× 10−11 Amperes/Volt = 20 picoSiemens.(90)

So our order of magnitude argument leads us to pre-
dict that the conductance of an open channel is roughly
20 pS.21 With a voltage difference across the membrane
of ∼ 50mV, we thus expect that opening a single channel
will cause ∼ 1 picoAmp of current to flow. Although in-
credibly oversimplified, this is basically the right answer,
as verified in experiments where one actually measures
the currents flowing through single channel molecules.

The first problem in understanding the enzymatic cas-
cade in rods is accessible just from these back of the en-
velope arguments. When we look at the total change
in current that results from a single photon arrival, it
is also ∼ 1 pA. But if this were just the effect of (clos-
ing) one channel, we’d see “square edges” in the current
trace as the single channels opened or closed. It would
also be a little weird to have sophisticated (and expen-
sive!) mechanisms for generating macroscopic changes
in cGMP concentration only to have this act once again
on a single molecule—if we have a single molecule input
and a single molecule output, it really isn’t clear why we
would need an amplifier. What’s going on?

The answer turns out to be that these channels flicker
very rapidly between their open and closed states, so that
on the relatively slow time scale of the rod response one
sees essentially a graded current proportional to the prob-
ability of the channel being open. Thus the population
of channels in the rod cell membrane produces a cur-
rent that depends continuously on the concentration of
cGMP. Alternatively, the noise variance that is associ-
ated with the random binary variable open/closed has
been spread over a very broad bandwidth, so that in the
frequency range of interest (recall that the single photon
response is on a time scale of ∼ 1 s) the noise is much
reduced. This idea is made precise in the following prob-
lem, which you can think of as an introduction to the

21 Siemens are the units of conductance, which are inverse to units
of resistance, ohms. In the old days, this inverse of resistance had
the rather cute unit ‘mho’ (pronounced ‘moe,’ like the Stooge).

analysis of noise in “chemical” systems where molecules
fluctuate among multiple states.

Problem 25: Flickering channels. Imagine a channel that
has two states, open and closed. There is a rate kopen at which the
molecule makes transitions from the closed state to the open state,
and conversely there is a rate kclose at which the open channels
transition into the closed state. If we write the number of open
channels as nopen, and similarly for the number of closed channels,
this means that the deterministic kinetic equations are

dnopen

dt
= kopennclosed − kclosenopen (91)

dnclose

dt
= kclosenopen − kopennclose, (92)

or, since nopen + nclosed = N , the total number of channels,

dnopen

dt
= kopen(N − nopen)− kclosenopen (93)

= −(kopen + kclose)nopen + kopenN. (94)

For a single channel molecule, these kinetic equations should be
interpreted as saying that an open channel has a probability kclosedt
of making a transition to the closed state within a small time dt,
and conversely a closed channel has a probability kopendt of making
a transition to the open state. We will give a fuller account of noise
in chemical systems in the next Chapter, but for now you should
explore this simplest of examples.

(a.) If we have a finite number of channels, then really the
number of channels which make the transition from the closed state
to the open state in a small window dt is a random number. What
is the mean number of these closed → open transitions? What is
the mean number of open → closed transitions? Use your results
to show that macroscopic kinetic equations such as Eqs (91) and
(92) should be understood as equations for the mean numbers of
open and closed channels,

d〈nopen〉
dt

= kopen〈nclosed〉 − kclose〈nopen〉 (95)

d〈nclose〉
dt

= kclose〈nopen〉 − kopen〈nclose〉. (96)

(b.) Assuming that all the channels make their transitions in-
dependently, what is the variance in the number of closed → open
transitions in the small window dt? In the number of open → closed
transitions? Are these fluctuations in the number of transitions in-
dependent of one another?

(c.) Show that your results in [b] can be summarized by saying
that the change in the number of open channels during the time dt
obeys an equation

nopen(t+dt)−nopen(t) = dt[kopennclosed−kclosenopen]+η(t), (97)

where η(t) is a random number that has zero mean and a variance

〈η2(t)〉 = dt[kopennclosed + kclosenopen]. (98)
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Explain why the values of η(t) and η(t′) are independent if t -= t′.
(d.) This discussion should remind you of the description of

Brownian motion by a Langevin equation, in which the determin-
istic dynamics are supplemented by a random force that describes
molecular collisions. In this spirit, show that, in the limit dt → 0,
you can rewrite your results in [c] to give a Langevin equation for
the number of open channels,

dnopen

dt
= −(kopen + kclose)nopen + kopenN + ζ(t), (99)

where

〈ζ(t)ζ(t′)〉 = δ(t− t′)[kopennclosed + kclosenopen]. (100)

In particular, if the noise is small, show that nopen = 〈nopen〉 +
δnopen, where

dδnopen

dt
= −(kopen + kclose)δnopen + ζs(t), (101)

〈ζs(t)ζs(t′)〉 = 2kopen〈nclosed〉. (102)

(e.) Solve Eq (101) to show that

〈δn2
open〉 = Npopen(1− popen) (103)

〈δnopen(t)δnopen(t
′)〉 = 〈δn2

open〉 exp
[
−
|t− t′|

τc

]
, (104)

where the probability of a channel being open is popen =
kopen/(kopen + kclose), and the correlation time τc = 1/(kopen +
kclose). Explain how the result for the variance 〈δn2

open〉 could be
derived more directly.

(f.) Give a critical discussion of the approximations involved in
writing down these Langevin equations. In particular, in the case
of Brownian motion of a particle subject to ordinary viscous drag,
the Langevin force has a Gaussian distribution. Is that true here?

Problem 26: Averaging out the noise. Consider a random
variable such as nopen in the previous problem, for which the noise
has exponentially decaying correlations, as in Eq (104). Imagine
that we average over a window of duration τavg, to form a new
variable

z(t) =
1

τavg

∫ τavg

0
dτ δnopen(t− τ). (105)

Show that, for τavg " τc, the variance of z is smaller than the
variance of δnopen by a factor of τavg/τc. Give some intuition for
why this is true (e.g., how many statistically independent samples
of nopen will you see during the averaging time?). What happens
if your averaging time is shorter?

I think this is a fascinating example, because evolution
has selected for very fast channels to be present in a cell
that signals very slowly! Our genome (as well as those of
many other animals) codes for hundreds if not thousands
of different types of channels once one includes the pos-
sibility of alternative splicing. These different channels
differ, among other things, in their kinetics. In the fly
retina, for example, the dynamics of visual inputs look-
ing straight ahead are very different from those looking to
the side, and in fact the receptor cells that look in these
different directions have different kinds of channels—the
faster channels to respond to the more rapidly varying
signals. [I am not sure that the last statement is correct,
and need to check the references; what certainly is true
is that insects with different lifestyles (e.g., acrobats vs.
slow fliers) use different potassium channels ... ] In the

FIG. 23 Current through the rod cell membrane as a function
of the cyclic GMP concentration. The fit is to Eq (106), with
n = 2.9 ± 0.1 and G1/2 = 45 ± 4µM. From Rieke & Baylor
(1996).

vertebrate rod, signals are very slow but the channels are
fast, and this makes sense only if the goal is to suppress
the noise.
Having understood a bit about the channels, let’s take

one step back and see how these channels respond to
cyclic GMP. Experimentally, with the rod outer segment
sucked into the pipette for measuring current, one can
break off the bottom of the cell and make contact with
its interior, so that concentrations of small molecules in-
side the cell will equilibrate with concentrations in the
surrounding solution. Since the cell makes cGMP from
GTP, if we remove GTP from the solution then there is
no source other than the one that we provide, and now we
can map current vs concentration. The results of such an
experiment are shown in Fig 23. We see that the current
I depends on the cGMP concentration G as

I = Imax
Gn

Gn +Gn
1/2

, (106)

with n ≈ 3. This suggests strongly that the channel
opens when three molecules of cGMP bind to it. This
is an example of “cooperativity” or “allostery,” which
is a very important theme in biochemical signaling and
regulation. It’s a little off to the side of our discussion
here, however, so see Appendix A.4.
Let’s try to write a more explicit model for the dynam-

ics of amplification in the rod cell, working back from the
channels. We have Eq (106), which tells us how the cur-
rent I depends on G, the concentration of cyclic GMP.
The dynamics of G has two terms, synthesis and degra-
dation:

dG

dt
= γ − PDE∗G, (107)

where γ denotes the rate of synthesis by the guanylate
cyclase (GC, cf Fig 22), and PDE∗ measures the activity
of the active phosphodiesterase. It turns out that there
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is a feedback mechanism in the rod, where calcium enters
through the open channels (as part of the current), and
then calcium binding inhibits the activity of the guany-
late cyclase. We can summarize these effects, measured
in several experiments, by writing

γ =
γmax

1 + (Ca/Kgc)2
≈ αCa−2, (108)

where the last approximation is valid so long at the typ-
ical calcium concentration Ca is much larger than the
binding constant Kgc ∼ 100 nM, which seems to be true;
the fact that the dependence is on the square of the cal-
cium concentration presumably means that two Ca++

ions bind to inhibit the cyclase (see again the discussion
of cooperativity in Appendix A.4). Since calcium enters
the cell as a fraction of the current flowing through the
open channels, and presumably is pumped back out by
other mechanisms, we can write

dCa

dt
= fI(G)− βCa, (109)

where f is the fraction of the current carried by calcium
and 1/β is the lifetime of of calcium before it is pumped
out. These equations tell how the cyclic GMP concen-
tration, and hence the current, will respond to changes
in the activity of the phosphodiesterase, thus describing
the last steps of the amplification cascade.

It is convenient to express the response of G to PDE∗

in the limit that the response is linear, which we expect
is right when only small numbers of photons are being
counted. This linearization gives us

δĠ =
∂γ

∂Ca
δCa− PDE∗

0δG−G0δPDE∗ (110)

δĊa = fI ′(G0)δG− βδCa, (111)

where the subscript 0 denotes the values in the dark. We
can solve these equations by passing to Fourier space,
where

δG̃(ω) =

∫
dt e+iωtδG(t), (112)

and similarly for the other variables. As usual, this re-
duces the linear differential equations to linear algebraic
equations, and when the dust settles we find

δG̃(ω)

δ ˜PDE
∗
(ω)

=
−G0(−iω + β)

(−iω + PDE∗
0 )(−iω + β) +A

, (113)

A = 2γ0fI
′(G0)/Ca0. (114)

Already this looks like lots of parameters, so we should
see how we can simplify, or else measure some of the
parameters directly.

First, one find experimentally that the cyclic GMP
concentration is in the regime where I ∝ G3, that is

G , G1/2. This means that we can express the response
more compactly as a fractional change in current

δĨ(ω) = 3I0
−iω + β

(−iω + PDE∗
0 )(−iω + β) +A

· δ ˜PDE
∗
(ω),

(115)
where A = 6βPDE∗

0 .

Problem 27: Dynamics of cGMP. Fill in all the steps leading
to Eq (115).

In the same experiment where one measures the re-
sponse of the channels to cGMP, one can suddenly bring
the cGMP concentration of the outside solution to zero,
and then the internal cGMP concentration (which we can
read off from the current, after the first experiment) will
fall due both to diffusion out of the cell and to any PDE
which is active in the dark; one can also poison the PDE
with a drug (IBMX), separating the two components. In
this way one can measure PDE∗

0 = 0.1 ± 0.02 s−1. To
measure β, you need to know that the dominant mecha-
nism for pumping calcium out of the cell actually gener-
ates an electrical current across the membrane.22 With
this knowledge, if we turn on a bright light and close all
the cGMP–sensitive channels, there is no path for cal-
cium to enter the rod outer segment, but we still see a
small current as it is pumped out. This current decays
with at a rate β ∼ 2 s−1. Thus, although this model—
even for part of the process!—looks complicated, there
are many independent experiments one can do to mea-
sure the relevant parameters.
In fact, the analysis of the dynamics of cGMP and cal-

cium leads us to the point where we can more or less
invert these dynamics, turning the dynamics of the cur-
rent back into the dynamics of the PDE∗. An interesting
application of this idea is to try and understand the con-
tinuous background noise that occurs in the dark. As we
saw, there is a big source of noise in the dark that comes
from spontaneous isomerization of rhodopsin. But there
is also a smaller, continuous rumbling, with an amplitude
δIrms ∼ 0.1 pA. This isn’t the intrinsically random open-
ing and closing of the channels, since we have seen that
this happens very fast and thus contributes very little to
the noise at reasonable frequencies. It must thus reflect

22 This needn’t be true. First, there are mechanisms which ex-
change ions on different sides of the membrane, maintaining elec-
trical neutrality. Second, it could be be that the dominant pump
sends calcium into storage spaces inside the cell, so no ions cross
the cell membrane.
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responses of the channels to fluctuations in the concentra-
tion of cGMP. Since this concentration is determined by
a balance between synthesis and degradation, one should
check whether one of these processes is dominating the
noise.

The rate at which cGMP is synthesized is modulated
by calcium, but we can prevent the calcium concentration
from changing by using buffers, either injected into the
cell or in the surrounding solution when the cell is broken
open. If the calcium concentration were itself fluctuat-
ing, and these fluctuations generated noise in the synthe-
sis of cGMP, buffering the calcium concentration should
lower the continuous background noise; instead the noise
goes up. On the other hand, if we poison the phosphodi-
esterase with IBMX, and allow synthesis to compete with
diffusion out of a broken cell, the noise drops dramati-
cally. [At this point things get a little vague .. go back
and do better!] These, and other experiments as wel, in-
dicate that the dominant source of the continuous dark
noise is fluctuations in the number of active phosphodi-
esterase molecules. Alternatively, one can say that the
noise arises from ‘spontaneous’ activation of the PDE,
absent any input from activated rhodopsin.

[Need to be sure we have control over the math here ..
maybe connect back to problem about ion channels? Also
connect to Appendix A.2. Review before giving results.
Get all the number right, too!] If the activation of PDE
in the dark is rare, then we expect that the variance in
the number of active molecules will be equal to the mean,
and the fluctuations in activity should have a correlation
time equal to the lifetime of the activated state. If a is
the activity of a single enzyme—that is, the factor the
converts the number of active enzymes into the rate at
which cGMP is degraded—then we have

〈δPDE∗(t)δPDE∗(t′)〉 = aPDE∗
0e

−|t−t′|/τc , (116)

where τc is the lifetime of the active state. Putting this
together with Eq (115), we can generate a prediction for
the power spectrum of fluctuations in the current. Im-
portantly, the only unknown parameters are a, which sets
the over scale of the fluctuations, and τc, which shapes
the spectrum. Fitting to the observed spectra, one finds
a = 1.6× 10−5 s−1 and τc = 0.56 s. Thus, a single active
phosphodiesterase causes the cGMP concentration to de-
crease at a rate aG0 ∼ 2× 10−4 µM/s, and this lasts for
roughly half a second; with a volume of ∼ 10−12 l, this
means that one PDE∗ destroys ∼ 60 molecules of cGMP.

Knowing how changes in concentration change the cur-
rent, and how much one PDE∗ can reduce the cGMP
concentration, we can calculate that a single photon must
activate at least 2000 phosphodiesterase molecules. More
concretely, a single activated rhodopsin must trigger the
activation of at least 2000 PDE∗. In orer for this to
happen, the activated rhodopsin has to diffuse in the
disk membrane [did we actually discuss the geometry of
the disk etc? check!] during its lifetime; certainly the

number of molecules that it can activate is limited by
the number of molecules that it can encounter via diffu-
sion. With measured diffusion constants and a lifetime of
roughly one second (after this, the whole response starts
to shut off), this seems possible, but not with much to
spare. Thus, it seems likely that the gain in the first part
of the amplifier is limited by the density of molecules
and the physics of diffusion. [Need estimates of diffusion
constant here .. either explain, or give problem, about
diffusion limit to this reaction.]
[I think that before going on to discuss reproducibil-

ity we want to say a bit more about gain .. look at
Detwiler et al (2000) regarding the design of G protein
elements, since this would also give an excuse to discuss
some more about these ... Then check segue.] So, given
this dissection of the amplifier, what is it that we really
want to know? Understanding gain—how you get many
molecules out for only one molecule at the input—isn’t
so hard, basically because catalysis rates are high, close
to the diffusion limit. One might want to understand the
system’s choice of other parameters, but is there really a
conceptual problem here?
Perhaps the most surprising aspect of the single pho-

ton response in rods is its reproducibility. If we look
at the responses to dim light flashes and isolate those
responses that correspond to a single photon (you have
already done a problem to assess how easy or hard this
is!), one finds that the amplitude of the response fluc-
tuates by only ∼ 15 − 20%; see, for example, Fig. 24.
To understand why this is surprising we have to think
about chemistry at the level of single molecules, specifi-
cally the chemical reactions catalyzed by the single acti-
vated molecule of rhodopsin.
[This discussion need to point back to the problem

about ion channels.] When we write that there is a
rate k for a chemical reaction, what we mean is that for
one molecule there is a probability per unit time k that
the reaction will occur—this should be familiar from the
case of radioactive decay. Thus when one molecule of
rhodopsin is activated at time t = 0, if we imagine that
de–activation is a simple chemical reaction then the prob-
ability that the molecule is still active at time t obeys the
usual kinetic equation

dp(t)

dt
= −kp(t); (117)

of course if there are N total molecules then Np(t) = n(t)
is the expected number of molecules still in the active
state. Thus, p(t) = exp(−kt). The probability density
P (t) that the molecule is active for exactly a time t is the
probability that the molecule is still active at t times the
probability per unit time of de–activation, so

P (t) = kp(t) = k exp(−kt). (118)

This may seem pedantic, but it’s important to be clear—
and we’ll see that far from being obvious there must be
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FIG. 24 Reproducibility of the single photon response, from
Field & Rieke (2002b). (A) Examples of single photon re-
sponses and failures from single mammalian rods. (B) Vari-
ances of the responses in (A). (C) Variance and square of mean
response to one photon; variance in the response is defined
as the difference in variance between responses and failures.
Finally (D) shows the mean of results as in (C) from eight pri-
mate rods and nine guinea pig rods; scales are normalized for
each cell by the peak mean response and the time to peak. We
see that at the peak response the relative variance is ∼ 0.025,
so the root–mean–square fluctuations are ∼ 0.15.

something wrong with this simple picture.
Given the probability density P (t), we can calculate

the mean and variance of the time spent in the active
state:

〈t〉 ≡
∫ ∞

0
dt P (t) t (119)

= k

∫ ∞

0
exp(−kt)t = 1/k; (120)

〈(δt)2〉 ≡
∫ ∞

0
dt P (t) t2 − 〈t〉 (121)

= k

∫ ∞

0
dt exp(−kt)t2 − 1/k2 (122)

= 2/k2 − 1/k2 = 1/k2. (123)

Thus we find that

δtrms ≡
√
〈(δt)2〉 = 1/k = 〈t〉, (124)

so that the root–mean–square fluctuations in the lifetime
are equal to the mean.
How does this relate to the reproducibility of the sin-

gle photon response? The photoreceptor works by having
the active rhodopsin molecule act as a catalyst, activat-
ing transducin molecules. If the catalysis proceeds at
some constant rate (presumably set by the time required
for rhodopsin and transducin to find each by diffusion
in the membrane), then the number of activated trans-
ducins is proportional to the time that rhodopsin spends
in the active state—and hence we would expect that the
number of active transducin molecules has root–mean–
square fluctuations equal to the mean number. If the
subsequent events in the enzymatic cascade again have
outputs proportional to their input number of molecules,
this variability will not be reduced, and the final out-
put (the change in cGMP concentration) will again have
relative fluctuations of order one, much larger than the
observed 15 − 20%. This is a factor of 25 or 40 error in
variance; we can’t even claim to have an order of mag-
nitude understanding of the reproducibility. I’d like to
give an idea of the different possible solutions that peo-
ple have considered, focusing on very simple versions of
these ideas that we can explore analytically. At the end,
we’ll look at the state of the relevant experiments.
One possibility is that although the lifetime of acti-

vated rhodopsin might fluctuate, the number of molecules
at the output of the cascade fluctuates less because of sat-
uration [point to sketch of discs]. For example, if each
rhodopsin has access only to a limited pool of transducin
molecules, a reasonable fraction of rhodopsins might re-
main active long enough to hit all the molecules in the
pool. The simplest version of this idea is as follows. Let
the total number of transducins in the pool be Npool, and
let the number of activated transducins be nT . When the
rhodopsin is active, it catalyzes the conversion of inactive
transducins (of which there are Npool − nT ) into the ac-
tive form at a rate r, so that (neglecting the discreteness
of the molecules)

dnT

dt
= r(Npool − nT ). (125)

If the rhodopsin molecule is active for a time t then this
catalysis runs for a time t and the number of activated
transducins will be

nT (t) = Npool[1− exp(−rt)]. (126)

For small t the variations in t are converted into pro-
portionately large variations in nT , but for large t the
saturation essentially cuts off this variation.
To be more precise, recall that we can find the distri-

bution of nT by using the identity

P (nT )dnT = P (t)dt, (127)

which applies whenever we have two variables that are re-
lated by a deterministic, invertible transformation. From
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Eq (126) we have

t = −1

r
ln(1− nT /Npool), (128)

and so, going through the steps explicitly:

P (nT ) = P (t)

∣∣∣∣∣
dnT

dt

∣∣∣∣∣

−1

(129)

= k exp(−kt)
1

r(Npool − nT )
(130)

=
k

r
exp

[(
k

r

)
ln(1− nT /Npool)

]
1

(Npool − nT )

(131)

=
k

rNpool

(
1− nT

Npool

)k/r−1

. (132)

[Maybe a plot to show this?] When the activation rate
r is small, nT always stays much less that Npool and
the power law can be approximated as an exponential.
When r is large, however, the probability distribution
grows a power law singularity at Npool; for r finite this
singularity is integrable but as r → ∞ it approaches a log
divergence, which means that essentially all of the weight
will concentrated at Npool. In particular, the relative
variance of nT vanishes as r becomes large, as promised.

This discussion has assumed that the limited number
of target molecules is set, perhaps by some fixed struc-
tural domain. Depending on details, it is possible for
such a limit to arise dynamically, as a competition be-
tween diffusion and chemical reactions. In invertebrate
photoreceptors, such as the flies we have met in our dis-
cussion above, there is actually a positive feedback loop
in the amplifier which serves to ensure that each struc-
tural domain (which are more obvious in the fly receptor
cells) ‘fires’ a saturated, stereotyped pulse in response to
each photon.

[Make a sketch of the different models—either one big
figure, or separate ones for each model.]

The next class of models are those that use feedback.
The idea, again, is simple: If the output of the cascade is
variable because the rhodopsin molecule doesn’t “know”
when to de–activate, why not link the de–activation to
the output of the cascade? Roughly speaking, count the
molecules at the output and shut the rhodopsin molecule
off when we reach some fixed count. Again let’s try the
simplest version of this. When rhodopsin is active it cat-
alyzes the formation of some molecule (which might not
actually be the transducin molecule itself) at rate r, and
let the number of these output molecules by x so that we
simply have

dx

dt
= r, (133)

or x = rt. Let’s have the rate of deactivation of rhodopsin
depend on x, so that instead of Eq (117) we have

dp(t)

dt
= k[x(t)]p(t). (134)

For example, if deactivation is triggered by the cooper-
ative binding of m x molecules (as in the discussion of
cGMP–gated channels), we expect that

k[x] = kmax
xm

xm
0 + xm

. (135)

We can solve Eq (134) and then recover the probability
density for rhodospin lifetime as before,

p(t) = exp

(
−
∫ t

0
dτ k[x(τ)]

)
(136)

P (t) = k[x(t)] exp

(
−
∫ t

0
dτ k[x(τ)]

)
. (137)

Again we can push through the steps:

P (t) = k[x(t)] exp

(
−
∫ t

0
dτ k[x(τ)]

)
= kmax

xm(t)

xm
0 + xm(t)

exp

(
−kmax

∫ t

0
dτ

xm(t)

xm
0 + xm(t)

)
(138)

≈ kmax

(
t

t0

)m

exp

[
−kmaxt0

m+ 1

(
t

t0

)m+1
]
, (139)

where in the last step we identify t0 = x0/r and assume that t , t0.

To get a better feel for the probability distribution in Eq (139) it is useful to rewrite it as

P (t) ≈ kmax exp [−G(t)] (140)

G(t) = −m ln

(
t

t0

)
+

kmaxt0
m+ 1

(
t

t0

)m+1

(141)
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We can find the most likely value of the lifetime, t̄, by
minimizing G, which of course means that the derivative
must be set to zero:

G′(t) = −m

t
+ kmaxt0 ·

1

t

(
t

t0

)m+1

(142)

G′(t = t̄) = 0 ⇒ kmaxt0 ·
1

t̄

(
t̄

t0

)m+1

=
m

t̄
(143)

t̄

t0
=

(
m

kmaxt0

)1/m

(144)

In particular we see that for sufficiently large kmax we will
have t̄ , t0, consistent with the approximation above.
What we really want to know is how sharp the distribu-
tion is in the neighborhood of t̄, so we will try a series
expansion of G(t):

P (t) ≈ kmax exp

[
−G(t̄)− 1

2
G′′(t̄)(t− t̄)2 − · · ·

]
(145)

G′′(t) =
m

t2
+ (kmaxt0)m · 1

t2

(
t

t0

)m+1

≈ m

t̄2
, (146)

where again in the last step we assume t̄ << t0. Thus
we see that the distribution of lifetimes is, at least near
its peak,

P (t) ≈ P (t̄) exp
[
− m

2t̄2
(t− t̄)2 − · · ·

]
. (147)

This of course is a Gaussian with variance

〈(δt)2〉 = 1

m
· t̄2, (148)

so the relative variance is 1/m as opposed to 1 in the
original exponential distribution.

A concrete realization of the feedback ideacan be
built around the fact that the current flowing into the
rod includes calcium ions, and the resulting changes
in calcium concentration can regulate protein kinases—
proteins which in turn catalyze the attachment of phos-
phate groups to other proteins—and rhodopsin shut off is
known to be associated with phosphorylation at multiple
sites. Calcium activation of kinases typically is cooper-
ative, so m ∼ 4 in the model above is plausible. Notice
that in the saturation model the distribution of lifetimes
remains broad and the response to these variations is
truncated; in the feedback model the distribution of life-
times itself is sharpened.
A third possible model involves multiple steps in

rhodopsin de–activation. Let us imagine that rhodopsin
starts in one state and makes a transition to state 2, then
from state 2 to state three, and so on for K states, and
then it is the transition from state K to K + 1 that ac-
tually corresponds to de–activation. Thus there are K
active states and if the time spent in each state is ti then
the total time spent in activated states is

t =
K∑

i=1

ti. (149)

Clearly the mean value of t is just the sum of the means of
each ti, and if the transitions are independent (again, this
is what you mean when you write the chemical kinetics
with the arrows and rate constants) then the variance of
t will also be the sum of the variances of the individual
ti,

〈t〉 =
K∑

i=1

〈ti〉 (150)

〈(δt)2〉 =
K∑

i=1

〈(δti)2〉. (151)

We recall from above that for each single step, 〈(δti)2〉 =
〈ti〉2. If the multiple steps occur at approximately equal
rates, we can write

〈t〉 =
K∑

i=1

〈ti〉 ≈ K〈t1〉 (152)

〈(δt)2〉 =
K∑

i=1

〈(δti)2〉 =
K∑

i=1

〈ti〉2 ≈ K〈t1〉2 (153)

〈(δt)2〉
〈t〉2 ≈ K〈t1〉2

(K〈t1〉)2
=

1

K
. (154)

Thus the relative variance declines as one over the num-
ber of steps, and the relative standard deviation declines
as one over the square root of the number of steps. This
is an example of how averaging K independent events
causes a 1/

√
K reduction in the noise level.

The good news is that allowing de–activation to pro-
ceed via multiple steps can reduce the variance in the
lifetime of activated rhodopsin. Again our attention is
drawn to the fact that rhodopsin shut off involves phos-
phorylation of the protein at multiple sites. The bad
news is that to have a relative standard deviation of
∼ 20% would require 25 steps.
It should be clear that a multistep scenario works only

if the steps are irreversible. If there are significant “back-
ward” rates then progress through the multiple states be-
comes more like a random walk, with an accompanying
increase in variance. Thus each of the (many) steps in-
volved in rhodopsin shut off must involve dissipation of
a few kBT of energy to drive the whole process forward.

Problem 28: Getting the most out of multiple steps.
Consider the possibility that Rhodopsin leaves its active state
through a two step process. To fix the notation, let’s say that
the first step occurs with a rate k1 and the second occurs with rate
k2:

Rh∗
k1→ Rh∗∗

k2→ inactive. (155)

Assume that we are looking at one molecule, and at time t = 0 this
molecule is in state Rh∗.

(a) Write out and solve the differential equations for the time
dependent probability of being in each of the three states.
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(b) Use your results in [a] to calculate the probability distribu-
tion for the time at which the molecule enters the inactive state.
This is the distribution of “lifetimes” for the two active states.
Compute the mean and variance of this lifetime as a function of
the parameters k1 and k2.

(c) Is there a simple, intuitive argument that allows you to write
down the mean and variance of the lifetime, without solving any
differential equations? Can you generalize this to a scheme in which
inactivation involves N steps rather than two?

(d) Given some desired mean lifetime, is there a way of adjusting
the parameters k1 and k2 (or, more generally, k1, k2 · · · , kN ) to
minimize the variance?

(e) Suppose that there is a back reaction Rh∗∗ k−1→ Rh∗. Discuss
what this does to the distribution of lifetimes. In particular, what
happens if the rate k−1 is very fast? Note that “discuss” is delib-
erately ambiguous; you could try to solve the relevant differential
equations, or to intuit the answer, or even do a small simulation
[connect this problem to recent work by Escola & Paniniski].

The need for energy dissipation and the apparently
very large number of steps suggests a different physical
picture. If there really are something like 25 steps, then
if we plot the free energy of the rhodopsin molecule as a
function of its atomic coordinates, there is a path from
initial to final state that passes over 25 hills and valleys.
Each valley must be a few kBT lower than the last, and
the hills must be many kBT high to keep the rates in the
right range. This means that the energy surface is quite
rough [this needs a sketch]. Now when we take one solid
and slide it over another, the energy surface is rough on
the scale of atoms because in certain positions the atoms
on each surface “fit” into the interatomic spaces on the
other surface, and then as we move by an Ångstrom or
so we encounter a very high barrier. If we step back and
blur our vision a little bit, all of this detailed roughness
just becomes friction between the two surfaces. Formally,
if we think about Brownian motion on a rough energy
landscape and we average over details on short length
and time scales, what we will find is that the mobility or
friction coefficient is renormalized and then the systems
behaves on long time scales as if it were moving with this
higher friction on a smooth surface.

So if the de–activation of rhodopsin is like motion on
a rough energy surface, maybe we can think about the
renormalized picture of motion on a smooth surface with
high drag or low mobility. Suppose that the active and
inactive states are separated by a distance & along some
direction in the space of molecular structures, and that
motion in this direction occurs with an effective mobility
µ. If there is an energy drop ∆E between the active
and de–activated states, then the velocity of motion is
v ∼ µ∆E/& and the mean time to make the de–activation
transition is

〈t〉 ∼ &

v
∼ &2

µ∆E
. (156)

On the other hand, diffusion over this time causes a
spread in positions

〈(δ&)2〉 ∼ 2D〈t〉 = 2µkBT 〈t〉, (157)

where we make use of the Einstein relation D = µkBT .
Now (roughly speaking) since the molecule is moving in
configuration space with typical velocity v, this spread in
positions is equivalent to a variance in the time required
to complete the transition to the de–activated state,

〈(δt)2〉 ∼ 〈(δ&)2〉
v2

∼ 2µkBT

(µ∆E/&)2
· &2

µ∆E
. (158)

If we express this as a fractional variance we find

〈(δt)2〉
〈t〉2 ∼ 2µkBT

(µ∆E/&)2
· &2

µ∆E
·
(
µ∆E

&2

)2

∼ 2kBT

∆E
. (159)

Thus when we look at the variability of the lifetime in this
model, the effective mobility µ and the magntiude & of the
structural change in the molecule drop out, and the re-
producibility is just determined by the amount of energy
that is dissipated in the de–activation transition. Indeed,
comparing with the argument about multiple steps, our
result here is the same as expected if the number of ir-
reversible steps were K ∼ ∆E/(2kBT ), consistent with
the idea that each step must dissipate more than kBT in
order to be effectively irreversible. To achieve a relative
variance of 1/25 or 1/40 requires dropping ∼ 0.6− 1 eV
(recall that kBT is 1/40 eV at room temperature), which
is OK since the absorbed photon is roughly 2.5 eV.

Problem 29: Is there a theorem here? The above argu-
ment hints at something more general. Imagine that we have a
molecule in some state, and we ask how long it takes to arrive at
some other state. Assuming that the molecular dynamics is that
of overdamped motion plus diffusion on some energy surface, can
you show that the fractional variance in the time required for the
motion is limited by the free energy difference between the two
states?

How do we go about testing these different ideas? If
saturation is important, one could try either by chemical
manipulations or by genetic engineering to prolong the
lifetime of rhodospin and see if in fact the amplitude
of the single photon response is buffered against these
changes. If feedback is important, one could make a list
of candidate feedback molecules and to manipulate the
concentrations of these molecules. Finally, if there are
multiple steps one could try to identify the molecular
events associated with each step and perturb these events
again either with chemical or genetic methods. All these
are good ideas, and have been pursued by several groups.
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FIG. 25 Variability in the single photon response with genet-
ically engineered rhodopsins. (A) Wild type responses from
mouse rods. Schematic shows the six phosphorylation sites,
which are serine or threonine residues. In the remaining pan-
els, we see responses when the number of phosphorylation
sites has been reduced by mutating alanine, leaving five sites
(B & C), two sites (D), one site (E), or none (F). From Doan
et al (2007).

An interesting hint about the possibility of multiple
steps in the rhodopsin shutoff is the presence of multi-
ple phosphorylation sites on the opsin proteins. In mice,
there are six phosphorylation sites, and one can genet-
ically engineer organisms in which some or all of these
sites are removed. At a qualitative level it’s quite striking
that even knocking out one of these sites produces a no-
ticeable increase in the variability of the single photon re-
sponses, along with a slight prolongation of the mean re-
sponse (Figs 25B & C). When all but one or two sites are
removed, the responses last a very long time, and start
to look like on/off switches with a highly variable time in
the ‘on’ state (Figs 25D & E). When there are no phos-
phorylation sites, rhodopsin can still turn off, presumably
as a result of binding another molecule (arrestin). But
now the time to shutoff is broadly distributed, as one
might expect if there were a single step controlling the
transition.

FIG. 26 Standard deviation in the integral of the single pho-
ton response, normalize by the mean. Results are shown as a
function of the number of phosphorylation sites, from experi-
ments as in Fig 25; error bars are standard errors of the mean.
Solid line is CV = 1/

√
Np + 1, where Np is the number of

phosophorylation sites. From Doan et al (2006).

Remarkably, if we examine the responses quantita-
tively, the variance of the single photon response seems
to be inversely proportional the number of these sites,
exactly as in the model where deactivation involved mul-
tiple steps, now identified with the multiple phosphoryla-
tions (Fig 26). This really is beautiful. One of the things
that I think is interesting here is that, absent the discus-
sion of precision and reproducibility, the multiple phos-
phorylation steps might just look like complexity for its
own sake, the kind of thing that biologists point to when
they want to tease physicists about our propensity to ig-
nore details. In this case, however, the complexity seems
to be the solution to a very specific physics problem.
Probably this section should end with some caveats.

Do we really think the problem of reproducibility is
solved?

A general review of the cGMP cascade in rods is given by Burns
& Baylor (2001). Rieke & Baylor (1996) set out to understand the
origins of the continuous noise in rods, but along the way provide a
beautifully quantitative dissection of the enzymatic cascade; much
of the discussion above follows theirs. For an explanation of how
similarity to Rhodopsin (and other G–protein coupled receptors)
drove the discovery of the olfactory receptors, see Buck (2004). For
some general background on ion channels, you can try Aidley (see
notes to Section 1.1), Johnston & Wu (1995), or Hille (2001). A
starting point for learning about how different choices of channels
shape the dynamics of responses in insect photoreceptors is the
review by Weckström & Laughlin (1995). [There is much more to
say here, and probably even some things left to do.]
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the problem of reproducibility. An early effort to analyze the sig-
nals and noise in enzymatic cascades is by Detwiler et al (2000).
The idea that restricted, saturable domains can arise dynamically
and tame the fluctuations in the output of the cascade is described
by the same authors (Ramanathan et al 2005). For invertebrate
photoreceptors, it seems that reproducibility of the response to
single photons can be traced to positive feedback mechanisms that
generate a stereotyped pulse of concentration changes, localized to
substructures analogous to the disks in vertebrate rods (Pumir et
al 2008).
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1036 (1998).

One of the early, systematic efforts to test different models of re-
producibility was by Rieke & Baylor (1998b). Many of the same
ideas were revisited in mammalian rods by Field & Rieke (2002b),
setting the stage for the experiments on genetic engineering of the
phosphorylation sites by Doan et al (2006). More recent work from
the same group explores the competition between the kinase and
the arrestin molecule, which binds to the phosphorylated rhodopsin
to terminate its activity, showing this competition influences both
the mean and the variability of the single photon response (Doan
et al 2009).

Doan et al 2007: Multiple phosphorylation sites confer repro-
ducibility of the rod’s single–photon responses. T Doan,
A Mendez, PB Detwiler, J Chen & F Rieke, Science 313,
530–533 (2006).

Doan et al 2009: Arrestin competition influences the kinetics
and variability of the single–photon responses of mammalian
rod photoreceptors. T Doan, AW Azevedo, JB Hurley & F
Rieke, J Neurosci 29, 11867–11879 (2009).
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D. The first synapse, and beyond

This is a good moment to remember a key feature of
the Hecht, Shlaer and Pirenne experiment, as described
in Section I.A. In that experiment, observers saw flashes
of light that delivered just a handful of photons spread
over an area that includes many hundreds of photore-
ceptor cells. One consequence is that a single receptor
cell has a very low probability of counting more than one
photon, and this is how we know that these cells must
respond to single photons. But, it must also be possible
for the retina to add up the responses of these many cells
so that the observer can reach a decision. Importantly,
there is no way to know in advance which cells will get hit
by photons, so if we (sliding ourselves into the positions
of the observer’s brain ... ) want to integrate the multiple
photon counts we have to integrate over all the receptors
in the area covered by the flash. This integration might
be the simplest computation we can imagine for a ner-
vous system, just adding up a set of elementary signals,
all given the same weight. In many retinas, a large part

rod 

photoreceptors

bipolar cells

ganglion cells

axon in the 

optic nerve

horizontal 

cells

FIG. 27 A schematic of the circuitry in the retina. Fill in
caption.

of the integration is achieved in the very first step of pro-
cessing, as many rod cells converge and form synapses
onto onto a single bipolar cell, as shown schematically in
Fig 27 [maybe also need a real retina?]
If each cell generates an output ni that counts the num-

ber of photons that have arrived, then it’s trivial that
the total photon count is ntotal =

∑
i ni. The problem

is that the cells don’t generate integers corresponding to
the number of photons counted, they generate currents
which have continuous variations. In particular, we have
seen that the mean current in response to a single pho-
ton has a peak of I1 ∼ 1 pA, but this rests on continuous
background noise with an amplitude δIrms ∼ 0.1 pA. In
a single cell, this means that the response to one pho-
ton stands well above the background, but if we try to
sum the signals from many cells, we have a problem, as
illustrated in Fig 28.
To make the problem precise, let’s use xi to denote the

peak current generated by cell i. We have

xi = I1ni + ηi, (160)

where ni is the number of photons that are counted in
cell i, and ηi is the background current noise; from what
we have seen in the data, each ηi is chosen independently
from a Gaussian distribution with a standard deviation
δIrms. If we sum the signals generated by all the cells,
we obtain

xtotal ≡
Ncells∑

i=1

xi = I1

Ncells∑

i=1

ni +
Ncells∑

i=1

ηi (161)

= I1ntotal + ηeff , (162)

where the effective noise is the sum of Ncells independent
samples of the ηi, and hence has a standard deviation

ηrms
eff ≡

√
〈η2eff〉 =

√
NcellsδIrms. (163)
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FIG. 28 Simulation of the peak currents generated by N =
500 rod cells in response to a dim flash of light. At left,
five of the cells actually detect a photon, each resulting in a
current I1 ∼ 1 pA, while at right we see the response to a
blank. All cells have an additive background noise, chosen
from a Gaussian distribution with zero mean and standard
deviation δIrms ∼ 0.1 pA. Although the single photon re-
sponses stand clearly above the background noise, if we sim-
ply add up the signals generated by all the cells, then at left
we find a total current Itotal = 1.85 pA, while at right we find
Itotal = 3.23 pA—the summed background noise completely
overwhelms the signal.

The problem is that with δIrms ∼ 0.1 pA and Ncells =
500, we have ηrms

eff ∼ 2.24 pA, which means that there
is a sizable chance of confusing three or even five pho-
tons with a blank; in some species, the number of cells
over which the system integrates is even larger, and the
problem becomes even more serious. Indeed, in primates
like us, a single ganglion cell (one stage after the bipolar
cells; cf Fig 27) receives input from ∼ 4000 rods, while
on a very dark night we can see when just one in a thou-
sand rods is captures a photon [should have refs for all
this]. Simply put, summing the signals from many cells
buries the clear single photon response under the noise
generated by those cells which did not see anything. This
can’t be the right way to do things!

Before we start trying to do something formal, let’s
establish some intuition. Since the single photon signals
are clearly detectable in individual rod cells, we could
solve our problem by making a ‘decision’ for each cell—
is there a photon present or not?—and then adding up
the tokens that represent the outcome of our decision.
Roughly speaking, this means passing each rod’s sig-
nal through some fairly strong nonlinearity, perhaps so
strong that it has as an output only a 1 or a 0, and then
pooling these nonlinearly transformed signals. In con-
trast, a fairly standard schematic of what neurons are
doing throughout the brain is adding up their inputs and
then passing this sum through a nonlinearity (Fig 29).

So perhaps the problems of noise in photon counting are
leading us to predict that this very first step of neural
computation in the retina has to be different from this
standard schematic. Let’s try to do an honest calculation
that makes this precise. [Is “nonlinearity” clear enough
here?]
Formally, the problem faced by the system is as follows.

We start with the set of currents generated by all the rod
cells, {xi}. We can’t really be interested in the currents
themselves. Ideally we want to know about what is hap-
pening in the outside world, but a first step would be to
estimate the total number of photons that arrived, ntotal.
What is the best estimate we can make? To answer this,
we need to say what we mean by “best.”
One simple idea, which is widely used, is that we want

to make estimates which are as close as possible to the
right answer, where closeness is measured by the mean
square error. That is, we want to map the data {xi} into
an estimate of ntotal through some function nest ({xi})
such that

E ≡
〈
[ntotal − nest ({xi})]2

〉
(164)

is as small as possible. To find the optimal choice of the
function nest ({xi}) seems like a hard problem—maybe
we have to choose some parameterization of this function,
and then vary the parameters? In fact, we can solve this
problem once and for all, which is part of the reason that
this definition of ‘best’ is popular.

When we compute our average error, we are averaging
over the joint distribution of the data {xi} and the actual

!

!

rod photoreceptors

bipolar cell voltage? bipolar cell voltage?

FIG. 29 Schematic of summation and nonlinearity in the ini-
tial processing of rod cell signals. At left, a conventional
model in which many rods feed into one bipolar cell; the bipo-
lar cell sums its inputs and passes the results through a satu-
rating nonlinearity. At right, an alternative model, suggested
by the problems of noise, in which nonlinearities precede sum-
mation.
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photon count ntotal. That is,

E ≡
〈
[n− nest ({xi})]2

〉

=

∫ [
Ncells∏

i=1

dxi

]
∑

ntotal

P (n, {xi}) [n− nest ({xi})]2 ,(165)

where, to simplify the notation, we drop the subscript
total. Now to minimize the error we take the variation
with respect to the function nest ({xi}) and set the result
equal to zero. We have

δE
δnest ({xi})

= −
∑

n

P (n, {xi})2 [n− nest ({xi})] ,

(166)
so setting this to zero gives (going through the steps care-
fully):

∑

n

P (n, {xi})nest ({xi}) =
∑

n

P (n, {xi})n (167)

nest ({xi})
∑

n

P (n, {xi}) =
∑

n

P (n, {xi})n (168)

nest ({xi})P ({xi})
∑

n

P (n, {xi})n (169)

nest ({xi}) =
∑

n

P (n, {xi})
P ({xi})

n, (170)

and, finally,

nest ({xi}) =
∑

n

P (n|{xi})n. (171)

Thus the optimal estimator is the mean value in the con-
ditional distribution, P (n|{xi}). Since we didn’t use any
special properties of the distributions, this must be true
in general, as long as ‘best’ means to minimize mean
square error. We’ll use this result many times, and come
back to the question of whether the choice of mean square
error is a significant restriction.

Notice that the relevant conditional distribution is the
distribution of photon counts given the rod cell currents.
From a mechanistic point of view, we understand the
opposite problem, that is, given the photon counts, we
know how the currents are being generated. More pre-
cisely, we know that, given the number of photons in
each cell, the currents will be drawn out of a probability
distribution, since this is (implicitly) what we are saying
when we write Eq (160). To make this explicit, we have

P ({xi}|{ni}) ∝ exp

[
−1

2

Ncells∑

i=1

(
xi − I1ni

δIrms

)2
]
. (172)

Again, this is a model that tells us how the photons gen-
erate currents. But the problem of the organism is to
use the currents to draw inferences about the photons.

We expect that since the signals are noisy, this infer-
ence will be probabilistic, so really we would like to know
P ({ni}|{xi}).

Problem 30: Just checking. Be sure that you understand
the connection between Eq (172) and Eq (160). In particular, what
assumptions are crucial in making the connection?

The problem of going from P ({xi}|{ni}) to
P ({ni}|{xi}) is typical of the problems faced by
organisms: given knowledge of how our sensory data
is generated, how do we reach conclusions about what
really is going on in the outside world? In a sense
this is the same problem that we face in doing physics
experiments. One could argue that what we have posed
here is a very easy version of the real problem. In fact,
we probably don’t really care about the photon arrivals,
but about the underlying light intensity, or more deeply
about the identity and movements of the objects from
which the light is being reflected. Still, this is a good
start.
The key to solving these inference problems, both for

organisms and for experimental physicists, is Bayes’ rule.
Imagine that we have two events A and B; to be concrete,
we could think of A as some data we observe, and B as a
variable in the world that we really want to know. There
is some probability P (A,B) that both of these are true
simultaneously, i.e. that we observe A and the world is
in state B. In the usual view, the states of the world
cause the data to be generated in our instruments, so we
can say that the state of the world is chosen out of some
distribution P (B), and then given this state the data are
generated, with some noise, and hence drawn out of the
conditional distribution P (A|B). By the usual rules of
probability, we have

P (A,B) = P (A|B)P (B). (173)

We could also imagine that we have just seen the data
A, drawn out of some distribution P (A), and then there
must be some distribution of things happening in the
world that are consistent with our observation. Formally,

P (A,B) = P (B|A)P (A). (174)

But these are just two different ways of decomposing the
joint distribution P (A,B), and so they must be equal:

P (A,B) = P (B|A)P (A) = P (A|B)P (B) (175)

P (B|A) =
P (A|B)P (B)

P (A)
. (176)
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This last equation is called Bayes’ rule, and tells us what
we need to know. It is useful to rewrite this, taking
seriously the case where A refers to measurable data and
B refers to the state of the world:

P (world|data) = P (data|world)P (world)

P (data)
. (177)

Equation (177) is telling us that the probability of the
world being in a certain state is proportional to the prob-
ability that this state could generate the data we have
seen, but this is multiplied by the overall probability that
the world can be in this state. This term often is re-
ferred to as the ‘prior’ probability, since it summarizes
our knowledge prior to the observation of the data. Put
another way, our inference about the world should be
both consistent with the data we have observed in this
one experiment and with any prior knowledge we might
have from previous data.23

Applied to our current problem, Bayes’ rule tells us
how to construct the probability distribution of photon
counts given the rod currents:

P ({ni}|{xi}) =
P ({xi}|{ni})P ({ni})

P ({xi})
. (178)

To make progress (and see how to use these ideas), let’s
start with the simple case of just one rod cell, so we can
drop the indices:

P (n|x) = P (x|n)P (n)

P (x)
. (179)

To keep things really simple, let’s just think about the
case where the lights are very dim, so either there are
zero photons or there is one photon, so that

P (1|x) = P (x|1)P (1)

P (x)
, (180)

and similarly for P (0|x). In the denominator we have
P (x), which is the probability that we will see the current
x, without any conditions on what is going on in the
world. We get this by summing over all the possibilities,

P (x) =
∑

n

P (x|n)P (n) (181)

= P (x|1)P (1) + P (x|0)P (0), (182)

where in the last step we use the approximation that the
lights are very dim. Putting the terms together, we have

P (1|x) = P (x|1)P (1)

P (x|1)P (1) + P (x|0)P (0)
. (183)

Now we can substitute for P (x|n) from Eq (172),

P (x|n) = 1√
2π(δIrms)2

exp

[
− (x− I1n)2

2(δIrms)2

]
. (184)

Going through the steps, we have

P (1|x) = P (x|1)P (1)

P (x|1)P (1) + P (x|0)P (0)
=

1

1 + P (x|0)P (0)/P (x|1)P (1)
(185)

=
1

1 + [P (0)/P (1)] exp
[
− (x)2

2(δIrms)2
+ (x−I1)2

2(δIrms)2

] =
1

1 + exp (θ − βx)
, (186)

where

θ = ln

[
P (0)

P (1)

]
+

I21
2(δIrms)2

(187)

β =
I1

(δIrms)2
. (188)

The result in Eq (186) has a familiar form—it is as if
the two possibilities (0 and 1 photon) are two states of
a physical system, and their probabilities are determined
by a Boltzmann distribution; the energy difference be-
tween the two states shifts in proportion to the data x,
and the temperature is related to the noise level in the
system. In the present example, this analogy doesn’t add
much, essentially because the original problem is so sim-
ple, but we’ll see richer cases later on in the course.

Equation (186) tells us that, if we observe a very small
current x, the probability that there really was a photon
present is small, ∼ e−θ. As the observed current becomes
larger, the probability that a photon was present goes up,
and, gradually, as x becomes large, we become certain
[P (1|x) → 1]. To build the best estimator of n from
this one cell, our general result tells us that we should
compute the conditional mean:

nest(x) =
∑

n

P (n|x)n (189)

= P (0|x) · (0) + P (1|x) · (1) (190)

= P (1|x). (191)

Thus, the Boltzmann–like result [Eq (186)] for the prob-
ability of a photon being counted is, in fact, our best
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estimator of the photon count in this limit where pho-
tons are very rare. Further, in this limit one can show
that the optimal estimator for the total photon count,
which after all is the sum of the individual ni, is just the
sum of the individual estimators.

Problem 31: Summing after the nonlinearity. Show that
the optimal estimator for the total number of photons is the sum of
estimators for the photon counts in individual rods, provided that
the lights are very dim and hence photons are rare. The phrasing
here is deliberately vague—you should explore the formulation of
the problem, and see exactly what approximations are needed to
make things come out right.

The end result of our calculations is that the optimal
estimator of photon counts really is in the form shown
at the right in Fig 29: nonlinearities serve to separate
signal from noise in each rod cell, and these ‘cleaned’ sig-
nals are summed. How does this prediction compare with
experiment? Careful measurements in the mouse retina
show that the bipolar cells respond nonlinearly even to
very dim flashes of light, in the range where the rods see
single photons and respond linearly, with two photons
producing twice the response to one photon. The form
of the nonlinearity is what we expect from the theory,
a roughly sigmoidal function that suppresses noise and
passes signals only above an amplitude threshold. Im-
portantly, this nonlinearity is observed in one class of
bipolar cells but not others, and this is the class that,
on other grounds, one would expect is most relevant for
processing of rod outputs at low light levels.

Looking more quantitatively at the experiments [show
some of the data, perhaps replotted in different forms ...
go back and look at the original papers and clean up this
paragraph!], we can see discrete, single photon events in
the bipolar cells. Although the details vary across organ-
isms, in this retina, one bipolar cell collects input from
∼ 20 rod cells, but the variance of the background noise
is larger than in the lower vertebrates that we first saw
in Fig 4. As a result, if we sum the rod inputs and pass
them through the observed nonlinearity—as in the model
at left in Fig 29—we would not be able to resolve the sin-
gle photon events. Field and Rieke considered a family of
models in which the nonlinearity has the observed shape
but the midpoint (analogous to the threshold θ above)
is allowed to vary, and computed the signal to noise ra-
tio at the bipolar cell output for the detection of flashes
corresponding to a mean count of ∼ 10−4 photons/rod
cell, which is, approximately, the point at which we can
barely see something on a moonless night. Changing the
threshold by a factor of two changes the signal to noise
ratio by factors of several hundred. The measured value

of the threshold is within 8% of the predicted optimal
setting, certainly close enough to make us think that we
are on the right track.
The discussion thus far has emphasized separating sig-

nals from noise by their amplitudes.24 We also can see,
by looking closely at the traces of current vs time, that
signal and noise have different frequency content. This
suggests that we could also improve the signal to noise ra-
tio by filtering. It’s useful to think about a more general
problem, in which we observe a time dependent signal
y(t) that is driven by some underlying variable x(t); let’s
assume that the response of y to x is linear, but noisy, so
that

y(t) =

∫ ∞

−∞
dτ g(τ)x(t− τ) + η(t), (192)

where g(τ) describes the response function and η(t) is the
noise. What we would like to do is to use our observations
on y(t) to estimate x(t).

Problem 32: Harmonic oscillator revisited. Just to be sure
you understand what is going in Eq (192), think again about the
Brownian motion of a damped harmonic oscillator, as in Problem
[**], but now with an external force F (t),

m
d2x(t)

dt2
+ γ

dx(t)

dt
+ κx(t) = F (t) + δF (t). (193)

Show that

x(t) =

∫ ∞

−∞
dτ g(τ)F (t− τ) + η(t). (194)

Derive an explicit expression for the Fourier transform of g(τ), and
find g(τ) itself in the limit of either small or large damping γ.

Since the y is linearly related to x, we might guess
that we can make estimates using some sort of linear op-
eration. As we have seen already in the case of the rod
currents, this might not be right, but let’s try anyway—
we’ll need somewhat more powerful mathematical tools
to sort out, in general, when linear vs nonlinear compu-
tations are the most useful. We don’t have any reason to
prefer one moment of time over another, so we should do
something that is both linear and invariant under time
translations, which means that our estimate must be of
the form

xest(t) =

∫ ∞

−∞
dt′ f(t− t′)y(t′), (195)

24 Need to be a little careful here, since the analysis from Fred’ lab
actually involves applying the nonlinearity to voltages that have
already been filtered. Presumably this will be clearer when I am
pointing to the real data .. come back and fix this!
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where f(t) is the ‘filter’ that we hope will separate signal
and noise. Following the spirit of the discussion above,
we’ll ask that our estimate be as close as possible to the
right answer in the sense of mean–square error. Thus,
our task is to find the filter f(t) that minimizes

E =

〈[
x(t)−

∫ ∞

−∞
dt′ f(t− t′)y(t′)

]2 〉
. (196)

In taking the expectation value of the mean–square
error, we average over possible realizations of the noise
and the variations in the input signal x(t). In practice
this averaging can also be thought of as including an
average over time.25 Thus we can also write

E =

〈∫ ∞

−∞
dt

[
x(t)−

∫ ∞

−∞
dt′ f(t− t′)y(t′)

]2 〉
. (197)

This is useful because we can then pass to the Fourier
domain. We recall that for any function z(t),

∫ ∞

−∞
dt z2(t) =

∫ ∞

−∞

dω

2π

∣∣z̃(ω)
∣∣2, (198)

and that the Fourier transform of a convolution is the
product of transforms,

∫ ∞

−∞
dt e+iωt

∫ ∞

−∞
dt′ f(t− t′)y(t′) = f̃(ω)ỹ(ω). (199)

Putting things together, we can rewrite the mean–square
error as

E =

〈∫ ∞

−∞

dω

2π

∣∣∣∣x̃(ω)− f̃(ω)ỹ(ω)

∣∣∣∣
2〉

. (200)

Now each frequency component of our filter f̃(ω) ap-
pears independently of all the others, so minimizing E
is straightforward. The result is that

f̃(ω) =
〈ỹ∗(ω)x̃(ω)〉
〈|ỹ(ω)|2〉 . (201)

Problem 33: Details of the optimal filter. Fill in the steps
leading to Eq (201). Be careful about the fact that f(t) is real, and
so the transform f̃(ω) is not arbitrary. Hint: think about positive
and negative frequency components.

25 More formally, if all the relevant random variations are ergodic,
then averaging over the distributions and averaging over time
will be the same.

To finish our calculation, we go back to Eq (192), which
in the frequency domain can be written as

ỹ(ω) = g̃(ω)x̃(ω) + η̃(ω). (202)

Thus

〈ỹ∗(ω)x̃(ω)〉 = g̃∗(ω)〈|x̃(ω)|2〉 (203)

〈|ỹ(ω)|2〉 = |g̃(ω)|2〈|x̃(ω)|2〉+ 〈|η̃(ω)|2〉. (204)

If all of these variables have zero mean (which we can
have be true just by choosing the origin correctly), then
quantities such as 〈|x̃(ω)|2〉 are the variances of Fourier
components, which we know (see Appendix B) are pro-
portional to power spectra. Finally, then, we can substi-
tute into our expression for the optimal filter to find

f̃(ω) =
g̃∗(ω)Sx(ω)

|g̃(ω)|2Sx(ω) + Sη(ω)
, (205)

where, as before, Sx and Sη are the power spectra of x
and η, respectively.
In the case that noise is small, we can let Sη → 0 and

we find

f̃(ω) → 1

g̃(ω)
. (206)

This means that, when noise can be neglected, the best
way to estimate the underlying signal is just to invert
the response function of our sensor, which makes sense.
Notice that since g̃ generally serves to smooth the time
dependence of y(t) relative to that of x(t), the filter
f̃(ω) ∼ 1/g̃(ω) undoes this smoothing. This is impor-
tant because it reminds us that smoothing in and of it-
self does not set a limit to time resolution—it is only the
combination of smoothing with noise that obscures rapid
variations in the signal.
Guided by the limit of high signal to noise ratio, we

can rewrite the optimal filter as

f̃(ω) =
1

g̃(ω)
· |g̃(ω)|2Sx(ω)

|g̃(ω)|2Sx(ω) + Sη(ω)
(207)

=
1

g̃(ω)
· SNR(ω)

1 + SNR(ω)
, (208)

where we identify the signal to noise ratio at each fre-
quency, SNR(ω) = |g̃(ω)|2Sx(ω)/Sη(ω). Clearly, as the
signal to noise ratio declines, so does the optimal filter—
in the limit, if SNR(ω) = 0, everything we find at fre-
quency ω must be noise, and so it should zeroed out if we
want to minimize its corrupting effects on our estimates.
In the case of the retina, x is the light intensity, and

y are the currents generated by the rod cells. When it’s
very dark outside, the signal to noise ratio is low, so that

f̃(ω) → g̃∗(ω)

Sη(ω)
· Sx(ω). (209)
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The filter in this case has two pieces, one of which de-
pends only on the properties of the rod cell,

f̃1(ω) =
g̃∗(ω)

Sη(ω)
, (210)

and another piece that depends on the power spectrum
of the time dependent light intensity, Sx(ω). With a bit
more formalism we can show that this first filter, f̃1(ω),
has a universal meaning, so that if instead of estimating
the light intensity itself, we try to estimate something
else—e.g., the velocity of motion of an object across the
visual field—then the first step in the estimation process
is still to apply this filter. So, it is a natural hypothesis
that this filter will be implemented near the first stages
of visual processing, in the transfer of signals from the
rods to the bipolar cells.

FIG. 30 Voltage responses of rod and bipolar cells in the sala-
mander retina, compared with theory, from Rieke et al (1991).
The theory is that the transmission from rod currents to bipo-
lar cell voltage implements the optimal filter as in Eq (210).
Measured responses are averages over many presentations of
a flash at t = 0 that results in an average of five photons be-
ing counted. The predicted filter is computed from measured
signal and noise properties of the rod cell, with no adjustable
parameters.

Problem 34: Filtering the real rod currents. The
raw data that were used to generate Fig 4 are available at
http://www.princeton.edu/∼wbialek/PHY562/data.html, in the
file rodcurrents.mat. The data consist of 395 samples of the rod
current in response to dim flashes of light. The data are sampled
in 10ms bins, and the flash is delivered in the 100th bin. If these
ideas about filtering are sensible, we should be able to do a better
job of discriminating between zero, one and two photons by using
the right filter. Notice that filtering of a response that is locked
to a particular moment in time is equivalent to taking a weighted
linear combination of the currents at different times relative to the
flash. Thus you can think of the current in response to one flash
as a vector, and filtering amounts to taking the dot product of this
vector with some template. As a first step, you should reproduce
the results of Fig 4, which are based just on averaging points in
the neighborhood of the peak. Under some conditions, the best

template would just be the average single photon response. How
well does this work? What conditions would make this work best?
Can you do better? These data are from experiments by FM Rieke
and collaborators at the University of Washington, and thanks to
Fred for making them available.

The idea that the rod/bipolar synapse implements an
optimal filter is interesting not least because this leads us
to a prediction for the dynamics of this synapse, Eq (210),
which is written entirely in terms of the signal and noise
characteristics of the rod cell itself. All of these proper-
ties are measurable, so there are no free parameters in
this prediction.26 To get some feeling for how these pre-
dictions work, remember that the noise in the rod cell
has two components—the spontaneous isomerizations of
rhodopsin, which have the same frequency content as the
real signal, and the continuous background noise, which
extends to higher frequency. If we have only the sponta-
neous isomerizations, then Sη ∼ |g̃|2, and we are again
in the situation where the best estimate is obtained by
‘unsmoothing’ the response, essentially recovering sharp
pulses at the precise moments when photons are ab-
sorbed. This unsmoothing, or high–pass filtering, is cut
off by the presence of the continuous background noise,
and the different effects combine to make f̃1 a band–pass
filter. By the time the theory was worked out, it was
already known that something like band–pass filtering
was happening at this synapse; among other things this
speeds up the otherwise rather slow response of the rod.
In Fig 30 we see a more detailed comparison of theory
and experiment.

Problem 35: Optimal filters, more rigorously. Several
things were left out of the optimal filter analysis above; let’s try to
put them back here.

(a.) Assume that there is a signal s(t), and we observe, in the
simplest case, a noisy version of this signal, y(t) = s(t) + η(t).
Let the power spectrum of s(t) be given by S(ω), and the power
spectrum of the noise η(t) be given by N(ω). Further, assume
that both signal and noise have Gaussian statistics. Show that the
distribution of signals given our observations is

P [s(t)|y(t)] =
1

Z
exp

[
−
1

2

∫
dω

2π

|s̃(ω)− ỹ(ω)|2

N(ω)
−

1

2

∫
dω

2π

|s̃(ω)|2

S(ω)

]
.

(211)

26 We should be a bit careful here. The filter, as written, is not
causal. Thus, to make a real prediction, we need to shift the filter
so that it doesn’t have any support at negative times. To make a
well defined prediction, we adopt the minimal delay that makes
this work. One could perhaps do better, studying the optimal
filtering problem with explicitly causal filters, and considering
the tradeoff between errors and acceptable delays.
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(b.) Show that the most likely function s̃(ω) given the data on
y is also the best estimate in the least squares sense, and is given
by

s̃
(nc)
est (ω) =

S(ω)

S(ω) +N(ω)
ỹ(ω); (212)

the superscript (nc) reminds us that this estimate does not respect
causality. Show that this is consistent with Eq (205). Notice that
you didn’t assume the optimal estimator was linear, so you have
shown that it is (!). Which of the assumptions here are essential in
obtaining this result?

(c.) The non–causal estimator is Eq (212) is constructed by
assuming that we have access to the entire function y(t), with
−∞ < t < ∞, as we try to estimate, for example s(t = 0). If
we want our estimator to be something that we can build, then we
must impose causality: the estimate of s(t) can be based only on
the history y− ≡ y(t′ < t). Another way of saying this is that we
don’t really know y+ ≡ y(t′ > t), so we should average over this
part of the trajectory. But the average should be computed in the
distribution P [y+|y−]. To construct this, start by showing that

P [y+, y−] ≡ P [y(t)] =
1

Z0
exp

[
−
1

2

∫
dω

2π

|ỹ(ω)|2

S(ω) +N(ω)

]
. (213)

(d.) Recall that when we discuss causality, it is useful to think
about the frequency ω as a complex variable. Explain why we can
write

1

S(ω) +N(ω)
= |ψ̃(ω)|2, (214)

where ψ̃(ω) has no poles in the upper half of the complex ω plane.
Verify that, with this decomposition,

ψ(t) =

∫
dω

2π
e−iωtψ̃(ω) (215)

is causal, that is ψ(t < 0) = 0. Consider the case where the signal
has a correlation time τc, so that S(ω) = 2σ2τc/[1 + (ωτc)2], and
the noise is white N(ω) = N0; construct ψ̃(ω) explicitly in this
case.

(e.) Putting Eq (213) together with Eq (214), we can write

P [y+, y−] =
1

Z0
exp

[
−
1

2

∫
dω

2π

∣∣∣∣ỹ(ω)ψ̃(ω)
∣∣∣∣
2
]
. (216)

Show that

P [y+, y−] =
1

Z0
exp



−
1

2

∫ 0

−∞
dt

∣∣∣∣∣

∫
dω

2π
e−iωtỹ−(ω)ψ̃(ω)

∣∣∣∣∣

2

−
1

2

∫ ∞

0
dt

∣∣∣∣∣

∫
dω

2π
e−iωt(ỹ−(ω) + ỹ+(ω))ψ̃(ω)

∣∣∣∣∣

2


 , (217)

and that

P [y+|y−] ∝ exp



−
1

2

∫ ∞

0
dt

∣∣∣∣∣

∫
dω

2π
e−iωt(ỹ−(ω) + ỹ+(ω))ψ̃(ω)

∣∣∣∣∣

2


 .

(218)
Explain why averaging over the distribution P [y+|y−] is equivalent
to imposing the “equation of motion”

∫
dω

2π
e−iωt(ỹ−(ω) + ỹ+(ω))ψ̃(ω) = 0 (219)

at times t > 0.
(f.) Write the non–causal estimate Eq (212) in the time domain

as

s
(nc)
est (t) =

∫
dω

2π
e−iωtψ̃∗(ω)ψ̃(ω)ỹ(ω). (220)

But the combination ψ̃(ω)ỹ(ω) is the Fourier transform of z(t),
which is the convolution of ψ(t) with y(t). Show that Eq (219)
implies that the average of z(t) is the distribution P [y+|y−] van-
ishes for t > 0, and hence the averaging over y+ is equivalent to
replacing

ψ̃(ω)ỹ(ω) →
∫ 0

−∞
dτeiωτ

∫
dω′

2π
ψ̃(ω′)ỹ(ω′)e−iω′τ (221)

in Eq (212). Put all the pieces together to show that there is a
causal estimate of s(t) which can be written as

sest(t) =

∫
dω

2π
e−iωtk̃(ω)ỹ(ω), (222)

where

k̃(ω) = ψ̃(ω)

∫ ∞

0
dτeiωτ

∫
dω′

2π
e−iω′τS(ω′)ψ̃∗(ω′). (223)

Verify that this filter is causal.

It is worth noting that we have given two very different
analyses. In one, signals and noise are separated by linear

filtering. In the other, the same separation is achieved
by a static nonlinearity, applied in practice to a linearly
filtered signal. Presumably there is some more general
nonlinear dynamic transformation that really does the
best job. We expect that the proper mix depends on the
detailed spectral structure of the signals and noise, and
on the relative amplitudes of the signal and noise, which
might be why the different effects are clearest in retinas
from very different species. Indeed, there is yet another
approach which emphasizes that the dynamic range of
neural outputs is limited, and that this constrains how
much information the second order neuron can provide
about visual inputs; filters and nonlinearities can be cho-
sen to optimize this information transmission across a
wide range of background light intensities, rather than
focusing only on the detectability of the dimmest lights.
This approach has received the most attention in inverte-
brate retinas, such as the fly that we met near the end of
Section I.A, and we will return to these ideas in Chapter
4. It would be nice to see this all put together correctly,
and this is an open problem, surely with room for some
surprises.
So far we have followed the single photon signal from

the single rhodopsin molecule to the biochemical network
that amplifies this molecular event into a macroscopic
current, and then traced the processing of this electrical
signal as it crosses the first synapse. To claim that we
have said anything about vision, we have to at least fol-
low the signal out of the retina and on its way to the
brain. [By now we should have said more about retinal
anatomy—optic nerve, made up of the axons from ‘reti-
nal ganglion cells,’ and the stereotyped action potentials
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that propagate along these axons. Should also discuss
techniques for picking up the signals, up to current work
with electrode arrays. Show a modern figure, e.g. from
Berry’s lab.]

The classic experiments on single photon responses in
retinal ganglion cells were done well before it was possible
to measure the responses of single rods. The spikes from
single ganglion cells are relatively easy to record, and
one can try to do something like the Hecht, Shlaer and
Pirenne experiment, but instead of “seeing” (as in Fig
2), you just ask if you can detect the spikes. There were
a number of hints in the data that a single absorbed
photon generated more than one spike, so some care is
required. As shown in Fig 31, there are neurons that
seem to count by threes—if you wait for three spikes,
the probability of seeing is what you expect for setting
a threshold of K = 1 photon, if you wait for six spikes
it is as if K = 2, and so on. This simple linear relation
between photons and spikes also makes it easy to estimate
the rate of spontaneous photon–like events in the dark.
Note that if photons arrive as a Poisson process, and
each photon generates multiple spikes, then the spikes
are not a Poisson process; this idea of Poisson events
driving a second point process to generate non–Poisson
variability has received renewed attention in the context
of gene expression, where the a single messenger RNA
molecule (perhaps generated from a Poisson process) can
be translated to yield multiple protein molecules.

FIG. 31 A frequency of seeing experiment with spikes, from
Barlow et al (1971). Recording from a single retinal ganglion
cell, you can say you “saw” a flash when you detect 3, 6, 9, ...
or more spikes within a small window of time (here, 200 ms).
The probability of reaching this criterion is plotted vs the
log of the flash intensity, as in the original Hecht, Shlaer and
Pirenne experiments (Fig 2), but here the intensity is adjusted
to include a background rate of photon–like events (“dark
light”). Curves are from Eq (2), with the indicated values of
the threshold K. Notice that three spikes corresponds to one
photon.

Problem 36: Poisson–driven bursts. A characteristic fea-
ture of events drawn out of a Poisson process is that if we count
the number of events, the variance of this number is equal to the
mean. Suppose that each photon triggers exactly b spikes. What
is the ratio of variance to mean (sometimes called the Fano factor)
for spike counts in response to light flashes of fixed intensity? Sup-
pose the the burst of spikes itself is a Poisson process, with mean
b. Now what happens to the variance/mean ratio?

Before tracing the connections between individual
spikes and photons, it was possible to do a different ex-
periment, just counting spikes in response to flashes of
different intensities, and asking what is the smallest value
of the difference ∆I such that intensities I and I + ∆I
can be distinguished reliably. The answer, of course, de-
pends on the background intensity I [show figure from
Barlow (1965)?]. For sufficiently small I, the just no-
ticeable different ∆I is constant. For large I, one finds
∆I ∝ I, so the just noticeable fractional change in in-
tensity is constant; this is common to many perceptual
modalities, and is called Weber’s law. At intermediate in-
tensities one can see∆I ∝

√
I. This last result, predicted

by Rose and de Vries (cf Section 1.1), is what you expect
if detecting a change in intensity just requires discrimi-
nating against the Poisson fluctuations in the arrival of
photons. At high intensities, we are counting many pho-
tons, and probably the system just can’t keep up; then
fluctuations in the gain of the response dominate, and
this can result in Weber’s law. At the lowest intensities,
the photons delivered by the flash are few in compari-
son with the thermal isomerizations of Rhodopsin, and
this constant noise source sets the threshold for discrim-
ination. Happily, the rate of spontaneous isomerizations
estimated from these sorts of experiments agrees with
other estimates, including the (much later) direct mea-
surements on rod cells discussed previously. This work
on discrimination with neurons also is important because
it represents one of the first efforts to connect the per-
ceptual abilities of whole organisms with the response of
individual neurons.
If retinal ganglion cells generate three spikes for every

photon, lights wouldn’t need to be very bright before the
cells should be generating thousands of spikes per second,
and this is impossible—the spikes themselves are roughly
one millisecond in duration, and all neurons have a ‘re-
fractory period’ that defines a minimum time (like a hard
core repulsion) between successive action potentials. The
answer is something we have seen already in the voltage
responses of fly photoreceptors (Fig 13): as the back-
ground light intensity increases, the retina adapts and
turns down the gain, in this case generating fewer spikes
per photon. Of course this takes some time, so if we
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suddenly expose the retina to a bright light there is very
rapid spiking, which then adapts away to a much slower
rate. [Need a figure about light/dark adaptation.] If we
imagine that our perceptions are driven fairly directly by
the spikes, then our impression of the brightness of the
light should similarly fade away. This is true not just for
light (as you experience whenever you walk outside on a
bright sunny day); almost all constant sensory inputs get
adapted away—think about the fact that you don’t feel
the pressure generated by your shoes a few minutes after
you tie them. But there are more subtle issues as well,
involving the possibility that the coding strategy used
by the retina adapts to the whole distribution of inputs
rather than just the mean; this is observed, and many
subsequent experiments are aimed at understanding the
molecular and cellular mechanisms of these effects. The
possibility that adaptation serves to optimize the effi-
ciency of coding continuous signals into discrete spikes is
something we will return to in Chapter 4.

The problem of photon counting—or any simple de-
tection task—also hides a deeper question: how does the
brain “know” what it needs to do in any given task? Even
in our simple example of setting a threshold to maximize
the probability of a correct answer, the optimal observer
must at least implicitly acquire knowledge of the rele-
vant probability distributions. Along these lines, there
is more to the ‘toad cooling’ experiment than a test of
photon counting and dark noise. The retina has adap-
tive mechanisms that allow the response to speed up at
higher levels of background light, in effect integrating for
shorter times when we can be sure that the signal to
noise ratio will be high. The flip side of this mechanism
is that the retinal response slows down dramatically in
the dark [connect back to photoreceptor responses; a fig-
ure here would be good, including τ vs I relevant to Aho
et al]. In moderate darkness (dusk or bright moonlight)
the slowing of the retinal response is reflected directly in
a slowing of the animal’s behavior. It is as if the toad
experiences an illusion because images of its target are
delayed, and it strikes at the delayed image. It is worth
emphasizing that we see a closely related illusion.

Problem 37: Knowing where to look. Give a problem to
illustrate the role of uncertainty in reducing performance.

Imagine watching a pendulum swinging while wearing
glasses that have a neutral density filter over one eye,
so the mean light intensity in the two eyes is different.
The dimmer light results in a slower retina, so the signals
from the two eyes are not synchronous, and recall that
differences in the images between our right and left eyes

are cues to the depth of an object. As we try to inter-
pret these signals in terms of motion, we find that even
if the pendulum is swinging in a plane parallel to the
line between our eyes, what we see is motion in 3D. The
magnitude of the apparent depth of oscillation is related
to the neutral density and hence to the slowing of signals
in the ‘darker’ retina. This is called the Pulfrich effect.
If the pattern of delay vs light intensity continued down

to the light levels in the darkest night, it would be a
disaster, since the delay would mean that the toad in-
evitably strikes behind the target! In fact, the toad does
not strike at all in the first few trials of the experiment
in dim light, and then strikes well within the target. It
is hard to escape the conclusion that the animal is learn-
ing about the typical velocity of the target and then us-
ing this knowledge to extrapolate and thereby correct for
retinal delays.27 Thus, performance in the limit where
we count photons involves not only efficient processing
of these small signals but also learning as much as pos-
sible about the world so that these small signals become
interpretable.

If you’d like a general overview of the retina, a good source is
Dowling (1987). For the experiments on nonlinear summation at
the rod–bipolar synapse, along with a discussion of the theoretical
issues of noise and reliability, see Field & Rieke (2002a). The anal-
ysis of optimal filtering is presented in Bialek & Owen (1990) and
Rieke et al (1991). For a discussion how our experience of a dark
night translates into photons per rod per second, see Walraven et
al (1990).
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E. Perspectives

What have we learned from all of this? I think the first
thing to notice is that we have at least one example of a
real biological system that is susceptible to the sorts of
reproducible, quantitative experiments that we are used
to in the rest of physics. This is not obvious, and runs
counter to some fairly widespread prejudices. Although
things can get complicated,28 it does seem that, with
care, we can speak precisely about the properties of cells
in the retina, not just on average over many cells but
cell by cell, in enough detail that even the noise in the
cellular response itself is reproducible from cell to cell,
organism to organism. It’s important that all of this is
not guaranteed—removing cells from their natural milieu
can be traumatic, and every trauma is different. If you
dig into the original papers, you’ll see glimpses of the
many things which experimentalists need to get right in
order to achieve the level of precision that we have em-
phasized in our discussion—the things one needs to do
in order to turn the exploration of living systems into a
physics experiment.
The second point is that the performance of these bi-

ological systems—something which results from mecha-
nisms of incredible complexity—really is determined by
the physics of the “problem” that the system has been
selected to solve. If you plan on going out in the dark
of night, there is an obvious benefit to being able to de-
tect dimmer sources of light, and to making reliable dis-
criminations among subtly different intensities and, ulti-
mately, different spatiotemporal patterns. You can’t do

28 We have not explored, for example, the fact that there are many
kinds of ganglion cells.
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better than to count every photon, and the reliability of
photon counting by the system as a whole can’t be bet-
ter than the limits set by noise in the detector elements.
The fact that real visual systems reach these limits is
extraordinary.

The last point concerns the nature of the explanations
that we are looking for. We have discussed the currents
generated in response to single photons, the filter charac-
teristics and nonlinearities of synapses, and the spiking
outputs of ganglion cells, and in each case we can ask why
these properties of the system are as we observe them to
be. Importantly, we can ask analogous questions about
a wide variety of systems, from individual molecules to
the regulation of gene expression in single cells to the dy-
namics of neural networks in our brains. What are we
doing when we look for an “explanation” of the data?

When we ask “why” in relation to a biological sys-
tem, we can imagine (at least) two very different kinds
of answers.29 First, we could plunge into the microscopic
mechanisms. As we have seen in looking at the dynam-
ics of biochemical amplification in the rod cell, what we
observe as functional behavior of the system as a whole
depends on a large number of parameters: the rates of
various chemical reactions, the concentrations of various
proteins, the density of ion channels in the membrane,
the binding energies of cGMP to the channel, and so
on. To emphasize the obvious, these are not fundamen-
tal constants. In a very real sense, almost all of these

29 My colleague Rob de Ruyter van Steveninck has an excellent way
of talking about closely related issues. He once began a lecture by
contrasting two different questions: Why is the sky blue? Why
are trees green?. The answer to the first question is a standard
part of a good, high level course on electromagnetism: when light
scatters from a small particle—and molecules in the atmosphere
are much smaller than the wavelength of light—the scattering
is stronger at shorter wavelengths; this is called Rayleigh scat-
tering. Thus, red light (long wavelengths) moves along a more
nearly straight path than does blue light (short wavelength).
The light that we see, which has been scattered, therefore has
been enriched in the blue part of the spectrum, and this effect
is stronger if we look further away from the sun. So, the sky is
blue because of the way in which light scatters from molecules.
We can answer the question about the color of trees in much the
same way that we answered the question about the color of the
sky: leaves contain a molecule called chlorophyll, which is quite a
large molecule compared with the oxygen and nitrogen in the air,
and this molecule actually absorbs visible light; the absorption
is strongest for red and blue light, so what is reflected back to
us is the (intermediate wavelength) green light. Unlike the color
of the sky, the color of trees could have a different explanation.
Imagine trees of other colors—blue, red, perhaps even striped.
Microscopically, this could happen because their leaves contain
molecules other than chlorophyll, or even molecules related to
chlorophyll but with slightly different structures. But trees of
different colors will compete for resources, and some will grow
faster than others. The forces of natural selection plausibly will
cause one color of tree to win out over the others. In this sense,
we can say that trees are green because green trees are more
successful, or more fit in their environment.

parameters are under the organism’s control.
Our genome encodes hundreds of different ion chan-

nels, and the parameters of the rod cell would change if
it chose to read out the instructions for making one chan-
nel rather than another. Further, the cell can make more
or less of these proteins, again adjusting the parameters
of the system essentially by changing the concentrations
of relevant molecules. A similar line of argument applies
to other components of the system (and many other sys-
tems), since many key molecules are members of families
with slightly different properties, and cells choose which
member of the family will be expressed. More subtly,
many of these molecules can be modified, e.g. by co-
valent attachment of phosphate groups as with the shut-
off of rhodopsin, and these modifications provide another
pathway for adjusting parameters. Thus, saying that (for
example) the response properties of the rod cell are de-
termined by the parameters of a biochemical network is
very different from saying that the absorption spectrum
of hydrogen is determined by the charge and mass of the
electron—we would have to go into some alternative uni-
verse to change the properties of the electron, but most
of the parameters of the biochemical network are under
the control of the cell, and these parameters can and do
change in response to other signals.
An explanation of functional behavior in microscopic

terms, then, may be correct but somehow unsatisfying.
Further, there may be more microscopic parameters than
phenomenological parameters, and this may be critical in
allowing the system to achieve nearly identical functional
behaviors via several different mechanisms. But all of
this casts doubt on the idea that we are ‘explaining’ the
functional behavior in molecular terms.
A second, very different kind of explanation is sug-

gested by our discussion of the first synapse in vision,
between the rod and bipolar cells. In that discussion
(Section I.D), we promoted the evidence of near optimal
performance at the problem of photon counting into a
principle from which the functional properties of the sys-
tem could be derived. In this view, the system is the
way it is because evolution has selected the best solution
to a problem that is essential in the life of the organ-
ism. This principle doesn’t tell us how the optimum is
reached, but it can predict the observable behavior of the
system. Evidently there are many objections to this ap-
proach, but of course it is familiar, since many different
ideas in theoretical physics can be formulated as varia-
tional principles, from least action in classical mechanics
to the minimization of free energy in equilibrium ther-
modynamics, among others.
Organizing our thinking about biological systems

around optimization principles tends to evoke philosophi-
cal discussions, in the pejorative sense that scientists use
this term. I would like to avoid discussions of this fla-
vor. If we are going to suggest that “biological systems
maximize X” is a principle, then rather than having ev-
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eryone express their opinion about whether this is a good
idea, we should discipline ourselves and insist on criteria
that allow such claims to be meaningful and predictive.
First, we have to understand why X can’t be arbitrarily
large—we need to have a theory which defines the phys-
ical limits to performance. Second, we should actually
be able to measure X, and compare its value with this
theoretical maximum. Finally, maximizing X should gen-
erate some definite predictions about the structure and
dynamics of the system, predictions that can be tested
in independent, quantitative experiments. In what fol-
lows, we’ll look at three different broad ideas about what
X might be, and hopefully we’ll be able to maintain the
discipline that I have outlined here. Perhaps the most
important lesson from the example of photon counting
is that we can carry through this program and maintain
contact with real data. The challenge is to choose prin-
ciples (candidate Xs) that are more generally applicable
than the very specific idea that the retina maximizes the
reliability of seeing on a dark night.
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II. NOISE ISN’T NEGLIGIBLE

The great poetic images of classical physics are those
of determinism and clockwork. In a clock, not only the
output but also the internal mechanisms are models of
precision. Strikingly, life seems very different. Interac-
tions between molecules involve energies of just a few
times the thermal energy. Biological motors, including
the molecular components of our muscles, move in ele-
mentary steps that are on the nanometer scale, driven
forward by energies that are larger than the thermal en-
ergies of Brownian motion, but not much larger. Crucial
signals inside cells often are carried by just a handful
of molecules, and these molecules inevitably arrive ran-
domly at their targets. Human perception can be limited
by noise in the detector elements of our sensory systems,
and individual elements in the brain, such as the synapses
that pass signals from one neuron to the next, are sur-
prisingly noisy. How do the obviously reliable functions
of life emerge from under this cloud of noise? Are there
principles at work that select, out of all possible mech-
anisms, the ones that maximize reliability and precision
in the presence of noise?

In this Chapter, we will take a tour of various prob-
lems involving noise in biological systems. I should admit
up front that this is a topic that always has fascinated
me, and I firmly believe that there is something deep to
be found in exploration of these issues. we will see the
problems of noise in systems ranging from the behavior
of individual molecules to our subjective, conscious expe-
rience of the world. In order to address these questions,
we will need a fair bit of mathematical apparatus, rooted
in the ideas of statistical physics. I hope that, armed
with this apparatus, you will have a deeper view of many
beautiful phenomena, and a deeper appreciation for the
problems that organisms have to solve.

A. Molecular fluctuations and chemical reactions

In order to survive, living organisms must control the
rates of many chemical reactions. Fundamentally, all re-
actions happen because of fluctuations. More strongly,
chemical reactions are a non–perturbative consequence
of molecular fluctuations. You all learned, perhaps even
in high school, that the rates of chemical reactions obey
the Arrhenius law, k ∝ e−Eact/kBT , where Eact is the ac-
tivation energy. We also know that kBT measures the
mean square amplitude of fluctuations, for example in
the velocities of atoms. Thus, chemical reaction rates
are ∼ e−1/g, where g is the strength of the fluctuations.
If we start by imagining a world in which there are no
fluctuations, we can add them in piece by piece, but there
is no way to get a chemical reaction rate as a perturbative
series in g. Chemical reactions are so commonplace that
we sometimes forget just how nontrivial they are from a

molecular coordinate

energy

reactants

products

Eact

FIG. 32 The simplest model of a chemical reaction. Along
some molecular coordinate x, the potential energy V (x) has
two minima separated by a barrier. The height of the bar-
rier is the “activation energy” Eact, which we expect will de-
termine the rate of the reaction through the Arrhenius law,
k ∝ e−Eact/kBT .

theoretical point of view. Indeed, as I verify every year,
few of the students in my course have ever seen an hon-
est calculation that gives the Arrhenius law as a result,
although they have all heard vague arguments about the
Boltzmann probability of being on top of the barrier. So,
our first order of business is to see how the Arrhenius law
emerges, as an asymptotic result, for some real dynamical
model. Only once we have this more solid understanding
will we be ready to look at what might be special regard-
ing the control of chemical reaction rates in biological
systems.
Let us consider the simplest case, shown in Fig 32.

Here the molecules of interest are described by a single
coordinate x, and the potential energy V (x) as a function
of this coordinate has two wells that we can identify as
reactant and product structures. Let’s assume that mo-
tions along this coordinate are overdamped, so inertia is
negligible.30 Since the molecule is surrounded by an en-
vironment at temperature T , we really want to describe
Brownian motion in this potential. So, the equation of
motion is31

γ
dx

dt
= −dV (x)

dx
+ ζ(t), (224)

30 This really is just a simplifying assumption. We can also do
everything in the case where inertia is significant, and none of
the main results will be different. More precisely, we are going to
go far enough to show that the Arrhenius law k = Ae−Eact/kBT

is true, and that the activation energy Eact corresponds to our
intuition. The neglect of inertia would only change the prefactor
A, which is in any case much more difficult to calculate.

31 For background on the description of random functions of time,
see Appendix A.2.
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where γ is the friction or drag coefficient, and the ran-
dom or Langevin force ζ(t) reflects the random influences
of all the other degrees of freedom in the system; to in-
sure that the system eventually comes to equilibrium at
temperature T we must have

〈ζ(t)ζ(t′)〉 = 2γkBT δ(t− t′). (225)

The challenge is to see if we can extract from these dy-
namics some approximate result which corresponds to
our intuition about chemical reactions, and in particular
gives us the exponential dependence of the rate on the
temperature.

[Perhaps should add some discussion of the “reaction
coordinate” concept. On the other hand, one could say
that we are just doing the simplest case, which is one
dimensional, in which case there is no need for apologies,
just generalization later. Advice welcome.]

When we solve Eq (224), what we get is the coordinate
as a function of time. What features of this trajectory
correspond to the reaction rate k? If there really are
only two states in the sense of chemical kinetics, then
trajectories should look like those in Fig 33. Specifically,
we should see that trajectories spend most of their time
in one potential well or the other, punctuated by rapid
jumps between the wells. More precisely, there should
be a clear separation of time scales between the dynam-
ics within each well and the typical time between jumps.
Further, if we look at the times spent in each well, be-
tween jumps, these times should be drawn from an expo-
nential distribution, P (t) = ke−kt, and then k is the rate
constant for the chemical reaction leading out of that well
into the other state.

Problem 38: What’s the alternative? You should think a
bit about what was just said. Suppose for example, that you don’t
know the potential and I just give you samples of the trajectory
x(t). What would it mean if the trajectories paused at some in-
termediate point between reactants and products? How would you
interpret non–exponential distributions of the time spent in each
well?

Problem 39: Numerical experiments on activation over
a barrier. Perhaps before launching into the long calculation that
follows, you should get a feeling for the problem by doing a small
simulation. Consider a particle at position x moving in a potential
V (x) = V0[1− (x/x0)2]2. Notice that this is double well, with min-
ima at x = ±x0 and a barrier of height V0 between these minima.
Let’s consider the overdamped limit of Brownian motion in this
potential, as in Eq (224),

γ
dx(t)

dt
=

4V0

x0

(
x

x0

)[
1−

(
x

x0

)2
]
+ ζ(t), (226)

We want to simulate these dynamics. The simplest approach is the
naive one, in which we use discrete time steps separated by ∆t and
we approximate

dx(t)

dt
→

x(n+ 1)− x(n)

∆t
. (227)

(a.) To use this discretization we have to deal with the Langevin
force. One (moderately) systematic approach is to integrate the
Langevin equation over a small window of time ∆t:

γ

∫ t+∆t

t
dt

dx(t)

dt
= −

∫ t+∆t

t
dt

∂V (x)

∂x
+

∫ t+∆t

t
dt δF (t),(228)

γ [x(t+∆t)− x(t)] ≈ −∆t
∂V (x)

∂x

∣∣∣∣∣
x=x(t)

+ z(t), (229)

where

z(t) =

∫ t+∆t

t
dt ζF (t). (230)

Using the correlation function of the Langevin force from Eq (225),
compute the variance of z(t). Show also that the values of z at
different times—separated at least by one discrete step ∆t—are
uncorrelated.

(b.) Combine your results in [a] with the equations above to
show that this simple discretization is equivalent to

y(n+ 1) = y(n) + αE† · y(n) · [1− y2(n)] +

√
α

2
ζ(n), (231)

where y = x/x0, the parameter α = 4kBT∆t/(γx2
0) should be

small, E† = V0/(kBT ) is the normalized “activation energy” for
escape over the barrier, and ζ(n) is a Gaussian random number
with zero mean, unit variance, and no correlations among different
time steps n.

(c.) Implement Eq (231), for example in MATLAB. Note that
MATLAB has a command randn that generates Gaussian random
numbers.32 You might start with a small value of E†, and experi-
ment to see how small you need to make α before the results start
to make sense. What do you check to see if α is small enough?

time

molecular
coordinate

sojourns in 
product 

state

sojourns in 
reactant 

state

t

t

p

r

FIG. 33 Example of the trajectories we expect to see in solv-
ing the Langevin Eq (224). Long sojourns in the reactant or
product state are interrupted by rapid jumps from one po-
tential well to the other. If we look at the times tr spent
in the reactant state, these should come from a probability
distribution Pr(tr) = k+e

−k+tr , where k+ is the rate of the
chemical reaction from reactants to products. Similarly we
should have Pp(tp) = k−e

−k−tp , where k− is the rate of the
reverse reaction.

32 More precisely, MATLAB claims that randn generates Gaussian
random numbers that are independent. Maybe you should check
this?
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(d.) Explore what happens as you change the value of E†. For
each value of E†, check that your simulation runs long enough so
that the distribution of x actually is given by the Boltzmann dis-
tribution, P (x) ∝ exp[−V (x)/kBT ]. As E† increases, can you see
that there are isolated discrete events corresponding to the “chemi-
cal reaction” in which the system jumps from one well to the other?
Use your simulation to estimate the rate of these jumps, and plot
the rate as a function of the activation energy E†. Can you verify
the Arrhenius law?

Problem 40: Effective potentials. We are discussing, for
simplicity, a one dimensional problem. Suppose that there are re-
ally many dimensions, not just x but also y1, y2, · · · , yN ≡ {yj}.
Then we have, again in the overdamped limit,

γ
dx

dt
= −

∂V (x; {yj})
∂x

+ ζ(t) (232)

γi
dyi
dt

= −
∂V (x; {yj})

∂yi
+ ξi(t), (233)

where, as usual

〈ξi(t)ξj(t′)〉 = 2kBTγiδijδ(t− t′). (234)

Imagine now that x moves much more slowly than all the {yi}.
(a.) Verify that, from Eq (233), the stationary distribution of

{yi} at fixed x is the Boltzmann distribution,

P ({yj}|x) =
1

Z(x)
exp

[
−
V (x; {yj})

kBT

]
. (235)

(b.) If x is slow compared with all the {yj}, it is plausible that we
should average the dynamics of x in Eq (232) over the stationary
distribution P ({yj}|x). Show that this generates an equation in
which x moves in an effective potential,

γ
dx

dt
= −

∂Veff(x)

∂x
+ ζF (t), (236)

and this effective potential is the free energy, Veff(x) =
−kBT lnZ(x).

(c.) Equations (232) and (233) still aren’t completely general,
since we have taken the mobility tensor to be diagonal, so that
forces on coordinate yi lead to velocities only along this direction.
Does the more general case presents any new difficulties for the
problem posed here?

This picture of trajectories that hover around one well
and then jump to another should remind you of some-
thing you learned in quantum mechanics. In particular,
if you take the path integral view of quantum mechanics,
then tunneling in a double well potential is dominated by
these sorts of trajectories. In fact, if Planck’s constant is
small, so that tunneling is rare, there is a semi–classical
approximation to the path integral which reproduces the
WKB approximation to Schrödinger’s equation, and in
this approximation the path integral is dominated by spe-
cific trajectories, which have come to be called “instan-
tons.” These instantons are precisely the jumps from one
well to another, analogous to what we have drawn for the
classical case in Fig 33.

There are three seemingly different but equivalent ways
of doing quantum mechanics. Most elementary courses
focus on Schrödinger’s equation, which describes the am-
plitude for a particle to be at position x at time t. But
you can also look at Heisenberg’s equations of motion for

the position (and momentum) operator, and finally one
can use path integrals. How do these different approaches
to quantum mechanics connect with the description of
Brownian motion?
The Langevin equation is a bit like Heisenberg’s equa-

tion for the position operator. It seems to give us some-
thing most closely related to the equations of motion in
classical (noiseless) mechanics, but it requires some in-
terpretation. In the case of the Langevin equation, be-
cause ζ(t) is random, when we solve for the trajectory
x(t) we get something different for every realization of ζ,
so “solve” should be used carefully. More precisely what
we get, for example, from one simulation of the Langevin
equation is a sample drawn out of the distribution of tra-
jectories.
When we pass from Heisenberg’s equations of motion

to the Schrödinger equation, we shift from trying to fol-
low the time dependence of coordinates to trying to see
the whole distribution of coordinates at each time, as en-
coded in the wave function. Similarly, we can pass from
the Langevin equation to the diffusion equation, which
governs the probability P (x, t) that we will find the par-
ticle at position x at time t. It is useful to remember that
the diffusion equation is an equation for the conservation
of probability,

∂P (x, t)

∂t
= − ∂

∂x
J(x, t), (237)

where J(x) is the probability current.33 Fick’s law tells
us that diffusion contributes a current that tends to re-
duce gradients in the concentration of particles, or equiv-
alently gradients in the probability of finding one particle,
so that

Jdiff(x, t) = −D
∂P (x, t)

∂x
. (238)

But if there is some force F (x) = −dV (x)/dx acting
on the particle, it will move with an average velocity
v = F (x)/γ, and hence there is a ‘drift’ current

Jdrift(x, t) = vP (x, t) = − 1

γ

dV (x)

dx
P (x, t). (239)

33 A note about units. Often when discussing diffusion it is natural
to think about the concentration of particles, which has units
of particles per unit volume. The current of particles then has
units of particles per are per time. What we are doing here is
slightly different. First, we are talking about the probability of
finding one particle at point x. Second, we are in one dimension,
and so this probability distribution has units of 1/(length), not
1/(volume). Then the current has the units of a rate, 1/(time).
Check that this make the units come out right in Eq’s (??) and
(238).
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Putting these terms together, J = Jdiff + Jdrift, we have

∂P (x, t)

∂t
= − ∂

∂x

[
−D

∂P (x, t)

∂x
− 1

γ

dV (x)

dx
P (x, t)

]

= D
∂

∂x

[
∂P (x, t)

∂x
+

1

γD

dV (x)

dx
P (x, t)

]

= D
∂

∂x

[
∂P (x, t)

∂x
+

1

kBT

dV (x)

dx
P (x, t)

]
,

(240)

where in the last step we use the Einstein relation D =
kBT/γ. This way of writing the diffusion equation makes
clear that the Boltzmann distribution P ∝ e−V (x)/kBT is
an equilibrium (∂P/∂t = 0) solution.
We have said that, in looking at solutions of the

Langevin equation, the signature of a “chemical reaction”
with rate k is that the trajectories x(t) will look like they
do in Fig 33. What is the corresponding signature in the
solutions of the diffusion equation? More precisely, even
if we solve the diffusion equation to get the full P (x, t)
from some initial condition, what is it about this solution
that corresponds to the rate constant k? In the same way
that Schrödinger’s equation is a linear equation for the
wave function, the diffusion equation is a linear equation
for the probability, which we can write as

∂P (x, t)

∂t
= L̂P (x, t). (241)

All the dynamics are determined by the eigenvalues of
the linear operator L̂:

P (x, t) =
∑

n

ane
λntun(x) (242)

L̂un(x) = λnun(x). (243)

We know that one of the eigenvalues has to be zero, since
if P (x, t) is the Boltzmann distribution, P ∝ e−V (x)/kBT ,
it won’t change in time. Deviations from the Boltzmann
distribution should decay in time, so all the nonzero
eigenvalues should be negative.

Problem 41: Positive decay rates. We know that P ∝
exp[−V (x)/kBT ] is a stationary solution of the diffusion Eq (240).
To study the dynamics of how this equilibrium is approached, write

P (x, t) = exp

[
−

V (x)

2kBT

]
Q(x, t). (244)

(a.) Derive the equation governing Q(x, t). Show that (by in-
troducing factors of i in the right place) this can be written as

∂Q(x, t)

∂t
= −A†AQ(x, t), (245)

where the combination A†A is a Hermitian operator. This gives an
explicit version of Eq (241); explain why this implies that all the
eigenvalues λn ≤ 0.

(b.) For the case of the harmonic potential, V (x) = κx2/2,
show that the operators A† and A are the familiar creation and

annihilation operators from the quantum harmonic oscillator. Use
this mapping to find all the eigenvalues λn. How do these relate
to the time constant for exponential decay that you get from the
noiseless dynamics [Eq (224) with ζ(t) = 0]?

If we place the molecule in some configuration that is
far from the local minima in each potential well, it will
‘slide’ relatively quickly into its relaxed configuration,
and execute some Brownian motion around this sliding
trajectory so that it samples the Boltzmann distribution
within the well. This relaxation should be be described
by some of the eigenvalues λn, and these should be large
and negative, corresponding to fast relaxation. In prac-
tice, we know that molecules in solution achieve this sort
of ‘vibrational relaxation’ within nanoseconds if not pi-
coseconds.
The statement that there is a chemical reaction at

rate k means that, as a population of molecules comes
to equilibrium, all the equilibration within the reactant
or product states is fast, corresponding to time scales
much shorter than 1/k. On the much longer time scale
1/k, there is equilibration between the reactant and prod-
uct states. Thus, if we look at the whole spectrum of
eigenvalues λn for the diffusion equation, one eigenvalue
should be zero (as noted above), almost all the others
should be very large and negative, while there should be
one isolated eigenvalue that is small and negative—and
this will be the reaction rate k, or more precisely the sum
of the rates for the forward (reactants → products) and
backward (products → reactants) reactions.
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FIG. 34 Decay rates in diffusion compared with energy levels
in quantum mechanics. In both cases there is a small split-
ting between the first two eigenvalues. For the diffusive case,
this splitting is the rate of thermally activated hopping over
the barrier—a chemical reaction. For the quantum case this
splitting is the tunneling frequency between the two wells.
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We arrive, then, at a picture of the eigenvalue spec-
trum in which there is a small splitting (between λ0 = 0
and λ1 = −k) relative to the next highest eigenvalue,
as shown in Fig 34. This should remind you of what
happens in quantum mechanical tunneling between two
potential wells. The basic spacing of energy levels is
set by the vibrational quanta within each well, but the
states—and, in particular, the ground state—is split by a
small amount corresponding to the frequency of tunnel-
ing between the two wells. It is the size of the barrier, or
equivalently the smallness of !, which makes this split-
ting small. In the diffusion problem, it is presumably the
smallness of the temperature relative to the activation
energy which enforces λ0 − λ1 , λ1 − λ2. We know how
to solve Schrödinger’s equation using the WKB approxi-
mation to extract the small tunneling amplitude, and so
there should be a similar approximation to the diffusion
equation that allows us to calculate the reaction rate.

The WKB approximation has a natural formulation in
the path integral approach—in the limit ! → 0, the path
integral describing the amplitude for any quantum pro-
cess is dominated by particular trajectories that are so-
lutions of the classical equations of motion, although for
classically forbidden processes (as with tunneling) these
equations have to be continued to imaginary time. This
idea of a dominant trajectory should be even clearer in
the case of Brownian motion, since we won’t have to deal
with the continuation to imaginary time. To see how
this works—and, finally, to derive the Arrhenius law—we
need to construct the probability distribution functional
for the trajectories x(t) that solve the Langevin Eq (224).

The probability that we observe a trajectory x(t) can
be calculated by finding the random force ζ(t) which was
needed to generate this trajectory, and then calculating
the probability of this force. We know that the random
forces come from a Gaussian distribution, and we know
the correlation function [Eq (225)], so we have

P [ζ(t)] ∝ exp

[
− 1

4γkBT

∫
dt ζ2(t)

]
. (246)

The Langevin equation, Eq (224), can be rewritten as

ζ(t) = γ
dx

dt
+

dV (x)

dx
, (247)

so it is tempting to say that the probability of observing
the trajectory x(t) is given by

P [x(t)] ∼ exp

[
− 1

4γkBT

∫
dt

(
γ
dx

dt
+

dV (x)

dx

)2
]
,

(248)

and this is almost correct. To see what’s missing, con-
sider the simpler case where we just have one variable x
[instead of a function x(t)] that obeys an equation

f(x) = y, (249)
and y is random, drawn from a distribution Py(y). It is
tempting to write

Px(x) = Py(y = f(x)), (250)

but this can’t be right—x and y can have different units,
and hence Px and Py must have different units. As you
have probably seen many times before, in this simple one
dimensional example, the correct statement is that the
probability mass within some small region dx must be
equal to the mass found in the corresponding dy,

Px(x)dx = Py(y = f(x))dy (251)

⇒ Px(x) = Py(y = f(x))

∣∣∣∣
dy

dx

∣∣∣∣ (252)

= Py(y = f(x))

∣∣∣∣
df(x)

dx

∣∣∣∣. (253)

More generally, in order to equate probability distribu-
tions, we need a Jacobian for the transformation between
variables. Thus, instead of Eq (248), we really want to
write

P [x(t)] ∝ exp

[
− 1

4γkBT

∫
dt

(
γ
dx

dt
+

dV (x)

dx

)2
]
J ,

(254)
where J is the Jacobian of the transformation between
x(t) and δF (t). Importantly, the Jacobian doesn’t de-
pend on temperature. In contrast, the exponential term
that we have written out is ∼ e−1/T , so at low tempera-
tures this will dominate. So, for this discussion, we won’t
worry about the Jacobian.

Problem 42: Jacobians. [Give a problem that walks through
the derivation of the Jacobian, as in Zinn–Justin.]

To make use of Eq (254), it’s useful to look more closely
at the integral which appears in the exponential. Let’s
be careful to let time run from some initial time ti up to
some final time tf :
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∫ tf

ti

dt

(
γ
dx

dt
+

dV (x)

dx

)2

=

∫ tf

ti

dt

[(
γ
dx

dt

)2

+ 2γ
dx

dt

dV (x)

dx
+

(
dV (x)

dx

)2
]

(255)

=

∫ tf

ti

dt

[(
γ
dx

dt

)2

+

(
dV (x)

dx

)2
]
+ 2γ

∫ tf

ti

dt
dx

dt

dV (x)

dx
(256)

=

∫ tf

ti

dt

[(
γ
dx

dt

)2

+

(
dV (x)

dx

)2
]
+ 2γ

∫ tf

ti

dt
dV (x)

dt
, (257)

=

∫ tf

ti

dt

[(
γ
dx

dt

)2

+

(
dV (x)

dx

)2
]
+ 2γ[V (xf)− V (xi)], (258)

where in the last steps we recognize one term as a total
derivative; as usual xi = x(ti) is the initial position, and
similarly xf = x(tf) is the final position. Substituting,
we can write the probability of a trajectory x(t) as

P [x(t)] ∝ J e−S/kBT , (259)

where the ‘action’ takes the form

S =
V (xf)− V (xi)

2
+

∫ tf

ti

dt

[
γ

4

(
dx

dt

)2

+
1

4γ

(
dV (x)

dx

)2
]
.

(260)
This is a good time to remember that, for the simplest

problems of classical mechanics, the action is

Scm =

∫ tf

ti

dt

[
m

2

(
dx

dt

)2

− U(x(t))
]
, (261)

where m is the mass and U(x) is the potential energy.
Except for a constant, the effective action for our problem
is exactly that of a simple mechanics problem of a particle
with mass m moving in a effective potential U(x),

m =
γ

2
(262)

U(x) = − 1

4γ

(
dV (x)

dx

)2

. (263)

Figure 35 shows how this effective potential relates to the
original double well.

At low temperatures, the distribution of trajectories
will be dominated by those which minimize the action
S. Clearly, one way to make the action minimal (zero,
in fact) is to have the position be constant at one of the
minima of the potential well. This describes a situation
in which nothing happens. To have a chemical reaction,
we need a trajectory that starts in the well correspond-
ing to the reactants state, climbs up to the ‘transition
state’ at the top of the barrier, and then slides down the
other side. Let’s start with the first part of this problem,
finding a trajectory that climbs the barrier. The domi-
nant trajectory of this form will be one that minimizes
the action, and from Fig 35 we see that this is equivalent
to finding the solution to an ordinary mechanics problem

in which a particle starts on top of one hill, slides down
and then gently comes to rest at the top of the next hill.

Problem 43: Zero energy? What we have just described
are trajectories in the effective potential that have zero energy.
There are, of course, trajectories that minimize the action but have
nonzero energy. Why don’t we consider these?

Taking the details of Fig 35 seriously, if we start at
rest on top of one hill, this means that we start with zero
energy. But energy is conserved along the trajectory, so
that

m

2

(
dx

dt

)2

+ U(x(t)) = E = 0. (264)
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panel the effective potential that enters the probability dis-
tribution of trajectories. Notice that each extremum of the
potential, both maxima and minima, becomes a maximum of
the effective potential, and all these maxima are degenerate
at U = 0.
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This means that

U(x(t)) = −m

2

(
dx

dt

)2

(265)

dx

dt
= ±

√
− 2

m
U(x(t)); (266)

we are interested in trajectories that move from left to
right, so we should choose the upper sign, so that dx/dt >
0. But now we can substitute into the action,

Scm =

∫ tf

ti

dt

[
m

2

(
dx

dt

)2

− U(x(t))
]

=

∫ tf

ti

dt

[
m

2

(
dx

dt

)2

+
m

2

(
dx

dt

)2
]

(267)

= m

∫ tf

ti

dt

(
dx

dt

)2

(268)

= m

∫ tf

ti

dt
dx

dt

√
− 2

m
U(x(t)), (269)

so that finally we have

Scm =

∫ xf

xi

dx
√
−2mU(x), (270)

where you should recognize the connection to the WKB
formula for tunneling. In our case, the effective potential
and mass are defined by Eq’s (262) and (263), so that

−2mU(x) = −2
γ

2

[
− 1

4γ

(
dV (x)

dx

)2
]
=

1

4

(
dV (x)

dx

)2

.

(271)

It is quite nice how the factors of γ cancel. Substituting
into Eq (270), we find

Scm =
1

2

∫ xf

xi

dx

√(
dV (x)

dx

)2

(272)

= ±1

2

∫ xf

xi

dx
dV (x)

dx
(273)

=
1

2

∣∣∣∣V (xf)− V (xi)

∣∣∣∣, (274)

where we choose the sign in taking the root so that the
action comes out positive, as it must from Eq (268).

Problem 44: Extracting the dominant paths. We have
seen that, in the low temperature limit, the reaction is dominated
by trajectories that lead from one well to the other and minimize
the action. Look through your simulation results from Problem
28, and collect as many examples as you can of the ‘jumping’ tra-
jectories. How do these examples compare with the theoretical
prediction that comes from minimizing the action? Can you align
the sample trajectories well enough to compute an average that
might be more directly comparable to the theory?

To finish the calculation, we need to put some of these
pieces together. The action that determines the proba-
bility of a trajectory is, from Eq (260),

S =
V (xf)− V (xi)

2
+

∫ tf

ti

dt

[
γ

4

(
dx

dt

)2

+
1

4γ

(
dV (x)

dx

)2
]

=
V (xf)− V (xi)

2
+ Scm (275)

=
V (xf)− V (xi)

2
+

1

2

∣∣∣∣V (xf)− V (xi)

∣∣∣∣. (276)

This is a remarkably simple result. If we are looking at
a trajectory that climbs from the bottom of a potential
well to the top of the barrier, we have V (xf) > V (xi) and
hence the action is

Sclimb = V (xf)− V (xi) = Eact, (277)

which is the “activation energy” for going over the bar-
rier. On the other hand, if we look at a trajectory that
slides down from the barrier into the other well, we have

V (xf) < V (xi) and hence

Sslide = 0. (278)

So, what we have shown is that paths which take us from
reactants to products, climbing the barrier and sliding
down the other side, have a minimal action Sreact =
Sclimb + Sslide = Eact. Thus, the probability of seeing
such a trajectory is

P [xreact(t)] ∝ J e−Sreact/kBT ∼ e−Eact/kBT , (279)
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and this is the essence of the Arrhenius law (at last).
One could legitimately complain that we haven’t really

solved our problem. All we have done is to show that,
in some window of time, trajectories that jump from re-
actants to products are suppressed in probability by a
factor e−Eact/kBT . This is the basic idea of the Arrhenius
law, but we haven’t actually calculated a rate constant.
In truth, this last step requires rather more technical ap-
paratus, in the same way that getting the tunneling rate
in the WKB approximation is harder than getting the
exponential suppression, so I will leave it aside for now.

So far, we have given a fairly general discussion, and
perhaps it’s not obvious whether there is anything spe-
cial about how these ideas will play out in the case of
biological molecules. If we try to draw the picture in Fig
32, we usually associate the “reaction coordinate,” that
is the molecular coordinate along which we see the double
well potential, with the motions that are involved in the
chemical events themselves. Thus, if we are looking at
the transfer of a hydrogen atom, breaking one bond and
forming another, we might think that the relevant molec-
ular coordinate is given by the position of the hydrogen
atom itself.

Biological molecules—such as the proteins which act as
enzymes, catalyzing specific chemical reactions of impor-
tance in the cell—are large, and hence flexible. Certainly
they can change reaction rates by holding the reactants
in place. But because of their flexibility, there is also
the possibility that, as they flex, the effective barrier for
the reaction changes. In this case, the dominant path
for the reaction might be for the protein to fluctuate into
a favorable configuration, and then for the more local
coordinates (e.g., the position of the hydrogen atom) to
make their jump. In this way, the observed activation en-
ergy comes to have two components, the usual one that
we measure along the reaction coordinate, which presum-
ably is reduced by waiting for the protein to arrange itself
properly, and then the energy of distorting the protein it-
self.

To be a little more formal, imagine that for every con-
figuration Q of the protein, there is a different activation
energy for the reaction, Eact(Q). Of course there must
also be some (free) energy of the protein once it is in the
structure described by Q, and this determines the prob-
ability distribution P (Q). Then if the fluctuations in Q
are fast, we expect to see an average rate constant

k = A

∫
dQP (Q) exp

[
−Eact(Q)

kBT

]
. (280)

If we fix Q at its equilibrium position, we could find
that Eact(Q = Qeq) is large, which might make us think
that the reaction will be slow. But by sampling non–
equilibrium configurations, the protein can speed up the
reaction.

Obviously this general picture depends on many de-
tails, but before proceeding one could ask if there is any

evidence for such coupling of protein structural fluctu-
ations to the modulations of chemical reaction rates. I
think the strongest evidence is from the mid 1970s, in a
beautiful series of experiments by Austin and colleagues.
The idea is very simple. Suppose that we really do have
the activation energy varying with the configuration of
the protein. If we could stop the motion of the protein,
then each molecule would be stuck with a different acti-
vation energy and hence a different reaction rate. Then,
instead of seeing an average rate, each molecule reacts
at its own rate, and if we count the total number of
molecules that have not yet reacted we should see

N(t) =

∫
dQP (Q) exp

[
−Ae−Eact(Q)/kBT t

]
, (281)

which definitely is not an exponential decay. In fact if
the fluctuations in Q generate very large variations in
the activation energy, then this is very far from being an
exponential decay.

Problem 45: Power law decays. Suppose that the effect
of the fluctuations in Q is to generate a distribution of activation
energies

P (Eact) =
1

n!E0
(E/E0)

ne−E/E0 . (282)

Then we should have

N(t) =

∫ ∞

0

dE

n!E0
(E/E0)

ne−E/E0 exp
[
−Ae−E/kBT t

]
. (283)

(a.) Show that, at large t, there is a saddle point approximation
to this integral, and that this predicts a decay N(t) ∼ t−α. What
determines the power α? Are there corrections to this formula?

(b.) Calculate the average rate constant, as in Eq (280),

k̄ = A

∫ ∞

0

dE

n!E0
(E/E0)

ne−E/E0 exp

[
−

E

kBT

]
. (284)

Does this mean rate obey the Arrhenius law? How large are the
deviations? Is there a limit in which the Arrhenius law is recovered?

Problem 46: A more sophisticated model. The discussion
above concerns either the limit in which fluctuations are very fast,
so we see an average rate constant, or very slow, so that we see a
distribution of rate constants. It would be nice to have a simple
model that interpolates between these limits. [give a problem that
goes through the essence of the Agmon & Hopfield papers ...]

So, we have the dramatic prediction that if we would
freeze the motion of the protein, we’d see something very
far from the usual exponential decays. In order to test
this we need the right model system. In particular, if we
are literally going to freeze things, then molecules can’t
diffuse relative to one another, and most what we usually
think of as chemistry will stop. We need an example of a
reaction that happens among molecules that are already
“together” and ready to react. If things are frozen, then
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FIG. 36 The heme group at the center of myoglobin,
hemoglobin, and other heme proteins. Recall the convention
(Fig 15) that carbon atoms are at unmarked nodes of the
skeleton, and hydrogen atoms which complete the four bonds
needed for each carbon are not shown. The iron atom at the
center is also coordinated from below by a nitrogen from the
protein, and oxygen or carbon monoxide can bind to the iron
from above the plane. The large conjugated structure of the
heme group endows the molecule with a strong absorption
cross section in the visible and ultraviolet range of the spec-
trum. Because the electronic states of the heme mix with the
d orbitals of the iron, the absorption spectrum shifts upon
oxygen binding.

the usual trick of suddenly mixing the reactants together
to start the reaction also isn’t going to work.

In many organisms, including us, oxygen is essential
for a wide variety of processes. We take in oxygen by
breathing, and need to distribute it to all of our tissues.
The way we do this is to have specific proteins to which
oxygen binds, and then the proteins are transported,
starting in the blood. The major such oxygen trans-
port protein in our blood is called hemoglobin, which
is described in more detail in Appendix A.4 because it
provides the classic example of cooperativity in protein
function. Hemoglobin has four protein subunits, each of
which can bind a single oxygen molecule. In our mus-
cles we find a simpler protein, with just one subunit,
called myoglobin. Myoglobin, hemoglobin, and the cy-
tochromes that we will discuss below all are members of
the “heme protein” family, which are defined by the fact
that they bind a rather large planar organic molecule
called heme, with an iron atom at its center, as shown in
Fig 36. This iron is held in the plane by nitrogens from
the heme and from below by a nitrogen from the protein.
Oxygen can bind to the iron from above the plane.

The iron atom, and hence the oxygen binding site is
buried deep inside the protein, as shown in Fig 37. This
is interesting in part because it tells us that the full pro-
cess of binding and unbinding must involve some motion

or “breathing” of the protein structure. Further, once
oxygen binds, if we freeze the protein it will be trapped,
unable to escape. The conjugated electronic structure
of the heme generates a strong optical absorption band,
and because the electronic states of the heme mix with
the orbitals of the iron, the absorption shifts when oxygen
binds to the iron. Further, when a photon is absorbed by
myoglobin with oxygen bound, there is some probability
that the energy of the absorbed photon will be channeled
into breaking the bond between the iron and the oxygen.
Thus, if we let oxygen bind to myoglobin and then freeze
the solution, we can knock the oxygen off the iron atom
with a flash of light, and then we can watch the oxygen
rebind after rattling around in the “pocket” formed by
the protein.
In principle, motion of the oxygen molecule from the

pocket to the iron atom needn’t be coupled to motions of
the protein. But if this coupling does occur, we expect,
from the discussion above, that the kinetics of the rebind-
ing after a light flash will deviate strongly from an expo-
nential decay. We can follow the kinetics by looking at
the absorption spectrum, and this is what is shown in Fig
?? for both oxygen and carbon monoxide binding to myo-
globin. We see that once the solution is truly frozen solid
(below ∼ 160K in the glycerol–water mixtures used for
these experiments), the fraction of molecules that have
not reacted decays more nearly as a power law than an
exponential. This suggests that we have frozen in a very

heme 

group

histidine 

side 

chain

water

FIG. 37 A slice through the electron density map of the
myoglogin molecule, as inferred from X–ray diffraction data
(Kendrew 1964). This map is made from data at 1.4 Å res-
olution. In the center we see the heme group edge on. The
histidine side chain from the protein coordinates the iron atom
from below the plane of the heme, and in the crystals used in
these experiments a water molecule binds to the iron atom in
the position that would be taken by oxygen. Note that there
is not much empty space in the structure, so that the protein
actually has to “breathe” in order for oxygen to have access
to the iron, or to escape once bound.



72

broad distribution of rate constants.

FIG. 38 Rebinding of oxygen and carbon monoxide to myo-
globin at low temperatures, following a flash of light to break
the bond (Austin et al 1975). Circle are data points, obtained
by monitoring the absorption spectrum. Note that this is a
logarithmic plot on both axes, so that we see an enormous
range of times. Lines are fits to the phenomenological power
law decay N(t) = 1/[1 + (t/t0)]

n. The dashed line shows, for
contrast, an exponential decay, N(t) = e−kt, with k = 1 s−1.

So far our discussion of chemical reactions has treated
motion along the reaction coordinate as being completely
classical. Is it possible that quantum effects could be rel-
evant? Notice in Fig 38 that as we lower the temper-
ature, the kinetics remain consistently non–exponential,
but the typical time scale (e.g., the time required for the
reach to reach 90% completion) is slowing down. If we
keep lowering the temperature, eventually this slowing
stops, and we see temperature independent kinetics. Al-
most certainly this arises because the reaction proceed by
quantum mechanical tunneling through the effective bar-
rier rather than by thermal activation over the barrier.
The observation of quantum mechanical effects in a bio-
logical system always triggers excitement, although this
is tempered somewhat by the fact that, in this case, to see
tunneling one has to go to very low temperatures (below
10K) indeed. In fact, well before the work on myoglobin,
there had been observations of temperature independent
kinetics in the photon–triggered electron transfer reac-
tions in photosynthesis. Although our immediate experi-
ence of photosynthesis involved plants, many of the key
experiments on the dynamics of electron transfer were
done in photosynthetic bacteria.
The basic business of photosynthesis is carried out

by the reaction center, a huge complex of proteins that
holds a collection of medium sized, organic molecules—
chlorophylls, pheophytins (chlorophylls without the mag-
nesium), and quinones. [Need some schematics of these
molecules, plus the reaction center structure.] Two of the
chlorophylls are held in a special pair (P), and the elec-

tronic states of these two molecules are strongly mixed.
If one purifies the reaction center away from all the ac-
cessory structures, the photochemistry is triggered when
the special pair absorbs a photon.
From the excited state of the special pair, an electron

hops to states localized on the pheophytin (I) and then
the quinone (Q), as shown in Fig 39. Because P and Q
are held, by the protein scaffold, on opposite sides of a
membrane, the net effect is to transfer charge across the
membrane, capturing the energy of the absorbed pho-
ton. Quinones [point back to the structure!] exist in
multiple protonation states, so that the electron transfer
can couple to proton transfer, and in this way the reac-
tion center serves to drive protons across the membrane.
The difference in electrochemical potential for protons
provides a universal energy source that is used by other
transmembrane protein, for example to synthesize ATP,
which all cells use in powering other processes (includ-
ing movement). In more complex organisms, including
green plants, there are two kinds of reaction centers, one
of which couples photon–driven electron transfer to the
splitting of water to make all the oxygen in our atmo-
sphere.
To complete the cycle and “reset” the reaction center

for the arrival of the next photon, the hole on the special
pair needs to be filled in, and this happens by electron
transfer from another protein, cytochrome c, which can
also diffuse away from the membrane and interact with
the rest of the cell’s chemistry. It is this reaction that

PIQ

P*IQ

P I Q
+ -

P IQ + -
photon

absorption

~ 3 ps

~ 100 ps

103
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1/T
0.04 0.060.02

rate
CP    C P
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+ +
Eact = 0.18 eV
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Tunneling?

FIG. 39 Schematic of the electron transfer reactions in the
reaction center of photosynthetic bacteria. The “pigment
molecule” P absorbs a photon, and transfers an electron from
the excited state to an intermediate acceptor I, which then
passes the electron to a quinone molecule Q; there is a second
quinone, not shown. The hole on P is filled in by electron
transfer from another protein, cytochrome c, and the kinetics
of the reaction CP+ → C+P provided the first evidence for
quantum tunneling in a biological system, as shown (redrawn
from DeVault & Chance 1966).
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provided the first evidence for tunneling in a biological
system. If the cytochrome is absent, as in purified reac-
tion centers, one can observe the recombination reaction
P+Q− → PQ, which also has an anomalous tempera-
ture dependence, as discussed below. To connect with
the discussion of myoglobin, this recombination reaction
also exhibits non–exponential kinetics under some con-
ditions, suggesting that it is possible to freeze some of
the fluctuations in structure that normally provide rapid
modulations of the reaction rate.

The key to experiments on the kinetics of photosyn-
thetic electron transfer is that all of the molecules in-
volved change their absorption spectra significantly when
they gain or lose an electron; not coincidentally, these
spectra overlap with the spectrum of the solar radiation,
and are concentrated in a range of wavelengths surround-
ing the ‘visible,’ from the near infrared to the near ul-
traviolet. We can trigger the reactions with a pulsed
laser tuned to the absorption band of P, and we can then
monitor different spectral features that track the different
components. This started in the 1950s and 60s with time
resolution in the microsecond range, and evolved—with
successive revolutions in the techniques for generating
short laser pulses—down to picoseconds and femtosec-
onds; this development parallels the exploration of the
visual pigments described in Section I.B.

One key point about the photosynthetic reaction center
is that all the electron transfer processes work even when
the system is frozen, which tells us that there is no need
for the different components to diffuse in order to find one
another—all of the donor and acceptor sites are held in
place by the protein scaffolding. This allows for investi-
gation of the electron transfer reactions over a wide range
of temperatures, and this was done to dramatic effect by
DeVault and Chance in the mid 1960s, with the result
shown in Fig 39. Near room temperature, the electron
transfer from cyctochrome c back to the special pair ex-
hibits a normal, Arrhenius temperature dependence with
an activation energy Eact ∼ 0.18 eV. Importantly, the
temperature dependence is continuous as the system is
cooled through the solvent’s freezing point. But some-
where around T ∼ 100K, the temperature dependence
stops, and the reaction rate remains the same down to
liquid helium temperatures (T ∼ 4K). This strongly
suggests that the reaction proceeds by tunneling at low
temperatures.

Problem 47: A wrong model. If a reaction proceeds by
activation over a barrier of height E, the rate is k ∝ exp(−E/kBT ),
If it proceeds by tunneling through the barrier, we expect k ∝
exp(−2

√
2mE)/!), where ) is the width of the barrier and m is the

effective mass of the tunneling particle. For the DeVault–Chance
reaction, there is a direct measurement of the activation energy
E ∼ 0.18 eV. If you imagine that it is the electron which has
to go over or through this barrier, what value of ) is needed to

explain that the crossover from Arrhenius behavior to temperature
independence occurs near T ∼ 100K? Does this result make any
sense?

After roughly a decade of confusion (including discus-
sions of the model in the previous problem), a clearer
understanding of tunneling in electron transfer emerged
in the mid to late 1970s.34 The basic idea is schema-
tized in Fig 40. We have an electron donor D and an
acceptor A; the reaction is DA → D+A−. The states DA
and D+A− are different electronic states of the system.
From the Born–Oppenheimer approximation, we know
that when a molecule shifts to a new electronic state,
the nuclei move on a new potential surface. We usually
describe these nuclear or atomic motions as molecular
vibrations, so we’ll refer to the relevant coordinates as
vibrational coordinates. The simplest scheme, as in Fig
40, is one in which the vibrations are approximately har-
monic. Then when we change electronic states, we can
imagine changes in the structure of the normal modes,
changes in the frequencies of these modes, and shifts in
the equilibrium positions along the modes; barring sym-
metries, the last effect should be the leading one, and
certainly it is the simplest.
In the state DA, an electron is localized on the donor.

In the state D+A−, this electron is localized on the ac-
ceptor. If the donor and acceptor sites are far apart, as
is often the case in large, biological molecules, then the

!! !" !# !$ % $ # " !

%

#%

!%

&%

'%

$%%

$#%

$!%

$&%

$'%

#%%

energy DA D A+
-

vibrational coordinate

Eact

FIG. 40 Electron transfer is coupled to vibrational motion.
...

34 The relevant physics here is essentially the same as in the discus-
sion of absorption spectra in large molecules. See Chapter One
and the Appendix on electronic transitions in large molecules;
give pointer to arXiv version.
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wave functions of the electrons in these localized state
will overlap only deep in their tails; any matrix element
that connects these two states then must be very small.
But if we want to have a transition between two states
that are connected by only a small matrix element, then
by Fermi’s golden rule we need these states to be of the
same energy. As shown in Fig 40, this happens only at
special points, where the two potential energy surfaces
for vibrational motion cross. The rate of the reaction
should then be proportional to the probability of finding
the system at this crossing point. The key point, then, is
that at high temperatures this probability is controlled by
the thermal fluctuations in the vibrational coordinates,
while at low temperatures the system can still reach the
crossing point, but now the fluctuations are dominated by
quantum zero–point motion. If the activation energy—
the energy required to distort the molecule from its equi-
librium structure in state DA to the crossing point—is
large compared to the relevant vibrational quanta, then

a zero–point fluctuation that carries the system to the
crossing point necessarily involves sampling the tails of
the ground state wavefunction, and this means that the
system moves into a region that would be forbidden to
a classical particle, even granting that it has the zero–
point energy to work with. Thus, at low temperatures,
the reaction is controlled by tunneling of the vibrational
degrees of freedom, while at high temperatures these de-
grees of freedom move classically over the barrier.
To make all this a bit more precise, let’s write the

Hamiltonian corresponding to Fig 40. We have two elec-
tronic states, which we can take as the up and down
states of a spin one–half. There is an energy difference
between these states, which we’ll call ε, and a weak ma-
trix element ∆ that mixes these states. There is a vi-
brational coordinate Q, and this coordinate moves in a
potential that depends on the electronic state. Thus we
have

H =
ε

2
σz +∆σx +

1

2
Q̇2 +

1 + σz

2
V↑(Q) +

1− σz

2
V↓(Q), (285)

If we think semi–classically, then the vibrational coordinates move hardly at all during the electronic transition, and
so from the golden rule we should have the reaction rate

k ∼ 1

!∆
2

〈
δ(E↑ − E↓)

〉
=

1

!∆
2

〈
δ [ε+ V↑(Q)− V↓(Q)]

〉
, (286)

where we have to average over the fluctuations ofQ in the
initial state DA. In the simplest case, where the potential
surfaces are harmonic, differing only in their equilibrium
positions,

V↑(Q) =
κ

2
Q2 (287)

V↓(Q) =
κ

2
(Q−Q0)

2, (288)

and hence V↑(Q)− V↓(Q) = κ(Q0Q−Q2
0/2), so that

k ∼ 1

!∆
2

〈
δ
(
ε− κ

2
Q2

0 + κQ0Q
)〉

(289)

=
∆2

!κQ0
P

(
Q =

Q0

2
− ε

κQ0

)
. (290)

If we have a particle moving in a harmonic potential with
frequency ω, then in thermal equilibrium the distribution
of Q is Gaussian. The variance is 〈(δQ)2〉 = kBTeff/κ,
where

kBTeff = !ω
[
1

2
+

1

e!ω/kBT − 1

]
; (291)

notice that as T → 0, kBTeff approaches the zero–point

energy !ω/2. Putting all the terms together, we find

k ∼ ∆2

!
√
4πλkBTeff

exp

[
− (ε− λ)2

4λkBTeff

]
, (292)

where λ = κQ2
0/2 is the “reorganization energy” that

would be required to distort the molecule from its equi-
librium configuration in DA into the equilibrium configu-
ration appropriate to D+A− if we didn’t actually transfer
the electron.
In Figure 41 we see the predicted dependence of the

electron transfer rate on temperature in a parameter
regime chosen to match the DeVault–Chance reaction.
In order to have the transition between Arrhenius and
tunneling behavior at the right temperature, we need a
vibrational frequency ω/2π ∼ 200 cm−1.35 If we look at
the Raman spectra of cytochrome c or related molecules,

35 Molecular vibrations contribute to the absorption of radiation
in the infrared, and it is conventional to measure frequency in
“wavenumbers” or inverse cm. To convert to the more usual
Hz, just multiply by the speed of light, 3 × 1010 cm/s. Note
that this is a convention about units, and not a reference to the
inverse wavelength in the medium used for the experiment, so
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FIG. 41 Temperature dependence of the electron transfer
rate, from Eq (292). Parameters are chosen, as described in
the text, to match the behavior of the DeVault–Chance reac-
tion in Fig 39. Circles are values of the rate computed at 20K
intervals, and dashed lines indicate the asymptotic behavior
at high (activated) and low (tunneling) temperatures.

there is a vibrational mode near this frequency that cor-
responds to motions of the iron atom perpendicular to
the plane of the heme group [obviously need a structural
schematic!]. This makes sense, since when we add or sub-
tract an electron from the molecule, this charge is shared
between the iron and the heme, and on average the iron is
displaced relative to the heme when the molecule changes
its oxidation state. The energy difference between reac-
tants and products can be measured directly by separate
electrochemical experiments, and then to get the acti-
vation energy right we must have λ ∼ 0.14 eV. If the
relevant vibrational mode really is (mostly) the motion
of the iron relative to the rest of the protein, then we
know the mass associated the mode and hence the stiff-
ness κ = mω2, so we can determine Q0 ∼ 0.2 Å, and this
is consistent with the displacements found upon compar-
ing the oxidized and reduced structures of cytochrome
c. So, this account of vibrational motion as controlling
the temperature dependence of the reaction rate seems
to make sense in light of everything else we know about
these molecules, although admittedly it is a rough com-
parison. [Say something about the charge transfer band

there is no correction for the index of refraction. Once you start
reading about molecular spectroscopy and chemical reactions (re-
plete with calories and moles), you’ll have to get some practice
at changing units!

as a direct test?]

Problem 48: Getting numbers out. Convince yourself that
the numbers in the preceding paragraph make sense. In particular,
extract the estimate Q0 ∼ 0.2 Å for the motion of the iron atom
relative to the protein.

There are many loose ends here. To begin, we have
given a description in terms of one vibrational mode, but
we have found an expression for the reaction rate that
shows no sign of resonances when the energy difference
ε between reactants and products in an integer multiple
of the vibrational quantum !ω. Presumably the solution
to the problem is the same as in our discussion of the
absorption spectra of rhodopsin: individual modes are
damped, so that resonances are broadened, and there
are many modes, so the broadened resonances overlap
and smear into a continuum.
The second problem concerns the significance of all

this for biological function. It’s very impressive to see
quantum tunneling in a biological molecule, but our ex-
citement should be tempered by the fact that we see
this only at temperatures below 100K, far out of the
range where life actually happens. Measurements on the
(much faster) initial steps of electron transfer, however,
show that approximately temperature independent reac-
tion rates persist up to room temperature. Indeed if we
look closely at the rates of P∗I → P+I− and I−Q → IQ−,
we see a slightly inverse temperature dependence, with
the rate slowing by a factor of two or three as we increase
the temperature from 4 to 300K [should have a figure for
this!]. In fact the theory as we have sketched it provides a
possible explanation for this: if we tune the energy differ-
ence between reactants and products so as to maximize
the reaction rate, we have ε = λ and the exponential de-
pendence of the reaction rate on Teff disappears; all we
have left is k ∝ 1/

√
Teff , which indeed is a weak, inverse

temperature dependence. This sort of fine tuning might
make sense—perhaps evolution has selected for molecular
parameters that maximize the electron transfer rates.
The structure if the reaction center is such that one

can take out the quinone molecules and replace them
with analogs that have different electron affinities, and
in this way manipulate the value of ε. Perhaps surpris-
ingly, increases in ε have very little effect on the rate
constant for the recombination reaction P+Q− → PQ,
or on the forward reaction I−Q → IQ−, and for all the
values of ε probed one sees an approximately temperature
independent rate. This argues strongly against tuning of
ε = λ as an explanation for the observed “activationless”
behavior.
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FIG. 42 Electron transfer coupled to high frequency vibra-
tions, from Eq’s (293) and (294). Dashed lines show contri-
butions to the rate constant at T = 300K from processes
that leave behind n = 0, 1, 2, . . . quanta in the high frequency
mode. The total rate k(T = 300K) is shown in the solid blue
line, and k(T = 30K) in green. The high frequency mode has
!Ω = 0.1 eV and S = 1.

Suppose that instead of one vibrational mode, we have
two—one at a low frequency ω, which we can treat by
the semi–classical argument given above, and one at a
high frequency Ω that really needs a proper quantum
mechanical description. The initial state of the high fre-
quency mode is the ground state (since kBT , !Ω), but
in the final state we can excite one or more vibrational
quanta, and the overall reaction rate will be a sum over
terms corresponding to each of these possible final states.
From the point of view of the low frequency mode, if
the system transitions into a state with n high frequency
quanta, this renormalizes the matrix element ∆ → ∆n

and reduces the energy gap ε → ε− n!Ω. Thus the rate
constant becomes

k =
∞∑

n=0

∆2
n

!
√
4πλkBTeff

exp

[
− (ε− n!Ω− λ)2

4λkBTeff

]
, (293)

where now λ refers only to the reorganization energy of
the low frequency mode. Results are shown in Fig 42.

Problem 49: Renormalized matrix elements. To complete
the calculation in Eq (293), we need to understand how the matrix
elements are renormalized by coupling to the high frequency modes.
Get the students to derive ...

∆2
n = e−S Sn

n!
∆2, (294)

and explain the meaning of S.

We see that the possibility of exciting different num-
bers of vibrational quanta greatly broadens the depen-
dence of the rate constant on the energy gap ε, and pro-
vides a huge widening of the region over which we see
very little (or even inverted) temperature dependence.
This seems a more plausible and robust explanation of
the observed activationless kinetics in the photosynthetic
reaction center. Importantly, it relies in an essential way
on the quantum behavior of the high frequency vibra-
tional motions that are coupled to the electron transfer,
and this is true even at room temperature. There is no
shortage of such high frequency modes in the quinones,
chlorophylls and pheophytins; what is interesting is the
way in which the interplay of these quantum modes with
the lower frequency classical modes (including, presum-
ably, modes of the protein scaffolding itself) shapes the
observed functional behavior.
A third issue is that, although we are talking about

electron transfer reactions, we have said relatively lit-
tle about the electrons themselves—there are two states,
localized on the donor and acceptor sites, and there is
a matrix element that connects these states, but that
seems to be all. In fact we can say a bit more. First,
our use of perturbation theory obviously depends on the
matrix element not being too large. If we go back to our
simple model of the DeVault–Chance reaction and try to
fit the absolute rate constants as well as the tempera-
ture dependence, we find ∆ ∼ 10−4 eV. Certainly this is
small compared with the other energies in the problem
(λ, !ω, kBT , ε), which indicates that our use of perturba-
tion theory is consistent. [Finish the discussion of matrix
elements!]
[Do we want to say anything about coherence and the

very first, fastest steps??]
All other things being equal, quantum effects are

stronger for lighter particles. As we have seen, electrons
essentially always tunnel—there are almost no chemical
or biochemical reactions involving thermal activation of
an electron over a barrier. Since the early days of quan-
tum mechanics, people have wondered if chemical reac-
tions involving the next lightest particle, a proton or hy-
drogen atom, might also involve tunneling in a signifi-
cant way. To be concrete, consider the situation in Fig
43, where the reaction coordinate is the position of the H
atom itself, moving from donor to acceptor atom. But,
while still attached to the donor atom (e.g., a carbon) we
can observe vibrations of the D–H bond, and for C–H we
know that the frequencies of these vibrations can be as
high as ν ∼ 2500 − 3000 cm−1. The vibrational quanta
thus are hν ∼ 1/4− 1/3 eV. In fact the activation ener-
gies of many chemical reactions are not that much larger
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FIG. 43 Transfer of a hydrogen atom from a donor D to an
acceptor A. The reaction coordinate is the position of the
H atom, but we expect that quantization effects are non–
negligible.

than this, perhaps 0.5− 1 eV. This means that, as indi-
cated in the crude sketch, climbing up to the top of the
barrier between reactants and products involves adding
just two or three vibrational quanta. What this means
is that the reaction can’t really be completely classical,
if the reaction coordinate really is the stretching of the
bond itself.
If we make the crude approximation that the barrier

is rectangular, with height E, then the rate of going over
the barrier should be k ∝ e−E/kBT , as before, while the

rate of tunneling through the barrier is k ∝ e−2
√
2mE)/!,

where & is the width of the barrier and m is the mass of
tunneling particle. Although we could worry about the
prefactors, the exponentials are probably the dominant
effects, and so we might guess (as in the problem above)
that tunneling is more important that classical thermal
activation only if

e−E/kBT < e−2
√
2mE)/!, (295)

or

T < T0 ∼ !
kB

√
E

2m&
. (296)

If the width of the barrier is & ∼ 1 Å, and its height is
E ∼ 50 kJ/mole, then with m the mass of the proton we
find T0 ∼ 190K, well below room temperature. Thus,
although it might be difficult to see the transfer of a pro-
ton as being completely classical, it’s also true that the
transfer reaction is unlikely to be dominated by tunneling
at room temperature if the barrier is static.
In the interior of a protein, we can imagine that the

donor and acceptor are held by different parts of the large
molecule, and as the protein flexes and breathes, these
sites will move. Effectively this means that the width
of the barrier will fluctuate. On average, this increases
the probability of tunneling through the barrier. If the
fluctuations in & are Gaussian, the tunneling probability
becomes

e−2
√
2mE)/! →

〈
e−2

√
2mE)/!

〉
= exp

[
−2

√
2mE&̄/!+ 4mE〈(δ&)2〉/!2

]
, (297)

where &̄ is the average width of the barrier and 〈(δ&)2〉
is the variance of the this width. With the parameters
as before, the enhancement of the tunneling probability
involves the term

4mE〈(δ&)2〉/!2 ∼ 6

〈(
δ&

0.1 Å

)2
〉
. (298)

As described in Appendix A.5, measurements of Debye–
Waller factors in X–ray diffraction from protein crystals
provide estimates of the fluctuations in structure, and
these structural fluctuations in are easily several tenths
of an Ångström. Thus this term, which appears in the
exponential, can be huge. This completely shifts the bal-
ance between tunneling and classical, thermal activation,
so that in the presence of fluctuations it becomes plausi-
ble that tunneling is dominant at room temperature.

Notice that the role of protein vibrational motions here
is very different than in the case of electron transfer. In
electron transfer, there is a small matrix element that
couples the two relevant states, and protein motions serve
to bring these two states into degeneracy with one an-
other. This effect presumably could happen in the case
of proton transfer as well, but we have focused on the
coupling of fluctuations to the tunneling matrix element.
This coupling is especially interesting because it gener-
ates exponential terms in the reaction rate that have a
dependence on mass (ln k ∝ m) that is very different from
the naive tunneling exponent (ln k ∝ −

√
m) or the zero–

point corrections to the activation energy (ln k ∝ 1/
√
m;

see next problem); because this mass–dependent term
also depends on the variance of structural fluctuations, it
is also temperature dependent. Indeed, it was the discov-
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ery of anomalous, temperature dependent isotope effects
in enzymatic proton transfer reactions that prompted re-
newed discussion of these dynamical effects on tunneling.

Problem 50: Isotope effects. Chemical reaction rates change
when we substitute one isotope for another. There is a “semiclas-
sical” theory of these isotope effects, which says that the reaction
proceeds by conventional thermal activation, but the activation
energy is reduced by the zero–point energy of vibrations along the
reaction coordinate, k ∝ exp [−(Eact − !ω)/kBT ].

(a.) Vibrational frequencies are proportional to 1/
√
m, with

m the (effective) mass of the particle(s) moving along the mode
with frequency ω. In the simple picture where all of the motion
along the reaction coordinate is dominated by the motion of the
proton, derive a relationship between the ratios of rate constants
for hydrogen, deuterium and tritium transfer.

(b.) If the reaction coordinate involves motion of atoms other
than transferred hydrogen, what happens to the predicted mag-
nitude of the isotope effects? What about the relationship you
derived in [a.]?

(c.) [Let’s do something with averaging over fluctuating barriers
to see how isotope effects come out ...]

I hope that you take a few lessons away from this (long)
discussion. First, chemical reactions are the result of
fluctuations at the molecular level. We can describe the
nature of these fluctuations in some detail, since rare
events such as escape over a high barrier are dominated
by specific trajectories. In large biological molecules, the
flexibility of the molecule means that there is another
way for fluctuations to be important, as the variations in
protein structure, for example, couple to changes in the
barrier for the relevant chemical rearrangements or bring
weakly coupled electronic states into degeneracy. Finally,
these fluctuations in protein structure can completely re-
vise our view of whether the reaction itself proceeds via
classical ‘over the barrier’ motion or by quantum tunnel-
ing. These theoretical observations, and the experiments
to which they connect, suggest that Nature exploits not
just the structure of biological molecules, but also the
fluctuations in these structures, to control the rates of
chemical reactions.

If you need a review of the Langevin equation, I like the treatment
in the little book by Kittel (1958), as well as the somewhat longer
discussion by Pathria (1972). Every physics student should under-
stand the basic instanton calculation of tunneling, as an illustration
of the power of path integrals. There is no better treatment than
that given by Coleman in his justly famous Erice lectures. If you
read Coleman you’ll not only get a deeper view of what we have
covered here, you’ll get all the missing pieces about the prefactor
of the rate constant, and much more. For more general background
on path integrals, including some discussion of how to use them for
classical stochastic processes, the standard reference is Feynman &

Hibbs (1965). For more rigorous accounts of many of these issues
(e.g., getting the Jacobian right in constructing the path integral),
see Zinn–Justin (1989). The original discussion of diffusion (even
with inertia) over a barrier is due to Kramers (1940); for a modern
perspective see Hänggi et al (1990).
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Myoglobin was the first protein whose structure was solved by X–
ray diffraction. Aspects of X–ray analysis are described in Ap-
pendix A.5. For a perspective on myoglobin, see Kendrew (1964).
The experiments on myoglobin are by Austin et al (1975), which
touched off a huge followup literature. A clear discussion of the in-
terplay between the a reaction coordinate and a protein coordinate
was given by Agmon and Hopfield (1983). The demonstration of
tunneling in this system is by Alberding et al (1976).

Agmon & Hopfield 1983: Transient kinetics of chemical reac-
tions with bounded diffusion perpendicular to the reaction
coordinate. N Agmon & JJ Hopfield, J Chem Phys 78,
6947–6959 (1983).

Alberding et al 1976: Tunneling in ligand binding to heme pro-
teins. N Alberding, RH Austin, KW Beeson, SS Chan, L
Eisenstein, H Frauenfelder & TM Nordlund, Science 192,
1002–1004 (1976).

Austin et al 1975: Dynamics of ligand binding to myoglobin.
RH Austin, KW Beeson, L Eisenstein, H Frauenfelder &
IC Gunsalus, Biochemistry 14, 5355–5373 (1975).

Kendrew 1964: Myoglobin and the structure of pro-
teins. JC Kendrew, in Nobel Lectures in Chemistry
1942–1962 (Elsevier, Amsterdam, 1964). See also
http://www.nobelprize.org.

Classical overviews of the photosynthetic reaction center are pro-
vided by Feher & Okamura (1978) and Okamura et al (1982). As
with many biological molecules, many questions about the reaction
center were sharpened once the structure was determined at atomic
resolution (Deisenhoffer et al 1984); this work was important also
as a demonstration that one could use the classical methods of
X–ray crystallography (cf Appendix A.5) for proteins that are nor-
mally embedded in membranes. It should be emphasized, however,
that the electron transfer reactions leave an enormous variety of
spectroscopic signatures—separating charges not only changes op-
tical properties of the molecules, it generates unpaired spins that
can be seen using electron paramagnetic resonance (EPR), and the
distribution of the spin across multiple atoms at the donor and
acceptor sites can be mapped using electron–nuclear double reso-
nance (ENDOR). An early view of the uses of EPR and ENDOR in
biological systems is given by Feher (1970); this article appears in
the proceedings of the first Les Houches physics summer school to
be devoted to questions at the interface with biology [check this!].
For a synthesis of structural and spectroscopic data in relation to
function, see Feher et al (1989).
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B. Molecule counting

Many of the crucial signals in biological systems—
signals that are internal to cells, signals that cells use
to communicate with one another, even signals that or-
ganisms exchange—are carried by changes in the concen-
tration of specific molecules. The molecules range in size
from single ions (e.g., calcium) to whole proteins. Such
chemical signals act by binding to specific targets, whose
synthesis and accessibility can also be controlled by the
cell. A key point is that individual molecules move ran-
domly, and so the arrival of signals at their targets has
some minimum level of noise. As we shall see, several
different systems operate with a reliability close to this
physical limit: in essence, these systems are counting ev-
ery molecule, and making every molecule count.
In what follows we will see examples of chemical sig-

naling in the decisions that cells make about whether to
read out the information encoded in particular genes, in
the trajectories that axons take toward their targets in
the developing brain, in the control signals that bacteria
use to regulate their movement, and in the development
of spatial patterns in a developing embryo. But much
of our thinking about precision, reliability and noise in
chemical signaling has been shaped by the phenomena of
chemotaxis in bacteria, so this is where we will start.
Although our experience with other animals makes it

clear that we are not alone in our ability to sense the
world, it still seems remarkable that single celled organ-
isms such as bacteria are endowed with sensory systems
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that allow them to move in response to a variety of sig-
nals from the environment, including the concentrations
of various chemicals. A classical observation (from the
19th century) is that some bacteria, swimming in water
on a microscope slide, under a cover slip, will collect at
the center of cover slip, while others will collect at the
edges. Those with more refined tastes will form a tight
band that traces the outlines of the square cover slip.
Oxygen diffuses into the water through the edges of the
cover skip, and by collecting along a square the bacte-
ria have migrated to a place of constant (not maximal
or minimal) oxygen concentration. It is plausible that
this happens because they can sense the oxygen concen-
tration and “know” the most comfortable value of this
concentration, much as we might move to be the most
comfortable distance from a fireplace in an otherwise un-
heated room.

That bacteria collect at nontrivial concentrations of
different molecules really doesn’t demonstrate that they
sense the concentration. They might instead sense some
internal consequences of the external variables, such as
the accumulation of metabolic intermediates. In the
1960s Adler found mutants of E coli which cannot metab-
olize certain sugars or amino acids but will nevertheless
migrate toward the sources of these molecules; also there
are mutants that metabolize but can’t migrate. This is
convincing evidence that metabolism and sensing are sep-
arate systems, and thus begins the fruitful exploration of
the sensory mechanisms of bacteria and the connection
of these sensory mechanisms to motor output. This phe-
nomenon is called chemotaxis.
I’ll skip lots of the truly classical stuff and proceed with

the modern biophysical approach, which begins ∼ 1970.
To a large extent this modern approach rests on the work
of Howard Berg and collaborators. The first key step
taken by Berg and Brown was to observe the behavior of
individual bacteria. E coli are ∼ 1µm in size, and can
be seen relatively easily under the light microscope, but
since the bacteria swim at ∼ 20 body lengths per second
they easily leave the field of view or the plane of focus;
the solution is to build a tracking microscope.

Observations in the tracking microscope, as in Fig 44,
showed that the trajectories of individual bacteria con-
sist of relatively straight segments interrupted by short
intervals of erratic “motion in place.” These have come
to be called runs and tumbles, respectively. Tumbles last
∼ 0.1 seconds, but the erratic motion during this brief
time is sufficient to cause successive runs to be in almost
random relative directions. Thus the bacterium runs in
one direction, then tumbles and chooses a new direction
at random, and so on. Runs themselves are distributed
in length, as if the termination of a run is itself a random
process.

Closer examination of the runs shows how it is possible
for this seemingly random motion to generate progress
up the gradient of attractive chemicals. When the bac-

FIG. 44 Paths of E coli as seen in the original tracking mi-
croscope experiments, from Berg & Brown (1972). The three
panels in each case are projections of the path onto the three
orthogonal planes (imagine folding the paper into a cube along
the dashed lines). At left, wild type bacteria, showing the
characteristic runs and tumbles. At right, a non–chemotactic
mutant that never manages to tumble.

terium runs up the gradient, the mean duration of the
runs becomes longer, biasing the otherwise random walk.
Interestingly, when bacteria swim down the gradient (of
an attractant, or up the gradient of a repellent) the is
relatively little change in the mean run length. Berg has
described this as a form of optimism: If things are get-
ting better, keep going, but if things are getting worse,
don’t worry. [Need to look at the notion of optimism
once more in relation to all the data.]
Since runs get longer when bacteria swim along a pos-

itive gradient, it is natural to ask whether the cell is re-
sponding to the spatial gradient itself or to the change in
concentration with time along the path. As we will see,
the spatial gradients to which the cell can respond are
very small, and searching for a systematic difference (for
example) between the front and back of the bacterium
is unlikely to be effective just on physical grounds, in-
dependent of biological mechanisms. Indeed, this is the
reason why chemotaxis is such an important example of
the issues in this section. To search for a time domain
mechanism one can expose the bacteria to concentrations
which are spatially uniform but varying in time; if the
sign of the change corresponds to swimming up a posi-
tive gradient, runs should be prolonged. The first such
experiment used very large, sudden changes in concentra-
tion, and found that cells were trapped in extremely long
runs. A more sophisticated experiment used enzymes
to synthesize attractants from inert precursors, exposing
the cells to gradual changes more typical of those en-
countered while swimming. Purely time domain stimuli
were sufficient to generate modulations of run length that
agree quantitatively with those observed for bacteria ex-
periencing spatial gradients.
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Problem 51: Chemotaxis in one dimension. To make the
intuition of the previous paragraphs more rigorous, consider a sim-
plified problem of chemotaxis in one dimension. There are then
two populations of bacteria, the + population that moves to the
right and the − population that moves to the left, each at speed
v. Let the probability of finding a + [−] bacterium at position x

be P+(x, t) [P−(x, t)]. Assume that the rate of tumbling depends
on the time derivative of the concentration along the bacterial tra-
jectory as some function r(ċ), where for the ± bacteria we have
ċ = ±vdc/dx, and that cells emerge from a tumble going randomly
left or right.

(a.) Show that the dynamics of the two probabilities obey

∂P+(x, t)

∂t
+ v

∂P+(x, t)

∂x
= −r

(
v
dc

dx

)
P+(x, t) +

1

2

[
r

(
v
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)
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)
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]
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∂P−(x, t)

∂t
− v

∂P−(x, t)

∂x
= −r

(
−v

dc

dx

)
P+(x, t) +

1

2

[
r

(
v
dc

dx

)
P+(x, t) + r

(
−v

dc

dx

)
P−(x, t)

]
. (300)

Explain the meaning of each of the terms in terms of what happens
as cells enter into and emerge from tumbles. Note that in this
approximation tumbles themselves are instantaneous, which isn’t
so bad (0.1 s vs the ∼ 1− 10 s for typical runs).

(b.) To see if the bacteria really migrate toward high concentra-
tions, look for the steady state of these equations. If we simplify
and assume that the rate of tumbling is modulated linearly by the
time derivative of the concentration,

r(ċ) ≈ r(0) +
∂r

∂ċ
ċ+ · · · , (301)

show that

P (x) =
1

Z
exp

[
−
∂r

∂ċ
c(x)

]
. (302)

Thus, in these approximations, chemotaxis leads to a Boltzmann
distribution of bacteria, in which the concentration acts as a po-
tential. If the molecules are attractive then ∂r/∂ċ < 0 and hence
maxima of concentration are minima of the potential, conversely
for repellents. The stronger the modulation of the tumbling rate
(as long as we stay in our linear approximation) the lower the ef-
fective temperature and the tighter the concentration of bacteria
around the local maxima of concentration.

Problem 52: Nonlinearities. Within this simplified one di-
mensional world, can you make progress without the approximation
that r(ċ) is linear? More specifically, what is the form of the sta-
tionary distribution P (x) that solves Eq (??) for nonlinear r(ċ)?
Can you show that there still is an effective potential with minima
located at places where the concentration is maximal?

Problem 53: A little more about the effectiveness of
chemotaxis.

(a.) Within the one dimensional model, what happens if the
tumbling rate is modulated not just by the time derivative, but
also by the absolute concentration, so that the bacterium confuses
“currently good” for “getting better”?

(b.) Can you generalize this discussion to three dimensions?
Instead of having just two groups + and −, one now needs a con-
tinuous distribution P (Ω, x, t), where Ω denotes the direction of
swimming. Derive an equation for the dynamics of P (Ω, x, t) in
the same approximations used above, and see if the Boltzmann–
like solution obtains in this more realistic case.

All of this description so far is about the phenomenol-
ogy of swimming. But how does it actually work? The
basic problem is that bacteria are too small to take ad-
vantage of inertia. When we swim, we can push off the
wall of the pool and glide for some distance, even without
moving our arms or legs; this gliding distance is on the

order of one or two meters, roughly the length of our bod-
ies. In contrast, if a bacterium stops running its motors,
it will glide for a distance comparable not to its body
length (∼ 1µm) but to the diameter of an atom. To see
this, think about a small particle moving through a fluid,
subject only to drag forces (the motors are off). If the ve-
locities are small, we know the drag will be proportional
to the velocity, so Newton’s equation is just

m
dv

dt
= −γv. (303)

For a spherical object or radius r, Stokes’ law tells us
that γ = 6πηr, where η is the viscosity of the fluid, and
we also know that m = 4πρr3/3, where ρ is the density
of the object. The result is that

v(t) = v(0) exp(−t/τ), (304)

where

τ =
m

γ
=

2ρr2

9η
. (305)

If we assume that the density of bacteria is roughly that
of water, then it is useful to recall that η/ρ has units of a
diffusion constant, and for water η/ρ = 0.01 cm2/s. With
r ∼ 1µm = 10−4 cm, this gives τ ∼ 5 × 10−7 s. If the
initial velocity is v(0) ∼ 20µm/s, the net displacement
during this coasting is ∆x = v(0)τ ∼ 10−11 m; recall that
a hydrogen atom has a diameter of ∼ 1 Å = 10−10 m.
The conclusion from such simple estimates is that bac-

teria can’t coast. More generally, mechanics on the scale
of bacteria is such that inertia is negligible, as if Aristo-
tle (rather than Galileo and Newton) were right. This
really about the nature of fluid flow on this scale.36 For
an incompressible fluid (which is a good approximation
here—surely the bacteria don’t generate sound waves as

36 My experience is that most physics students don’t know too much
fluid mechanics, so although this is elementary I put it here. For
a more thorough discussion, see, as usual, Landau and Lifshitz.
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they swim), the Navier–Stokes equations are

ρ

[
∂v

∂t
+ v·∇v

]
= −∇p+ η∇2v, (306)

where v is the local velocity of the fluid, p is the pressure,
and as usual ρ is the density and η is the viscosity. The
pressure isn’t really an independent variable, but needs
to be there so we can enforce the condition of incompress-
ibility,

∇·v = 0. (307)

These equations need to be supplemented by boundary
conditions, in particular that the fluid moves with the
same velocity as any object at the points where it touches
that object. Thus the velocity should be zero at a sta-
tionary wall, and should be equal to the velocity of a
swimmer at the swimmer’s surface.

Problem 54: Understanding Navier–Stokes. This isn’t
a fluid mechanics course, but you should be sure you understand
what Eq (306) is saying. In particular, this is nothing but Newton’s
F = ma. Explain.

Dimensional analysis is an enormously powerful tool
in fluid mechanics. We are free to choose new units for
length (&) and time (t0), and hence for velocity (v0 =
&/t0), as well as for pressure p0, and this gives us

ρ

[
v0
t0

∂ṽ

∂ t̃
+

v20
&
ṽ·∇̃ṽ

]
= −p0

&
∇̃p̃+ η

v0
&2

∇̃2ṽ, (308)

ρ&v0
η

[
∂ṽ

∂ t̃
+ ṽ·∇̃ṽ

]
= − p0&

ηv0
∇̃p̃+ ∇̃2ṽ, (309)

where t̃ = t/t0, ṽ = v/v0, and p̃ = p/p0. Now we can set
p0&/ηv0 = 1, which gets rid of all the units, except we
are left with a dimensionless combination

Re ≡ ρ&v0
η

(310)

which is called the Reynolds’ number. Notice that if
we choose the unit of length to be the size of the ob-
jects that we are interested in, and v0 to be the speed
at which they are moving, then even the boundary con-
ditions don’t have any units, nor do they introduce any
dimensionless factors that are far from unity. The con-
clusion is that all fluid mechanics problems with the same
geometry (shapes) are the same if they have they have

the same Reynolds’ number. In this sense, being smaller
(reducing &) is the same as living at increased viscosity.37

To make a long story short, we live at high Reynolds’
number, and bacteria live at low Reynolds’ number
(Fig 45). Turbulence is a high Reynolds’ number phe-
nomenon, as is the more mundane gliding through the
pool after we push off the wall. At low Reynolds’ num-
ber, life is very different. Inertia is absent, and so forces
must balance at every instant of time. To say this more
startlingly, if Re → 0 then time doesn’t actually appear
in the equations. This means that, as you swim, the dis-
tance that you move depends on the sequence of motions
that you go through, but not on the dynamics with which
you execute them.
To use Purcell’s evocative example, at high Reynolds’

number a scallop can propel itself by snapping shut, ex-
pelling a jet of water, and then opening slowly.38 The jet
will propel the scallop forward, and the drag of reopening
can be made small by moving slowly. At low Reynolds’
number this doesn’t work, and the forward displacement
generated by snapping shut will be exactly compensated
by the drag on reopening. To have net movement from
a cycle, the sequence of shapes that the swimmer goes
through in the cycle must break time reversal invariance,

FIG. 45 Purcell’s delightful sketch, illustrating the range of
Reynolds’ numbers relevant for swimming in humans, fish,
and bacteria. From Purcell (1977).

37 It is worth reflecting on the level of universality that we have
here. We could imagine starting with a molecular description of
fluids, then figuring out that, on the relevant length and time
scales, all we need to know are the density and viscosity. Now
we see that even these quantities are tied up with our choice of
units. If we want to know what happens in natural units (i.e.,
scaling to the size and speed of the objects we are looking at),
then all that matters is a single dimensionless combination, Re.

38 There is an interesting issue about what real scallops do. Check
Rob’s note about this!
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not just the trajectory.
So, how do bacteria evade the “scallop theorem”? If

you watch them swimming, you can see that the have
long filaments sticking out, and these seem to be waving.
I emphasize that “see” is tough here. [This needs pic-
tures; check with Berg.] These filaments are very small,
∼ 20 nm in diameter, much thinner than the wavelength
of light. To see them, the easiest thing is to use dark
field microscopy, in which the sample is illuminated from
the side and what you see is the light scattered by ∼ 90◦.
These apparently waving appendages are called flagella,
and remind us of what we see on other small swimming
cells, such as sperm. The difference is that the flagella
in these other cases are huge by comparison with the
bacterial flagella. If you slice through the tail of a sperm
and take an electron micrograph, you find an enormously
complex structure, and if you try to analyze the system
biochemically you find it is made from many different
proteins. Importantly, some of these proteins act as en-
zymes and eat ATP, which we know is a source of energy,
for example in our muscles. In contrast, the bacterial
flagellum is small, with a relatively simple structure, and
the biochemistry suggests that it is little more than a
very long polymer made from one kind of protein; this
protein is not an enzyme. How can this simple structure,
with no ATPase activity, generate motions?

In experiments that aimed at better ways to see the
flagella, one can attach “flags” to them using viruses
that would stick to the flagella via antibodies. Once in a
while, a virus with antibodies on both ends would stick to
two flagella from different bacteria. When this happened,
you could see the bacterial cells rotating, which one can
imagine was a huge surprise. Eventually people figured
out how to break off the flagella and stick the bacteria
to a glass slide by the remaining stump, and then the
bacterium rotates. Rotation can look like a wave if the
flagellum is shaped like a corkscrew, and it is. Rotating
a corkscrew obviously violates time reversal invariance.
If you have several corkscrews and you rotate them with
the correct handedness, they can fit together into a bun-
dle. If you rotate the other way, the corkscrews clash,
and any bundle will be blown apart by this clashing. So,
with many flagella projecting from their surface, we can
imagine that by switching the direction of rotation, the
bacterium switches between a bundle that can smoothly
propel the cell forward, and many independently moving
flagella that would cause the cell to tumble in place—runs
and tumbles correspond to counterclockwise and clock-
wise flagellar rotation.39 If you find mutants that never
tumble, and stick them down by their stumps, then they

39 This association goes of course depends on our convention for
defining the handedness of rotation; it doesn’t matter (and I
have trouble remembering it!) as long as you are consistent.

all rotate one way; similarly, mutants that tumble too
often rotate the other way.
There is much more to say about the rotary engine it-

self, sitting at the base of the flagella. It is powered not
by ATP but by a difference in chemical potential for hy-
drogen ions between the inside and the outside of the cell.
This is an energy source that all cells use, albeit in differ-
ent ways, because it allows chemical events at very differ-
ent spatial locations to be coupled. Thus, as described in
the preceding section, photosynthetic organisms use the
energy of the absorbed photons to move electrons across a
membrane, and then compensate the charges by moving
protons; the resulting difference in chemical potential can
be used by other membrane–spanning enzymes to make
ATP, without being anywhere near the molecules that
absorb the photon.40 In fact, these enzymes that synthe-
size ATP also rotate as they let protons move down the
gradient in their chemical potential, and these same en-
zymes are responsible for ATP synthesis in all cells. So,
proton driven rotary motors are at the heart of energy
conversion in all organisms.
There is also more to say about mechanics at low

Reynolds’ number. Swimming involves changing shape,
and this provides the boundary conditions on the Navier–
Stokes equations. A cycle of changing boundary condi-
tions should lead to a net displacement. There is some
subtlety here, since the space of shapes is not so easy to
parameterize. If we think, for example, about a closed
surface, “shape” is defined by three dimensional position
as a function of the two coordinates on the surface (e.g.,
latitude and longitude), but there is an arbitrariness in
how we choose these coordinates; of course any physi-
cal quantity, such as the amount by which the swimmer
moves forward, must be invariant to this choice. Looking
more closely, the freedom to choose coordinates means
that the natural formulation of the problem includes a
gauge symmetry. Reluctantly, let’s leave all this and go
back to the problem of chemotaxis itself.

Problem 55: Switching in tethered bacteria. As noted
above, one way of studying bacterial motility and chemotaxis is
to “tether” a bacterium by the stump of one flagellum, observing
the rotation of the whole cell rather than the rotation of the flag-
ellum. The file omega.txt contains a very long time series of the
angular velocity from such an experiment done by WS Ryu, now
at the University of Toronto.41 The samples are taken sixty times
per second, and the units of velocity are not quite arbitrary but

40 You can imagine how confusing this was before people figured it
out! It looked like a mysterious action at a distance.

41 Data that you need can be found at
http://www.princeton.edu/∼wbialek/PHY562/data.html.
[What is the permanent way of dealing with this??]
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not really important either; you should be able to load this into
MATLAB (load omega.txt).

(a.) You should see that the velocity switches between positive
and negative values, but these values are fairly constant. This is
consistent with swimming by switching between runs and tumbles,
with little or no modulation of the swimming speed. What is the
distribution of times spent with during each segment of positive or
negative (clockwise or counterclockwise) velocity?

(b.) It usually is said that switching is a Poisson process, so
that (as you remember from the discussion of photon counting) the
distribution of intervals between switches should be exponential.
Are your results in [a] consistent with this prediction?

(c.) Look carefully at the velocity vs. time in the data set. Are
the data statistically stationary (time–translation invariant)? If
you focus on segments of the data that are more clearly stationary,
does that change your conclusions in [b]?

(d.) Sometimes the angular velocity makes a “partial switch,”
a brief excursion away from the typical positive or negative value
but not quite a full switch to the opposite direction of rotation.
Qualitatively, what is happening in these cases? What would be
the simplest model to describe the velocity vs. time during such
an event? Can you give a quantitative analysis of the data, fitting
to your model? This is a bit open ended.

We are interested in the question of how sensitively the
bacterium can respond to small concentration gradients.
We suspect that, since individual molecular motions are
random, there must be a limit, analogous to the shot
noise in counting photons. In a classic paper, Berg and
Purcell provided a clear intuitive picture of the noise in
‘measuring’ chemical concentrations. Their argument,
schematized in Fig 46, was that if we have a sensor with
linear dimensions a, then effectively the sensor samples a
volume a3. In this volume we expect to count an average
of N ∼ ca3 molecules when the concentration is c. Each

a

concentration
c

random walks 

with diffusion 

constant

D

equilibration time
τc = a2/D

mean # of molecules

N = ca3

FIG. 46 A schematic of concentration measurements. A re-
ceptor of linear dimension a samples a volume a3 and hence
sees a mean number of molecules N = ca3, where c is the con-
centration. These molecules random walk in and out of the
sensitive volume with a diffusion constant D, corresponding
to an equilibration or correlation time τc = a2/D.

such measurement, however, is associated with a noise
δN1 ∼

√
N . Since the count of molecules is proportional

to our estimate of the concentration, the fractional error
will be the same, so from one observation we obtain a
precision

δc

c

∣∣∣∣
1

=
δN1

N
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1√
N

=
1√
ca3

. (311)

We can make more accurate measurements by averaging
over time, although this is a bit tricky—we won’t get a
better estimate of the concentration around us by count-
ing the same molecules over and over again. Thus if we
are willing to average over a time τavg, we can make K
independent measurements, where K ∼ τavg/τc, and the
correlation time τc is the time we have to wait in order
to get an independent sample of molecules.
How do we get independent samples? If we look in

a small volume, the molecules that we are looking at
exchange with the surroundings through diffusion. Thus
the time required to get an independent collection of mol-
ecules is the time required for molecules to diffuse in and
out of the volume, τc ∼ a2/D. Putting everything to-
gether we have

δc

c
=

1√
K

· δc
c

∣∣∣∣
1

(312)

=
√

τc
τavg

· 1√
ca3

(313)

=

√
a2

Dτavg
· 1√

ca3
(314)

=
1√

Dacτavg
. (315)

This is a lovely result. It says that the limit to the accu-
racy of measurements depends on the absolute concen-
tration (more molecules → more accuracy), on the size
the detector (bigger detectors → more accuracy), on the
time over which we are willing to average (more time →
more accuracy), and finally on the diffusion constant of
the molecules we are sensing, because faster diffusion lets
us see more independent samples in the same amount of
time. All these parameters combine simply, essentially in
the only way allowed by dimensional analysis.
One way of understanding this result on the limits to

precision is to think about the rate at which molecules
find their target. For molecules at concentration c
moving with diffusion constant D, the rate (number of
molecules per second) that arrive at a target of size a
should be proportional both to c and to D, and then
by dimensional analysis we need one factor of length, so
the rate is ∼ Dac molecules per second. This result is
used most often to talk about the “diffusion limited rate
constant” for a chemical reaction; if we have

A+B
k+→ C, (316)
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then the second order rate constant k+ can never be big-
ger than ∼ Da, where D is the diffusion constant of the
molecules and a is their size, or more precisely the size of
the region where they have to hit in order to react. But if
the rate of molecular arrivals is ∼ Dac, in a time τavg we
will count ∼ Dacτavg molecules, and if these molecules
are arriving at random then there will be the usual square
root fluctuations, which leads us to Eq (315). In this
view, the Berg–Purcell limit is nothing but shot noise
in molecular arrivals, and thus is completely analogous
to shot noise in photon arrivals. Photons propagate and
molecules diffuse, but under most conditions they both
arrive at random, hence there is shot noise in counting.

Problem 56: Diffusion limited rates, more carefully. One
can try a more careful calculation of the rate at which molecules
find their target by diffusion. Image a sphere of radius a such that
all molecules which hit the surface are immediately absorbed. Out-
side the sphere, the concentration profile must obey the diffusion
equation, and the absorbtion means that on the spherical surface
the concentration will be zero. Far from the sphere, the concentra-
tion should be equal to c. Thus we have

∂c(x, t)

∂t
= D∇2c(x, t); (317)

c(|x| = a, t) = 0, (318)

c(x → ∞, t) = c. (319)

The number of molecules arriving per second at the surface of the
sphere is given by an integral of the diffusive flux over the surface

rate =

∫
d2s n̂· [−D∇c(x, t)]

∣∣∣∣
|x|=a

, (320)

where d2s is an element of the surface area on the sphere, and n̂ is
the unit vector normal to the sphere.

(a.) Solve Eq (317), with the boundary conditions in Eqs (318)
& (319), in steady state. Note that as a first step you should go to
spherical coordinates; recall that in three dimensions the Laplacian
can be written as

∇2 =
1

r2
∂

∂r

(
r2

∂

∂r

)
+

1

r2

[
1

sin2 φ

∂2

∂θ2
+

1

sinφ

∂

∂φ

(
sinφ

∂

∂φ

)]
,

(321)
where as usual r is the radius and θ and φ are the polar and az-
imuthal angles, respectively.

(b.) Use your steady state solution to evaluate the rate at which
molecules arrive at the sphere, using Eq (320). Also, explain why
simple dimensional analysis of these equations yields rate ∼ Dac.

(c.) What happens if you try to give a dimensional analysis
argument for the rate in one or two dimensions? If there are prob-
lems, can you explain how these problems either go away or are
made more precise by trying to solve the diffusion equation with
appropriate boundary conditions? As a hint, the two dimensional
case is a bit delicate; focus first on one dimension.

Bacteria such as E coli have been observed to perform
chemotaxis in environments where ambient concentra-
tions of attractants such as sugars or amino acids are
as low as ∼ 1 nM, which is ∼ 10−9 × (6 × 1023)/103 =

6 × 1011 molecules per cm3. These small molecules dif-
fuse through aqueous solution with D ∼ 10−5 cm2/s, and
the most generous assumption would be that the rele-
vant size of the detector is the size of the whole bac-
terium, a ∼ 1µm. Putting these factor together, we
have Dac ∼ 600 s−1. Thus, if the bacterium integrates
for τavg ∼ 1.5 s, the smallest concentration changes it can
detect are δc/c ∼ 1/30. If the cells were to detect the
difference in concentrations across the ∼ 1µm length of
their body, this would mean that the concentration was
varying significantly on the scale of 30µm, which is very
short indeed. In real experiments (and, presumably, in
the natural environment) the length scales of concentra-
tion gradients are one to two orders of magnitude longer.
Thus, it’s impossible—without integrating for minutes or
hours—for bacteria to perform as they do by measuring
a spatial gradient. The only possibility is to measure the
concentration variation in time, along the trajectory that
the bacterium takes through the gradient. Since the cells
move at v = 10− 20µm/s, on times scales of τavg ∼ 1.5 s
this increases the signal by a factor of ten to thirty, and
brings the signal above the background of noise, allowing
for reliable detection.
[Maybe add remarks that this argument still works at

higher concentrations, if the length scales of gradients are
even longer? Perhaps this could be put into a problem?]
Although the comparisons are a bit rough,42 we can

draw several conclusions. First, real bacteria perform
chemotaxis in response to small signals with a reliability
close to the limits set by the physics of diffusion. Second,
this is possible only if the cell measures the derivative of
concentration vs. time as it moves, not spatial gradients
across its body. Finally, to reach a reasonable signal–to–
noise ratio requires that the cell average over time for
more than one second.
Why don’t the bacteria integrate for longer, and reduce

the noise further? If you look closely at the trajectories
of the bacteria, you can see that the longer runs curve a
bit. In fact, the bacteria are sufficiently small that their
own rotational Brownian motion disorients them on a
time scale of ten or fifteen seconds. So, if you integrate
for longer than this, you are no longer integrating some-
thing related to the gradient in a particular direction,
or even your current direction of motion. This suggests
that there is a physical limit setting the longest useful
integration time.
Berg and Purcell also argued that there is a minimum

42 I think there is an opportunity for a better experiment here. One
could imagine analyzing the moments of transition from run to
tumble (and back) in the same way that we analyze the action
potentials from sensory neurons (see Section II.C), measuring the
reliability of discrimination between small differences in concen-
tration or reconstructing the concentration vs. time along the
trajectory of a freely swimming bacterium.
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useful integration time. Recall that molecules moving via
diffusion traverse a distance xdiff ∼

√
Dt in a time t; in

contrast, swimming at velocity v moves the bacterium by
a distance xswim ∼ vt. For short times, diffusion, with
its square root dependence on time, goes farther than
ballistic swimming motion. This means that on short
time scales, the molecules that the bacterium sees along
its path are the same molecules, and hence it really isn’t
combining statistically independent measurements. So,
there is a minimum useful integration time (assuming you
want to improve the signal–to–noise ratio by integrating)
of τ ∼ D/v2, and this works out to be about one second.
Put in a pointer to a problem in the next section.

So, the strategy of E coli for measuring gradients is
incredibly constrained by physics. To reach the observed
performance, it has to count nearly every molecule that
arrives at its surface. Even with this near ideal behav-
ior, it can work only by making comparsions across time,
not space, and estimates of time derivatives have to be
averaged for a few seconds, not more and not less. This
set of predictions about chemotactic strategy is almost
parameter free, even if not precisely quantitative.

What do real bacteria do? We have already seen that
they make temporal comparisons. Does the detailed form
of these comparisons agree with the Berg–Purcell pre-
dictions? Although one could probably do better with
modern experimental techniques, the best test was done
in the early 1980s. In these experiments, bacteria were
tethered to a glass slide and exposed to changing concen-
trations of attractants or repellents; a long series of such

FIG. 47 Impulse responses in bacterial chemotaxis, from
Block et al (1982). At left, changes in the probability of coun-
terclockwise rotation of the motor, corresponding to running,
as a function of time in response to a pulse of attractant (top)
or repellent (bottom). We see that the form of the response
is equivalent to integrating the time derivative of the input
over a window or severa seconds. At right, the response to a
step of attractant again has the form expected if we integrate
the derivative over a short window. The real data are com-
pared with a prediction based on integrating the response to
impulses shown at left, and the agreement is good, as if the
system were linear.

observations is then combined to measure the probabil-
ity that the flagellar motor is rotating counterclockwise
(corresponding to running) as function of time relative to
the changing concentration. A summary of these exper-
iments is shown in Fig 47. We see that the probability
of running is modulated by the time derivative of the
concentration, averaged over a window of a few seconds,
exactly as predicted by the Berg–Purcell argument.
Being sensitive to a derivative means that the response

to a step comes back almost exactly to the baseline before
the step, as seen at right in Fig 47, so that the constant
signal is ignored at times long after it was turned on. This
gradual ‘forgetting’ of a constant signal is common in bi-
ological systems, and such phenomena are called ‘adap-
tation.’ All of our sensory systems exhibit adaptation,
the most familar being the experience of stepping into
a dark movie theater or out into the bright sunlight; at
first we are acutely aware of the large difference in overall
light intensity, but after a while everything looks normal
and we are insensitive to the absolute photon flux. The
case of bacteria is interesting because it seems that the
adaptation is nearly perfect.
Experiments of the sort pictured in Fig 47 also make

it possible to estimate the absolute sensitivity of the sys-
tem in perhaps more compelling units. [should put the
numbers here, maybe reproduce a figure] We now know
how many receptors there are on the cell’s surface, and
so we can convert changes in concentration into changes
in the number of occupied receptors. Indeed, one ex-
tra occupied receptor leads to a significant change in the
probability of running vs tumbling. So, as expected, the
bacterium is responding to individual molecular events.
This all seems a great success: much of bacterial behav-

ior is understandable, semi–quantitatively, as a response
to the physical constraints posed by life at low Reynolds’
number and the noise in molecular counting; one can go
further and say that bacterial behavior is near optimal in
relation to this noise. On the other hand, many questions
are left hanging.
First, can we turn the ideas about maximum and min-

imum useful integration times into a theory of optimal
filtering that would predict, quantitatively, the form of
the impulse responses in Fig 47? We should be able to
do this, but I don’t think anyone has really managed to
get it right. There have been some serious attempts, but
I think the issue still is open. One might also wonder
whether it even makes sense to formulate this problem
for individual bacteria, as opposed to looking at com-
petition or cooperation in a population; this is related
to the question of what, precisely, one thinks is being
optimized by the behavior. It seems likely that any the-
ory of optimal strategies will predict that this optimum
is context dependent; here we should note that quanti-
tative characterization of chemotactic behavior has not
been pursued under a very wide range of stimulus con-
ditions, so we may be missing the data we need to test



87

receptor

CheW

CheA

receptor

CheW

CheA

receptor

CheW

CheA*

receptor

CheW

CheA*

+ attractant

CheY

CheY-P

CheZCheW CheA*

[CheY-P]
(µM)0

0
2 4 6 8 10

0.5

1.0
probability 

of clockwise 

rotation

FIG. 48 Biochemical amplification in the chemotactic re-
sponse. [Redraw this to make it more obvious that there
is a cascade, as in rod photoreceptors.] At left, binding of
chemoattractants to their receptors shifts the equilibrium be-
tween active and inactive forms of the kinase CheA. At right,
the active kinase phosphorylates CheY, and this is balanced
by the action of the phosphatase CheZ. CheY∼P binds to the
flagellar motor and promotes clockwise rotation, which drives
tumbling. The motor is extremely sensitive to small changes
in the CheY∼P concentration; data redrawn from Cluzel et
al (2001).

such theories when they emerge.
The second question is about the mechanisms that

make possible the extreme sensitivity of chemotaxis.
Much progress has been made, although again some is-
sues are open. As with the rod cell, there is a cascade of
biochemical events that leads from input (here, binding
to receptors on the cell surface) to output (direction of
motor rotation). Since input and output are spatialy sep-
arated, it is not surprising to find that there is an inter-
nal signaling molecule that diffuses through the cell. In
rods, this is a small molecule (cGMP), but for bacterial
chemotaxis it is a protein called CheY. More precisely,
this protein can be phosophorylated, and in its phospho-
rylated form CheY∼P it binds to the motor and favors
clockwise rotation. The receptor molecules on the cell
surface are coupled almost directly to the kinase CheA
that phosphorylates CheY, as shown schematically in Fig
48. Working backward from the output, we would like
to know how the rotational bias of the motor depends on
the concentration of CheY∼P.

To measure the bias vs CheY∼P, one has to do many
tricks. It’s relatively easy to measure the bias of the
motor, either in experiments where the cell is tethered or
where it is laying on a slide and one motor stump is stick-
ing up with a bead attached. To know the concentration
of a protein in a single cell, we need to make the protein
visible, and so this is done by genetic engineering, replac-
ing the normal CheY with a fusion between this protein

and the green fluorescent protein [put clear discussion
of GFP in the first place where it comes up—perhaps
here?], and arranging for the expression of this fusion
protein to be controlled by signals that can be applied
externally. Finally, we need to know the concentration of
the phosphorylated form of the protein, and this is very
difficult. But once phosphate groups are attached to a
protein, they stay there until removed by another enzyme
(the phosphotase). So, if we genetically engineer the bac-
terium to remove the phosphotase, we will surely screw
up the overall chemotactic response, but we can then be
sure that all the CheY will be in its phosphorylated state.
The result of all this is shown in Fig 48.

Problem 57: Absolute concentration measurements. In
this problem you should try to understand how Cluzel et al were
able to put the CheY∼Pconcentration on an absolute scale. Bacte-
ria can be engineered to make a fluorescent version of many natu-
rally occurring proteins. While the fluorescence signal that we then
see under a microscope is proportional to the number of molecules
under illumination, it can be difficult to measure the proportion-
ality constant in an independent experiment. One can circumvent
this problem by watching small numbers of molecules diffusing ran-
domly in and out of an illuminated volume inside an individual cell
and using the variance in the fluorescence intensity, along with its
mean value, to make an absolute measurement of the concentration
of the molecules.43

(a.) Explain (qualitatively) how this measurement might work.
What do you gain by using both the variance and the mean of this
signal? How can the fluctuating fluorescence signal be analyzed
further to give an estimate of the protein diffusion constant?

(b.) Now let’s convert the above intuition into a quantitative
framework for analysis of the data. Consider the concentration
c(2x, t) of fluorescent molecules at different points in space and time.
It fluctuates and the deviation δc of the concentration from its
average value c̄ is uncorrelated between different points in space
(but the same instant of time). Show that the analytic statement

〈δc(2x, t)δc(2x′, t)〉 = c̄δ(2x− 2x′) (322)

of this fact is equivalent to the ‘intuitive’ remark that the vari-
ance of the number of molecules in a volume is equal to the mean
number.

(c.) If the system starts with some fluctuation in the concen-
tration c(2x, 0) = c̄ + δc(2x, 0), this profile will relax according to
the diffusion equation. Since the diffusion equation is linear, this
means that the profile of fluctuations at time t, δc(2x, t), can be
written as a linear operator acting on the initial condition δc(2x, 0).
Show that this linear relationship can be written as

δc(2x, t) =

∫
d3y

(
1

√
4πDt

)3

exp(−|2x− 2y|2/4Dt) δc(2y, 0) (323)

where D is the diffusion constant.

43 Some of the ideas in this problem will, admittedly, be clearer
after the discussion in the next section. Still, this should be
workable now, and may provide a useful introduction to what
comes next. This problem was originally designed as part of a
general examination for Physics PhD students, written together
with Curt Callan.
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FIG. 49 A model for the modulation of rotor bias by bind-
ing of CheY∼P. CheY∼P molecules bind independently to
multiple sites around a ring. When all sites are empty the
equilibrium favors the counterclockwise rotating state. Bind-
ing is stronger to the clockwise state, however, so that as more
sites are occupied the equilibrium shifts.

(d.) When we bring light to a focus under the microscope,
we effectively weight the points around the focus with a Gaussian
function, so that the light intensity collected from the fluorescent
molecules will be proportional to

s(t) =

∫
d3x c(2x, t) exp(−|2x|2/)2) (324)

where ) is the size of the focal region (roughly the size of the wave-
length of light). Using the results above, show that the temporal
correlation function of this signal is given by

〈δs(t)δs(0)〉 ∝ (|t|+ τ)−3/2, (325)

and relate the correlation time τ to the diffusion constant D and
the size of the focal region ). As a hint, note that in doing the
multidimensional Gaussian convolution integrals that show up in
the last step of this computation, it is a good idea to do them
Cartesian coordinate by Cartesian coordinate. This gives a precise
method for extracting the diffusion constant from the fluctuating
fluorescence signal.

What we see most clearly from Fig 48 is that the motor
is remarkably sensitive to small changes in concentration
of CheY∼P. One can fit a function of the form

Pcw =
cn

cn +Kn
, (326)

withK ∼ 3µM and n ∼ 10, although the data are almost
within errors of being a step function. “Hill functions” of
this form often are interpreted to mean that n molecules
bind together and trigger the output that we are measur-
ing; these and other ideas about the cooperative response
of biological molecules are reviewed in Appendix A.4.

In this case it might make more sense to think about a
model as in Fig 49, which is a version of the Monod–
Wyman–Changeux model for cooperativity. Here we

imagine multiple binding sites arrayed around a ring.
CheY∼P molecules bind independently to each site, but
the strength of the binding depends on whether the whole
structure is rotating clockwise or counterclockwise. Qual-
itatively, if binding is stronger in the clockwise state, then
increasing the concentration of CheY∼P will shift the
equilibrium toward the clockwise state.
Quantitatively, we can work out the predictions of the

model in Fig 49 using statistical mechanics, on the hy-
pothesis that all the binding events and the structural
transitions of the motor between clockwise and counter-
clockwise states come to equilibrium. One might worry
about the latter assumption—after all, if the motor were
truly at equilibrium it wouldn’t be rotating and generat-
ing force—but let’s proceed. Consider one possible state
of the system, say clockwise rotation with m out of the
n sites filled by CheY∼P molecules. We need to assign
this state a weight in the Boltzmann distribution. We can
assume that the clockwise state has an intrinsic (free) en-
ergy Ecw. With k molecules bound, the energy is lowered
by mFcw, where Fcw is the binding energy in the clock-
wise state, but we also had to take these k molecules out
of solution, and this shifts the free energy by m times the
chemical potential, mµ = mkBT ln(c/c0), where c is the
concentration of CheY∼P and c0 is a reference concen-
tration. Finally, since the m occupied sites could chosen
out of the n possibilities in many ways, there is a combi-
natorial factor. Putting these terms together we have

(
n

m

)
exp

[
− 1

kBT
(Ecw −mFcw −mkBT ln(c/c0))

]

=

(
n

m

)(
c

Kcw

)m

e−Ecw/kBT ,

where Kcw = c0e−Fcw/kBT . To compute the probability
of being in the clockwise state we have to sum over all
the different occupancies, and normalize by the partition
function, which includes a sum over the counterclockwise
states:

Pcw =
1

Z

n∑

m=0

(
n

m

)(
c

Kcw

)m

e−Ecw/kBT (327)

=
1

Z
e−Ecw/kBT (1 + c/Kcw)

n, (328)

where

Z = e−Ecw/kBT (1+ c/Kcw)
n+ e−Eccw/kBT (1+ c/Kccw)

n.
(329)

We can put this result in a more compact form,

Pcw =
1

1 + exp [θ − g(c)]
(330)

θ = (Ecw − Eccw)/kBT (331)

g(c) = n ln

(
1 + c/Kcw

1 + c/Kccw

)
. (332)

Notice that if Kcw , c , Kccw, then this becomes the
Hill function in Eq (326).
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Problem 58: MWC model of rotor bias. Explore the pa-
rameter space of the model we have just described. Are there
regimes, other than Kcw % c % Kccw, where one can reproduce
the steep dependence of Pcw on c observed by Cluzel et al (2001)?
Keep in mind that the actual number of binding sites n could be
very large.

So part of the answer to how the the bacterium is so
sensitive to small changes in the external concentration
of attractants or repellents is that the motor is very sen-
sitive to small changes in the concentration of CheY∼P.
This is not implausible, since the structure of the motor
(which is complicated) suggests locations for as many as
n = 34 sites where CheY∼P could bind around a ring of
radius R ∼ 45 nm.

Having such strong sensitivity to the CheY∼P concen-
tration means that, in roughly the one second it takes
for the motor to switch once, one can be sure whether
the concentration was δc/c ∼ 1/n ∼ 10% above or be-
low the critical value c = K. But from Berg and Purcell
we might expect that there is a limit on this precision
set by random arrival of the CheY∼P molecules at the
motor, and this should be δc/c ∼ 1/

√
DRcτavg, treating

the whole motor ring as one big receptor. With diffusion
constants for proteins, including CheY, in the range of
D ∼ 1µm2/s, this suggests that the limit with one second
of integration is not much smaller than 10% (see more de-
tails in the next lecture). So, cooperative action of many
signaling molecules generates a steep slope, but the sys-
tem still has to suppress other sources of noise since even
this last step in the cascade of events is operating close
to the fundamental limits set by noise considerations.

The observations on the sensitivity of the motor tell
us that the bacterium can generate a significant response
even from a small fractional change in the concentration
of CheY∼P. Still, we need to understand the biochemi-
cal processes that lead from essentially single molecular
events to these quasi–macroscopic changes in molecule
number.44 [Probably want to say a few words about the
sources of gain: activity of CheA*, and the cooperativ-
ity among receptors that allows one ligand to activate
many CheAs. Need to learn more about the numbers
here. Might be nice to compare MWC–style model of
motor with MWC–style model of receptors. At the end
of the day, is this similar to the rod cell or not? Can we
conclude that we understand the gain?]

44 At c ∼ 3µM, a cell with volume ∼ 1µm3 has ∼ 2000 molecules of
CheY∼P, so even a ten percent change in concentration involves
hundreds of molecules.

Even if we consider the origins of gain to be under-
stood, there is a major problem. Figure 48 shows that
extreme sensitivity must coexist with a very tight regula-
tion, since if the concentration of CheY∼P drifts far away
from c ∼ K, the cell loses all sensitivity to changes. This
combination of sensitivity to small changes without ac-
cumulation of large variations poses significant problems,
which we will take up in the next Chapter.
The last of the major questions left open by the Berg–

Purcell analysis is whether we do a full, honest calcu-
lation that leads to the their limit on the precision of
concentration sensing? What Berg and Purcell wrote
down makes absolutely no reference to the messy de-
tails of what actually happens to molecules as they are
counted. This could be wonderful, because it would mean
that can say something about the limits to precision in
all biochemical signaling systems, regardless of details.
Alternatively, the absence of details might be a disaster,
a clue that we have simply missed the point.
As mentioned at the start of this section, chemical sig-

naling in ubiquitous in biological systems, and chemo-
taxis provided us with one clear example where we could
think about the limits to counting molecules. We would
like to know if these limits can be made rigorous, and
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FIG. 50 Control of gene expression by transcription factors.
Synthesis of a protein involves transcription of the DNA cod-
ing for that particular protein, and translation of the resulting
mRNA. An important component of control in these systems
is the binding of transcription factors to the DNA, at spe-
cific sites near the start of transcription, in the promoter or
enhancer region. Transcription factors are themselves pro-
teins, so this regulatory process naturally leads to a network
of interactions; here we focus, for simplicity, on one input (the
concentration of the transcription factor) and one output (the
concentration of protein #1). Note that in bacteria all of this
happens in one compartment, while in eukaryotic cells the
DNA is in the nucleus and mRNA is transported out to the
cytoplasm, where translation occurs. Nothing in this figure is
to scale. [redraw figure to get rid of the network, which here
is a distraction]
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if they can be applied to processes that occur inside of
cells, rather than just to the sensing of external signals
as in chemotaxis. To see what is at stake, let’s think
about the regulation of gene expression (Fig 50). We
recall that every cell in our bodies has the same DNA.
What makes a liver cell different from a neuron in your
brain is that it reads out or “expresses” different genes,
making different proteins. Importantly, this is not just
a discrete choice made once in your lifetime. Given that
certain proteins are being made, the numbers of these
molecules are constantly adjusted to match the needs of
the cell. This happens also in bacteria, which adjust,
for example, the concentrations of the enzymes needed
to metabolize different nutrients that might or might not
be present in the environment; much of what we know
about the regulation of gene expression has its roots in
work on this sort of metabolic control in bacteria.

There are many ways in which gene expression is con-
trolled. As a simple example, note that if we want to
regulate the number of proteins in the cell we can change
either the rate at which they are made or the rate at
which they are degraded, and both of these things hap-
pen. The synthesis of a protein involves two very dif-
ferent steps, transcription from DNA to messenger RNA
and translation from mRNA to protein, and again there
is regulation of both processes. All this being said, we
will focus our attention on the regulation of transcrip-
tion, that is the reading of the DNA template to make
mRNA.45

In order to make mRNA, a complex of proteins (in-
cluding the RNA polymerase) must bind to the DNA
and ‘walk’ along it, spewing out the mRNA polymer as
it walks. In order for all of this to happen, the RNA
polymerase has to find the right starting point. One can
imagine that this can be inhibited simply by having other
proteins bind to nearby sites along the DNA. Alterna-
tively, binding of proteins to slightly different positions
near the starting point could help the RNA polymerase
to find its way. Both of these things happen: proteins
called transcription factors can act both as repressors and
as activators of mRNA synthesis. The key step in this
regulation is thought to be the binding of the transcrip-
tion factors to specific sites near the RNA polymerase
start site, as schematized in Fig 50; the whole segment of
DNA involved in the control and initiation of transcrip-
tion is called the “promoter.” In higher organisms, the
regions involved in regulation can be very large indeed,
and usually are called “enhancers” to avoid conjuring
the simplified image in Fig 50, which is more literally
applicable in bacteria. Binding sites are specific because
the transcription factor protein is selective for particular
DNA sequences, and much can be said about the na-

45 For a bit about the basics of DNA structure, see Appendix A.5.

ture of this specificity. For now the important point is
that such regulatory systems are, in effect, sensors of the
transcription factor concentration.

Problem 59: Autoregulation. Perhaps the simplest model
of transcriptional regulation is one in which a gene regulates its
own expression. Let the concentration (or number of molecules)
of the protein be g, and assume that n of these molecules bind
cooperatively to the promoter region of the gene. If the binding
activates expression, and proteins are degraded in a simple first
order process with lifetime τ , then it is plausible that the dynamics
of g are given by

dg

dt
= rmax

gn

gn + gn1/2
−

g

τ
. (333)

(a.) Explain the significance of the parameters rmax, n and g1/2.
Show that there is a range of these parameters in which the system
is bistable. More precisely, show that you can find three steady
states, and that two of these are stable and one is unstable. What
are the time constants for relaxation to these steady states? How
do these times compare with the lifetime τ of the protein?

(b.) Really the protein binding regulates the synthesis of mRNA,
which in turn is translated by the ribosomes into protein. If m is
the mRNA concentration (or number of molecules), then a plausible
set of equations is

dm

dt
= emax

gn

gn + gn1/2
−

m

τm
(334)

dg

dt
= rtransm−

g

τp
, (335)

where emax is the maximal transcription (“expression”) rate, rtrans
is the rate at which mRNA molecules are translated into protein,
and the lifetimes of protein and mRNA are τp and τm, respectively.
Under what conditions will this more complete model be well ap-
proximated by the simpler model above? Are the steady states of
the two models actually different? What about their stability?

(c.) Suppose that instead of activating its own expression, the
protein acts as a repressor of its own expression. Find the analog of
Eq (333) in this case and show that there is only one steady state,
and that this state is stable.

(d.) Expand your discussion of the auto–repressor to include
the mRNA concentration, as in Eq’s (334, 335). Find the steady
state and linearize the equations around this point. Do you find
exponential relaxation toward the steady state for all values of the
parameters? Is it possible for the steady state to become unstable?
Explain qualitatively what is happening, and go as far as you can
in analyzing the situation analytically.

The binding sites along DNA for the transcription fac-
tors have linear dimensions measured in nanometers, per-
haps a ∼ 3 nm. The diffusion constants of proteins in the
interior of cells is in the range of D ∼ 1µm2/s. Many
transcription factors act at nanoMolar concentrations,
and it is useful to note that 1 nM = 0.6molecules/µm3.
Putting these together we have Dac ∼ 1.8 × 10−3 s−1.
Thus, the Berg–Purcell limit predicts that the smallest
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changes in transcription factor that can be reliably de-
tected are

δc

c
∼ 1√

Dacτavg
∼

√
10min

τavg
. (336)

Taken at face value, this suggests that truly quantitative
responses—say, to 10% changes in transcription factor
concentration—would require hours of integration. This
is seldom plausible.

One should not take this rough estimate too literally.
I think the message is not the exact value of the limiting
precision, but rather that once concentrations fall to the
nM range, small changes will be very hard to detect. If
cells do detect these small changes, then almost certainly
they will be bumping up against the physical limits set
by counting molecules, assuming that Berg and Purcell
give us a good estimate of these limits. So, this is what
we need to check.

In Appendix A.6, we look in detail at how to make the
Berg–Purcell limit more rigorous. The key idea is that
fluctuations in concentration, and in many examples of
binding to receptor sites, represent fluctuations in ther-
mal equilibrium, and thus are susceptible to the same
analyses as Brownian motion, Johnson noise, and other
examples of thermal noise. These analyses show how
one can separate the limiting noise level from the extra
noise that is associated with all the biochemical complex-
ities which Berg and Purcell ignored. The result, then is
that the Berg–Purcell argument can be made rigorous,
both for single receptors and for arrays of receptors, and
their simple formula gives us a lower bound on the noise
in biochemical signaling. This is important because, as
noted at the start of this discussion, the Berg–Purcell
limit doesn’t make reference to any of the detailed bio-
chemistry of what happens when the signaling molecules
bind to their targets. Rather, the limit depends on the
physical nature of the signal itself. The fact that we can
make the Berg–Purcell argument rigorous encourages us
to look more broadly and see if there are other cases in
which biological systems approach these physical limits
to their signaling performance.

Would like to discuss chemotaxis in larger cells—
neutrophils, Dictyostelium, ... .

Another important example of chemotaxis occurs dur-
ing the development of the brain. Individual neurons
start as relatively compact cells, and then extend their
axons to find the other cells with which they must make
synapses. This processes is guided by gradients in a va-
riety of signaling molecules. Although there are many
beautiful observations on these phenomena in vivo, it
is not so easy to do a controlled experiment where one
allows cells to migrate in well defined gradients. One ap-
proach to this is shown in Fig [reproduce figures from
Rosoff et al], where cells grow in a collagen matrix that
is “printed” with droplets of growth factor at varying

densities. Relatively quickly, diffusion acts to smear the
rows of drops into a continuous gradient, which can be
directly observed when the molecules are labelled with
fluorophores. These measurements also allow an infer-
ence of the diffusion constant in this medium, D ∼
8× 10−7 cm2/s. The growth cones which guide the axon
have linear dimensions a ∼ 10µm, and these experiments
found that sensitivity to gradients is actually maximal
in a concentration range near c ∼ 1 nM. Under these
conditions, then, we have Dac ∼ 500 s−1. Quite aston-
ishingly, however, the cells seem to grow differentially in
the direction of gradients that correspond to concentra-
tion differences of order one part in one thousand across
the diameter of the growth cone. In order for this sig-
nal to be above the Berg–Purcell limit on the noise level,
the cell must integrate for τavg ∼ 2000 s, a reasonable
fraction of an hour.
In truth, we don’t know the time scale over which

growth cones are integrating as they decide which way
to turn, even in the more controlled in vitro experi-
ments. We do know that the pace of neural development
is slow—hours to days rather than minutes. Qualitative
aspects of axonal behavior are consistent with the idea
that the time scales of their movements are determined
by the need to integrate long enough to generate reli-
able directional signals, from the rapid “exploration” by
cellular appendages to the dramatic slowing down near
critical decision points, such as the optic chiasm where
the axons of ganglion cells emerging from the retina must
decide whether to go toward the right or left half of the
brain.46 It is attractive to think that the reliability with
which cells in our brain find their targets is set by such
basic physical principles, but we don’t quite have enough
data to say this with certainty.
Let us return to the problem that motivated our search

for generality, the transcriptional regulation of gene ex-
pression. Until the last decade, there were essentially no
direct measurements on the reliability of such regulatory
mechanisms. Before we look at the new data, though, we
need one more set of theoretical ideas.
Proteins are synthesized and degraded, and the sim-

plest assumption is that these are single kinetic steps.
Suppose we start just with synthesis, at some rate s
molecules per second. We have seen that rate constants
should be interpreted as the probability per unit time
for individual molecular events. Thus, if we ask about
the probability of finding exactly N molecules in the sys-
tem at time t, this probability P (N ; t) obeys the “master

46 At these decision points it seems likely that the cells must reach
rather high signal–to–noise ratios, since the error probabilities
are small. [can we say something quantitative here?]
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equation”

∂P (N ; t)

∂t
= sP (N − 1; t)− sP (N ; t), (337)

except of course at N = 0 where we have

∂P (0; t)

∂t
= −sP (0; t). (338)

We can solve these equations iteratively. We start with
no molecules, so P (0, 0) = 1, while P (N 0= 0, 0) = 0.
Then Eq (338) tells us that

P (0, t) = e−st. (339)

If we substitute into Eq (337) for P (1, t), we have

∂P (1; t)

∂t
= −sP (1; t) + sP (0; t) (340)

⇒ P (1, t) =

∫ t

0
dt′e−s(t−t′)sP (0; t) (341)

=

∫ t

0
dt′e−s(t−t′)se−st (342)

= se−st

∫ t

0
dt′ = e−st(st). (343)

We can go through the same calculation for P (2; t):

P (2; t) =

∫ t

0
dt′e−s(t−t′)sP (1; t′) (344)

= e−st

∫ t

0
dt′s2t′ (345)

= e−st (st)
2

2
. (346)

This suggests that, for all N ,

P (N ; t) = e−st (st)
N

N !
(347)

Problem 60: Checking the Poisson solution. Verify that
Eq (347) solves the master equation describing a single synthesis
reaction at rate s, Eq (337).

Equation (347) is telling us that, as the synthesis re-
action proceeds, the number of molecules that has been
synthesized obeys the Poisson distribution. From what
we have said about the Poisson distribution in the discus-
sion of photon counting (Section I.A and Appendix A.1),
you should recognize that the mean number of molecules
is

〈N〉 ≡
∞∑

N=0

NP (N ; t) = st, (348)

which makes perfect sense. Further, the variance in the
number of molecules is equal to the mean, at all times.
[This discussion is written without any figures. Maybe

we need some schematics?]
What happens when we add degradation to this pic-

ture? Now the state of the system can change in several
ways, all of which will modify the probability that there
are exactly N molecules. First, synthesis can cause the N
molecules to become N+1, reducing P (N, t). Second, we
can have the transition from N−1 to N molecules, which
increases P (N, t). Note that these first two terms were
already present in our simpler model. The third process
is where degradation takes N molecules and eliminates
one, resulting in N − 1 molecules. Since each molecule
makes its transitions independently, the rate of this pro-
cess must be proportional to N , and this reduces P (N, t).
Finally, if there were N+1 molecules, degradation results
in N , increasing P (N, t); again because each molecule is
independent, the rate of this process must be propor-
tional to N + 1. Putting the terms together we have

∂P (N ; t)

∂t
= −sP (N ; t) + sP (N − 1; t)− kNP (N ; t) + k(N + 1)P (N + 1; t), (349)

where k is the probability per unit time for the decay of
one molecule.

Now it is possible for the synthesis and degradation
reactions to balance, generating a steady state. In this
steady state the distribution of the number of molecules
must obey

0 = sP (N−1)−(s+kN)P (N)+k(N+1)P (N+1). (350)

To solve this equation it is useful to regroup the terms,

−sP (N − 1)+kNP (N) = −sP (N)+k(N +1)P (N +1).
(351)

where the left hand side now refers to the forward
and backward rates between states with N − 1 and N
molecules, while the right hand side refers to the transi-
tions betweenN andN+1. All that we require is that the
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two sides be equal, but suppose we try to set each side
separately to zero, which corresponds to “detailed bal-
ance” among the transitions into and out of each state.
Then from the left hand side we have

P (N)

P (N − 1)
=

s

kN
, (352)

while from the right we have

P (N + 1)

P (N)
=

s

k(N + 1)
. (353)

But except for N → N +1, these are the same equation.
Thus, the steady state of this system does obey detailed
balance, and we can solve by iterating Eq (352):

P (1) =
s

k
P (0) (354)

P (2) =
s

2k
P (1) =

(s/k)2

2
P (0) (355)

P (3) =
s

3k
P (2) =

(s/k)3

3!
P (0), (356)

and, in general,

P (N) =
(s/k)N

N !
P (0). (357)

Finally we can fix the value of P (0) by insisting that the
distribution be normalized, and we find

P (N) = e−M MN

N !
, (358)

which again is the Poisson distribution, with mean M =
s/k.

Problem 61: The diffusion approximation. If N is not too
small we expect that P (N ; t) and P (N ± 1; t) are not too different.
Thus we should be able to approximate using a Taylor series,

P (N ± 1; t) ≈ P (N ; t)±
∂P (N ; t)

∂N
+

1

2

∂2P (N ; t)

∂N2
. (359)

(a.) Show that this approximation turns the master equation in
Eq (349) into something that looks more like the diffusion equa-
tion. What is the effective potential in which the “coordinate” N
is diffusing?

(b.) Why does it make sense to stop the Taylor series after two
derivatives? What happens if we stop after one?

(c.) How does the steady state solution that you obtain in the
diffusion approximation compare with the exact solution (the Pois-
son distribution)?

Problem 62: Langevin equations for chemical kinetics.
We know, as reviewed in Section II.A, that we can describe Brow-
nian motion by either a diffusion equation or a Langevin equation.
In more detail, we started with kinetics that, in the macroscopic
limit, correspond to the dynamics

dN(t)

dt
= s− kN(t). (360)

We would like to describe the noisy version of these dynamics as

dN(t)

dt
= s− kN(t) + ζ(t), (361)

where—inspired by the Brownian motion example—we expect that
the noise ζ(t) is white, but the strength might depend on the state
of the system, so that

〈ζ(t)ζ(t′)〉 = Teff [N(t)]δ(t− t′), (362)

where to remind us of the analogy to Brownian motion we can refer
to the noise strength as an effective temperature Teff .

(a.) Find the effective temperature that will reproduce the dif-
fusion equation that you derived in the preceding problem.

(b.) If we integrate Eq (361) over a very small time interval ∆τ ,
we obtain

∆N ≡ N(t+∆τ)−N(t) (363)

= [s− kN(t)]∆τ +

∫ ∆τ

0
dt′ζ(t+ t′). (364)

But if ∆τ is small enough, we know that the changes in the number
of molecules should be ∆N = 0 or ∆N = ±1. Going back to the
master equation [Eq 349], identify these transition probabilities.
From these probabilities, show that the mean change in the number
of molecules is the first term in Eq (364), 〈∆N〉 = [s− kN(t)]∆τ .
Continuing, show that the variance in ∆N is given by 〈(δ∆N)2〉 =
[s+ kN(t)]∆τ .

(c.) To reproduce the variance in ∆N , we must have

〈(∫ ∆τ

0
dt′ζ(t+ t′)

)2 〉
= [s+ kN(t)]∆τ. (365)

Use this, together with Eq (362), to show that

Teff [N(t)] = s+ kN(t). (366)

Does this agree with your result in (a.)?

So, these simplest of kinetic schemes for the synthesis
and degradation of molecules predict that the distribu-
tion of the number of molecules (“copy numbers”) should
be Poisson. Certainly we can imagine kinetic schemes
for which the fluctuations in copy number will be larger
than Poisson. For example, if the simple picture of syn-
thesis and degradation were correct for messenger RNA,
but each mRNA leads to the synthesis of b proteins,
then the mean number of proteins will be larger than
the mean number of mRNA molecules by this factor b,
〈Np〉 = b〈NmRNA〉, but the variance will be larger by
a factor of b2, 〈(δNp)2〉 = b〈(δNmRNA)2〉. Thus, if we
count protein molecules, the variance will be larger than
the mean, 〈(δNp)2〉 = b〈Np〉, and hence the protein copy
numbers are more variable than expected from the Pois-
son distribution. Notice that this is true even though we
have assumed that the translation from mRNA to protein
is completely noiseless, with each mRNA making exactly
b proteins. Variance beyond the Poisson expectation here
arises simply from amplification. This is exactly the same
argument made about photons and spikes from ganglion
cells in the retina, in Section I.D.
With this background, what can we measure? Count-

ing protein molecules is not easy. Over the last decades,
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FIG. 51 Noise in the regulation of gene expression, from
Elowitz et al (2002). A population of E coli express two
fluorescent proteins of different colors, CFP and YFP, both
under the control of the lac repressor. At left, expression
is repressed, copy numbers are low, and color variations are
substantial. Thus, although the two genes see the same reg-
ulatory signals, there is intrinsic variation in the output. At
right, repression is relieved, expression levels are higher, and
color variations are substantially smaller.

we have seen a huge improvement in the methods of op-
tical microscopy, to the point where we can literally see
the light emitted from a single fluorescent molecule. But
most biological molecules, and most proteins in particu-
lar, are not fluorescent. Indeed, until relatively recently
the only proteins with interesting spectroscopic signa-
tures in the visible part of the spectrum (e.g., the vi-
sual pigments and the heme proteins) involved a smaller
molecular cofactor bound to the protein (retinal, heme).
These cofactors are synthesized by separate, often com-
plex pathways. Thus while it might be possible to en-
gineer a cell to make a pigment protein just by splicing
the relevant gene into its genome, it would be almost im-
possible to introduce the entire synthetic machinery for
the cofactor. This is why the discovery of the green flu-
orescent protein in a species of jellyfish turned out to be
so important. In contrast to the proteins which require
cofactors for their fluorescence, these molecules are in-
trinsically fluorescent [Need a figure showing structure,
point to why this is possible, etc.. Maybe this discussion
should come earlier?] Since the isolation of the original
GFP, many variants have been synthesized, in a variety
of colors.

The simplest experiment to probe noise in the ex-
pression of a gene would be to introduce the gene for
GFP into a bacterium, and just look at the levels of
fluorescence—the brightness will be proportional to the
number of molecules, and with luck we can even cali-
brate the proportionality factor. But expression levels
could vary for uninteresting reasons. Cells vary in size

as they grow and divide. There can be variations in the
number of ribosomes, which will change the efficiency of
translation but it probably doesn’t make sense to call
these variations “noise.” How do we separate all these
different sources of variation from genuine stochasticity
in the processes of transcription and translation?
If we go back to Fig 50, we see that the transcrip-

tion of a gene into RNA is controlled by the binding of
transcription factor proteins to a segment of DNA called
the promoter or (in higher organisms) enhancer region.
Suppose that we make two copies of the same promoter,
put one next to the gene for a green fluorescent protein
and one next to the gene for a red fluorescent protein,
and then reinsert both of these into the genome. Now
all variations in the state of the cell that affect the over-
all efficiency of transcription and translation will change
the levels of green and red proteins equally. If the regula-
tory signals were noiseless, and the independent processes
of transcription and translation of the two proteins were
similarly deterministic, then every cell would be perfectly
yellow, having made equal amounts of green and red pro-
tein; cells might differ in their total brightness, but the
balance of red and green would be perfect. On the other
hand, if there really is noise in transcription and trans-
lation, or their regulation, then the balance of red and
green will be imperfect, and if we look a population of
genetically identical cells they will vary in color as well
as in brightness.
Figure 51 shows that our qualitative expectations for a

“two color” experiment are borne out in real experiments
on E coli, although “red” and “green” are actually yel-
low and cyan. In this experiment, the two fluorescent
proteins are under the control of the lac promoter. In
the native bacterium, this promoter controls the expres-
sion of enzymes needed for the metabolism of lactose,
and if there is a better source of carbon available (or if
lactose itself is absent) the bacteria don’t want to make
these enzymes. There is a transcription factor protein
called lac repressor which binds to the lac promoter and
blocks transcription. By changing environmental condi-
tions, one can tap into the signals that normally tell the
bacterium that it is time to turn on the lac–related en-
zymes, and turn off the repression by inactivating the
repressor proteins. Thus, not only can we get E coli to
make two colors of fluorescent protein, we can even ar-
range things so that we have control over the mean num-
ber of proteins that will be made. Everything that we
have said thus far about noise in synthesis and degrada-
tion reactions predicts that if the cell makes more protein
on average, then the fractional variance in how much pro-
tein is made should be reduced, and this is exactly what
we see in Fig 51.
More quantitatively, in Fig 52 we see the decompo-

sition of the variations into an “extrinsic” part that
changes the two colors equally and an “intrinsic” part
that corresponds to relative variations in the expression
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of the two proteins that are under nominally identical
control. If synthesis and degradation of proteins were a
Poisson process, then we expect from above that the vari-
ance would be equal to the mean; amplification of Pois-
son fluctuations in mRNA count would leave the variance
proportional to the mean. Even if the Poisson model is
exact, if we can’t calibrate the fluorescence intensity to
literally count the molecules, again all we could say the
that the variance of what we measure will be proportional
to the mean. In fact, the data are described well by

〈(δF )2〉
〈F 〉 =

A

〈F 〉 +B, (367)

where the fluorescence is normalized so that the mean
under conditions of maximal expression is one, and A =
7× 10−4 and B = 3× 10−3. If B → 0, this is exactly the
prediction of the Poisson model, and indeed B is small.
Importantly, we can see the decrease in the fractional
noise level with the increase in the mean. The absolute
numbers also are interesting, since they tell us that cells
can—at least under some conditions—set the expression
level of a protein to an accuracy of better than 10%.

It has been appreciated for decades that the initial
steps in the development of embryos provides an excel-
lent laboratory in which to study the regulation of gene
expression. As we have mentioned several times, what
makes the different cells in our body different is, funda-
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FIG. 52 Separating intrinsic and extrinsic noise, from Elowitz
et al (2002). At left, a scatter plot of the fluorescence from the
two different proteins show the decomposition into variations
in the overall efficiency of transcription and translation (“ex-
trinsic” noise) and fluctuations that change the two expres-
sion levels independently (“intrinsic” noise). At right, while
the total variance has no simple dependence on the mean ex-
pression level, the intrinsic noise goes down systematically as
the mean expression level goes up. Quantitatively, we plot
the standard deviation σ in fluorescence level, divided by the
mean m, as a function of the mean. The dotted line is from
Eq (367).

mentally, that they express different proteins. These dif-
ferences in expression have a multitude of consequences,
but the first step in making a cell commit to being one
type or another is to turn on (and off) the expression
of the correct set of genes. At the start, an embryo
is just one cell, and through the first several rounds of
cell division it is plausible that the daughter cells remain
identical. At some point, however, differences arise, and
these are the first steps on the path to differentiation, or
specialization of the cells for different tasks in the adult
organism.
A much studied example of embryonic development is

the fruit fly Drosophila melanogaster. We will learn much
more about this system in Section III.C, but for now
the key point is that in making the egg, the mother sets
the initial conditions for development in part by plac-
ing the mRNA for key proteins—referred to as the “pri-
mary morphogens”—at cardinal points in the embryo.
As these messages are translated, the resulting proteins
diffuse through the embryo, and act as transcription fac-
tors, activating the expression of other genes. An ex-
ample is Bicoid, for which the mRNA is localized at the
(eventual) head; the diffusion and degradation of the Bi-
coid (Bcd) protein leads to a spatial gradient in its con-
centration, and we can visualize this by fixing and stain-
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FIG. 53 Bicoid (Bcd) and Hunchback (Hb) in the early
Drosophila embryo. At top, an electron micrograph of the
embryo in cell cycle fourteen, with thousands of cells in a sin-
gle layer at the surface (image courtesy of EF Wieschaus).
At the bottom left, the embryo has been exposed to antibod-
ies against the proteins Bcd and Hb, and these antibodies in
turn have been labelled by green and red fluorophores, re-
spectively; the fluorescence intensity should be proportional
to the protein concentration, perhaps with some background.
Bicoid is a transcription factor that activates the expression
of Hunchback, and at the bottom right we see a scatter plot of
the output (Hb) vs input (Bcd), where each point represents
the state of one nucleus from the images at left; from Gregor
et al (2007b).
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ing the embryo with fluorescent antibodies, as shown in
Fig 53. A more modern approach is to fuse the gene for
Bcd with a fluorescent protein and substitute this for the
original gene; if one can verify that the fusion protein
replaces the function of the original, quantitatively, then
we can measure the spatial profile of Bcd in a live embryo.
Among other things, this approach makes it possible to
demonstrate that the fluorescence signal from antibody
staining really is proportional to the protein concentra-
tion, so we can interpret the data from images such as
those in Fig 53 quantitatively.

From our point of view, in constructing the embryo,
the mother has created an ideal experimental chamber.
After just a few hours, there are thousands of cells in a
controlled environment, exposed to a range of input tran-
scription factor concentrations that we can literally read
out along the embryo. We can also measure the response
to these inputs, for example the expression of the protein
Hunchback shown in Fig 53. In fact the targets of Bcd
are themselves transcription factors, so conveniently they
localize back to the nucleus, and hence each nucleus gives
us one data point for characterizing the input/output re-
lation. Taking seriously the linearity of antibody staining
we can plot the input/output relation between Bcd and
Hb in appropriately normalized coordinates, as in Fig 54,
and we can measure the noise in expression by comput-
ing the variance across the many nuclei that experience
essentially the same input Bcd level.

The first thing we see from Fig 54 is that, consistent
with the results from bacteria in Fig 52, the embryo can
regulate the expression of Hunchback to ∼ 10% accu-
racy or better across much of the relevant dynamic range.
How does this compare with the physical limits? To mea-
sure the reliability of Hunchback’s response to Bicoid, we
should refer the noise in expression back to the input—if
we want to change the output by an amount that is equal
to one standard deviation in the noise, how much do we
have to change the input? The answer is given by propa-
gating the variance backwards through the input/output
relation,

〈(δHb)2〉 =
∣∣∣∣
d〈Hb〉
d ln c

∣∣∣∣
2 (δc

c

)2

eff

, (368)

where c is the concentration of Bcd, and (δc/c)eff defined
in this way should be comparable to the Berg–Purcell
limit. In Fig 54 we see that this effective noise level
drops down to (δc/c)eff ∼ 0.1, so the system seems able
to respond reliable to ∼ 10% differences in concentration
of the input transcription factor.

We have seen, in Eq (336) and the surrounding dis-
cussion, that responding reliably to 10% differences in
transcription factor concentrations would be very diffi-
cult to detect, requiring hours of integration to push the
noise level down to manageable levels. This seems gen-
erally implausible, but in the fly embryo it is impossible,

FIG. 54 Input/output and noise in the transformation from
Bcd to Hb, from Gregor et al (2007b). (A) The input/output
relation can be obtained starting from the scatter plot in Fig
53, normalizing the fluorescence intensities as relative concen-
trations, and then averaging the output Hb expression level
across all nuclei that have essentially the same input Bcd level.
Blue curves show results for several individual embryos, and
red circles with error bars show the mean and standard devi-
ation of Hb expression level vs Bcd input for a single embryo.
The inset shows that these data are well fit by a Hill relation
[see the discussion around Eq (326)] with n = 5 (in red), and
substantially less well fit by n = 3 or n = 7 (in green). (B)
The standard deviation of Hb output, measured across the
multiple nuclei with the same Bcd input in single embryos;
different curves correspond to different individual embryos.
(C) Combining the input/output relation and noise levels, we
obtain the effective noise level referred to the input, as in Eq
(368); blue points are raw data, green line is an estimate of
measurement noise, and red circles are the results of subtract-
ing the measurement noise variance, with error bars computed
across nine embryos. (D) Correlations in Hb expression noise
in different nuclei, as a function of distance.

since the whole process from laying the egg to the estab-
lishment of the basic body plan (several steps beyond the
expression of Hunchback) is complete within three hours
or less. This apparent paradox depends on estimating
some key parameters, but in the Bcd/Hb system these
can be measured, and the solution to the problem does
not seem to lie here.

Problem 63: Effective diffusion constants. Add a problem
about the renormalization of diffusion constants by transient bind-
ing ... connect to noise levels, in a somewhat open ended second
part.

On the other hand, the fly embryo is unusual in that,
for much of its early development there are no walls be-
tween the cells. Thus, Hunchback mRNA synthesized
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in one nucleus will be exported to the neighboring cyto-
plasm, and the translated protein should be free to diffuse
to other nuclei. Thus the Hunchback level in one nucleus
should reflect an average over the Bcd signals from many
cells in the neighborhood. If Hb has a diffusion con-
stant similar to that of Bcd, then in a few minutes the
molecules can cover a region which includes ∼ 50 nuclei,
and averaging over 50 independent Bcd signals is enough
to convert the required integration time from hours to
minutes. If this scenario is correct, there should be cor-
relations among the Hb expression noise in nearby nuclei,
and this is what we see in Fig 54D. Indeed, the correlation
length of the fluctuations is just what we need in order
to span the minutes/hours discrepancy. These results
suggest strongly that the reliability of the Hunchback re-
sponse to Bicoid is barely consistent with the physical
limits, but only because of spatial averaging.

Can we give a fuller analysis of noise in the Bcd/Hb
system? In particular, we see from Fig 54B that the
noise level has a very characteristic dependence on the
input concentration, which we can also replot vs the mean
output, as in Fig 55. This is an interesting way to look
at the data, because in the limit where the Poisson noise
of synthesis and degradation is dominant we should have

〈(δHb)2〉Poisson = α〈Hb〉, (369)

where the constant α depends on the units in which we
measure expression, but reflects the absolute number of
independent molecules that are being made. On the
other hand, if the random arrival of transcription fac-
tors at their target is dominant, we should have Eq (368)
with the effective noise given by the Berg–Purcell limit,

mean expression level

√
〈(δHb)2〉standard deviation

〈Hb〉

Berg-Purcell + Poisson

Poisson + “bursting”

n → ∞

FIG. 55 Noise in Hunchback expression as a function of the
mean expression level, from Tkačik et al (2008). This is a
replotting of the data from Fig 54, compared with several
models as described in the text. Error bars are standard de-
viations across multiple individual embryos.

so that

〈(δHb)2〉BP =

∣∣∣∣
d〈Hb〉
d ln c

∣∣∣∣
2

· 1

NcellsDacτavg
, (370)

where we have added a factor to include, as above, the
idea that Hb expression levels at one cell depend on an
average over Ncells nearby cells. Empircally, the mean
expression level is well approximated by a Hill function,

〈Hb〉 = cn

cn1/2 + cn
, (371)

where now we choose units where the maximum mean
expression level is one, and the data are fit best by n = 5.
Then we have

d〈Hb〉
d ln c

= n〈Hb〉 (1− 〈Hb〉) , (372)

and hence, after some algebra,

〈(δHb)2〉BP = β〈Hb〉2−1/n (1− 〈Hb〉)2+1/n , (373)

β =
n2

NcellsDac1/2τavg
. (374)

If we have both the Berg–Purcell noise at the input to
transcriptional control, and the Poisson noise at the out-
put, then we expect the variances to add, so that

〈(δHb)2〉 = 〈(δHb)2〉BP + 〈(δHb)2〉Poisson (375)

= β〈Hb〉2−1/n (1− 〈Hb〉)2+1/n + α〈Hb〉.
(376)

In Figure 55 we see how this prediction compares with
experiment. Since n = 5 is known from the input/output
relation, we have to set the parameters α and β. At max-
imal mean expression, 〈Hb〉 = 1 and Eq (376) predicts
〈(δHb)2〉 = α, so we can read this parameter directly
from the behavior at the right hand edge of the graph
(α2 ∼ 0.05). We have just one parameter β left to fit,
but this will determine the height, shape and position of
the peak in the noise level vs mean, so it is not at all
guaranteed that we will get a reasonable fit. In fact the
fit is very good, and we find β ∼ 0.5. It is interesting
that the dependence of the variance on the mean seems
very sensitive, since if we let the Hill coefficient become
large, even the best fit of Eq (376) systematically misses
the data, as shown by the n → ∞ curve in Fig 55. Other
subtly different models also fail, as you can see in Prob-
lem 65 [careful with number!].

Problem 64: Details of Hunchback noise. Discuss the
meaning of the parameters α and β. Can you relate these to mean-
ingful physical quantities? Do we have independent data to see if
these numbers make sense?
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Problem 65: Transcriptional bursting?. The key point
about noise in synthesis and degradation is that we expect the
variance to be monotonic as a function of the mean (as in the Pois-
son model), and this is not what we see in Fig 55. An alternative
model that could explain the peak of noise at intermediate expres-
sion levels is that the transcription site switches between active and
inactive states, generating a “burst” of mRNA molecules while in
the active state. You should be able to go back to our discussion
of noise in binding and unbinding without diffusion [leading up to
Eq (A322)], and build up the predictions of this model.

(a.) Suppose that switching into the active state occurs at a
rate kon, and the switch back to the inactive state occurs at a rate
koff . These rates must vary with the concentration of the input
transcription factor, since it is only by switching between active
and inactive states that the system can modulate the mean output.
It seems plausible that the mean output is proportional to the
probability of being in the active state. Are there any conditions
under which this would not be true?

(b.) Show that if the mean output is proportional to the prob-
ability of being in the active state, then the random switching will
contribute to the output variance a term

〈(δHb)2〉burst = 〈Hb〉 (1− 〈Hb〉) ·
τc
τavg

, (377)

where the correlation time τc = 1/(kon + koff), the output is mea-
sured in units such that the maximal mean value is 〈Hb〉 = 1, as
above, and we assume that the averaging time is long compared
with τc.

(c.) Switching into the active state is associated with transcrip-
tion factor binding. In contrast, switching back to the inactive
state doesn’t require any additional binding events. Thus it is
plausible that the rate koff is independent of the input concentra-
tion c. What is the dependence of kon required to reproduce the
mean input/output relation in Eq (371)? Is there a mechanistic
interpretation of this dependence?

(d.) As an aside, can you give an alternative description based on
the MWC model, as in our discussion of the bacterial rotary motor
above? Notice that now you need to think about the kinetics of
the transitions between the two states, not just the free energies.
See also the Appendix A.4. This is deliberately open ended.

(e.) Combine your results in [b.] and [c.] to show that the
analog of Eq (376) in this model is

〈(δHb)2〉 = 〈(δHb)2〉burst + 〈(δHb)2〉Poisson (378)

= γ〈Hb〉 (1− 〈Hb〉)2 + α〈Hb〉.
(379)

Give an expression for γ in terms of the original parameters of the
model. Explain why the steepness of the Hill function (that is, the
parameter n) doesn’t appear directly in determining the shape of
the relation between variance and mean.

(f.) In Fig 55, we see the best fit of Eq (379) to the data, which
is not very good. Without doing a fit, you should be able to show
that the model predicts a relation between the point at which the
noise is maximal, and the height of this maximum. Show that this
is inconsistent with the data.

To summarize, we can now observe directly the noise in
gene expression. While one could emphasize that these
fluctuations are, under some conditions, quite large, it
seems more surprising that there are conditions where
they are quite small. Cells can set the output of their
genetic control machinery with a precision of ∼ 10% or
better, thus doing much more than switching genes on

and off—intermediate levels of expression are meaning-
ful. This means, in particular, that we have make mea-
surements with an accuracy of better than 10%, and this
isn’t always easy to do. More fundamentally, the preci-
sion with which cells can control expression levels is not
far from the limits set by the random arrival of the rel-
evant signaling molecules (transcription factors) at their
targets. Of course, we could imagine cells which use more
copies of all the transcription factors, and thus could
achieve greater precision—or be sloppier, and reach the
same precision—but this doesn’t seem to be what hap-
pens. I don’t think we understand why evolution has
pushed cells into this particular corner.
So far we have discussed noise as a small fluctuation

around the mean. It is also possible that, in the same
way that thermal noise can result in a nonzero rate for
chemical reactions, noise in chemical kinetics can gener-
ate spontaneous switching among otherwise stable states.
Much has been written about this. I am less certain that
we really understand any particular system. There is,
however, some elegant physics here, so I would like to
come back and discuss this.

The following two problems are concerned with a newly discov-
ered bacterium that responds to a chemical signal by emitting light.
The bacteria are roughly spherical, with diameter d ∼ 2µm, and
hence are clearly visible under the microscope. The chemical signal
is shown to be a small protein, presumably secreted by other bac-
teria; the protein diffuses through the extracellular medium with
a diffusion constant D ∼ 10µm2/s. Very careful experiments es-
tablish that each individual bacterium either emits light at full in-
tensity or is essentially dark, and that changing the concentration
c of the signaling protein changes the probability of being in the
two states. Larger values of c correspond to higher probabilities of
being in the light emitting state, so that plight(c) is monotonically
increasing.

Problem 66: Extreme sensitivity, but slowly. There is
a specific concentration c = c1/2 of the signaling protein such
plight(c1/2) = pdark(c1/2) = 0.5. When poised at c = c1/2 the sys-
tem switches back and forth between the two states spontaneously
at a rate of ∼ 1/hour. Remarkably, a change in c by just 10% is
sufficient to shift the probabilities from plight = 0.5 to plight = 0.9
or plight = 0.1 when the concentration is increased or decreased,
respectively.

(a.) After some confusion in early experiments, it is found that
everything said above is true, but the half–maximal concentration
c1/2 = 10−12 M. Is this possible? Justify your answer clearly and
quantitatively.

(b.) One group proposes that this extreme sensitivity is not at
all surprising, since after all proteins can bind to other proteins
with dissociation constants as small as KD ∼ 10−15 M. Does this
observation of very tight binding have anything to do with the
physical limits on sensitivity? Why or why not?

(c.) Another group notes that 10−12 M corresponds to ∼ 10−3

molecules in the volume of the bacterium. They argue that this
provides evidence for homeopathy, in which drugs are claimed to
retain their effectiveness at extreme dilution, perhaps even to the
point where the doses contain less than one molecule on average.
Can you resolve their confusion?

Problem 67: How simple can it be? Further studies of this
new light emitting bacterium aim at identifying the molecules in-
volved. The first such experiment shows that if you block protein
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synthesis, the system cannot switch between the dark and light
states, indicating that the switch involves a change in gene ex-
pression rather than (for example) a change in phosphorylation or
methylation states of existing proteins as in chemotaxis. A system-
atic search which knocks out individual genes, looking for effects
on the behavior, finds only one gene that codes for a DNA–binding
protein. When this gene is knocked out, all bacteria are perma-
nently dark. More detailed experiments show that these bacteria
not only are dark, they actually are not expressing the proteins
required for generating light.

(a.) Draw the simplest schematic model suggested by these re-
sults. Be sure that your model explains why there are two rela-
tively stable states (light and dark) rather than a continuum of
intermediates, and that your model is consistent with the knock
out experiments.

(b.) Assume that the signaling protein binds to some receptor on
the surface of the cell and that this triggers a cascade of biochemical
events. For simplicity you can imagine that the output of this
cascade is some molecule, the concentration of which is proportional
to the average occupancy of the receptors over some window of
time. Explain how this molecule can couple to your model in [a]
to influence the probability of the cell being in the dark or light
states.

(c.) Formalize your models from [a] and [b] by writing differ-
ential equations for the concentrations of all the relevant species.
Show how these equations imply the existence of discrete light/dark
states. Can you see directly from the equations why changing the
receptor occupancy will shift the balance between these states? It
might be hard to explain the behavior near the midpoint (c = c1/2),
but it should be possible to explain the dominance of the dark state
as c → 0 and the light state as c → ∞.

(d.) Describe qualitatively all the sources of noise that could
enter your model. Do you have any guidance from experiment
about which sources are dominant?

(e.) Consider the point where c = c1/2. Explain qualitatively
what features of your model are responsible for determining the
∼ 1 hour time scale for jumping back and forth between the light
and dark states.

(f.) See how far you can go in turning your remarks in [e] into
an honest calculation!

There are several messages which I hoped to convey in
this section. First, bacterial chemotaxis provides us with
an example of chemical sensing which is interesting, not
just in itself but as an example of a vastly more general
phenomenon. Importantly, experiments on chemotaxis
set a quantitative standard that should be emulated in
the exploration of other chemical signaling systems, from
the embryo to the brain. Second, as explained in Ap-
pendix A.6, the intuitive argument of Berg and Purcell
can be made rigorous. What they identified is a limit to
chemical signaling which is very much analogous to the
photon shot noise limit in vision or imaging more gener-
ally. While molecules do many complicated things, they
have to reach their targets in order to do them, and this
is a random process, so this randomness sets a limit to
the precision of almost everything that cells do.47 Fi-
nally, real cells operate close to this limit, not just in

47 It is possible to produce light that does not obey Poisson statis-

specialized tasks such as chemotaxis but in the everyday
business of regulating gene expression. While other noise
sources are clearly present, the “noise floor” that results
from the Berg–Purcell limit never seems far away, and in
some cases cells may push all the way to the point where
this is the dominant noise source.

The study of chemotaxis has a long history. From a biologist’s
point of view, the modern era starts when Adler (1965, 1969)
demonstrates, using mutants, that chemosensing is independent of
metabolism. From a physicist’s point of view, the modern era starts
when Berg builds his tracking microscope and observes, quantita-
tively, the paths of individual bacteria (Berg 1971, Berg & Brown
1972). The experiments which demonstrated the temporal char-
acter of the computations involved in chemotaxis were done by
Macnab & Koshland (1972) and by Brown & Berg (1974). A nice
discussion of how these temporal comparisons translate into mobil-
ity up the gradient of attractive chemical is given by Schnitzer et
al (1990).

Adler 1965: Chemotaxis in Escherichia coli. Cold Spring Harbor
Symp Quant Biol 30, 289–292 (1965).

Adler 1969: Chemoreceptors in bacteria. J Adler, Science 166,
1588–1597 (1969).

Berg 1971: How to track bacteria. HC Berg, Rev Sci Instrum
42, 868–871 (1971).

Berg & Brown 1972: Chemotaxis in Escherichia coli analyzed
by three–dimensional tracking. Nature 239, 500–504 (1972).

Brown & Berg 1974: Temporal stimulation of chemotaxis in
Escherichia coli Proc Nat’l Acad Sci (USA) 71, 1388–1392
(1974).

Macnab & Koshland 1972: R Macnab & DE Koshland, The
gradient–sensing mechanism in chemotaxis. Proc Nat’l Acad
Sci (USA) 69, 2509–2512 (1972).

Schnitzer et al 1990: Strategies for chemotaxis. M Schnitzer,
SM Block, HC Berg & EM Purcell, Symp Soc Gen Microbiol
46, 15–34 (1990).

For fluid mechanics in general, see Landau and Lifshitz (1987). The
fact that bacteria live at low Reynolds number, and that this must
matter for their lifetsyle, was surely was known to many people, for
many years. But Berg’s experiments on E coli provided a stimulus
to think about this, and it resulted in a beautiful exposition by
Purcell (1977), which has been hugely influential. The appreciation
that self–propulsion at low Reynolds number has a gauge theory

tics for the photon counts, and this raises the question of whether
we could generate comparable noise reductions in chemical pro-
cesses. I think the answer is yes—for example, one could trans-
port molecules to their targets by an active process that is more
orderly than diffusion—but this seems enormously costly, as first
emphasized by Berg and Purcell themselves. It is, however,
worth thinking about. More subtly, some chemical reactions
involve enormous numbers of steps, so that the fractional vari-
ance in the time required for completion of the reaction by one
molecule becomes very small, as in the discussion of rhodopsin
shutoff in Section I.C. Indeed, transcription itself can be seen
as an example, where it is possible for the time required to syn-
thesize a single mRNA molecule—once transcription has been
initiated—to be nearly deterministic, so that this process does
not contribute a significant amount of noise.
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description is due to Shapere & Wilczek (1987). The dramatic
discovery that bacteria swim by rotating their flagella was made
by Berg & Anderson (1973), and then Silverman & Simon (1974)
succeeded in tethering cells by their flagella to see the rotation of
the cell body.

Berg & Anderson 1973: Bacteria swim by rotating their flagel-
lar filaments. Nature 245, 380–382 (1973).

Landau & Lifshitz 1987: Fluid Mechanics. LD Landau & EM
Lifshitz (Pergamon, Oxford, 1987).

Purcell 1977: EM Purcell, Life at low Reynolds’ number, Am J
Phys 45, 3–11 (1977).

Shapere & Wilczek 1987: Self–propulsion at low Reynolds
number. Phys Rev Lett 58, 2051–2054 (1987).

Silverman & Simon 1974: Flagellar rotation and the mecha-
nism of bacterial motility. M Silverman & M Simon, Nature
249, 73–74 (1974).

Should add some references about rotation of the mitochondrial
ATPase, and more recent work on flagellar motor ... .

:

The classic, intuitive account of the physical limits to chemcial
sensing is by Berg and Purcell (1977). [Do we want to dig into
the papers that they reference, in relation to sensitivity?] Mea-
surements on the impulse response of the system were reported by
Block et al (1982), and these experiments, along with Segall et al
(1986) provide a more compelling demonstration that bacterium
is sensitive to single molecular events. Another interesting paper
from this period is Block et al (1983) [should tell the story about
the Appendix as an example of models/theories in biology]. The
idea of deriving the impulse response as the solution to an opti-
mization problem, in the spirit of the Berg–Purcell discussion but
more rigorously, has been explored by several groups: Strong et al
(1998), Andrews et al (2006), and most recently Celani & Vergas-
sola (2010), who introduced a novel game theoretic approach [check
other refs].

Andrews et al 2006: Optimal noise filtering in the chemotactic
response of Escherichia coli. BW Andrews, T–M Yi & PA
Iglesias, PLoS Comp Bio 2, e154 (2006).

Berg & Purcell 1977: Physics of chemoreception. HC Berg &
EM Purcell, Biophys J 20, 193–219 (1977).

Block et al 1982: Impulse responses in bacterial chemotaxis.
SM Block, JE Segall & HC Berg, Cell 31, 215–226 (1982).

Block et al 1983: Adaptation kinetics in bacterial chemotaxis.
SM Block, JE Segall & HC Berg, J Bateriol 154, 312–323
(1983).

Celani & Vergassola 2010: Bacterial strategies for chemotaxis.
A Celani & M Vergassola, Proc Nat’l Acad Sci (USA) 107,
1391–1396 (2010).

Segall et al 1986: Temporal comparisons in bacterial chemo-
taxis. JE Segall, SM Block & HC Berg, Proc Nat’l Acad
Sci (USA) 83, 8987–8991 (1986).

Strong et al 1998: Adaptation and optimal chemotactic strat-
egy in E coli. SP Strong, B Freedman, W Bialek & R
Koberle, Phys Rev E 57, 5604–5617 (1998).

The experiments on the response of the flagellar motor to the
CheY∼P concentration are by Cluzel et al (2000). For measure-
ments on the diffusion constant of proteins in E coli see Elowitz
et al (1999), and for observations on the structure of the motor
in relation to its regulation by CheY∼P, see Thomas et al (1999).
The model in Fig 49 is based on give original refs for MWC–style
description of rotation. Give refs to models at the front end of the
transduction scheme, depending on what gets said in the text!

Cluzel et al 2000: An ultrasensitive bacterial motor revealed by
monitoring signaling proteins in single cells. P Cluzel, M
Surette & S Leibler, Science 287, 1652–1655 (2000).

Elowitz et al 1999: Protein mobility in the cytoplasm of Es-
cherichia coli. MB Elowitz, MG Surette, P–E Wolf, JB
Stock & S Leibler, J Bateriol 181, 197–203 (1999).

Thomas et al 1999: Rotational symmetry of the C ring and a
mechanism for the flagellar rotary motor. DR Thomas, DG
Morgan & DJ DeRoiser, Proc Nat’l Acad Sci (USA) 96,
10134–10139 (1999).

This seems to be the first place where GFP–based methods have
come up, so need to give a guide ot the literature here!

:

In thinking about transcriptional regulation, it is useful to review
some basic facts about molecular biology, for which the classic ref-
erence is Watson’s Molecular Biology of the Gene. This has been
through many editions, and at times flirted with being more of
an encyclopedia than a textbook. I’ll reference the current edition
here, which seems a bit more compact than some of the interme-
diate editions, but I also encourage you to look back at earlier
editions, written by Watson alone. A beautiful account of gene
regulation, using the bacteriophage λ as an example, was given by
Ptashne (1986), which has also evolved with time (Ptashne 1992);
see also Ptashne (2001).

Ptashne 1986: A Genetic Switch: Gene Control and Phage λ.
M Ptashne (Cell Press, Cambridge MA, 1986).

Ptashne 1992: A Genetic Switch, Second Edition: Phage λ and
Higher Organisms. M Ptashne (Cell Press, Cambridge MA,
1992).

Ptashne 2001: Genes and Signals. M Ptashne (Cold Spring Har-
bor Laboratory Press, New York, 2001).

Watson et al 2008: Molecular Biology of the Gene, Sixth Edi-
tion. JD Watson, TA Baker, SP Bell, A Gann, M Levine
&R Losick (Benjamin Cummings, 2008).

In order to make our discussion quantitative, we need to know
the absolute concentration at which transcription factors act.
Ptashne’s books give some discussion of this, although the esti-
mates were a bit indirect. Several groups have made measurements
on the binding of transcription factors to DNA, trying to measure
the concentration at which binding sites are half occupied; some-
times this is done by direct physical–chemical methods in vitro,
and sometimes by less direct methods in vivo. Examples include
Oehler et al (1994), Ma et al (1996), Pedone et al (1996), Burz et
al (1998), and Winston et al (1999). A modern version of the in
vitro binding experiment examines the molecules one at a time, as
in the work by Wang et al (2009).

Burz et al 1998: Cooperative DNA binding by Bicoid provides
a mechanism for threshold dependent gene activation in the
Drosophila embryo. DS Burz, R Pivera–Pomar, H Jackle &
SD Hanes, EMBO J 17, 5998–6009 (1998).

Ma et al 1996: The Drosophila morphogenetic protein Bicoid
binds DNA cooperatively. X Ma, D Yuan, K Diepold, T
Scarborough, & J Ma, Development 122, 1195–1206 (1996).

Oehler et al 1994: Quality and position of the three lac oper-
ators of E coli define efficiency of repression. S Oehler,
M Amouyal, P Kolkhof, B von Wilcken–Bergmann & B
Müller–Hill, EMBO J 13, 3348–3355 (1994).

Pedone et al 1996: The single Cys2–His2 zinc finger domain of
the GAGA protein flanked by basic residues is sufficient
for high–affinity specific DNA binding. PV Pedone, R
Ghirlando, GM Clore, AM Gronenborn, G Felsenfeld &
JG Omichinski, Proc Nat’l Acad Sci (USA) 93, 2822–2826
(1996).

Wang et al 2009: Quantitative transcription factor binding ki-
netics at the single molecule level. Y Wang, L Guo, I Gold-
ing, EC Cox, NP Ong, Biophys J 96, 609–620 (2009).
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Winston et al 1999: Characterization of the DNA binding prop-
erties of the bHLH domain of Deadpan to single and tandem
sites. RL Winston, DP Millar, JM Gottesfeld, Gottesfeld &
SB Kent. Biochemistry 38, 5138–5146 (1999).

An important development in the field has been the construction
of fusion proteins, combining transcription factors with fluorescent
proteins, and the re–insertion of these fusions into the genome. For
more about these techniques in general, see the references at the
end of Section II.B. When cells divide, their contents are parti-
tioned, and one can observe the noise from the finite number of
molecules being assigned at random to one of the two daughter
cells. Rosenfeld et al (2005), and more recently Teng et al (2010)
has shown how this can be used to make very precise estimates of
the number of copies of the protein in the mother cell, and thus
providing a calibration that converts fluorescence intensity back
into copy number. Gregor et al (2007a) discuss a case where it
was possible to test in detail that the fusion construct replaces the
function of the original transcription factor, quantitatively, and in
the next paper they exploit this construct to analyze the noise in
one step of transcriptional regulation (see below), as well as making
estimates of absolute concentration by comparing the fluorescence
intensity to a purified standard (Gregor et al 2007b).

Gregor et al 2007a: Stability and nuclear dynamics of the Bi-
coid morphogen gradient. T Gregor, EF Wieschaus, AP
McGregor, W Bialek & DW Tank, Cell 130, 141–152 (2007).

Gregor et al 2007b: Probing the limits to positional informa-
tion. T Gregor, DW Tank, EF Wieschaus & W Bialek, Cell
130, 153–164 (2007).

Rosenfeld et al 2005: Gene regulation at the single cell level. N
Rosenfeld, JW Young, U Alon, PS Swain & MB Elowitz,
Science 307, 1962–1965 (2005).

Teng et al 2010: Measurement of the copy number of the master
quorum–sensing regulator of a bacterial cell. S–W Teng, Y
Wang, KC Tu, T Long, P Mehta, NS Wingreen, BL Bassler
& NP Ong, Biophys J 98, 2024–2031 (2010).

In contrast to bacteria, many eukaryotic cells are large enough, or
move slowly enough, that they can get a reliable signal by measur-
ing gradients across the length of their body; for a discussion of the
limits to these measurements and some of the relevant experiments,
see Endres & Wingreen (2009a,b). Need to digest data on chemo-
taxis in bigger cells ... . Find general reference on axon guidance,
growth cones etc.. The measurements on extreme precision of axon
guidance were reported by Rosoff et al (2004).

Endres & Wingreen 2009a: Accuracy of direct gradient sens-
ing by single cells. RG Endres & NS Wingreen, Proc Nat’l
Aca Sci (USA) 105, 15749–15754 (2008).

Endres & Wingreen 2009b: Accuracy of direct gradient sens-
ing by cell–surface receptors. RG Endres & NS Wingreen,
Prog Biophys Mol Biol 100, 33–39 (2009).

Gregor et al 2010: The onset of collective behavior in social
amoebae. T Gregor, K Fujimoto, N Masaki & S Sawai,
Science 328, 1021–1025 (2010).

Rossof et al 2004: A new chemotaxis assay shows the extreme
sensitivity of axons to molecular gradients. WJ Rosoff,
JS Urbach, MA Esrick, RG McAllister, LJ Richards & GJ
Goodhill, Nature Neurosci 7, 678–682 (2004).

Song et al 2006: Dictyostelium discoideum chemotaxis: Thresh-
old for directed motion. L Song, SM Nadkarnia, HU
Bödeker, C Beta, A Bae, C Franck, W-J Rappel, WF Loomis
& E Bodenschatz, Eur J Cell Bio 85, 981–989 (2006).

It is only in the last decade that it has been possible to make di-
rect measurements of the noise in gene expression, and even more
recently that it has been possible to focus on noise in the control
process itself. The initial experiment separating intrinsic from ex-
trinsic noise sources using the two color plasmid was by Elowitz et

al (2002), which touched off a series of experiments on both bacte-
rial (Ozbudak et al 2002, Pedraza & van Oudenaarden 2005) and
eukaryotic systems (Blake et al 2003, Raser & O’Shea 2004). The
experiments on noise in the Bcd/Hb system are by Gregor et al
(see above). A review of methods for measuring Bcd concentration
profiles is given by Morrison et al (2011), and in particular they
discuss the comparison of live GFP–based imaging with antibody
staining methods in fixed samples. A more detailed analysis of the
data on Bcd/Hb noise is given by Tkačik et al (2008), which also
provides a broader context on the role of different noise sources
in the control of gene expression. Models based on transcriptional
bursting are inspired by the direct observation of these bursts in E
coli by Golding et al (2005). It is worth thinking about whether
the observed bursts necessarily result from the kinetics of switching
between states of the transcriptional apparatus, or could be traced
to the binding and unbinding of transcription factors.
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Will need to add some references about bistability, noise induced
switching, and maybe path integral methods for noise .. depends
on what gets said in the text.

C. More about noise in perception

We have already said a bit about noise in visual percep-
tion, in the case where perception amounts to counting
photons. But this is just one corner of our perceptual
experience, and we’d like to know if some of the same
principles are relevant outside of this limit. In this sec-
tion we will look at a few instances, sampled from differ-
ent organisms and different sensory modalities. I think
one of the important ideas here is that considerations
of noise—and processing strategies for reaching reliable
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conclusions in the presence of noise, perhaps even op-
timizing performance—cut across these many different
systems, which often are the subjects of quite isolated
literatures.

It has been known for some time that bats navigate by
generating ultrasonic calls and listening for the echoes,
forming an image of their world much as in modern sonar.
To get a feeling for the precision of this behavior, there
is a simple, qualitative experiment that is best explained
with a certain amount of (literal) hand waving [ask Jim
Simmons for original reference]. Some bats will happily
eat mealworms if you toss them into the air. Before toss-
ing them, however, you can dip them into a little bit of
flour. To eat the worm, the bat must “see” it, and then
maneuver its own body into position, finally sweeping the
worm up in its wing and bringing it to its mouth. But
if the worm has been dusted with flour, this will leave
a mark on the wing. Now repeat the experiment, many
times, with same bat (but, of course, different worms).
If you look at the bat’s wing, you might expect to see
many spots of flour, but in fact all the spots are on top of
one another. This suggests that the entire process—not
just identifying the location of the worm in the air, but
the acrobatic movements required to scoop it up—have
a precision of roughly one centimeter. In echolocation,
position estimates are based on the time delays of the
echoes, and with a sound speed of ∼ 340m/s, this cor-
responds to a timing precision of δt ∼ 30µs. This rough
estimate already is interesting, although maybe not too
shocking since we can detect a few microseconds of dif-
ference in the arrival times of sounds between our two
ears, and this is how we can localize the source of low
frequency sounds. Barn owls do even better, detecting
δτ ∼ 1µsec between their ears.

As an aside, it was Rayleigh who understood that our

FIG. 56 A schematic of the ‘Y’ apparatus for testing echo
timing discrimination performance in bats, from Simmons et
al (1990).
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FIG. 57 Performance of four different bats at echo jitter dis-
crimination, from Simmons et al (1990). Echoes can be re-
turned with no phase shift (circles), or with a phase shift of
π (squares); errors for the phase shifted echoes are measured
downward.We see that the phase shift itself is detectable with
almost no errors, that there is confusion around δτ ∼ 35µs,
and that this “confusion peak” shifts and splits with the in-
troduction of a phase shift.

brains need to use different cues for localization in differ-
ent frequency ranges, just because of the physics of sound
waves. At high frequencies (short wavelengths) our head
casts an acoustic shadow, and there is a difference in in-
tensity between out ears—the sound comes from the side
that gets the louder signal. But at low frequencies, the
wavelength is comparable to or larger than the size of our
head, and there is no shadow. There is, however, a time
or phase difference, but this is small. To demonstrate our
sensitivity to these small time differences directly, he sat
Lady Rayleigh in the gazebo behind their home, and ar-
ranged for tubes of slightly different length to lead from
a sound source to her two ears. A fabulous image.

Problem 68: Time differences and binaural hearing.
Show that when a sound source is far away, the difference in prop-
agation time to your two ears is independent of distance to the
source. What does determine this time difference? For your own
head, what is the time difference for a source at an angle of ∼ 10◦

to the right of the direction your nose is pointing?

To be more quantitative, one would like to get the bats
to report more directly on their estimates of echo delay, as
in Fig 56. In one class of experiments, bats stand at the
base of a Y with loudspeakers on the two arms. Their ul-
trasonic calls are monitored by microphones and returned
through the loudspeakers with programmable delays. In
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a typical experiment, the ‘artificial echoes’ produced by
one side of the Y are at a fixed delay τ , while the other
side alternately produces delays of τ ± δτ . The bat is
trained to take a step toward the side which alternates,
and the question is how small we can make δτ and still
have the bat make reliable decisions. Early experiments
suggested that delays differences of δτ ∼ 1µsec were de-
tectable, and perhaps more surprisingly that delays of
∼ 35µsec were less detectable, as shown in Fig 57. The
latter result might make sense if the bat were trying to
measure delays by matching the detailed waveforms of
the call and echo, since these sounds have most of their
power at frequencies near f ∼ 1/(35µsec)—the bat can
be confused by delay differences which correspond to an
integer number of periods in the acoustic waveform, and
one can even see the n = 2 ‘confusion resonance’ if one
is careful. One can also introduce a phase shift into the
artificial echo, and this shifts the confusion peak as ex-
pected.

Let’s think about this more formally. Suppose that we

are expecting a sound (or any signal) that has a time
dependence s0(t), but we don’t know when it will arrive,
so what we actually observe will be s0(t − τ) embedded
in some background of noise. That is,

s(t) = s0(t− τ) + η(t), (380)

where η(t) is the noise. Let’s assume, for simplicity, that
the noise is white, with some spectral density N . Then,
as explained in Appendix B, the probability density for
the function s(t) becomes

P [s(t)|τ ] = 1

Z
exp



− 1

2N

∫
dt

∣∣∣∣∣s(t)− s0(t− τ)

∣∣∣∣∣

2


 ,

(381)
where Z is a normalization constant and the notation
reminds us that this is the distribution if we know the
delay τ . If instead the delay is τ + δτ ,

P [s(t)|τ + δτ ] =
1

Z
exp



− 1

2N

∫
dt

∣∣∣∣∣s(t)− s0(t− τ − δτ)

∣∣∣∣∣

2


 . (382)

As in our previous discussions of discrimination between two alternatives [give specific pointer], when we are faced
with a particular signal s(t) and have to decide whether the delay was τ or τ + δτ , the relevant quantity is the (log)
likelihood ratio:

λ[s(t)] ≡ ln

(
P [s(t)|τ + δτ ]

P [s(t)|τ ]

)
(383)

= − 1

2N

∫
dt

∣∣∣∣∣s(t)− s0(t− τ − δτ)

∣∣∣∣∣

2

+
1

2N

∫
dt

∣∣∣∣∣s(t)− s0(t− τ)

∣∣∣∣∣

2

(384)

=
1

N

∫
dt s(t) [s0(t− τ − δτ)− s0(t− τ)] . (385)

If the delay really is τ , then

〈λ[s(t)]〉τ ≡
〈

1

N

∫
dt s(t) [s0(t− τ − δτ)− s0(t− τ)]

〉

τ

(386)

=

〈
1

N

∫
dt [s0(t− τ) + η(t)] [s0(t− τ − δτ)− s0(t− τ)]

〉

τ

(387)

=
1

N

∫
dt s0(t− τ) [s0(t− τ − δτ)− s0(t− τ)] (388)

=
1

N [C(δτ)− C(0)], (389)

where

C(t) =

∫
dt′ s0(t

′)s0(t
′ − t) (390)

is the autocorrelation function of the expected signal.

Similar calculations yield

〈λ[s(t)]〉τ+δτ =
1

N [C(0)− C(δτ)], (391)

〈(δλ[s(t)])2〉τ = 〈(δλ[s(t)])2〉τ+δτ (392)

=
2

N [C(0)− C(δτ)]. (393)
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It should also be clear that λ[s(t)] is a Gaussian random
variable (inherited from the Gaussian statistics of the
noise η), so these few moments provide a complete de-
scription of the problem of discriminating between delays
τ and τ + δτ . The end result is that the discrimination
problem is exactly that of a single Gaussian variable (λ),
with signal–to–noise ratio

SNR =
(〈λ[s(t)]〉τ+δτ − 〈λ[s(t)]〉τ )2

〈(δλ[s(t)])2〉
=

2

N [C(0)−C(δτ)].

(394)
Thus we see that the SNR is large as soon as the jitter δτ
is big enough to break the correlations in the waveform,
and conversely that the SNR falls if shifting by δτ brings
the waveform back into correlation with itself, as will
happen for an approximately periodic signal such as the
echolocation pulse.

Problem 69: Details of the SNR for detecting jitter in
echolocation. Fill in the details leading to Eq (394).

(a.) How does this result change if the discrimination involves
not just a time shift δτ but also a sign flip or π phase shift?

(b.) Recall the relationship between error probability and SNR
[point back to photon counting discussion]. Is it practical to try
and estimate the correlation function C(τ) by measuring the error
probability as a function of δτ? What if you also have access to
experiments with a sign flip, as in (a.)? If you have errors in the
measurement of the error probability, how do these propagate back
to estimates of the underlying C(τ)?

(c.) Compare your results in (b.) with the construction of “com-
pound jitter discrimination curves” by Simmons et al (1990). Could
you suggest improvements in their data analysis methods?

This argument about discriminability assumes that the
bat’s brain actually can compute using the entire acoustic
waveform s(t), rather some more limited features; in this
sense we are describing the best that the bat could pos-
sibly do. It is interesting that such a calculation predicts
confusion at delays where the autocorrelation function
of the bat’s call has a peak, and that such confusions
are observed. On the other hand, this calculation seems
hopelessly optimistic: “access to the acoustic waveform”
means, in particular, access to features that are varying
on the microsecond timescale. If we record the activity of
single neurons emerging from the ear as they respond to
pure tones, then we can see the action potentials “phase
lock” to the tone, but this effect is significant only up to
some maximum frequency. Beyond this high frequency
cutoff, the overall rate of spikes increases with the inten-
sity of the tone, but the timing of the spikes seems unre-
lated to the details of the acoustic waveform. Although
there is controversy about the precise value of the cutoff
frequency for phase locking, there seems to be no hint in

the literature that it could be as high at 30 kHz. Taking
all this at face value, it seems implausible that the audi-
tory nerve actually transmits to the brain anything like
a complete replica of the echo waveforms.
There is a second problem with this seemingly simple

calculation. If we expand the SNR for small δτ , we have

SNR =
2

N [C(0)− C(δτ)] ≈ C(0)

N ·
[
C ′′(0)

C(0)

]
(δτ)2.

(395)
We expect that the term in brackets, which has the units
of 1/(time)2, is determined by the time scale on which the
echolocation pulse is varying, something like ∼ 35µsec.
On the other hand, the first term, C(0)/N measures how
loud the echo is relative to the background noise, and
is dimensionless. We recall that in acoustics it is con-
ventional to measure in deciBels, where 10 dB represents
a factor of ten difference in acoustic power or energy.
A typical quiet conversation produces sounds ∼ 30 dB
above our threshold of hearing and hence above the lim-
iting internal noise sources in the ear, whatever these may
be. The bat’s echolocation pulses are enormously loud,
and although the echoes may be weak, it still is plausible
that (at least in the laboratory setting) they are ∼ 60 dB
above the background noise. This means that our cal-
culation predicts a signal–to–noise ratio of one when the
differences in delay δτ are measured in tens of nanosec-
onds, not microseconds. I think this was viewed as so
obviously absurd that it was grounds for throwing out
the whole idea that the bat uses detailed waveform in-
formation, even without reference to data on what the
auditory nerve can encode.
In an absolutely stunning development, however, Sim-

mons and colleagues went back to their experiments, pro-
duced delays in the appropriate range—convincing your-
self that you have control of acoustic and electronic delays
with nanosecond precision is not so simple—and found
that the bats could do what they should be able to do
as ideal detectors: they detect 10 nanosecond differences
in echo delay, as shown in Fig 58. Further, they added
noise in the background of the echoes and showed that
performance of the bats tracked the ideal performance
over a range of noise levels. This is a wonderful example
with which to start this section of our discussion, since
we have absolutely no idea how the bat manages this
amazing feat of signal processing.

The problem of echo delay discrimination has just
enough structure to emphasize an important point: when
we make perceptual decisions, we are not identifying sig-
nals, we are identifying the distribution out of which
these signals have been drawn. This becomes even more
important as we move toward more complex tasks, where
the randomness is intrinsic to the ‘signal’ rather than
just a result of added noise. As an example, a single
spoken word can generate a wide variety of sounds, all
the more varied when embedded in a sentence. Identi-
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FIG. 58 Bat echo discrimination performance at very small
delays, from Simmons et al (1990). Should add something
about dependence on background noise level.]

fying the word really means saying that the particular
sound we have heard comes from this distribution and
not another. Importantly, probability distributions can
overlap, and hence there are limits on the reliability of
discrimination.

Some years ago, Barlow and colleagues launched an
effort to use these ideas of discrimination among distri-
butions to study progressively more complex aspects of
visual perception, in some cases reaching into the psy-
chology literature for examples of gestalt phenomena—
where our perception is of the whole rather than its parts.
One such example is the recognition of symmetry in oth-
erwise random patterns. Suppose that we want to make
a random texture pattern. One way to do this is to draw
the contrast C(x) at each point x in the image from some
simple probability distribution that we can write down.
An example is to make a Gaussian random texture, which
corresponds to

P [C(x)] ∝ exp

[
−1

2

∫
d2x

∫
d2x′C(x)K(x− x′)C(x′)

]
,

(396)

whereK(x−x′) is the kernel or propagator that describes
the texture. By writing K as a function of the difference
between coordinates we guarantee that the texture is ho-
mogeneous; if we want the texture to be isotropic we
take K(x − x′) = K(|x − x′|). Using this scheme, how
do we make a texture with symmetry, say with respect
to reflection across an axis?

Problem 70: Texture discrimination. Show that Eq (396)
can be rewritten as

P [C(x)] ∝ exp

[
−
1

2

∫
d2k

(2π)2
|C̃(k)|2

SC(k)

]
, (397)

where SC(k) is the (now two dimensional) power spectrum, con-
nected as usual to the correlation function

〈C(x)C(x′)〉 =
∫

d2k

(2π)2
SC(k)eik·(x−x′). (398)

Suppose that you have the task of discrimination between images
drawn from distributions characterized by two different power spec-
tra, SC(k) and SC(k) + ∆SC(k). Show that, assuming one has
access to a large area of the image, the discrimination problem for
small ∆SC(k) is again like the discrimination of a single Gaus-
sian variable. Explain what role is played by the assumption of a
“large area,” and what defines large in this context. How does the
signal–to–noise ratio for discrimination depend on area?

The statement that texture has symmetry across an an
axis is that for each point x we can find the correspond-
ing reflected point R̂ · x, and that the contrasts at these
two points are very similar; this should be true for every
point. This can be accomplished by choosing

Pγ [C(x)] ∝ exp

[
−1

2

∫
d2x

∫
d2x′C(x)K(x− x′)C(x′) +

γ

2

∫
d2x|C(x)− C(R̂ · x)|2

]
, (399)

where γ measures the strength of the tendency toward
symmetry. Clearly as γ → ∞ we have an exactly sym-
metric pattern, quenching half of the degrees of freedom
in the original random texture. On the other hand, as
γ → 0, the weakly symmetric textures drawn from Pγ be-
come almost indistinguishable from a pure random tex-

ture (γ = 0). Given images of a certain size, and a known
kernel K, there is a limit to the smallest value of γ that
can be distinguished reliably from zero, and we can com-
pare this statistical limit to the performance of human
observers. This is more or less what Barlow did, although
he used blurred random dots rather than the Gaussian



106

textures considered here; the idea is the same, and all
the details become the same in the limit of many dots.
The result is that human observers come within a factor
of two of the statistical limit for detecting γ or its analog
in the random dot patterns. [Show a 1D version of this
problem in a figure.]

One can use similar sorts of visual stimuli to think
about motion, where rather than having to recognize a
match between two halves of a possibly symmetric im-
age we have to match successive frames of a movie. Here
again human observers can approach the statistical lim-
its, as long as we stay in the right regime: we seem not to
make use of fine dot positioning (as would be generated
if the kernel K only contained low order derivatives) nor
can we integrate efficiently over many frames. These re-
sults are interesting because they show the potentialities
and limitations of optimal visual computation, but also
because the discrimination of motion in random movies
is one of the places where people have tried to make close
links between perception and neural activity in the (mon-
key) cortex.

Let us look in detail at the case of visual motion es-
timation, using not humans or monkeys, but a smaller
system which have met once before—the visual system of
the fly, which we have met already in Section I.A. If you
watch a fly flying around in a room or outdoors, you will
notice that flight paths tend to consist of rather straight
segments interrupted by sharp turns and acrobatic in-
terludes. These observations can be quantified through
the measurement of trajectories during free flight, and
in experiments where the fly is suspended from a tor-
sion balance or a fine tether. Given the aerodynamics
for an object of the fly’s dimensions, even flying straight
is tricky. In the torsion balance one can demonstrate di-
rectly that motion across the visual field drives the gener-
ation of torque, and the sign is such as to stabilize flight
against rigid body rotation of the fly. Indeed one can
close the feedback loop by measuring the torque which
the fly produces and using this torque to (counter)rotate
the visual stimulus, creating an imperfect ‘flight simula-
tor’ for the fly in which the only cues to guide the flight
are visual; under natural conditions the fly’s mechanical
sensors play a crucial role. Despite the imperfections of
the flight simulator, the tethered fly will fixate small ob-
jects, thereby stabilizing the appearance of straight flight.
Similarly, aspects of flight behavior under free flight con-
ditions can be understood if flies generate torques in re-
sponse to motion across the visual field, and that this
response is remarkably fast, with a latency of just ∼ 30
msec. The combination of free flight and torsion bal-
ance experiments strongly suggests that flies can estimate
their angular velocity from visual input alone, and then
produce motor outputs based on this estimate.

Voltage signals from the receptor cells are processed
by several layers of the brain, each layer having cells or-
ganized on a lattice which parallels the lattice of lenses

visible from the outside of the fly. As shown in Fig 59,
after passing through the lamina, the medulla, and the
lobula, signals arrive at the lobula plate. Here there is a
stack of about 50 cells which are are sensitive to differ-
ent components of motion. These cells have imaginative
names, such as H1 and V1, which respond to horizontal
and vertical components of motion, respectively. If one
kills individual cells in the lobula plate then the simple
experiment of moving a stimulus and recording the flight
torque no longer works, strongly suggesting that these
cells are an obligatory link in the pathway from the retina
to the flight motor. Taken together, these observations
support a picture in which the fly’s brain uses photore-
ceptor signals to estimate angular velocity, and encodes
this estimate in the activity of a few neurons.48 What
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FIG. 59 The visual system of a fly, from the retina to the
motion sensitive cells of the lobula plate. From de Ruyter
van Steveninck & Bialek (2002).

48 You should be skeptical of any claim about what the brain com-
putes, or more generally what problems an organism has to solve
in order to explain some observed behavior. The fact that flies
can stabilize their flight using visual cues, for example, does not
mean that they compute motion in any precise sense—they could
use a form of ‘bang–bang’ control that needs knowledge only of
the algebraic sign of the velocity, although I think that the tor-
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position (photoreceptor lattice spacings)
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FIG. 60 The limits to motion detection. At top, a possible
pattern of contrast (normalized light intensity) vs. position
or angle in the visual world. Blue denotes the original pat-
tern, and green illustrates a shift by one tenth of the spac-
ing between photoreceptors. The second panel from the top
shows the blurring and sampling of the image, with Gaus-
sian apertures that provide a model for the optics of the fly’s
eye. Note that the spacing between photoreceptors is compa-
rable to width of the diffraction blur. The third panel shows
the signal arriving at each photoreceptor. We see that the
blurring reduces the contrast enormously. The bottom panel
illustrates the effect of adding noise, here with an amplitude
expected if each snapshot involves counting an average of 103

photons. Insets show the distribution of signals plus noise
in response to the original (blue) and shifted (green) images.
Despite the large differences between the two initial patterns,
only one of the five receptor cells shown here would be able to
come near to reliable detection. The experiments described
in the text are done under conditions of even smaller signal–
to–noise ratios.

can we say about the physical limits to the precision of
this computation?

Suppose that we look at a pattern of typical contrast C
and it moves by an angle δθ, as schematized in Fig 60. A
single photodetector element will see a change in contrast
of roughly δC ∼ C · (δθ/φ0), where φ0 is the angular
scale of blurring due to diffraction. If we can measure
for a time τ , we will count an average number of photons
Rτ , with R the counting rate per detector, and hence
the noise can be expressed as a fractional precision in
intensity of ∼ 1/

√
Rτ . But fractional intensity is what

we mean by contrast, so 1/
√
Rτ is really the contrast

sion balance experiments argue against such a model. It also
is a bit mysterious why we find neurons with such understand-
able properties: one could imagine connecting photoreceptors to
flight muscles via a network of neurons in which there is nothing
that we could recognize as a motion–sensitive cell. Thus it is not
obvious either that the fly must compute motion or that there
must be motion–sensitive neurons.

noise in one photodetector. To get the signal–to–noise
ratio we should compare the signal and noise in each of
the Ncells detectors, then add the squares if we assume
(as for photon shot noise) that noise is independent in
each detector while the signal is coherent:

SNR ∼ Ncells ·
(
δθ

φ0

)2

C2Rτ. (400)

Motion discrimination is hard for flies because they have
small lenses and hence blurry images (φ0 is large) and
because they have to respond quickly (τ is small); typi-
cal photon counting rates in a laboratory experiment are
R ∼ 104 s−1 and outside on a bright day one can get to
R ∼ 106 s−1. Under reasonable laboratory conditions—
and taking account of all the factors that go in front of
our rough Eq (400) in a more careful calculation—the
optimal estimator would reach SNR = 1 at an angular
displacement of δθ ∼ 0.05◦.
We can test the precision of motion estimation in two

very different ways. One is similar to the experiments
we have discussed already, where we are forced to choose
between two alternatives and measure the reliability of
this choice. A single neuron responds to sudden steps of
motion with a brief volley of action potentials which we

FIG. 61 Motion discrimination with the fly’s H1 neuron,
from de Ruyter van Steveninck & Bialek (1995). At left, a
schematic of the spikes in response to a transient stimulus,
such as a step of motion. We can describe the response by
the time until the first spike τ0, the time from the first spike
to the second τ1, ... . Alternatively we can just count the
spikes that have occurred up to a certain time after the stim-
ulus, or we could at some fixed time resolution describe the
whole pattern of spikes as a binary word. In each case we can
analyze the discriminability of different stimuli by accumulat-
ing, over many repeated presentations of each stimulus, the
distribution of responses. At right, an example of this analy-
sis, focusing on the single interspike interval τ1 in response to
steps that differ in size by 0.12◦. Long intervals correspond
to the weaker stimulus, and from the cumulative probability
distributions in the top panel we can read off the probabilities
of correct identification of each stimulus.
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can label as occurring at times t1, t2, · · · . We as observers
of the neuron can look at these times and try to decide
whether the motion had amplitude θ+ or θ−; the idea
is exactly the same as in earlier discussions of discrim-
ination of signal vs noise, but here we have to measure
the relevant probability distributions rather than making
assumptions about their form; see Fig 61. Doing the in-
tegrals, one finds that looking at spikes generated in the
first ∼ 30msec after the step (as in the fly’s behavior) we
can reach the reliability expected for SNR = 1 at a dis-
placement δθ = |θ+ − θ−| ∼ 0.12◦, within a factor of two
of the theoretical limit set by noise in the photodetectors.

It is worth noting a few more points that emerge from
Fig 61 and further analyses of this experiment. First, on
the ∼ 30msec time scale of relevance to behavior, there
are only a handful of spikes. This is partly what makes
it possible to do the analysis so completely, but it also
is a lesson for how we think about the neural represen-
tation of information in general. Second, we can dissect
the contributions of individual spikes to show that each
successive spike makes a nearly independent contribution
to the signal to noise ratio for discrimination, so there is
essentially no redundancy. Finally, the motions we are
discussing—motions close to the physical limits of de-
tectability, and motions that real neurons can represent
reliably—are much smaller than the lattice spacing on
the retina or the nominal “diffraction limit” of angular
resolution ∼ 1◦. Analogous phenomena have been known
in human vision for more than a century, and are called
hyperacuity.

The step discrimination experiment gives us a very
clear view of reliability in the neural response, but as with
the other discrimination experiments discussed above
it’s not a very natural task. An alternative is to ask
what happens when the motion signal (angular veloc-
ity θ̇(t)) is a complex function of time. Then we can
think of the signal to noise ratio in Eq. (400) as be-
ing equivalent to a spectral density of displacement noise
N eff

θ ∼ φ2
0/(NcellsC2R), or a generalization in which the

photon counting rate is replaced by an effective, fre-
quency dependent, rate related to the noise character-
istics of the photoreceptors, as in Fig 13. It seems likely,
as discussed above, that the fly’s visual system really
does make a continuous or running estimate of the an-
gular velocity, and that this estimate is encoded in the
sequence of discrete spikes produced by neurons like H1.
It is not clear that any piece of the brain ever “decodes”
this signal in an explicit way, but if we could do such a
decoding we could test directly whether the accuracy of
our decoding reaches the limiting noise level set by noise
in the photodetectors.

Decoding spike trains, at least under certain condi-
tions, is much easier than one might have expected. The
idea, shown in Fig 62, is that each spike contributes a
small transient blip to our estimate of the signal vs. time,
and to obtain the full estimate we add up all these small

FIG. 62 Decoding continuous motion signals from spikes gen-
erated by the H1 neuron, from Bialek et al (1991). At left,
dashed curve indicates the true stimulus, angular velocity as
a function of time; solid line is the result of the decoding pro-
cess, from Eq (403). Tick marks below the stimulus indicate
the spikes generated in a single presentation of this stimu-
lus (downward ticks) or its negative (upward ticks). This
consideration of a hypothetical neuron that sees the negative
stimulus is meant to restore symmetry between positive and
negative velocities and corresponds roughly to the response
of the H1 neuron on the other side of the fly’s head, which
has the opposite direction selectivity. At right is the spectral
density of errors in the reconstruction. The error is reported
as a displacement error, so the spectrum grows as 1/ω2 for
low frequencies. Also shown is the spectrum of the stimulus
(smooth line) and the limiting noise level computed from the
actual noise levels measured in fly photoreceptors under the
same conditions as for these experiments on H1. Reconstruc-
tion error and the physical limit to precision converge at high
frequencies, so that the fly approaches optimal performance.

contributions. Thus, if the signal we are interested in is
s(t), our estimate is

sest(t) =
∑

i

f(t− ti), (401)

where ti are the spike arrival times as before, and we can
choose the filter f(t) to minimize the errors

χ2 ≡
∫

dt

∣∣∣∣s(t)− sest(t)

∣∣∣∣
2

. (402)

Like most neurons, H1 has a sign preference for its
inputs—motion in one direction generate more spikes,
while motion in the opposite direction generates fewer
spikes. Thus, large negative velocities cause H1 to go
silent, and in these periods we would have no basis for
inferring the detailed waveform of velocity vs. time. For-
tunately, the fly has two H1 neurons, one on each side of
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the head, with opposite direction preferences. We could
record from both cells, or we could use the fact that the
two cells see opposite motions relative to their own pref-
erence, and look at the responses of one neuron to both a
stimulus and the opposite motion. If the spikes in these
two cases are {t+i } and {t−i }, we can make a more sym-
metric reconstruction

sest(t) =
∑

i

[
f(t− t+i )− f(t− t−i )

]
. (403)

Again, we choose the filter f(t) to minimize χ2.49

In Figure 62 we see that the reconstruction of the ve-
locity waveform in fact is quite accurate. More quanti-
tatively, the power spectrum of the errors in the recon-
structed signal approaches the limit set by noise in the
photoreceptor cells, within a factor of two at high fre-
quencies. Further, one can change, for example, the im-
age contrast and show that the resulting error spectrum
scales as expected from the theoretical limit.
To the extent that the fly’s brain can estimate motion

with a precision close to the theoretical limit, we know
that the act of processing itself does not add too much
noise. But being quiet is not enough: to make maximally
reliable estimates of nontrivial stimulus features like mo-
tion one must be sure to do the correct computation.
Making this idea precise is in the same spirit as the dis-
cussion, in Section I.D, of pooling single photon signals
from multiple rod cells at the level of bipolar cells. There
we saw how the different orders of nonlinearity and sum-
mation result in very different final signal–to–noise ratios,
even though all we are trying to do is add. Here the prob-
lem is more difficult, because the fly wants to estimate a
feature of the visual world which is not directly reflected
in the signals of any single receptor cell.

Problem 71: (Relatively) simple estimation problems.
Suppose that someone draws a random number x from a probability
distribution P (x). Rather than seeing x itself, you get to see only
a noisy version, y = x + η, where η is drawn from a Gaussian
distribution with variance σ2, so that

P (y|x) =
1

√
2πσ2

exp

[
−

1

2σ2
(y − x)2

]
. (404)

Having seen y, your job is to estimate x.
(a.) Show that everything you know about x by virtue of ob-

serving y can be written in a way that suggests an analogy with
statistical mechanics,

P (x|y) =
1

Z(y)
exp

[
−
Veff(x)

kBTeff
+

Feffx

kBTeff

]
, (405)

where

Veff(x)

kBTeff
= − lnP (x) +

x2

2σ2
(406)

kBTeff = σ2 (407)

Feff = y. (408)

(b.) From the discussion in Section I.D, we know that if we
define “best” to be the estimator that minimizes χ2, then the best
estimator is the conditional mean,

xest(y) =

∫
dx xP (x|y). (409)

Construct xest(y) in the case where P (x) is a Gaussian with unit
variance. Show that this estimate, although “best,” is systemat-
ically wrong. That is, if we average xest(y) over the distribution
P (y|x), we do not recover x itself. Explain why this can still be
the best estimate.

(c.) Now consider the case P (x) = (1/2) exp(−|x|). Show that,
even though the transformation from what we are interested in (x)
to what we measure (y) is linear, the optimal estimator is nonlinear.
In particular, if rather than asking for an estimator that minimizes
χ2, we ask for the most probable value of x given y, show that the
optimal estimator involves a threshold nonlinearity.

Motion estimation is an example of the more general
problem of perceptual estimation. The data to which the
brain has access are the responses of receptor cells, and
the goal is to estimate some feature of the world. The
first key step is to use Bayes’ rule, combining the noisy
data from the receptors with our prior knowledge that
some things are more likely than others. Schematically,

P (feature|receptor responses)

=
P (receptor responses|feature)P (feature)

P (receptor responses)
.(410)

The second key step is to note that receptors typically
don’t respond directly to the features of interest, but
rather to raw sensory signals such as light intensity, sound
pressure in the auditory system, the concentrations of
specific molecular species in complex odors, etc.. Con-
tinuing schematically, let’s denote the full spatiotempo-
ral pattern of light intensities falling on the retina by I.
Receptor responses really depend on I, which in turn
is correlated with the feature that we want to estimate.
Thus,

P (receptor responses|feature) =
∫

DI P (receptor responses|I)P (I|feature), (411)
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and putting all the terms together we have

P (feature|receptor responses) = 1

P (receptor responses)

∫
DI P (receptor responses|I)P (I, feature). (412)

If the lights are bright, and the noise level in the pho-
toreceptors is low, it is plausible that knowing the pat-
tern of receptor responses is almost equivalent to know-
ing the spatiotemporal pattern of light intensities I,
and hence viewed as a function of I the distribution
P (receptor responses|I) is very sharply peaked. Then
the entire structure of the optimal computation that
maps receptor responses to the desired feature is con-
trolled by P (I, feature), which is a property of the world
that we live in rather than of our eyes or brains. This
is perhaps our most important qualitative conclusion:
optimal estimates of sensory features involve computa-
tions determined by the structure of the world around
us. To the extent that our brains, and those of other an-
imals, make optimal estimates, this means that the way
in which we process the world is set by the physics of
our environment, not by peculiarities of our biological
hardware.

For the case of motion estimation, what is the struc-
ture of P (I, feature)? For simplicity let’s think about
a one–dimensional version of the problem, so that spa-
tiotemporal pattern of light intensity I ≡ I(x, t). Then if
a small piece of the visual world is moving rigidly relative
to us with a velocity v, we should have I(x, t) = I0(x−vt).
Then we can take derivates in space and time,

∂I(x, t)

∂x
= I ′0(x− vt) (413)

∂I(x, t)

∂t
= −vI ′0(x− vt). (414)

Thus, we can compute the velocity as a ratio of spatial
and temporal derivatives,

vest = − ∂I(x, t)/∂t

∂I(x, t)/∂x
. (415)

This is correct, but we have derived it by pushing to ex-
tremes. First we said that noise in the receptor responses
is negligible, so we can say that we are effectively com-
puting functions of the light intensity itself. Then we
assumed that the dynamics of the light intensity is de-
termined only by motion at the single velocity v. If either
of these assumptions breaks down, our “gradient based”
estimator of velocity, Eq (415) gets into serious trouble.

When we deal with noisy data we develop several in-
tuitions. First, the nature of our measurements is such
that there usually is relatively more noise at higher fre-
quencies, both in time and in space. Thus, to suppress
noise, we average. Conversely, if we differentiate, we ex-
pect that noise will be amplified, since differentiation en-
hances higher frequencies. Second, when we have a noisy

measurement, it is dangerous to put this in the denom-
inator of a ratio—there is a chance that we will divide
by zero, because of a fluctuation. The gradient based
estimator compounds these sins, differentiating and then
taking a ratio. We expect that this will be a disaster if
our low noise assumptions are violated.

Problem 72: Ratios of noisy numbers. Suppose that we
have two numbers that we try to measure, a and b. Our measure-
ments, which we can call â and b̂, give us the values of a and b but
with some added Gaussian noise, so that

P (â|a) =
1

√
2πσ2

e−(â−a)2/2σ2
; (416)

for simplicity we’ll assume that the noise level is the same for our
measurements of b, so that

P (b̂|b) =
1

√
2πσ2

e−(b̂−b)2/2σ2
. (417)

What we would like to do is to estimate the ratio r ≡ a/b from our

measurements â and b̂.
(a.) Suppose we make form a naive estimate just by taking the

ratio of our measurements, rnaiveest = â/b̂. Do a small simulation to
examine numerically the probability distribution of this estimate.
In particular, consider the case where a = b = 1, so the correct
answer is r = 1. If σ = 0.1, presumably rnaiveest stays close to
this correct answer, but what happens at σ = 0.2 or 0.5? How
does the variance of the estimator rnaiveest change as the noise level
σ increases? Be sure to check in your simulation that you have
enough samples to get a reliable measure of the variance. Is there
anything suspicious in this computation, especially at larger σ?

(b.) Look more closely at the right hand tail of the distribution
of rnaiveest , that is the behavior of P (rnaiveest " 1) in the case where
a = b = 1. Plot your numerical results on linear, semilog, and
log–log plots to see if you can recognize the shape of the tail. If
the shape changing with the noise level σ? Try to make a precise
statement based on your simulations. I have left this somewhat
open ended.

(c.) Try to derive analytically the regularities that you found in
[b].

(d.) Although we think of â and b̂ as measurements of the sep-
arate variables a and b, really all we want to know is the ratio
r ≡ a/b. Show that the best estimate can be written, using Bayes’
rule, as

rest(â, b̂) =

∫
dr

r

P (â, b̂)

∫
da

∫
db δ

(
r −

a

b

)
P (â|a)P (b̂|b)P (a, b).

(418)
Make as much progress as you can evaluating these integrals on the
hypothesis that the prior distribution P (a, b) is broad and feature-
less. If you want to proceed analytically, you may find it useful to
introduce a Fourier representation of the delta function, and look
for a saddle point approximation. Numerically, you could assume,
for example, that P (a, b) is uniform over some region of the a − b
plane, and just do the integrals for representative values of â and
b̂, mapping the function rest(â, b̂). Can you verify that rnaiveest is
close to optimal at very small values of σ? What happens at larger
values of σ? If σ is fixed, what happens as b → 0?
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The most obvious problem with the gradient motion
estimator in Eq (415) is simply that it is not well defined
when the spatial derivative becomes small. This prob-
lem exists even if noise in the photoreceptors is small.
To address the problem we have to understand what the
distribution P (I, feature) looks like. Conceptually, what
we want to do is simple. Imagine taking a walk on a
very still day, so that motions of the world relative to
our retina (or relative to the fly’s retina) are dominated
by our own motion. If we carry a camera as we walk, we
can take a movie, and we can also put a gyroscope on
the camera to monitor it’s motion. What emerges from
such an experiment, then, is a set of samples drawn out
of the distribution P (I, feature). In particular, pixel by
pixel and moment by moment, we can compute the spa-
tial and temporal derivatives in the movie, and measure
the velocity as well, so that we sample the distribution
P (∂I/∂t, ∂I/∂x, v).

If the gradient based estimate of motion were ex-
act, then the distribution P (∂I/∂t, ∂I/∂x, v) would
be very sharply peaks along a ridge where v =
−(∂I/∂t)/(∂I/∂x). To see if this is right, we can com-
pute directly the optimal estimator. We know that the
best estimate in the sense of χ2 is the conditional mean,
so should compute50

vest(∂tI, ∂xI) =

∫
dv v

P (∂tI, ∂xI, v)

P (v)
. (419)

The results of this computation, based on a walk in
the woods, are shown in Fig 63.51 We see that, when
the spatial gradients are large, the contours of con-
stant vest really are straight lines, as expected from the
gradient based estimator. But when the spatial gra-
dients are smaller, a new structure emerges, which is
more closely approximated by a product of derivatives,
vest ∝ (∂I/∂t) × (∂I/∂x), rather than a ratio. As you
can see in the following problem, the same product struc-
ture emerges if we go back to the general formulation and
take the limit of high noise levels.

Problem 73: Series expansion of the optimal estimator
at low signal–to–noise ratios. We know from Section I.A that

50 I need to make a segue between the notation ∂I/∂x and ∂xI.
51 Although conceptually simple, to generate Fig 63 requires mea-

suring light intensities with spatial and temporal resolution
matched to that of the retina, but collecting much more light
so that photon shot noise in these measurements will be less
than that in the retina and one can meaningfully claim to mea-
sure intensity at the input to the visual system. For details, as
always, see the references at the end of the section.
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FIG. 63 Optimal estimates of angular velocity as a function of
local spatial and temporal gradients of light intensity. Com-
puted from the theory described in the text, with the joint
distribution of movies and motion sampled experimentally.
Images are collected through an optical system that matches
the fly’s eye, and smoothed in time with a filter that optimizes
estimation performance. At small signals, near the center of
the plot, we see that moving along a line of constant physi-
cal velocity (in white; ∂tI + v∂xI = 0) results in a changing
estimate—a systematic error; only for large signals is the op-
timal estimate veridical. Experiments by SR Sinha & RR de
Ruyter van Steveninck.

photoreceptors in the fly respond linearly to changes in light inten-
sity or contrast [point back to specific equations; check consistency
of notation]. If the fly is rotating relative to the world along an an-
gular trajectory θ(t), then the spatiotemporal pattern of contrast
(again in a one–dimensional model) is C(x − θ(t), t). Individual
cells respond with voltages Vn(t) given by

Vn(t) =

∫
dt′ T (t− t′)

∫
dxM(x− xn)C(x− θ(t′), t′), (420)

where T (τ) is the temporal impulse response function and M(x−
xn) is an aperture function centered on a lattice point xn in the
retina.

(a.) Show that the distribution of all the voltages given the
trajectory can be written as

P [{Vn(t)}|θ(t)]

∝
∫

DC P [C] exp

[
−
1

2

∑

n

∫
dω

2π

|Ṽn(ω)− 〈Ṽn(ω)〉|2

NV (ω)

]
,(421)

where the mean voltages are, in the Fourier representation,

〈Ṽn(ω)〉 = T̃ (ω)

∫
dxM(x− xn)

∫
dt e+iωtC(x− θ(t), t), (422)

NV (ω) is the power spectrum of the voltage noise, and P [C] is the
distribution of contrast that the fly would observed if held at θ = 0.

(b.) The optimal estimator is the conditional mean,

θ̇est(t0) =

∫
Dθ θ̇(t0)P [θ(t)|{Vn(t)}] (423)

P [θ(t)|{Vn(t)}] =
P [{Vn(t)}|θ(t)]P [θ(t)]

P [{Vn(t)}]
. (424)

Evaluate all the integrals in a perturbation series, assuming that
the average voltage responses are small compared with the noise
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level. You should find that the leading term is

θ̇est(t) ≈
∑

nm

∫
dτ

∫
dτ ′Vn(t− τ)Knm(τ, τ ′)Vm(t− τ ′). (425)

Relate the kernel Knm(τ, τ ′) to expectation values in the distribu-
tions P [C(x, t)] and P [θ(t)].

(c.) Can you reformulate the expansion so that instead of ex-
panding for small overall signal–to–noise ratio (small R), you ex-
pand for small instantaneous signals, that is for small Vn(t)? What
happens to the kernels in this case? It seems obvious that there
shouldn’t be a linear term in this expansion. Can there be a third
order term? If such a term exists, what happens to the optimal
estimate of velocity when if we show the same movie, but with
inverted contrast (exchanging black for white)?

We can understand the low signal to noise ratio limit
by realizing that when something moves there are corre-
lations between what we see at the two space–time points
(x, t) and (x + vτ, t + τ). These correlations extend to
very high orders, but as the background noise level in-
creases the higher order correlations are corrupted first,
until finally the only reliable thing left is the two–point
function, and closer examination shows that near neigh-
bor correlations are the most significant: we can be sure
something is moving because signals in neighboring pho-
todetectors are correlated with a slight delay. This form
of “correlation based” motion computation, schematized
in Fig 64, was suggested long ago by Reichardt and Has-
senstein based on behavioral experiments with beetles.

There are two clear signatures of the correlation model.
First, since the receptor voltage is linear in response to
image contrast, the correlation model confounds contrast
with velocity: all things being equal, doubling the image
contrast causes our estimate of the velocity to increase
by a factor of four (!). This is an observed property of
the flight torque that flies generate in response to visual
motion, at least at low contrasts, and the same quadratic
behavior can be seen in the rate at which motion sensi-
tive neurons generate spikes, as shown in Fig 65. Even
humans experience the illusion of contrast dependent mo-
tion perception at very low contrast. Although this might
seem strange, it’s been known for decades.

The second signature of correlation computation is
that we can produce movies which have the right spa-
tiotemporal correlations to generate a nonzero estimate
θ̇est but don’t really have anything in them that we would
describe as “moving” objects or features. Consider a spa-
tiotemporal white noise movie ψ(x, t),

〈ψ(x, t)ψ(x′, t′)〉 = δ(x− x′)δ(t− t′), (426)

and then add the movie to itself with a weight and an
offset:

C(x, t) = ψ(x, t) + aψ(x+∆x, t+∆t). (427)

Composed of pure noise, there is nothing really moving
here. If you watch the movie, however, there is no ques-
tion that you think it’s moving, and the fly’s neurons
respond too (just like yours, presumably). Even more
impressive is that if you change the sign of the weight a,
then the direction of motion reverses, as predicted from
the correlation model.

Problem 74: Motion from correlations alone. Generate
the image sequences described in the previous paragraph, and verify
that you (and your friends) perceive them as moving.

(a.) Play with the amplitude and sign of the weight a to see
how it influences your perception. Can you find a regime in which
the speed of motion seems to depend on |a|? Can you verify the
reversal of motion when a → −a?

(b.) Compute the correlation function 〈C(x, t)C(x′, t′)〉; for sim-
plicity you might want to confine your attention to a one dimen-
sional example. Consider also the correlation function for a genuine
moving image, in which C(x, t) = C0(x− vt). If v = ∆x/∆t, how
do the two correlation functions compare?

contrast pattern, C(x,t) 
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FIG. 64 The correlator model of visual motion detection,
adapted from Reichardt (1961). A spatiotemporal contrast
pattern C(x, t) is blurred by the photoreceptor point spread
function, M(x), and sampled by an array of photoreceptors,
two of which (neighboring photoreceptors numbers n− 1 and
n) are shown here. After phototransduction, the signals in
each photoreceptor are filtered by two different linear filters,
f(t) and g(t). The outputs of these filters from the differ-
ent photoreceptors, s1(t) and s3(t) from photoreceptor n and
s2(t) and s4(t) from photoreceptor n − 1 are multiplied and
one of these products is subtracted from the other by the ad-
dition unit, yielding a direction selective response. Thanks to
Rob de Ruyter for this figure.
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FIG. 65 Responses of the H1 neuron to moving scenes with
varying contrast. Scenes consist of bars with random inten-
sities, moving at constant velocity. At left, at one particular
velocity we measure the rate at which H1 generates action po-
tentials, as a function of contrast. Lower panel expands the
region at low contrast, emphasizing the quadratic behavior.
At right, the responses at multiple velocities, showing that
the “saturated” response at high contrast still is sensitive to
the speed of movement. [does this appear in a paper? details
of stimuli?] Thanks to Rob de Ruyter for this figure.

The optimal motion estimator illustrates the general
tradeoff between systematic and random errors. If we
really are viewing an image that moves rigidly, so that
C(x, t) = C(x + vt), then there is no question that the
“right answer” is to compute v as the ratio of tempo-
ral and spatial derivatives. Any departure from this
involves making a systematic error. But, as discussed
above, taking derivatives and ratios are both operations
which are perilous in the presence of noise. To insulate
the estimate from random errors driven by such noise
(or, more generally, by aspects of the image dynamics
that are not related to motion), we must calculate some-
thing which, typically, will not give the “right answer”
even on average—we accept some systematic errors in
order to reduce the impact of random errors. In the con-
text of perception, systematic errors have a special name:
illusions.

Could the theory of optimal estimation be a quanti-
tative theory of illusions, grounded in physical princi-
ples? Colloquially, we say that “to err is human,” and it
is conventional to assume that cases in which biological
systems get the wrong answer to their signal processing
problems provide evidence regarding the inadequacies of
the biological hardware. Is it possible that, rather than
being uniquely human or biological, to err is the optimal
response to the limits imposed by the physical world?

The long history of the correlation model provides am-
ple testimony that insect visual systems make the kind
of systematic errors expected from the optimal estima-
tor, but precisely because of this long history it is hard
to view these are successful predictions. It would be more
compelling if we could show that the same system which
is well described by the correlator under some conditions
crosses over to something more like the ratio of deriva-
tives model at high signal–to–noise ratio, but this has
been elusive. The contrast dependence of the response
in the motion sensitive neurons saturates at high con-
trast, and this saturated response still varies with ve-
locity (Fig 65), as if the larger signals allow the system
to disentangle ambiguities and recover a veridical esti-
mate, but other experiments suggest that errors inherent
in the correlation model persist even with strong signals.
Humans easily see the illusion of motion with the noise
movies of Eq (427), as well as other motion illusions, but
at high signal–to–noise ratios our visual systems recover
estimates of velocity which are not systematically dis-
torted, suggesting that in primates there is some sort of
crossover between different limits of the motion compu-
tation, and there are efforts to make the correspondence
with the optimal estimator more quantitative. Exper-
iments under more natural, free flight conditions show
that both flies and bees have access to veridical estimates
of their translational velocity and can use this to control
their flight speed, in contrast to what one would have
expected from the correlator model, and it worth noting
that the responses of the motion–sensitive neurons are
also very different under more natural conditions.
[This needs to be clearer] In Figure 66 we see the re-

sponses of the H1 neuron to the rotation of a fly, out-
side under nearly natural conditions. During the course

FIG. 66 Responses of the H1 neuron s a fly is rotated outside,
over a period during which the mean light level is falling.
[fill in the caption. does this appear in a paper? details of
stimuli?] Thanks to Rob de Ruyter for this figure.
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of the experiment, the sun was going down, and so the
mean light level varied by several orders of magnitude as
the same trajectory of angular velocity vs. time was re-
peated over and over. The integral of the trajectory was
not quite zero, however, so that on each repetition the
spatial pattern of light intensity was a bit different even
if the angular velocity was the same. At the start of the
experiment, the responses are extremely vigorous, and
insensitive to the variations in the spatial structure of
the visual environment. As the light level falls, responses
become weaker, but more dramatically we see that there
is a systematic variation from repetition to repetition,
which appears as a diagonal pattern of spikes across the
upper part of Fig 66. Thus, when signal–to–noise ra-
tios are high in the natural environment, H1 responds
to time dependent velocities and largely ignores the spa-
tial structure of its environment, while at lower signal–
to–noise ratios the confounding of spatial structure and
motion becomes more and more obvious. This pattern
is in agreement with the expectations from optimal esti-
mation theory, according to which such systematic errors
arise only from the need to insulate the computation from
random noise.

What we would really like is to have methods of dis-
secting the computation that has been done by a neuron,
simply by analyzing the relationship between visual in-
puts and spiking outputs under natural conditions. This
is a huge challenge, and obviously would be interesting
in many other contexts. Approaches to this problem are
discussed in Appendix A.7, where we also see results that
come closest to a smoking gun for the crossover between
correlator and gradient computations.

For visual signal processing, getting our hands on the
true distribution of signals in the natural environment is
a difficult experiment. For seemingly more complex “cog-
nitive” judgments, the situation, perhaps surprisingly, is
much simpler. To give an example, suppose that you are
told of a member of the United States Congress who has
served for t = 15 years. What is your prediction for how
long his total term will last? To keep things as simple as
possible, let’s assume you are not told anything about the
politics of this congressman or his district; all you have
to work with is t = 15 and your general knowledge of the
turnover of elected officials. Obviously your knowledge is
probabilistic, so we use Bayes’ rule to write

P (ttotal|t) ∝ P (t|ttotal)P (ttotal). (428)

If the moment at which the question is asked is not
somehow synchronized to the length of congressional
terms, then we have to assume that P (t|ttotal) is uniform,
P (t|ttotal) = 1/ttotal. Thus our inference is controlled by
the “prior” distribution P (ttotal), and we can look this up
in a database about the history of the congress. Finally,
if you must pick one value of ttotal, it makes sense in this
context to choose the median, the point at which the ac-
tual value of ttotal is equally likely to be longer or shorter

than your estimate. As an example, if P (ttotal) is a rea-
sonably narrow Gaussian distribution, then for t much
less than the mean 〈ttotal〉, our best estimate of ttotal is
just 〈ttotal〉 itself, while if the time t is much larger than
the mean then our best estimate is only slightly higher
than t, which makes sense. Other priors, of course, can
give qualitatively different results.

Problem 75: Estimating ttotal. Derive the results just stated
for the Gaussian prior. Consider also cases where P (ttotal) ∝ t−γ

total

or P (ttotal) ∝ tntotale
−ttotal/τ .

The example of congressional terms is not unique. We
could ask, as insurance companies do (albeit with more
input data), about human lifespans: if you meet some-
one of age t, what is your best guess about their life
expectancy? If you make a phone call and have been on
hold for t minutes, what is your best guess about the
total time you will have to wait? If you find yourself on
line t of a poem, what is your best guess about the total
length of text? Nor is the structure of the problem bound
to time, as such: suppose you learn that a movie has col-
lected t dollars in gross receipts; what is your bets guess
about what its total earnings will be? All these problems
have in common that we can look up the correct distribu-
tion P (ttotal). Another important feature is that we can
just go ask people what they think, and see how they do
relative to the predictions for optimal estimation based

FIG. 67 Estimation of totals based on one observation, from
Griffiths & Tenenbaum (2006). The top row shows the priors
P (ttotal) measured from real world data. The bottom panel
compares people’s predictions (points) based on one obser-
vation t with the optimal median estimator (solid lines) and
a naive “universal” estimate t̂total = 2t. For the reigns of
Pharaohs and the telephone waiting times, dashed lines show
optimal estimators for P (ttotal) ∝ ttotale

−ttotal/τ (τ = 17.9)
and P (ttotal) ∝ t−γ

total (γ = 2.43), respectively.
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on the priors appropriate to our real world. The results
from such an experiment are shown in Fig 67.

I found the results of Fig 67 quite astonishing when I
first saw them. The time it takes to bake a cake comes
from a very irregular distribution, but people seem to
know this distribution and estimate accordingly. They
are a bit confused about how long the Pharoahs reigned,
but their confusion is consistent: estimation of ttotal
behaves as if the subjects know the shape of P (ttotal)
but are off on the mean time scale, and if you ask an-
other group of subjects to guess the mean reign of the
Pharoahs, they deviate from the right answer by the
same factor. Important as the telephone problem may
be, this is one case where there is no convenient data to
which we can refer, so this case remains untested. In all
the other cases, however, spanning seemingly very differ-
ent domains of knowledge and very different shapes for
P (ttotal), people are performing close to the optimum.

If we trace through the details of optimal estimation
theory, one can see that construction of the correct es-
timator involves knowing not only the distribution of
signals, but also the distribution of noise. Perhaps the
simplest illustration of this is given by the problem of
combining two measurements. Suppose that we are in-
terested in x, but we observe

y1 = x+ η1 (429)

y2 = x+ η2, (430)

where the noise levels on the two measurements are gen-
erally different, 〈η21〉 = σ2

1 and 〈η22〉 = σ2
2 ; for simplicity

we will assume that the noise is Gaussian. Intuitively, we
should be able to do better by combining the two obser-
vations than we would do by looking just at one of them,
and we also expect that we should give greater weight to
the more accurate measurement. Quantitatively, if the
measurements are independent of one another, we have

P (x|y1, y2) =
P (y1, y2|x)P (x)

P (y1, y2)
(431)

∝ P (x)P (y1|x)P (y2|x) (432)

∝ P (x) exp

[
− 1

2σ2
1

(y1 − x)2 − 1

2σ2
2

(y2 − x)2
]
.

(433)

Then we can form the optimal estimator in the least
squares sense,

xest(y1, y2) ≡
∫

dx xP (x|y1, y2) (434)

=
σ2
2y1 + σ2

1y2
σ2
1 + σ2

2

, (435)

where in the last step we assume that the prior P (x) is
broad compared with the noise levels in our data. Thus,
as expected, the optimal estimate is a combination of the
data, and the weights are inverse to their relative noise
levels.

Problem 76: Cue combination. Fill in the details leading to
Eq (435). Can you work out the same problem but with additional
multiplicative noise, yn = egnx + ηn, where gn is also Gaussian?
In this case, it is possible to generate errors that are very large,
so presumably large disagreements between the data points y1 and
y2 should not be resolved by simple averaging. See how much
analytic progress you can make here, or do a simple simulation.
This is deliberately open ended.

There are many situations in which we give strongly
unequal weights to different data. A dramatic example
is ventriloquism, in which we trust our eyes not our ears,
and assign the source of speech to the person (or the
dummy) whose lips are visibly moving. To see whether
we are giving weights in relation to noise levels, as would
be optimal, we have to do an experiment in which we
can manipulate the effective noise levels. This was first
done convincingly in tasks that require subjects to com-
bine information from vision and touch, [add figure from
Ernst & Banks, with explanation]. Although under nor-
mal conditions we give strong preference to our visual
system, these data show convincingly that we do this
only because our visual system provides much more ac-
curate spatial information; if we can change their noise
levels, people will change the weights given to different
cues, as predicted by optimal estimation theory.
[loss functions, actions .. Maloney; Wolpert]
The examples of estimation that we have discussed

thus far have in common that the distribution of the fea-
ture we are interested in estimating has a single well de-
fined peak given the input sensory data. In many cases,
however, the data that we collect with our senses have
multiple interpretations, perhaps even multiple interpre-
tations that provide equally good explanations of what
we have seen or heard. These ‘ambiguous percepts’ arise
in many contexts. When we experience these stimuli, our
perceptions jump at random among the different possi-
bilities. Could these random jumps originate from the
same small noise sources that limit the reliability of our
senses? [give fuller discussion, both visual and auditory
examples ... alternative models ... maybe end with con-
nection to conscious perception?]
Need to give a summary/conclusion for the section.

While there were many precursors, reaching back across centuries,
the conclusive demonstration that bats navigate by echolocation,
with sounds beyond the range of human hearing, was by Griffin
& Galambos (1941). Griffin (1958) gives a beautiful presentation
of the history and basic facts about the system. [need original
ref for exp’t with dusted mealworms] The first suggestion of sub–
microsecond precision in this system was from Simmons (1979).
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Perhaps not surprisingly, these observations (and the provocative
title of the paper in which they were presented) touched off a flurry
of controversy; for different views, see Altes (1981) and Menne &
Hackbarth (1986). The astonishing results on nanosecond preci-
sion, and the optimality of performance in background noise, were
presented by Simmons et al (1990). For context, it is interesting to
look at examples of precise timing measurements in binaural hear-
ing [need ref, presumably to Konishi in barn owls] and in weakly
electric fish (Rose & Heiligenberg 1985).

Altes 1981: Echo phase perception in bat sonar? RA Altes, J
Acoust Soc Am 69, 1232–1246 (1981).

Griffin 1958: Listening in the Dark. DR Griffin (Yale University
Press, New Haven, 1958).

Griffin & Galambos 1941: The sensory basis of obstacle avoid-
ance by flying bats. DR Griffin & R Galambos, J Exp Zool
86, 481–506 (1941).

Menne & Hackbarth 1986: Accuracy of distance measurement
in the bat Eptesicus fuscus: Theoretical aspects and com-
puter simulations. D Menne & H Hackbarth, J Acoust Soc
Am 79, 386–397 (1986).

Rose & Heiligenberg 1985: Temporal hyperacuity in the elec-
tric sense of fish. G Rose & W Heiligenberg, Nature 318,
178–180 (1985).

Simmons 1979: Perception of echo phase information in bat
sonar. JA Simmons, Science 204, 1336–1338 (1979).

Simmons et al 1990: Discrimination of jittered sonar echoes by
the echolocating bat, Eptesicus fuscus: The shape of target
images in echolocation. JA Simmons, M Ferragamo, CF
Moss, SB Stevenson & RA Altes, J Comp Physiol A 167,
589–616 (1990).

The program of comparing human performance with statistical lim-
its in the context of higher level perception was outlined by Barlow
(1980). The experiments on symmetry in random dot patterns are
by Barlow & Reeves (1979), and an analysis of optimality in mo-
tion perception using random dot stimuli was given by Barlow &
Tripathy (1997). For a review of how these stimuli have been used
to probe the connections between neural activity and perception,
see Newsome et al (1995). [Probably there needs to be a bit more
here (!); maybe also in the text?] Note that, as discussed in Spikes
(Rieke et al 1997; see below), these experiments connecting neural
activity with perception in primates have been done, largely, in a
regime where the subject is integrating imperfectly over very long
periods of time, much longer than we would expect to see constant
velocity motion in a natural setting; see also Osborne at al (2004).
This complicates efforts to compare either neural or behavioral per-
formance with the physical limits, and indeed I don’t know of any
effort to measure the responses of visual cortex in a regime (e.g.,
photon counting in the dark) where we understand fully the sources
of noise limiting our perception; there is an opportunity here.

Barlow 1980: The absolute efficiency of perceptual decisions. HB
Barlow, Phil Trans R Soc Ser B 290, 71–82 (1980).

Barlow & Reeves 1979: The versatility and absolute efficiency
of detecting mirror symmetry in random dot displays. HB
Barlow & BC Reeves, Vision Res 19, 783–793 (1979).

Barlow & Tripathy 1997: Correspondence noise and signal
pooling in the detection of coherent visual motion. H Barlow
& SP Tripathy, J Neurosci 17, 7954–7966 (1997).

Newsome et al 1995: Visual motion: Linking neuronal activ-
ity to psychophysical performance. WT Newsome, MN
Shadlen, E Zohary, KH Britten & JA Movshon, in The Cog-
nitive Neurosciences, M Gazzaniga, ed, pp 401–414 (MIT
Press, Cambridge, 1995).

Osborne et al 2004: Time course of information about motion
direction in visual area MT of macaque monkeys. LC Os-
borne, W Bialek & SG Lisberger, J Neurosci 24, 3210–3222
(2004).

The classical work on motion estimation in insect vision was by
Hassenstein and Reichardt (1956); perspectives on these early ideas
are given by Reichardt (1961) and by Reichardt and Poggio (1976).
A crucial piece of data in this discussion concerns the speed of a
flying insect’s motor response to visual motion, and a first estimate
of this was given by Land and Collett (1974) in a beautiful analysis
of natural flight trajectories; subsequent work was done by Wagner
(1986a–c) and by Schilstra and van Hateren (1999; van Hateren &
Schilstra 1999).

van Hateren & Schilstra 1999: Blowfly flight and optic flow.
II. Head movements during flight. JH van Hateren & C
Schilstra, J Exp Biol 202, 1491–1500 (1999).

Hassenstein & Reichardt 1956: Systemstheoretische Analyse
der Zeit–, Reihenfolgen–, und Vorzeichenauswertung bei der
Bwegungsperzeption des Rüsselkäfers. S Hassentsein & W
Reichardt, Z Naturforsch 11b, 513–524 (1956).

Land & Collett 1974: Chasing behavior of houseflies (Fannia
canicularis): A description and analysis. MF Land & TS
Collett, J Comp Physiol 89, 331–357 (1974).

Reichardt 1961: Autocorrelation, a principle for the evaluation
of sensory information by the central nervous system. W
Reichardt, in Sensory Communication, WA Rosenblith, ed,
pp 303–317 (MIT Press, Cambridge 1961).

Reichardt & Poggio 1976: Visual control of orientation behav-
ior in flies. I. A quantitative analysis. W Reichardt & T
Poggio, Q Rev Biophys 9, 311–375 (1976).

Schilstra & van Hateren 1999: Blowfly flight and optic flow.
I: Thorax kinematics and flight dynamics. C Schilstra & JH
van Hateren, J Exp Biol 202, 1481–1490 (1999).

Wagner 1986a: Flight performance and visual control of flight in
the free–flying house fly (Musca domestica L.). I: Organiza-
tion of the flight motor. H Wagner, Phil Trans R Soc Lond
Ser B 312, 527–551 (1986).

Wagner 1986b: Flight performance and visual control of flight in
the free–flying house fly (Musca domestica L.). II: Pursuit
of targets. H Wagner, Phil Trans R Soc Lond Ser B 312,
553–579 (1986).

Wagner 1986c: Flight performance and visual control of flight
in the free–flying house fly (Musca domestica L.). I: Inter-
actions between angular movement induced by wide– and
small–field stimuli. H Wagner, Phil Trans R Soc Lond Ser
B 312, 581–595 (1986).

[Introduce this with refs to the anatomy of the fly visual system.]
Motion sensitive neurons in the fly visual system were discovered
by Bishop & Keehn (1966), around the same time that Barlow et al
(1964) discovered motion sensitive neurons in the rabbit retina. To-
day we take for granted that individual neurons can be selective for
very complicated things, culminating in face– and object–selective
neurons in the far reaches of the visual cortex [refs to Gross et al],
but these early measurements were surprising. Indeed, in Barlow’s
hands, the observation of motion sensitivity played a key role in
helping to shape the idea that cells respond to successively more
complex conjunctions of features as we move through successive
layers of processing [need to find which of HBB’s refs is best here].
An early experiment showing that some of the motion sensitive
neurons are a necessary link in optomotor behavior is by Hausen
& Wehrhahn (1983); [since then ... ?].

Barlow et al 1964: Retinal ganglion cells responding selectively
to direction and speed of image motion in the rabbit. HB
Barlow, RM Hill & WR Levick, J Physiol (Lond) 173, 377–
407 (1964).

Bishop & Keehn 1966: Two types of neurones sensitive to mo-
tion in the optic lobe of the fly. LG Bishop & D G Keehn,
Nature 212, 1374–1376 (1966).
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Hausen & Wehrhahn 1983: Microsurgical lesion of horizontal
cells changes optomotor yaw responses in the blowfly Cal-
liphora erythrocephala. K Hausen & C Wehrhahn, Proc R
Soc Lond B 219, 211–216 (1983).

The experiments on the precision of motion discrimination using
the output of H1 are from de Ruyter van Steveninck & Bialek
(1995), and the reconstruction of velocity waveforms was done in
Bialek et al (1991); a review of these ideas and results is given in
Spikes (Rieke et al 1997). A detailed calculation of the physical
limits to motion estimation in this system is in my lecture notes
from the Santa Fe Summer School (Bialek 1990). For a general
discussion of hyperacuity in vision see Westheimer (1981), and for
the relation of hyperacuity to physical limits, see Geisler (1984).
The theory of optimal motion estimation is from Marc Potters’
PhD thesis (Potters & Bialek 1994); related work was done by
[need to understand exactly what Simoncelli and others did around
the same time], and application of these ideas to human visual
motion perception can be found in Weiss et al (2002). Problem [**]
about third order statistics is inspired by Fitzgerald et al (2011).
[Stocker?]

Bialek 1990: Theoretical physics meets experimental neurobiol-
ogy. W Bialek, in 1989 Lectures in Complex Systems, SFI
Studies in the Sciences of Complexity, Vol II, E Jen, ed, pp
513–595 (Addison–Wesley, Menlo Park CA, 1990).

Bialek et al 1991: Reading a neural code. W Bialek, F Rieke,
RR de Ruyter van Steveninck & D Warland, Science 252,
1854–1857 (1991).

Fitzgerald et al 2011: Symmetries in stimulus statistics shape
the form of visual motion estimators. JE Fitzgerald, AY
Katsov, TR Clandinin & MJ Schnitzer, Proc Nat’l Acad Sci
(USA) in press (2011).

Geisler 1984: Physical limits of acuity and hyperacuity. WS
Geisler, J Opt Soc Am A 1, 775–782 (1994).

Potters & Bialek 1994: Statistical mechanics and visual signal
processing. M Potters & W Bialek, J Phys I France 4, 1755–
1775 (1994).

Rieke et al 1997: Spikes: Exploring the Neural Code. F Rieke,
D Warland, R de Ruyter van Steveninck & W Bialek (MIT
Press, Cambridge, 1997).

de Ruyter van Steveninck & Bialek 1995: Reliability and
statistical efficiency of a blowfly movement–sensitive
neuron. R de Ruyter van Steveninck & W Bialek, Phil
Trans R. Soc Lond Ser B 348, 321–340 (1995).

Weiss et al 2002: Motion illusions as optimal percepts. Y Weiss,
EP Simoncelli & EH Adelson, Nature Neurosci 5, 598–604
(2002).

Westheimer 1981: Visual hyperacuity. G Westheimer, Prog
Sens Physiol 1, 1–30 (1981).

The classical evidence for the systematic errors of motion estima-
tion predicted by the correlator model are discussed by Reichardt &
Poggio (1976), above. Experiments showing the quadratic contrast
dependence of responses in the motion sensitive neurons include
[need to find the early ones!]. The demonstration that quadratic
behavior at low contrasts coexists with unambiguous responses to
velocity at high contrast is given by de Ruyter van Steveninck et
al (1994, 1996) [check that these are the best references!]. These
experiments were done with randomly textured images, whereas
classical studies of visual motion have used periodic gratings. The
correlator model also predicts that velocity will be confounded with
the spatial frequency of these gratings, and this error persists even
under high signal–to–noise ratio conditions (Haag et al 2004); it
is not clear whether this represents a genuine failure of optimal
estimation, a byproduct of strategies for gain control and efficient
coding (Borst 2007), or simply a behavior that would never be
seen under natural conditions. There are several experiments, es-
pecially in bees (Srinivasan et al 1991, 1996; Baird et al 2005),

indicating that insects have access to signals that allow them to
control their flight speed without any of the systematic errors pre-
dicted by the correlator model; recent work confirms this conclu-
sion in Drosophila using sophisticated tracking and virtual reality
to allow control experiments under free flight conditions (Fry et al
2009). A number of experiments have shown that the responses of
motion–sensitive neurons are also very different under more natu-
ral conditions (Lewen et al 2001, de Ruyter van Steveninck et al
2001), although most of the analysis has focused on the nature of
coding in spike trains rather than the nature of the motion com-
putation itelf. [Is Rob’s experiment on reducing ambiguity at high
light levels, outside, published?] An attempt to dissect the motion
computation represented by the spiking output of H1 is described
in Bialek & de Ruyter van Steveninck (2005), and in Appendix A.7.
[Do we say something about controversies?]

Baird et al 2005: Visual control of flight speed in honeybees. E
Baird, MV Srinivasan, S Zhang & A Cowling, J Exp Biol
208, 3895–3905 (2005).

Bialek & de Ruyter van Steveninck 2005: Features and di-
mensions: Motion estimation in fly vision. W Bialek & R
de Ruyter van Steveninck, arXiv:q–bio/0505003 (2005).

Borst 2007: Correlation versus gradient type motion detectors:
the pros and cons. A Borst, Phil Trans R Soc Lond Ser B
362, 369–374 (2005).

Fry et al 2009: Visual control of flight speed in Drosophila
melanogaster. SN Fry, N Rohrseitz, AD Straw & MH Dick-
inson, J Exp Biol 212, 1120–1130 (2009).

Lewen et al 2001: Neural coding of naturalistic motion stimuli.
GD Lewen, W Bialek & RR de Ruyter van Steveninck, Net-
work 12, 317–329 (2001); arXiv:physics/0103088 (2001).

de Ruyter van Steveninck et al 1994: Statistical adaptation
and optimal estimation in movement computation by the
blowfly visual system. RR de Ruyter van Steveninck, W
Bialek, M Potters & RH Carlson, in Proc IEEE Conf Sys
Man Cybern, 302–307 (1994).

de Ruyter van Steveninck et al 1996: Adaptive movement
computation by the blowfy visual system. RR de Ruyter
van Steveninck, W Bialek, M Potters, RH Carlson & GD
Lewen in Natural and Artificial Parallel Computation:
Proceedings of the Fifth NEC Research Symposium, DL
Waltz, ed, 21–41 (SIAM, Philadelphia, 1996).

de Ruyter van Steveninck et al 2001: Real time encoding of
motion: Answerable questions and questionable answers
from the fly’s visual system. R de Ruyter van Steveninck, A
Borst & W Bialek, in Processing Visual Motion in the Real
World: A Survey of Computational, Neural and Ecological
Constraints, JM Zanker & J Zeil, eds, pp 279–306 (Springer–
Verlag, Berlin, 2001); arXiv:physics/0004060 (2000).

Srinivasan et al 1991: Range perception through apparent im-
age speed in freely flying honeybees. MV Srinivasan, M
Lehrer, WH Kirchner & SW Zhang, Vis Neurosci 6, 519–
535 (1991).

Srinivasan et al 1996: Honeybee navigation en route to the
goal: visual flight control and odometry. MV Srinivasan,
S Zhang, M Lehrer & TS Collett, J Exp Biol 199, 237–244
(1996).

Since that formative year of having the office next door to Rob de
Ruyter van Steveninck when I was a postdoc in Groningen, the
fly visual system has seemed to me an ideal testing ground for
physicists’ ideas. On the other hand, if you think that brains are
interesting because you want to understand your own brain, you
might believe that insects are a bit of a side show relative to an-
imals that share more of our brain structures—monkeys, cats, or
even mice. There are obvious questions of strategy here, including
the fact that (perhaps paradoxically) it can be easier to control
the behavior of a primate than the behavior of an insect, creating
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opportunities for certain kinds of quantitative experiments. There
also are questions about how much universality we should expect.
Are there things to be learned about brains in general, or is ev-
erything about our brain different from that of “lower” animals?
Can careful, quantitative analyses of “simpler” systems sharpen
the questions that we ask about bigger brains (even if the answers
are different), or does each case present such unique challenges?
I think it is fair to say that for several decades there has been a
strong consensus of the mainstream neuroscience community that
the answers to these questions point away from the study of insect
brains. Recently, however, there has been substantial growth in a
community of scientists interested in exploiting the tools of mod-
ern molecular biology to study the brain, and this group of course
is attracted to “model organisms” with well developed methods of
genetic manipulation, such as the fruit fly Drosophila melanogaster
and its close relatives. Thus, the coming years are likely to see a
resurgence of interest in insect brains, and this should create more
opportunities for physicists. It is early days, but here is a selection
of papers that may help you in your explorations.

: Find a selection of Drosophila articles that point toward quanti-
tative opportunities.

Seelig et al 2010: Two–photon calcium imaging from head–fixed
Drosophila during optomotor walking behavior. JD Seelig,
ME Chiappe, GK Lott, A Dutta, JE Osborne, MB Reiser &
V Jayaraman, Nature Methods 7, 535–540 (2010).

The rather astonishing results in Fig 67 are from Griffiths & Tenen-
baum (2006). The original work on optimal cue combination was by
Ernst & Banks (2002) [cite follow ups!]. [More: Maloney, Wolpert,
... . Finally, ambiguous percepts, multistabiity, connections to
conscious experience ...]

Bialek & DeWeese 1995: Random switching and optimal pro-
cessing in the perception of ambiguous signals. W Bialek &
M DeWeese, Phys Rev Lett 74, 3077–3080 (1995).

Ernst & Banks 2002: Humans integrate visual and haptic infor-
mation in a statistically optimal fashion. MO Ernst & MS
Banks, Nature 415, 429–433 (2002).

Griffiths & Tennenbaum 2006: Optimal predictions in every-
day cognition. TL Griffiths & JB Tennenbaum, Psychologi-
cal Science 17, 767–773 (2006).

D. Proofreading and active noise reduction

Fluctuations are an essential part of being at thermal
equilibrium. Thus, the fact that life operates in a rela-
tively narrow range of temperatures around 300K means
that some level of noise is inevitable. But being alive
certainly is not being at thermal equilibrium. Can or-
ganisms use their non–equilibrium state to reduce the
impact of nominally thermal noise? More generally, can
we understand how to take a system in contact with an
environment at temperature T , and expend energy, driv-
ing it away from equilibrium, in such a way as to reduce
the effects of noise?

In his classic lecturesWhat is Life?, Schrödinger waxed
eloquent about the fidelity with which genetic informa-
tion is passed from generation to the next, conjuring the
image of a gallery with portraits of the Hapsburgs, their

oddly shaped lips reproduced across centuries of descen-
dants. Schrödinger was much impressed by the work of
Timoféef–Ressovsky, Zimmer and Delbrück, who had de-
termined the cross–section for ionizing radiation to gen-
erate mutations, and used this to argue that genes were
of the dimensions of single molecules. Thus, the extreme
stability of our genetic inheritance could not be based
on averaging over many molecules, as a “naive classical
physicist” might have thought. Now is a good time to set
aside our modern insouciance and allow our ourselves to
be astonished, as Schrödinger was, that so many of the
phenomena of life are the macroscopic consequences of
individual molecular events.
We now teach high school students that the key to the

transmission of genetic information is the pairing of bases
along the double helix—A pairs with T, C pairs with G,
as in Fig 68. This, of course, is the triumph of Wat-
son and Crick’s theory of DNA structure.52 The ideas of
templates and structural complementarity which are at
the heart of the double helix reappear many times—every
time, in fact, that the organism needs to make reliable
choices about which molecules to synthesize. But does
structural complementarity solve the problem of reliabil-

FIG. 68 Base pairing in the Watson–crick structure of DNA
[this just grabbed from Wikipedia; need to decide exactly
what to show, and redraw]. At left, we see the hydrogen
bonding between bases in the correct pairings, showing how
they “fit” to satisfy the opportunities for hydrogen bonding,
producing structures that are the same width and hence can
fit into the double helix, as shown at right. “R” denotes the
sugar and phosphate groups, identical for all bases, which
form the outer backbone(s) of the helix.

52 It would be almost silly to think you know something about
“biophysics” (whatever you think the word means!) and not
understand the interplay of theory and experiment that led to
this revolution in the middle of the twentieth century. For a brief
tour, see Appendix A.5.
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ity in biosynthesis?
The fact that A pairs with T is really the statement

that the (free) energy of a correct AT pair is much lower
than that of an incorrect AC or AG pair. We should recall
the energy scales for chemical bonding. A genuine cova-
lent bond, such as the carbon–carbon or carbon–nitrogen
bonds in the interior of the bases, results from the shar-
ing of electrons between the atoms, and the energies are
therefore on the scale of several electron volts.53 Making
the wrong base pairs wouldn’t require us to break any
covalent bonds, so the energy cost will not be this large.
If we tried to make an AG pair, it would be so big that
it wouldn’t fit inside the backbone of the double helix;
more precisely, we would have make large distortions of
the covalent bonds, and since these are stiff, the energy
cost would be very large. On the other hand, if we try to
make a CT pair, the backbone will hold the bases so far
apart that they can’t form hydrogen bonds. Thus, the
minimal energy for a “wrong” base pair is the energy of
two missing hydrogen bonds, and this is on the order of
10 kBT .

An energy difference of ∆F ∼ 10 kBT means that the
probability of an incorrect base pairing should be, accord-
ing to the Boltzmann distribution, e−∆F/kBT ∼ 10−4. A
typical protein is three hundred amino acids long, which
means that is encoded by nearly one thousand bases; if
the error probability is 10−4, then replication of the DNA
would introduce roughly one mutation in every tenth pro-
tein. For humans, with a billion base pairs in the genome,
every child would be born with hundreds of thousands of
bases different from his or her parents. If these predicted
error rates seem large, they are—real error rates in DNA
replication vary across organisms, but are in the range
of 10−8 − 10−12, so that entire genomes can be copied
almost without any mistakes.
The discrepancy between Boltzmann probabilities and

observed error rates is much more widespread. When
information encoded in the DNA is read out to make
proteins, there are several steps where errors can occur.
First is the synthesis of mRNA from the DNA template, a
process not unlike the replication of the DNA itself. The
“codebook” for translating from the language of bases
along the mRNA into amino acids is embodied in the
tRNA molecules, which at one end have a triplet of bases
(the anti–codon) that is complementary to a particular
triplet of bases along the mRNA (the codon), and at their
other end is the amino acid that the codon represents. To
make such molecules, there are specialized enzymes that
recognize the ‘bare’ tRNA and choose out of the cellular

53 Chemists prefer to think per mole rather than per molecule, and
they prefer joules to electron Volts (I won’t speak of calories). To
have some numbers at your fingertips, remember that at room
temperature, kBT = 1/40 eV = 2.5 kJ/mole.

soup the correct amino acid with which to ‘charge’ the
molecule. [the discussion of tRNA and charging could use
some sketches!] But some amino acids differ simply by
the replacement of a CH3 group with an H; it we imag-
ine the enzyme recognizing the first amino acid with a
binding pocket that is complementary to the CH3 group,
then the second amino acid will also fit, and the binding
energy will be weaker only by the loss of non–covalent
contacts with the methyl group; it is difficult to see how
this could be much more than ∼ 5 kBT , corresponding to
error rates ∼ 10−2. If the error rates in tRNA charging
were typically 10−2, almost all proteins would have at
least one wrong amino acid; in fact error rates are more
like 10−4, so that most proteins have no errors. There is
one more step, at the ribosome, where tRNA molecules
bind to their complementary sites along the mRNA and
the amino acids which they carry are stitched together
into proteins, and here too there is a discrepancy between
thermodynamics and the observed error probabilities.
Each of the events we have outlined—DNA replication,

mRNA synthesis, tRNA charging, and protein synthesis
on the ribosome—has its own bewildering array of bio-
chemical details, and is the subject of its own vast lit-
erature. As physicists we search for common theoretical
principles that can organize this biological complexity,
and I think that this problem of accuracy beyond the
thermodynamic limit provides a wonderful model for this
search. The key ideas go back to Hopfield and Ninio in
the 1970s. Their classic papers usually are remembered
for having contributed to the solution of the problem of
accuracy, a solution termed ‘kinetic proofreading,’ which
we will explore in a moment. But I think they should
also be remembered for having recognized that there is
a common physics problem that runs through this broad
range of different biochemical processes.
To understand the essence of kinetic proofreading, it is

useful to recall the problem of Maxwell’s demon. Imag-
ine a container partitioned into two chambers by a wall,
with a small door in the wall. [again, a sketch would
help!] Maxwell conjured the image of a small demon who
controls the door. If he54 see a molecule coming from the
right at high speed, he opens the door and allows it to go
into the left chamber. Conversely, if he sees a molecule
drifting slowly from the left, he opens the door and allows
it to enter the right chamber. After some time, all the
slow molecules are on the right, all the fast molecules are
on the left. But, since the average kinetic energy of the
molecules in a gas is proportional to the temperature, the
demon has created a temperature difference, hot on the
left, cold on the right. This temperature difference can be
used to do useful work (e.g., running a heat engine), and
thus the demon appears to have created something out

54 Why is it obvious that the demon is male?
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of nothing, violating the second law of thermodynamics.
There is nothing special about the demon’s choice of

molecular speed as the criterion for opening the door. It
is a simple choice, because the result is a temperature
difference, and we can imagine all sorts of appropriately
nineteenth century methods for extracting useful work
from temperature differences. But if there are two kinds
of molecules, A and B, and the demon arranges for the
A molecules to accumulate in the left chamber and B
molecules to accumulate in the right chamber, then there
will be differences in chemical potential between the two
chambers, and there must be some way of using this to do
work even if as physicists we don’t know enough chem-
istry to figure it out.

Problem 77: Pushing away from equilibrium. Consider
a polymer made from A and B monomers. Suppose we start with
pure poly–A, and use this as a template to construct a new poly-
mer, much as in DNA replication (but simpler!). Template directed
synthesis works because the A−A bond is stronger than the A−B
bond by some free energy difference ∆G; we’ll use the convention
that ∆G > 0. Then if we make a polymer of length N in which
a fraction f of the monomers are incorrectly made to be B rather
than A, the free energy of the system will have a contribution
Nf∆G relative to the perfectly copied poly–A. If the errors are
made at random, however, then there is a contribution to the en-
tropy of the polymer that comes from the sequence heterogeneity.

(a.) Evaluate the entropy that comes from the random substi-
tutions of A by B. What assumptions are you making in this cal-
culation? Can you imagine these being violated by real molecules?

(b.) Combine the entropy from [a.] with the “bonding” free
energy Nf∆G to give the total free energy of the polymer. Show
that this is minimized at feq ∝ exp(−∆G/kBT ), as expected.

(c.) How much free energy is stored in the polymer when f <
feq? Can you give simple expressions when the difference feq − f
is small? What happens if (as we will see below) f ≈ f2

eq?

The demon’s sin is to have generated a state of re-
duced entropy. We know that to enforce the second law,
this non–equilibrium state must be ‘paid for’ with enough
energy to balance the books—to avoid building a perpet-
ual motion machine, the demon must have dissipated an
amount of energy equal to or greater than the amount
of useful work that can be extracted from his reduc-
tion in the entropy of the system. The key insight of
Hopfield and Ninio was that the problem of accuracy or
low error rates was of this same kind: achieving low er-
ror rates, sorting molecular components with a precision
beyond that predicted by the Boltzmann distribution,
means that the cell is building and maintaining a non–
equilibrium state, and it must spend energy in order to
do this. Somewhere in the complexity of the biochem-
istry of these processes there must be steps which dissi-
pate energy, and this has to be harnessed to improve the
accuracy of synthesis.

A = “correct” substrate

B = “incorrect” substrate

E

EA

EB

E + correct product

E + incorrect product

k [A]

k’ [B]

k 

k’ 

V

V’

max

max
+

+

-
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FIG. 69 The simplest kinetic scheme in which an enzyme can
choose correct or incorrect molecules out of solution, making
correct or incorrect products.

To see how this might work, let’s look at the simplest
model of a biochemical process catalyzed by an enzyme,
as in Fig 69. In essence, the chemical reaction of in-
terest involves choosing among two (or more) substrate
molecules, for example the correct and incorrect base at
a particular point along the strand of DNA that the cell
is trying to replicate or transcribe into mRNA. In order
to complete the reaction, the substrate has to bind to
the enzyme, and this enzyme–substrate complex can be
converted into the product; in order to have any possibil-
ity of correcting errors, it must be possible for the sub-
strate to unbind from the enzyme before the conversion
to product. With only this minimum number of steps,
the kinetics are described by

d[EA]

dt
= k+[A][E]− (k− + Vmax)[EA] (436)

d[EB]

dt
= k′+[B][E]− (k′− + V ′

max)[EB] (437)

[E]total = [EA] + [EB] + [E], (438)

where A is the correct substrate, B is the incorrect sub-
strate, and [E]total is the (fixed) total concentration of
enzyme molecules. The rate at which correct products
are made is given by Vmax[EA], and the rate of mak-
ing incorrect products is V ′

max[EB]. If the overall rate
of reactions is slow enough not to deplete the substrates
(and the cell typically is working hard to make sure this
is true!), then we can compute these rates in the steady
state approximation.
To compute the rate of errors we don’t even need to

solve the entire problem. From Eq (436) we can see that,
in steady state,

[EA] = [E]
k+[A]

k− + Vmax
; (439)
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similarly, from Eq (437),

[EB] = [E]
k′+[B]

k′− + V ′
max

. (440)

Thus the error probability, or relative rate at which in-
correct products are made, is given by

f ≡ rate of making incorrect product

rate of making correct product
(441)

=
V ′
max[EB]

Vmax[EA]
(442)

=

[
k′+[B]

k′− + V ′
max

]
×
[

k+[A]

k− + Vmax

]−1

×
[
V ′
max

Vmax

]
.(443)

To go further it is useful to notice that all the reactions
we are thinking about share one important feature: the
actual making and breaking of covalent bonds occurs on
‘the other side’ of the molecule from the structure that
defines correct vs. incorrect [definitely needs a sketch!].
In the case of DNA replication, for example, correctness
has to do with the pattern of hydrogen bonding between
the bases, on the inside of the helix, while the actual re-
action required to incorporate one base into the growing
polymer involves the phosphate backbone on the outside
of the helix. This makes it unlikely that the rate at which
these bonds are formed is sensitive to the correctness of
the substrate. Correspondingly, in the cases of interest,
it is likely that V ′

max ≈ Vmax, so this is not a source of
selectivity. More importantly, from Eq (443) it is clear
that, under these conditions, the error probability is min-
imized if the catalytic rate Vmax is slow compared with
the unbinding rates k−, k′−. This makes sense: if the
catalytic step itself has no selectivity, then to maximize
selectivity one must give the wrong substrate a chance to
fall off.

So, when the dust settles, in this simplest kinetic
scheme we have shown that the error probability is
bounded,

f >

(
k′+[B]

k′−

)/(
k+[A]

k−

)
. (444)

But this combination of rates and concentrations is ex-
actly what determines the equilibrium binding of A vs
B to the enzyme, and hence can be written in terms of
thermodynamic quantities,

f > exp

(
−FA − FB

kBT

)
, (445)

where FA is the free energy for taking a single molecule
of A out of solution and binding to the enzyme, and
similarly for B; here binding energies are positive, larger
for tighter binding. Thus, we are back where we started,
with an error probability determined by the Boltzmann
distribution!

E EA E + product
Vmax

k [A]+

k -

EA*

E

k -k [A*]+

r

FIG. 70 The simplest scheme for “kinetic proofreading.” As
described in the text, the key step is an irreversible transi-
tion from EA to EA∗, which gives a true second chance for
equilibration with the free A molecules.

But the Michaelis–Menten scheme has a natural gen-
eralization. Suppose that, after binding, there is an irre-
versible transition to a new state, at a rate r, and that in
this state the substrate can again be released from the en-
zyme, as in Fig 70. In the simplest case, the events which
determine binding and release of the (perhaps modified)
substrate are the same as in the initial step, with the
same rates. We can carry through the analysis of this
kinetic scheme as before, and with the same assumption
that catalytic steps (Vmax and r) have no selectivity, find
that

f > exp

(
−FA − FB

kBT

)
exp

(
−FA∗ − FB∗

kBT

)
. (446)

But if the molecular interactions that select A over B are
the same for A∗ vs B∗, we expect FA∗ −FB∗ ≈ FA−FB ,
and hence

f →
[
exp

(
−FA − FB

kBT

)]2
. (447)

This is the essence of kinetic proofreading: by introduc-
ing an irreversible step into the kinetic scheme, a step
which necessarily dissipates energy, it is possible to use
the equilibrium selectivity twice, and achieve an error
probability which is the square of the nominal limit set
by the Boltzmann distribution.

Problem 78: More on the basics of kinetic proofreading.
To begin, give the details needed to derive Eq (446). An even better
exercise is to go through Hopfield’s original paper (Hopfield 1974),
pen in hand, filling in all the missing steps. Then consider the
following:
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(a.) In the simplest scheme, we saw that maximum selectivity
occurs when Vmax is slow compared with k−. Is there a similar
condition in the proofreading scheme? What does this tell us about
the progress of the enzymatic cycle? More specifically, what is the
fate of the typical substrate which binds to the enzyme? Is it
converted to product, or ejected as A∗?

(b.) Consider a generalization of the kinetic scheme in Fig 70
such that the nominally irreversible step with rate r is in fact re-
versible, with the reverse reaction at rate r′. To be general, imag-
ine also the binding and unbinding of A∗ can occur with rates that
are different from the rates for A. Now there are detailed balance
conditions that connect these different rates. Write down these
conditions, and show how they effect the error probability. Can
you say something general here? In particular, can you show how
these conditions enforce the Boltzmann error rate in the absence of
energy dissipation, no matter how many times the enzyme ‘looks’
at the substrate?

How does this general idea of proofreading connect
with the real biochemistry of these systems? In some
sense the case of DNA replication (or transcription) is
most obvious, as shown in Fig 71. All of the nucleotides
which are incorporated into the growing strands of DNA
or RNA start as nucleotide triphosphates, but once the
final structure is formed only one phosphate is part of
the backbone. Thus, at some point in the process, the
‘high energy’ phosphate bond must be cleaved, releasing
roughly 20kBT of free energy. If this is the irreversible
step, then is must be possible for the enzyme which cat-
alyzes the growth of the polymer to release the nucleotide
after this cleavage, which means after it has been at-
tached to the backbone of the growing chain. Thus, to

replication of DNA, or
transcription of RNA
a =  DNA template

“charging” of tRNA
with amino acid aa

protein synthesis, at 
A-site of the 

ribosome, assisted 
by “elongation 

fator” Tu

FIG. 71 Connecting the proofreading scheme to specific bio-
chemical process, from Hopfield (1974). At the top, nu-
cleotide triphosphates are incorporated as monophosphates in
DNA replication or the transcription to mRNA. In the mid-
dle panel, the charging of tRNA molecules with amino acids,
involving an extra ATP. At bottom, a very simplified view of
protein synthesis, in which the GTP/exchange by the protein
Tu provides the energy for proofreading at the ribosome.

proofread, the enzyme must be not only a ‘polymerase’
(catalyzing the polymerization reaction) it must also be
an ‘exonuclease’ (catalyzing the removal of nucleotides
from the polymer). It had been known almost since the
discovery of the polymerase that it also had exonucle-
ase activity, but it took the idea of kinetic proofreading
to explain how this was connected, through energy dis-
sipation, to proofreading and error correction. In the
charging of tRNA, the process actually starts with an
ATP molecule being cleaved, leaving an AMP attached
to the amino acid before it reacts with the tRNA. In pro-
tein synthesis, the sequence of reactions is much more
complex, but again there is an obligatory cleavage of
a nucleotide triphosphate (in this case GTP → GDP).
All of these examples are qualitatively consistent with
the proofreading scenario,55 and especially in the case
of tRNA charging it has been possible to pursue a more
quantitative connection between theory and experiment
[do we want to say more about this?].
Kinetic proofreading not only solves a fundamental

problem—the problem which Schrödinger confronted in
the Hapsburg portraits—it also has been a source of new
questions and ideas. If the accuracy of DNA replica-
tion depends not only on intrinsic properties of the DNA
but also on the detailed kinetics of the enzymes involved
in replication, then the rate of mutations itself can be
changed by mutations. It has long been known that
there are ‘mutator strains’ of bacteria which have unusu-
ally high error rates, and we now know that that these
strains simply have aspects of the proofreading appara-
tus disabled. One could imagine subtler changes, so that
the mutation rate would become a quantitative trait; in
this case the dynamics of evolution would be very differ-
ent, since fluctuations along one “direction” in the space
of genomes would change the rate of movement along all
directions. Also, since accuracy depends on energy dissi-
pation, in an environment with limited nutrients there is
a tradeoff between the speed of growth and the fidelity
with which genetic information is passed to the next gen-
erations; there is an optimization problem to be solved
here, and ... [say something definite re Kurland, Ehren-
berg, ... maybe have a problem?]. In protein synthesis,
accuracy and even the overall kinetics will be affected by
the availability of the different charged tRNAs, and this
is under physiological control, so again there is the pos-

55 Hopfield has also emphasized that there are kinetic schemes
in which proofreading still proceeds through energy dissipating
steps, but if the enzymes have some memory for past events then
the synthesis and dissipation can be separated in time, erasing
some of the more obvious signatures from the simpler scheme.
This may be especially important in thinking about more com-
plex examples, such as protein synthesis on the ribosome or DNA
replication in higher eukaryotes. [is there a good problem to give
here?]
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sibility that, especially for fast growing bacteria where
the problems are most serious, there is some tuning or
optimization to be done.

Problem 79: Controlling the pace of evolution? [take the
students through a simple version of Magnasco & Thaler. Intro-
duces ideas of evolutionary landscape, connect back to discussion
of reaction rates ...]

Problem 80: Optimizing tRNA pools. There is a separate
tRNA complementary to each of the 60 codons which code for
amino acids (the remaining four codons stand for ‘start’ and ‘stop’).
The frequency with which these codons are used in the genome
varies widely, both because proteins do not use all 20 amino acids
equally and because different organisms use different synonymous
codons (that is, those which code for the same amino acid) with
different frequencies. But, when it comes time to make protein, the
cell needs access to the appropriate population of charged tRNAs.
Naively one might expect that, if the supply of tRNA is limiting
the rate at which a bacterium can make proteins and grow, then
it would be good to have a supply of tRNA in proportion to how
often the corresponding codon gets used. Let’s see if this is right.
Suppose that protein synthesis is limited by arrival of the tRNA
at the ribosome. Then the time required to incorporate one amino
acid coded by codon i is ti ∼ 1/k[tRNAi], where k is a second order
rate constant.

(a.) [try to sort out how rate of ribosome turnover compares
with diffusion limited rate of arrival of tRNAs]

(b.) The average time required to incorporate one amino acid is
t̄ =

∑
i pi/k[tRNAi], where pi is the probability of codon i appear-

ing in the cell’s mRNA. If the cell can only afford a limited amount
of tRNA, the natural constraint is on the total

∑
i[tRNAi]. How

should the individual concentrations be arranged to minimize the
mean incorporation time t̄? Is this surprising?

(c.) You might be tempted to say that, if the goal is to syn-
thesize proteins as rapidly as possible, and the rates are limited
by the arrival of tRNAs, then we should maximize the mean rate,∑

i pik[tRNAi]. Why is this wrong?

The ideas of kinetic proofreading may be even more
generally applicable than envisioned by Hopfield and
Ninio. There are many signal transduction processes that
start with a receptor binding event at the cell surface and
trigger a cascade of protein phosphorylation reactions;56

the phosphate groups are pulled from ATP, so phosphory-
lation is a prototypically irreversible, energy consuming
reaction. In the immune system [need a figure here!] it
has been suggested that this can provide multiple stages

56 [Should have said something about this already!] Many pro-
teins are activated by the covalent addition of phosphate groups,
a reaction termed phosphorylation. Enzymes that catalyze the
transfer of phosphate groups are called kinases, and these en-
zymes often are usually specific for their substrates, whether
these are smaller molecules or proteins. Importantly, come ki-
nases themselves are activated by phosphorylation, and the en-
zymes that carry out this activation step are termed kinase ki-
nases.

FIG. 72 Kinetic proofreading in the phosphorylation of a
kinase (K) by a kinase–kinase (KK), from Swain & Siggia
(2002). Activation of the kinase requires two steps of phos-
phorylation, and in this scheme the the kinase–kinase can
dissociate from its substrate after have transferred just one
phosphate group. K0, K1 and K2 denote the kinase with
zero, one and two attached phosphate groups, respectively.

of proofreading, contributing to self/non–self discrimina-
tion. More generally, as shown in Fig 72, if activation of
an enzyme requires two steps of phosphorylation, then
these steps can be arranged in a proofreading scheme.
Because there are many such pathways in the cell, proof-
reading this case could increase specificity and reduce
crosstalk.
Watson and Crick understood that the double heli-

cal structure of DNA, with its complementary strands,
suggested a mechanism for the copying of genetic infor-
mation from one generation to the next. But they also
realized that the helical structure creates a problem, since
the strands are entangled; the problem is most obvious in
bacteria, where the chromosomes close into circles, but
with very long molecules one couldn’t rely on sponta-
neous untangling even if there is no formal topological
obstruction. Eventually it was discovered that there is a
remarkable set of enzymes that catalyze changes in the
topology of circular DNA molecules, allowing the strands
to pass through one another. In the process of relieving
entanglement, these “topoisomerases” also reduce the en-
ergy stored in the supercoiling of these polymers [should
say more about this here—an excuse to talk about link,
writhe and twist, etc.; certainly needs a figure]. The
problem is that being truly unlinked is a global prop-
erty of the molecules, while the enzymes act locally. In
the simplest models, then, topoisomerases would remove
the obstacles to changing topology, but couldn’t shift the
probability of being unlinked from its equilibrium value.
Because making links or knots restricts the entropy of
the molecule, there is an equilibrium bias in favor of un-
linking, but this seems insufficient for cellular function.
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Indeed, as shown in Fig 73, topoisomerases seem to leave
fewer links than expected from the Boltzmann distribu-
tion even in test tube experiments, and if we look at the
details of the biochemical steps involved, we can identify
a series of steps that are equivalent to proofreading by
the topoisomerases [I’d like to explain this better!].

The ideas of proofreading have recently been revital-
ized by the opportunity to observe, more or less directly,
the individual molecular events responsible for error cor-
rection. The key to this new generation of experiments is
the realization that molecules such as RNA polymerase
are “molecular motors” that move along the DNA strand
as they function. Each step in this movement is presum-
ably on the scale of the distance between bases along
the DNA, d ∼ 3.4 Å. The energy to drive this motion
comes from breaking the phosphate bonds of the input
nucleotides, and is on the scale of ∼ 10kBT . Thus the
forces involved are F ∼ 10kBT/d ∼ 100 pN.

When a dielectric sphere sits in an electric field, it po-
larizes, and the direction of the polarization is such that
it lowers the energy. This means that the energy of the
sphere is lower in regions of high electric field. Since the
energy is proportional to the square of the field, this is
true even if the field is oscillating in time. In particular,
if we focus a light beam in a microscope, then the light
intensity is higher in the focus, and light intensity is just
the square of the electric field, so we expect that small
dielectric objects will be attracted to focal spots, and this

FIG. 73 Kinetic proofreading in DNA unlinking, from Yan
et al (1999). At left, experimental results redrawn from Ry-
benkov et al (1997), showing that topoisomerases reaching a
linking probability roughly equal to the square of the expected
equilibrium probability, suggesting a proofreading scheme. At
right, a kinetic scheme illustrating the possibility of proofread-
ing, Active topoisomerase molecules are shown in red, inactive
in blue; green arrows denote transitions that are insensitive
to the topology, while all sensitivity is contained in the red
arrows. This kinetic scheme is essentially a “folded” version
of Hopfield’s original Fig 70.

micron-sized beads
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emerging 

mRNA

focused laser beams

FIG. 74 Schematic of an experiment to observe the function
of RNA polymerase with single base–pair resolution, from
Shaevitz et al (2003). A laser beam is split, and the two result-
ing beams are focused to make “optical traps” for two micron–
sized beads. Attached to one bead is a double stranded DNA
molecule, and attached to the other is an RNA polymerase
molecule. As the polymerase synthesizes mRNA, it “walks”
along the DNA and the tether between the two beads is short-
ened. The intensities of the two beams are set so that the left
hand trap was stiffer, insuring that most of the motion ap-
pears as a displacement of the right hand bead, which is mea-
sured by projecting scattered light onto a position–sensitive
detector.

is called “optical trapping.” Importantly, with realistic
light intensities, the forces on micron–sized particles as
they move in an optical trap indeed are on the scale of pi-
coNewtons, so it is possible to “hold” a molecular motor
in place.

Problem 81: Optical trapping. The key to the experiments
here is the fact that small, neutral particles can be trapped at the
focus of a laser beam, and that the forces generated in this way
are on the same scale as those generated by individual biological
motor molecules, such as the RNA polymerase. Take the students
through this!

In Figure 74 we see the schematic of an optical trapping
experiment on the RNA polymerase. Successive gener-
ations of technical improvements in these experiments
have made it possible to track the motion of the poly-
merase with a resolution fine enough to see it “step” from
one base pair to the next, as in Fig 75. Importantly, in
these experiments one can bathe the sample in a solution
containing different nucleotides. If we add ITP, which is
not one of the standard four bases, it will sometimes be
incorporated into the growing mRNA strand, but this is



125

FIG. 75 Motion of the RNA polymerase along DNA. At left,
from Abbondanzieri et al (2005). Top, the position of the
right hand bead from Fig 74 as the trap is moved in 1 Å steps,
to show that these can be resolved. Bottom, the active mo-
tion of the bead as the RNA polymerase synthesizes rRNA,
showing the expected steps of 3.4 Å. [are the black lines me-
dian filtering?] At right, from Shaevitz et al (2005). Top,
the average trajectory of the RNA polymerase aligned on the
start and end of long pauses. Bottom, the mean duration of
pauses under different conditions, notably the addition of the
“wrong” nucleotide ITP.

always a mistake. Under these conditions we can observe
an increased frequency of “pauses” in the motion of the
polymerase, followed by backtracking of 1–10 base pairs
along a relatively stereotyped trajectory. If we remove
from RNA polymerase the subunits thought to be in-
volved in proofreading, then these error–induced pauses
become very long.

[Need a summary on kinetic proofreading, segue to ac-
tive filtering]

There is another broad class of examples in which there
seems to be a discrepancy between the noise expected
at thermal equilibrium and the performance of biolog-
ical systems, and this is in the measurement of small
displacements. In our inner ear, and in the ears of all
other vertebrate animals, motions are sensed by “hair
cells,” so named because of the tuft of “hairs” (more
properly, stereocilia) that project from their top surface
as in Fig 76. Although we usually think of ears as re-
sponding to airborne sounds, in fact there are multiple
chambers in the ear, some of which respond to sound,
and others of which respond to lower frequency motions
generated by rotation of our head, the largely constant
force of gravity or ground borne vibrations. The core of
all these systems, however, is the hair cell. When the
stereocilia are bent, channels in the cell membrane open
and close, and this modulates an ionic current, as in other
receptor cells that we have seen before. In a variety of
systems it has been possible to open these organs, or

even dissect out the hair cells, and to make direct me-
chanical measurements on the stereocilia. Typically, the
bundle of hairs moves as a unit, and the stiffness is in
the range of κ ∼ 10−3 N/m or less. This implies that the
Brownian motion of the bundle should have an amplitude
δxrms =

√
kBT/κ ∼ 2 nm. This seems small (remember

that the stereocilia have lengths measured in microns),
but ... .

FIG. 76 Hair cells of the vertebrate inner ear [find better
images, with scale bars!]. At left, in the bullfrog sacculus,
from http://www.hhmi.org/senses/c120.html. At right, in
the mammalian cochlea, three rows of “outer” hair cells and
one row of “inner” hair cells at top, from Dallos (1984).

There is a particular species of neotropical frog, for
example, that exhibits clear behavioral responses to vi-
brations of the ground that have an amplitude of ∼ 1 Å.
Individual neurons which carry signals from the hair cells
in the sacculus the to brain actually saturate in response
to vibrations of just ∼ 10 Å = 1nm. Although there are
controversies about the precise numbers, the motions of
our eardrum in response to sounds we can barely hear are
similarly on the atomic scale. Invertebrates don’t use hair
cells, but they also have mechanical sensors, and many
of these too respond reliably to motions in the Ångström
or even sub–Ångström range.
By itself, the order–of–magnitude (or more) discrep-

ancy between the amplitude of Brownian motion and the
threshold of sensation might or might not be a problem
(we’ll come back to this). But surely it motivates us to
ask if, by analogy with kinetic proofreading, it is possible
to lower the effective noise level by pushing the system
away from thermal equilibrium. This also is an inter-
esting physics problem, independent of its connection to
biology.
Consider a mass hanging from a spring, subject to drag

as it moves through the surrounding fluid, as in Fig 77.
By itself, the dynamics of this system are described by
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the Langevin equation, [point back!]

m
d2x(t)

dt2
+ γ

dx(t)

dt
+ κx(t) = Fext(t) + ζ(t), (448)

where Fext denotes external forces acting on the system
and the Langevin force obeys

〈ζ(t)ζF (t′)〉 = 2γkBT δ(t− t′). (449)

But suppose that we measure the position of the mass,
differentiate to obtain the velocity, and then apply a
“feedback” force proportional to this velocity, Ffeedback =
−ηdx(t)/dt; then we have

m
d2x(t)

dt2
+ γ

dx(t)

dt
+ κx(t) = Fext(t) + ζ(t) + Ffeedback(t) (450)

= Fext(t) + ζ(t)− η
dx(t)

dt
(451)

m
d2x(t)

dt2
+ (γ + η)

dx(t)

dt
+ κx(t) = Fext(t) + ζ(t). (452)

This system is equivalent to one with a new drag coefficient γ′ = γ+η. But the fluctuating force hasn’t changed—the
molecules of the fluid don’t know that we are applying feedback—so we can write

m
d2x(t)

dt2
+ γ′ dx(t)

dt
+ κx(t) = Fext(t) + ζ(t) (453)

〈ζ(t)ζF (t′)〉 = 2γkBT δ(t− t′) = 2γ′kBTeffδ(t− t′), (454)

where Teff = Tγ/γ′ = Tγ/(γ + η). Thus, by observing
the system and applying a feedback force, we synthesize
a system which is, effectively, colder and thus has (in
some obvious sense, but we will need to be careful) less
thermal noise.

κ

γ m

δF Fext

x(t)

d

dt

Ffeedback

FIG. 77 A schematic of active feedback, in which we observe
the position of a mass on a spring and apply a force pro-
portional to the velocity. This can serve to enhance or com-
pensate the intrinsic drag γ, but since it is generated by an
active mechanism (symbolically, through the amplifer) there
need not be an associated change in the magnitude of the
Langevin force, as there would be at thermal equilibrium.

This idea of “active cooling” is very old, but it has
received new attention in the attempt to build very sen-
sitive displacement detectors, e.g. for the detection of
gravitational waves. A recent example placed a one gram
mass in a laser interferometer and used the change in ra-
diation pressure on the mass as function of its position
to generate the feedback force; this is different in detail
from the model above, but similar in spirit. The result
was that the effective temperature could be brought down
from ∼ 300K to ∼ 7 × 10−3 K, a reduction of roughly
40, 000×, and this seems to be limited by noise in the
laser itself.
It is important to be clear about exactly which mea-

sures of noise are reduced, and which are not. The
mean–square displacement of the oscillator—and hence,
by equipartition, the apparent temperature—has been re-
duced. But when we try to drive the system with a force
at the resonant frequency, the added damping means that
it is more resistant, and hence the response to a given
force is smaller. Thus if we ask for the minimum force
that we must apply (on resonance) to displace the os-
cillator by one standard deviation, this threshold force
actually goes up, as if the system had more noise, not
less. Finally, if we imagine that we can observe the po-
sition of the oscillator over a very long time, then what
matters for detecting a small applied force at the reso-
nant frequency is the spectral density of force noise, and
this hasn’t changed at all.
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Problem 82: Effective noise levels. Do the real calculations
required to verify the statements in the previous paragraph. These
are not difficult.

As alternative to actively damping the oscillator, we
can try to actively undamp, using feedback of opposite
sign:

m
d2x(t)

dt2
+ γ

dx(t)

dt
+ κx(t) = Fext(t) + ζ(t) + Ffeedback(t) (455)

= Fext(t) + ζ(t) + η
dx(t)

dt
(456)

m
d2x(t)

dt2
+ (γ − η)

dx(t)

dt
+ κx(t) = Fext(t) + ζ(t). (457)

Now the variance of the displacement is larger,

〈(δx)2〉 = kBTeff

κ
=

kBT

κ
· γ

γ − η
, (458)

but the sensitivity to forces applied on resonance is also enhanced. If we have Fext(t) = F0 cos(ω0t), with ω0 =
√

κ/m,
then the displacement will be x(t) = x0 sin(ω0t), with x0 = F0/[(γ−η)ω0]. Thus the signal–to–noise ratio in a snapshot
of the motion becomes

x2
0

〈(δx)2〉 =
F 2
0

(γ − η)2ω2
0

· γ − η

γ

κ

kBT
=

[
κF 2

0

(γω2
0)

2

1

kBT

]
· γ

γ − η
. (459)

Thus, in this case the signal–to–noise ratio for a snapshot
of the position goes up in proportion to the amount of
active ‘undamping.’

We can understand the impact of active undamping as
a narrowing of the system bandwidth, or a sharpening of
the resonance around ω0. Both the external force and the
Langevin force drive the system in the same way. The
difference is that we are considering an external force at
the resonant frequency, while the Langevin force is white
noise, with equal power at all frequencies. By sharpening
the resonance, active undamping reduces the total impact
of this noise; since the bandwidth of the resonance is
proportional to γ− η, the enhancement of the signal–to–
noise ratio is also in proportion to this factor.

Taken at face value it seems that we can increase the
signal–to–noise ratio by an arbitrarily large factor—if we
increase η so that γ − η → 0, the resonance becomes
infinitely sharp and it becomes possible to detect arbi-
trarily small forces from just an instantaneous look at
the position x. Any recipe for detecting arbitrarily small
signals should be suspect, but what actually limits the
growth of the signal–to–noise ratio in this case?

First, it should be clear that the increased SNR comes
at a cost. In a system with a sharp resonance, the time
scale for response becomes long in inverse proportion to
the bandwidth. Thus, as we let γ − η → 0, the current
position x(t) becomes dependent on the forces Fext(t) in
distant past. This is a serious issue, but it doesn’t really

set a limit to the smallest force we can detect.

Problem 83: A reminder about Green functions. The
solution to the equation

m
d2x(t)

dt2
+ (γ − η)

dx(t)

dt
+ κx(t) = Fext(t) (460)

can be written in the form

x(t) =

∫
dt′ G(t− t′)Fext(t

′), (461)

where G(τ) is the Green function or (time domain) linear response
function. Find G(τ), and verify that as γ− η → 0 this function ac-
quires weight at very large τ , corresponding to a very long memory
or strongly nonlocal responses.

A second limit to the signal–to–noise ratio is set by
noise in the amplifier itself. This certainly is a practical
problem, and there may even be a fundamental problem,
since linear amplifiers have a minimum level of noise set
by quantum mechanics. There is some very interesting
physics here, and (confession time) there was a time when
I worked very hard to convince myself that these quan-
tum limits to measurement could be relevant to biological
systems. This project failed, and I would rather not re-
visit old failures, so let’s skip this one.
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The third consideration which limits the narrowing of
the bandwidth is the finite power output of any real am-
plifier. As we let γ − η → 0, the amplitude of motion in
response to a force at resonance grows as 1/(γ − η), and
since there is a real drag force −γ(dx/dt) the amplifier
must dissipate power to drive these ever larger motions.
At some point this power requirement will become over-
whelming, and the simple model Ffeedback = +η(dx/dt)
has to break down. Intuitively, we expect that as x be-

comes larger, the strength of the feedback will decrease,
so we can describe at least the beginning of this power
limitation we can write

η → η(x) ≈ η0[1− (x/xs)
2 + · · · ], (462)

where xs is the scale on which the amplifier loses linearity.
Then we have

m
d2x(t)

dt2
+ (γ − η0)

dx(t)

dt
+

η0
x2
s

x2(t)
dx(t)

dt
+ κx(t) = Fext(t) + δF (t). (463)

This equation has several important features.
First, γ = η0 is a bifurcation point. If γ > η0, then in

the absence of forces any small displacement from x = 0
will decay with time. In contrast, for γ < η0, small
displacements will oscillate and grow until the nonlin-
ear term ∼ x2(dx/dt) becomes significant. This is an
example of a Hopf bifurcation [should we say some more
technical things here about the kinds of bifurcations and
the defining features of Hopf?]. Second, if we poise the
system precisely at the bifurcation point, and drive it
with a resonant force, then neglecting noise we have

m
d2x(t)

dt2
+

γ

x2
s

x2(t)
dx(t)

dt
+ κx(t) = F0 cos(ω0t). (464)

Guessing that the solution is of the form x(t) ≈
x0 sin(ω0t), we note that

x2(t)
dx(t)

dt
≈ ω0x

3
0 sin

2(ω0t) cos(ωt) (465)

=
1

4
ω0x

3
0 [cos(ω0t)− cos(3ω0t)] ; (466)

in the limit that the resonance is sharp, we know that
the term at frequency 3ω0 can’t really drive the system,
so we neglect this. Thus we have

γω0

4x2
s

x3
0 = F0, (467)

or

x(t) =

[
4F0x2

s

γω0

]1/3
sin(ω0t). (468)

Thus, the response to applied forces is nonanalytic (at
least in the absence of noise); the slope of the response at
F0 = 0 is infinite, as one expects from the linear equation
above, but the response to any finite force is finite.

The fractional power behavior in Eq (468) connects to
a well known but very puzzling fact about the auditory
system. As with any nonlinear system, if we stimulate

the ear with sine waves at frequencies f1 and f2, we can
hear “combination tones” built out of these fundamen-
tals: f1 ± f2, 2f1 − f2, and so on. In the human ear,
the term 2f1 − f2 (with f1 < f2) is especially prominent.
What is surprising is that the subjective intensity of this
combination tone is proportional to the intensity of the
fundamental tones. If we imagine that combination tones
arise from a weak nonlinearity that could be treated in
perturbation theory, we would predict that if the input
tones have amplitudes A1 and A2, then the amplitude of
the combination tone should be A2f1−f2 ∝ A2

1A2. In con-
trast, the model poised precisely at the bifurcation point
predicts A2f1−f2 ∝ (A2

1A2)1/3, so that if we double the
intensity of the input sounds we also double the intensity
of the combination tone, as observed.

Problem 84: Combination tones. Do honest calculations
to verify the statements about combination tones in the previous
paragraph. Contrast the predictions far from the bifurcation point,
where perturbation theory is applicable, with the predictions at the
bifurcation point.

What happens to the nominally infinite signal–to–
noise ratio in the linear model? As we increase the feed-
back η, the mean square displacement increases, but Eq
(462) tells us that at larger x the effective strength of
the feedback term decreases. We can try to see what will
happen by asking for self–consistency. Suppose we re-
place the x–dependent value of the feedback term by an
effective feedback strength which is given by the average,

ηeff ≡ 〈η(x)〉 = η0[1− 〈x2〉/x2
s]. (469)

But if we have an effective feedback term we can go back
to the linear problem, and then Eq (458) tells us that

〈x2〉 = kBT

κ
· γ

γ − ηeff
. (470)
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Combining these equations gives us a self–consistent
equation for the position variance 〈x2〉,

η0
γx2

s

〈x2〉2 +
(
1− η0

γ

)
〈x2〉 = kBT

κ
. (471)

Even if we let the strength of the bare feedback η0 become
infinitely large, this equation predicts that the effective
feedback term will remain finite, and in particular we
always have ηeff < γ, so we can never cross the bifurca-
tion, at least in this approximation. Concretely, solving
Eq (471) and substituting back into Eq (469) for the ef-
fective feedback, we find

lim
η0→∞

γ − ηeff
γ

=
kBT

κx2
s

. (472)

Thus, the system can narrow its bandwidth to an extent
that is limited by the dynamic range of the feedback am-
plifier, which in turn is related to its power output. Since
active narrowing of the bandwidth reduces the effective
noise level below the expected thermal noise, we have a
situation every much analogous to kinetic proofreading:
we can do better than Boltzmann, but it costs energy,
and the more energy the system expends, the better it
can do.

Problem 85: Noise levels in nonlinear feedback. Start
by verifying Eq (472). In the same approximation, calculate
the response to applied forces, and show that the smallest force
which be detected above the noise has been reduced by a factor
∼

√
κx2

s/kBT relative to what we would have without feedack.
Then, there are several things to worry about.

(a.) We have given two analyses. In the first, leading to Eq
(468), we neglect noise and take the nonlinearities seriously, finding
that the response to small forces is non–analytic. In the second,
leading to Eq (472) we treat the crucial nonlinear terms a a self–
consistently determined linear feedback, and noise is included. In
this second approach, the response to applied forces is linear. Can
you reconcile these approaches? Presumably the first approach is
valid if the applied forces produce displacements much larger than
the noise level. Does this mean that the noise serves to “round”
the nonanalytic behavior near F = 0?

(b.) How do your results in (a.) effect your estimates of the
smallest force that can be detected above the noise?

(c.) You might be worried that our self–consistent approxima-
tion is a bit crude. An alternative is to simulate Eq (463) numer-
ically, reminding yourself of the discussion in Section II.A about
how to treat the Langevin force. Compare the results of your sim-
ulation with the predictions of the self–consistent approximation,
for example Eq (471).

(d.)You could also try an alternative analytic approach. If we
rewrite Eq (463) in the absence of external forces as

dx(t)

dt
= v(t) (473)

m
dv(t)

dt
= −

[
γ − η0

(
1−

x2(t)

x2
s

)]
v(t)− κx(t) + δF (t),(474)

then you should be able to derive a Fokker–Planck or diffusion–
like equation for the probability P (x, v) of finding the system with

instantaneous position x and velocity v. Can you find the steady
state solution? How does this compare with your numerical results?

What do we learn from all this? Although there are
limits, active feedback (with either sign) makes it pos-
sible to detect smaller signals than might otherwise be
possible given the level of thermal noise. Pushing the
system away from equilibrium, we spend energy to im-
prove performance. This sounds like the sort of thing
biological systems might exploit.
If thermal noise is important, then it it useful to think

about the bandwidth the system is using as it “listens”
(in this case, literally) to its input, and the resulting
exchange of energy. We recall that in a resonator, the
time scale on which oscillations decay away is τ ∼ 1/∆f ,
where ∆f is the range of frequencies under the resonant
peak. Thus if we excite the resonator to an amplitude
such that it stores energy E, this energy also decays away
on a time scale ∼ τ . But in thermal equilibrium we know
that the average energy is not zero, but rather kBT , so
the surrounding heat bath must provide a flux of power
∼ kBT/τ ∼ kBT∆f to balance the dissipation. If we
want to detect incoming signals above the background of
thermal noise, then these signals have to deliver a compa-
rable amount of power. A more careful calculation shows
that this “thermal noise power” is P = 4kBT∆f .

Problem 86: Acoustic cross–sections and detailed bal-
ance. Use idea of thermal noise power to derive limit on absorp-
tion cross–section averaged over directions. Emphasize connection
to Einstein’s argument about A and B coefficients. Maybe look at
data on the ear in relation to this limit?

Estimates of the power entering the inner ear at the
threshold of hearing are P ∼ 4 × 10−19 W. This sug-
gests that, to be sure the signals are above thermal
noise, the ear must operate with a bandwidth of less than
∆f ∼ 100Hz. There are several ways of seeing that this is
about right. If we record the responses of individual neu-
rons emerging from the cochlea of animals like us, and we
can see that these responses are tuned. More quantita-
tively, as in Fig [**], we can measure the sound pressure
required to keep the neuron generating spikes at some
fixed rate, and see how this varies with the frequency of
pure tone inputs. This input required for constant out-
put is minimal at one “characteristic frequency” of the
neuron, and rises steeply away from this minimum; for
neurons with characteristic frequencies in the range of
1 kHz, the bandwidths are indeed ∆f ∼ 100Hz. One can
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also try to measure the effective bandwidth in human
observers, either by asking listeners to detect a tone in a
noisy background and seeing how detection performance
varies with the width of the noise, or by testing when one
tone impairs the detection of another. More recently it
has been possible to record the responses from individ-
ual receptor cells, as in Fig [This paragraph needs figures
with recordings from primary auditory neurons and hair
cells; be sure that these are properly referenced at the end
of the section.] All of these bandwidth estimates are in
rough agreement, and also agree with the estimate based
on comparing thermal noise with the power entering the
ear at threshold, suggesting that filtering—in addition
to its role in decomposing sounds into their constituent
tones—really is essential in limiting the impact of noise.
It is important that the resonance or filter which defines
this bandwidth actually be in a part of the system where
it can act to reject the dominant source of thermal noise.
For example, if we think of the vibration sensitive frog,
placing the frog on a resonant table would mean that the
whole system had a narrower bandwidth, but this would
do nothing to reduce the impact of random motions of
the stereocilia. It is extremely implausible that the pas-
sive mechanics of the stereocilia themselves can generate
this narrow bandwidth.

Problem 87: Stereocilium mechanics. Use the image of the
hair bundle in Fig ** to estimate the mass and drag coefficient of
the bundle as it moves through the surrounding fluid, which you can
assume is water. Is the system naturally resonant? Overdamped
or underdamped? What bandwidth of filtering would be needed to
be sure that fluid displacements of ∼ 1 Å are detectable above the
thermal noise of the bundle? Is this roughly consistent with the
observed threshold power?

In mammalian ears, the hair cells sit on top of a struc-
ture called the basilar membrane, the tips of the stere-
ocilia are in contact with another structure, the tectorial
membrane, and the entire organ, called the cochlea, is
wrapped into a spiral and embedded in bone [need a fig-
ure here!]. Sound waves impinging on the eardrum are
coupled into the cochlea to produce a pressure difference
across the basilar membrane, which then vibrates, ul-
timately causing motions of the stereocilia. Because it
is surrounded by fluid, motions of neighboring pieces of
the basilar membrane are coupled, and the result is a
wave that travels along the membrane; because of gra-
dations in the mechanical properties of the system, high
frequency waves have their peak amplitude near the en-
trance to the cochlea and low frequency waves have their
peak near the end or apex of the cochlea. Helmholtz
knew about the structure of the inner ear, and since he

saw fibrous components in the various membranes, he
imagined that these might be taught, resonant strings.
Because the strings were of different lengths and thick-
nesses, varying smoothly along the length of the cochlea,
the resonant frequency would also vary. Thus, Helmholtz
had the basic picture of the cochlea as a mechanical sys-
tem which analyzes incoming sounds into component fre-
quencies, sorting them to different locations along the
basilar membrane. It is not clear how seriously he took
the details of the mechanics, but the picture of the ear
as frequency analyzer or bank of filters was taken very
seriously, and indeed this picture accounts for many per-
ceptual phenomena. The first direct measurements of
basilar membrane motion were made by von Békésy, who
opened the cochleae of various animals, sprinkled reflect-
ing flakes onto the membrane, and observed its motion
stroboscopically under the microscope.57 Békésy saw the
traveling wave of vibrations along the basilar membrane,
and he saw the mechanical sorting of frequencies which
Helmholtz had predicted.

Problem 88: Cochlear mechanics. Generate a problem that
gives the students a tour of classical ideas about the traveling wave
along the basilar membrane. Get them to use WKB methods to
solve, understand how the peak forms etc..

Békésy was also immediately impressed with the scale
of motions in the inner ear. To make the basilar mem-
brane vibrate by∼ 1µm and hence be easily visible under
the light microscope, he had to deliver sounds at what
would be the threshold of pain, ∼ 120 dBSPL.58 If we
just extrapolate linearly, 1µm at 120 dBSPL corresponds
to 10−12 m at 0 dBSPL, or ∼ 0.01 Å (!). This is an as-
tonishingly small displacement.

57 Many of von Békésy’s key contributions are collected in a volume
published relatively late in his life, along with various reminis-
cences and quasi–philosophical remarks. As an example, he notes
that in science good enemies are much more valuable than good
friends, since enemies will take the time to find all your mistakes.
Unfortunately, in the process of this dialogue, some of the ene-
mies become friends and hence, by von Békésy’s criteria, their
usefulness is lost.

58 SPL stands for sound pressure level. It is conventional in acous-
tics to measure the intensity of sounds logarithmically relative
to some standard. 10 dB corresponds to a power ratio of 10×, so
20 dB corresponds to a factor of 10× higher sound pressure vari-
ations. For human hearing the standard reference (0 dBSPL) is
a pressure of 2 × 10−5 N/m2 which is close to the threshold of
hearing at frequencies near 2 kHz.
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Problem 89: Brownian motion of the basilar membrane.
Generate a problem that takes the students through the analysis of
Brownian motion in a continuous system, with basilar membrane
as an example.

Békésy also observed that the frequency selectivity of
the basilar membrane motion was quite modest. More
precisely, the peak of the vibrations in response to a
single frequency was quite broad, spreading over a dis-
tance along the cochlea that corresponds to more than
ten times the apparent bandwidth over which we inte-
grate. This discrepancy seems to have caused more con-
cern than the extrapolated displacement. On the one
hand, if it is correct it suggests that there are mechanisms
to sharpen frequency selectivity that come after the me-
chanics of the inner ear, perhaps at the level of neural
circuitry. Békésy was very much taken with the ideas of
lateral inhibition in the retina, and suggested that this
might be a much more general concept for neural signal
processing. On the other hand, von Békésy studied dis-
sected cochleae that were, not to put too fine a point on
it, dead. By the 1970s, it became clear that individual
neurons emerging from the cochlea had frequency selec-
tivity which was sharper than suggested by von Békésy’s
measurements, and that (especially in mammals) this se-
lectivity was extremely fragile, dependent on the health
of the cochlea—so much so that the tuning properties of
individual neurons could be changed within minutes by
blocking blood flow to the ear, recovering just as quickly
when the block was relieved.

Observations on the fragility of cochlear tuning empha-
sized the challenge of making direct mechanical measure-
ments on more intact preparations, and presumably at
more comfortable sound levels. To make measurements
of smaller displacements, a number of tools from exper-
imental physics were brought to bear: the Mössbauer
effect, laser interferometry, and Doppler velocimetry. At
the same time, several groups turned to non–mammalian
systems which seemed like they would be more robust,
such as the frog sacculus and the turtle cochlea, and
especially in these systems it proved possible to make
much more quantitative measurements on the electrical
responses of the hair cells and eventually on their me-
chanical properties. In the midst of all this progress came
the most astonishing evidence for active mechanical fil-
tering in the inner ear.

If we build an active filter via feedback, and try to nar-
row the bandwidth as much as possible, we are pushing
the system to the edge of instability. It is not difficult to
imagine that, with active feedback provided by biologi-
cal mechanisms, that some sort of pathology could result
in an error that pushed past the gain past the bifurca-
tion, turning a narrow bandwidth filter into an oscillator.
If incoming sounds are efficiently coupled to motions of

FIG. 78 Spontaneous emission of sounds from the human
ear, from van Dijk et al (2011). Top panels show the spectral
density of sounds in the ear canals of two subjects. Bot-
tom panel shows the intensities and frequencies of 41 spectral
peaks found in 8 subjects, compared with the noise back-
ground.

the active elements in the inner ear, then spontaneous
oscillations of these elements will couple back, and the
ear will emit sound. Strange as it may seem, careful
surveys show that almost half of all ears have a “spon-
taneous oto–acoustic emission;” a rather quiet, narrow
band sound that can be detected by placing a micro-
phone in the ear canal, as shown in Fig 78. Importantly,
the statistics of the sounds being emitted are not those
of filtered noise, but rather those expected from a true
oscillator—the distribution of instantaneous sound pres-
sures has a minimum at zero, as expected if the quiet
state is unstable.
[Need to wrap this up .. Direct measurement on cil-

iary mechanics in different systems; violation of FDT as
evidence of activity. Note re electrical resonances. Look
at Marcelo & Jim’s papers to see smoking gun for Hopf
bifurcation.]
[Reach a conclusion!]

Now is a good time to look back at Schrödinger’s remarkable little
book (Schrödinger 1944). The idea which him were presented by
Timoféef–Ressovsky et al (1935). For some later perspectives see
Delbrück’s Nobel lecture (1970); the title refers to an earlier lec-
ture, also very much worth reading for its eloquence and prescience
(Delbrück 1949). A review of DNA structure is given in Appendix
A.5, and some general references on molecular biology are at the
end of Section II.B. The ideas of kinetic proofreading—and, as em-
phasized in the text, the idea that there is a general physics prob-
lem cutting across a wide range of biological phenomena—were
presented in Hopfield (1974) and Ninio (1975). Hopfield (1980)
constructed a scenario in which the basic idea of paying (energet-
ically) for increased accuracy still operates, but with none of the
experimental signatures of the original proofreading scheme. [Need
refs that proofreading is correct!]
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and Abbondanzieri et al (2005). [Add refs for single ribosome ex-
periments, depends on what happens in the text.]

Abbondanzieri et al 2005: Direct observation of base-pair
stepping by RNA polymerase. EA Abbondanzieri, WJ
Greenleaf, JW Shaevitz, R Landick & SM Block, Nature
438, 460–465 (2005).

Ashkin 1978: Trapping of atoms by resonance radiation pressure.
A Ashkin, Phys Rev Lett 40, 729–732 (1978).

Ashkin 1980: Applications of laser radiation pressure. A Ashkin,
Science 210, 1081–1088 (1980).

Ashkin & Dziedzic 1987: Optical trapping and manipulation of
viruses and bacteria. A Ashkin & JM Dziedzic, Science
235,1517–1520 (1987).

Chu 2002: The manipulation of neutral particles. S Chu,
in Nobel Lectures, Physics 1996–2000 G Ekspong, ed
(World Scientific, Singapore, 2002). Also available at
http://nobelprize.org.

Greenleaf et al 2007: High–resolution, single–molecule mea-
surements of biomolecular motion. WJ Greenleaf, MT
Woodside & SM Block. Annu Rev Biophys Biomol Struct
36, 171–190 (2007).

Shaevitz et al 2003: Backtracking by single RNA polymerase
molecules observed at near–base–pair resolution. JW Shae-
vitz, EA Abbondanzieri, R Landick & SM Block, Nature
426, 684–687 (2003).

The images of hair cells are from [be careful to revise with new
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[Find early references to active cooling ...] Recent examples of ac-
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I have always liked the treatment in Kittel’s little book, cited at the
end of Section 2.1, and this includes a discussion of the “thermal
noise power.”
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mechanics of other inner ear organs. [Something more modern?]
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59 It is amusing to note that this paper is sometimes cited in the bi-
ological literature as having been published in the journal Phys-
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Rev without checking.
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E. Perspectives

Many of life’s phenomena exhibit a startling degree
of reliability and precision. Organisms reproduce and
develop with surprising predictability, and our own per-
ceptual experience of the world feels certain and solid.
On the other hand, when we look inside a single cell,
or even at the activity of single neurons in brain, things
look very noisy. Are the building blocks of biological be-
havior really so noisy? If so, how can we understand the
emergence of reliability and certainty from all this mess?
Many of the problems faced by living organisms can be

phrased as sensing, processing and responding to signals.
If we look at a part of a system involved in such sensory
tasks, we have to be careful in assessing noise levels. As
a simple example, if we build a system in the lab that
measures a small signal, and somewhere in this system
there is an amplifier with very high gain, then surely we
will find places in the circuitry where the voltage fluc-
tuations are very large. Alternatively, there might be no
gain, just a lot of noise. Thus, the variance of the noise at
one point in the system, by itself, tells us nothing about
its true degree of noisiness.
When we build sensors in the lab, we measure their

noise performance by referring the noise to the input—
estimating the noise level that would have to be added to
the signals that we are trying to sense so as to account
for the noise that we see at the output. This effective
noise level is also the noise that limits the detectability
of small signals, or the discriminability of signals that
are very similar to one another. Importantly, for many
sensors there are physical limits on this effective noise at
the input, which allows us to put the noise performance
on an absolute scale.
What we have done in this Chapter is to look at several

instances it which it has been possible to carry out the
program of “referring noise to the input” for increasingly
complex biological systems. This is by far not a closed
subject, and it is a minority of systems that have been
analyzed in this way. Nonetheless, it is striking that, in
so many disparate instances, the noise performance of
biological systems indeed is close to the relevant physical
limits. This of course is in the spirit of what we learned

from the case of photon counting in vision, but it seems
much more general.
[I need to give some exegesis of this, and what it im-

plies. Perhaps because I have spent so much time on
these issues myself, I am having difficulty at the moment
generating enough distance to be clear and objective (and
not just to repeat what was said at the end of the previ-
ous chapter). So, I will need to come back to this. Sorry
to leave things hanging in an important spot!]
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III. NO FINE TUNING

Imagine making a model of all the chemical reactions
that occur inside a cell. Surely this model will have many
thousands of variables, described thousands of differen-
tial equations. If we write down this many differential
equations with the right general form but choose the pa-
rameters at random, presumably the resulting dynamics
will be chaotic. Although there are periodic spurts of in-
terest in the possibility of chaos in biological systems, it
seems clear that this sort of “generic” behavior of large
dynamical systems is not what characterizes life. On the
other hand, it is not acceptable to claim that everything
works because every parameter has been set to just the
right value—in particular these parameters depend on
details that might not be under the cell’s control, such as
the temperature or concentration of nutrients in the envi-
ronment. More specifically, the dynamics of a cell depend
on how many copies of each protein the cell makes, and
one either has to believe that everything works no matter
how many copies are made (within reason), or that the
cell has ways of exerting precise control over this number;
either answer would be interesting. This problem—the
balance between robustness and fine tuning—arises at
many different levels of biological organization. Our goal
in this chapter is to look at several examples, from single
molecules to brains, hoping to see the common themes.
[This seems to be the thinnest, and least well worked out
of all the four main chapters. All advice is welcome!]

Physics, especially theoretical physics, is the search for
concise mathematical descriptions of Nature, and to a
remarkable extent this search has been successful. The
dirty laundry of this enterprise is that our mathematical
descriptions of the world have parameters. In a sense, one
mathematical structure describes several possible worlds,
which would be somewhat different if the parameters
were chosen differently. Sometimes this variety is a good
thing—in condensed matter physics, for example, the dif-
ferent parameter values might correspond to genuinely
different materials, all of which are experimentally re-
alizable. On the other hand, if the predictions of the
model are too sensitive to the exact values of the param-
eters, there is something vaguely unsatisfying about our
claim to have explained things. Such strongly parameter–
dependent explanations are often called “finely tuned,”
and we have grown to be suspicious of fine tuning. Expe-
rience suggests that if parameters need to be set to pre-
cise (or somehow unnatural) values, then we are missing
something in our mathematical description of Nature.60

60 At this point I usually try to remind the students of examples—
the apparent vanishing of CP violation for the strong interaction,
and the prediction of the axion as a solution to this problem, is
a favorite. The cosmological constant is another one. Whether
these remarks help depends on what the students have learned

One needs, of course, to be cautious in identifying ex-
amples of fine tuning. As an example, many of the beau-
tiful phenomena associated with solar eclipses depend on
the fact that, seen from our vantage point on the earth,
the angular size of the moon is almost exactly equal to the
angular size of the sun. As far as we know, this is a coinci-
dence, and isn’t connected to anything else. Presumably
this coincidence (which, at certain times of year, occurs
with ∼ 1% precision) is related to the fact that there are
many planets with moons—even more if we count the
planets orbiting other stars—and we happen to live on
one of them. Thus, we are sampling one out of many
possibilities, and so rare things will happen. Similarly,
elections sometimes turn on a surprisingly small number
of votes, a tiny fraction of the total. This might seem like
some sort of fine tuning,61 but it is also true that most
elections do not have outcomes anywhere near the point
of perfect balance among the outcomes. This is more
obviously one of those cases in which we are sampling
many examples, and finely tuned outcomes will happen,
sometimes, by chance alone. What we need to worry
about are cases in which fine tuning seems essential to
make things work (unlike the moon/sun example), and
where we see this in representative examples, or in all
examples (unlike the elections). We’ll see plenty of these
problematic cases.
In biological systems, there may be different reasons to

be suspicious of fine tuning. On the one hand, for many
processes what we call parameters are certainly dynam-
ical variables on longer time scales (such as the number
of copies of a protein), and there is widespread doubt
that cells can regulate these dynamics precisely. More
fundamentally, the parameters of biological systems are
encoded in the genome, and in order for evolution to
occur it seems necessary that, near to the genomes we
see today, there must be genomes (and hence parameter
values) which also generate functional organisms of rea-
sonable fitness. These ideas have entered the literature
as the need for robustness and evolvability. Note that
while the physicist’s suspicion of fine tuning is a state-
ment about the kind of explanation that we find satisfy-
ing, any attempt to enshrine robustness and evolvability
as specifically biological principles involves hypotheses,
either about the ability of cells to control their internal
states or about the dynamics of evolution.
In this section we will look at several examples of the

fine problem, starting at the level of single molecules and
then moving “up” to the dynamics of single neurons, the
internal states of single cells more generally, and networks

in other courses. Would it be good to make this explicit here?
In the text or a footnote?

61 We’ll leave aside, for this discussion, the disturbing possibility
that vote totals are being tuned by some process that is separate
from the actions of the voters themselves.
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FIG. 79 The basic structure of amino acids and the peptide
bond. At top, two amino acids. Different amino acids are
distinguished by different groups R attached to the α–carbon.
Proteins are polymers of amino acids, and the chemical step
in polymerization is the formation of the “peptide bond” by
removal of a water molecule.

of neurons. As noted at the outset, these different bio-
logical systems are the subjects of non–overlapping liter-
atures, and so part of what I hope to accomplish in this
Chapter is to highlight the commonality of the physics
questions that have been raised in these very different
biological contexts.

A. Sequence ensembles

The qualitative ideas about robustness vs fine tuning
can be made much more concrete by focusing on sin-
gle protein molecules. We recall that proteins are het-
eropolymers of amino acids (Fig 79), each monomer along
the polymer chain chosen from twenty possible amino
acids (Fig 80). When we look at the proteins made by one
particular organism, of course each protein has some par-
ticular sequence. If a typical protein is 200 amino acids
long, then there are (20)200 ∼ 10260 possible sequences,
out of which a bacterium might choose a few thousand,

and we choose a few tens of thousands. While different
organisms do make slightly different choices, even if we
sum over all life forms on earth we will find that real pro-
teins occupy a very small fraction of the available volume
in sequence space.
Proteins with different sequences fold up into differ-

ent structures and carry out different functions. Thus,
the sequence obviously matters. Yet, it can’t be that the
exact sequence matters, and this can be checked exper-
imentally. Although some changes are disastrous (e.g.,
trying to bury a charged amino acid deep in the inte-
rior of the protein), many amino acid substitutions leave
the structure and function of a protein almost completely
unchanged, and many more generate quantitative mod-
ulations of function which could be useful in different
environments or for closely related organisms. [Should
add some figures with protein structures. Need pointer
to Appendix A.5 discussing methods of structure deter-
mination. Also need to point out that the possible folds
seem to be limited, which is another indication that not
all details matter.]
Although protein function is tolerant to a wide range

of sequence changes, not all sequences really make func-
tional proteins. We can make this statement both as a
theoretical result and as an experimental fact. Experi-
mentally, we can synthesize proteins by choosing amino
acids at random, and almost none of these will fold. As
we will see below, we can even bias our choices at each
site, trying to emulate a known family of proteins, and
it still is true that if we choose each amino acid indepen-
dently, most proteins don’t fold.
As a crude theoretical model of a protein, we can coarse

grain to keep track of the positions ri of each α–carbon
atom (see Fig 79) along the chain, not worrying about the
detailed configuration of the side chains that project from
the backbone. Successive amino acids are bonded to one
another, with a relatively fixed bond length &, and when
the chain folds to bring two amino acids near one another
they have an interaction that depends on their identity,
plus an excluded volume interaction that is independent
of identity. So the total energy looks something like

E({ri}) =
κ

2

∑

i

(|ri+1 − ri|− &)2 +
1

2

∑

ij

V (Si, Sj)u(ri+1 − ri) +
1

2

∑

ij

∆(ri+1 − ri),

where the stiffness κ should be large, the function u(r)
needs a shape to express the fact that amino acids have
their optimal interaction at finite separation of their cen-
ters, and ∆(r) should be relatively short ranged to ex-
press the excluded volume effect. We could try to be a

little more realistic and have an extra variable for each
amino acid, to keep track of the configuration of the side
chain which project from the position ri.



137

Valine (V)

Leucine (L) Isoleucine (I)

Methionine (M)

Phenylalanine (F)Tryptophan (W) Tyrosine (Y) Cysteine (C)
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Proline (P)

Asparagine (N)

FIG. 80 The twenty different amino acids, arranged from
most hydrophobic (top left) to most hydrophilic (bottom
right). [perhaps should redraw for better consistency with
Fig 79; show only R groups?]

Problem 90: Screening. We are assuming that all inter-
actions extend only over short distances, but we also know that
there are charged groups. In this problem you’ll show that the
long ranged Coulomb interaction is screened. For simplicity, let’s
imagine that everything is happening in an aqueous solution with
only two types of ions, one positive and one negative (e.g., a simple
salt solution, where the ions are Na+ and Cl−). Let the density of
the two ions be ρ+(x) and ρ−(x), respectively. If the local electri-
cal potential is φ(x), then in equilibrium the charge densities must
obey

ρ±(x) = ρ0 exp

[
±
qeφ(x)

kBT

]
, (475)

where qe is the charge on the electron and ρ0 is the density or
concentration of ions in the absence of fields. Suppose that we
introduce an extra charge Z at the origin. Convince yourself that

κsprings hold 
bonds to length !

u(r)
interaction

FIG. 81 A model for proteins, after Eq (475). Bonds with
stiff springs connect neighboring amino acids, which interact
through a potential u(r) when they get close. The strength
of the interaction is modulated by the identity of the amino
acids through the term V (Si, Sj) in Eq (475).

the potential then obeys

∇2φ(x) =
1

ε
[Zqeδ(x) + qe[ρ+(x)− ρ−(x)]] , (476)

where ε is the dielectric constant. The combination of these two
equations is often called the “Poisson–Boltzmann” model, since Eq
(475) is the Boltzmann distribution and Eq (476) is the Poisson
equation of electrostatics. [I have avoided issues of units in electro-
statics until now .. get this straight, because we need numbers at
the end!]

(a.) Show that, if the spatial variations in potential are small,
Eq’s (475) and (476) can be combined to give

∇2φ(x) +
1

λ2
φ(x) = Zqeδ(x). (477)

What is the length λ in terms of the other parameters in the prob-
lem?

(b.) You may remember that Eq (477) has solutions that decay
exponentially far from the origin; this is the same as for a force
mediated by the exchange of a massive particle as opposed to the
electromagnetic force, mediated by the massless photon.62 In this
context, Eq (477) is called he Debye–Hückel equation. Solve Eq
(477) to give this result explicitly. If the typical concentration of
ions in solution is ρ0 ∼ 100mM, what is the value of λ?

(c.) With only two univalent ion species, their relatively con-
centrations are fixed by neutrality, and thus there is only one pa-
rameter ρ0 that enters the discussion. Generalize the derivation of
the linearized Eq (477) to the case where there are many species of
ions.

(d.) Going back to the two–species case in Eq (476), can you
solve the problem without making the linearizing approximation
that leads to Eq (477)? With spherical symmetry it’s a one dimen-
sional problem, so at worst you should be able to do this numeri-
cally. With ρ0 in the range of 100mM as above, how good is the
linearized theory?

At the end of all this, does it seem reasonable that even electro-
static interactions are effectively local?

If we set the interaction V = 0, Eq (475) describes
a polymer that takes a self–avoiding random walk. If
V = −V0, then there is a net attraction that causes col-
lapse of the polymer into a more compact phase at low
temperature, but this state is still disordered, since there
is nothing to prefer one compact configuration over an-
other. If V depends on the amino acid identities, then if
we choose the sequence at random the effective interac-
tion between monomers i and j will also be random. Al-
though this sounds like a complicated problem, we know
a great deal about the behavior of systems where the
Hamiltonian contains terms chosen at random.

62 Historically, this idea goes back to Yukawa, who imagined the
strong force between protons and neutrons mediated by the ex-
change of a heavy particle. We now know that this was on the
right track, but there were more layers of the strong interaction
to be uncovered; solutions to Eq (477) are still called Yukawa
potentials. A more direct connection to the standard model of
particle physics is in the case of the weak interaction, where the
large mass of the W± and Z bosons are directly related to the
short range over which the weak interaction is effective.
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The prototype of a system with random interactions
is the spin glass. Imagine a solid in which, at every site,
there is a magnetic dipole which can point up or down,
and hence can be described by an Ising spin σµ = ±1 at
site µ. If neighboring spins tend to be parallel, then we
can write the Hamiltonian as

H = −J
∑

〈i,j〉

σiσj, (478)

where 〈i, j〉 denotes neighboring sites. In the classic spin
glass materials, magnetic impurities are dissolved in a
metal, so the distances between neighbors are random.
Further, when the conduction electrons in the metal re-
spond to the magnetic impurity, they polarize, but in
a metal all the electronic states involved in responses to
small perturbations are near the Fermi surface, and hence
have a very limited range of momenta or wavevectors in
their wavefunctions. This limitation in momentum space
corresponds to an oscillation in real space, so the polar-
ization surrounding a single magnetic impurity oscillates
with distance; a neighboring impurity will ‘feel’ this po-
larization, and so the effective interaction between the
two impurities can be positive or negative, at random,
depending on the distance between them. This suggests
a Hamiltonian of the form

H = −
∑

ij

Jijσiσj, (479)

where Jij is a random number. In a real system these
interactions would be nonzero only for nearby spins, but
there is a natural “mean field” limit in which we allow all
the spins to interact; this is the Sherrington–Kirkpatrick
model.

++

-

++

-

++

-

FIG. 82 Three frustrated spins. Signs on the bonds indicate
the signs of Jij in Eq (479). No matter what configuration of
spins we choose, one of the bonds is always unsatisfied.

The key qualitative idea in spin glass theory is frus-
tration, schematized in Fig 82. In the case of the “fer-
romagnetic” Ising model in Eq (478), each term in the

Hamiltonian can be made as negative as possible by hav-
ing all the spins point in the same direction, either up
or down. But, in the spin glass case, we may find (for
example) that spin 1 is coupled to spins 2 and 3 with
ferromagnetic interactions J12 > 0 and J13 > 0, but
spins 2 and 3 are coupled to each other with an anti–
ferromagnetic interaction, J23 < 0. In such a triangle,
there is no configuration of the spins which can optimize
all the terms in the energy function simultaneously—the
interactions compete. As one can see in this simple prob-
lem with three spins, a consequence of this competition
is that there are many states of the system with low en-
ergy that are nearly degenerate. Importantly, in systems
with many spins these low lying states correspond to very
different spin configurations.

Problem 91: Simulating (small) spin glasses. Consider a
mean field spin glass, as in Eq (479), in which the couplings Jµν

are drawn at random from a Gaussian distribution; for simplicity
start with the assumption that the mean of this distribution is zero
and the variance is one. Notice that with N spins there are exactly
2N states of the system as a whole, so that up to N = 20 (or even
a bit more) you can easily enumerate all of these states without
taxing the memory of your laptop.

(a.) Write a simple program (e.g., in MATLAB) which, starting
from a particular random matrix Jµν , gives the energies of all the
states in an N spin system.

(b.) Find the ground state energy of an N spin system, and do
this many times for independent choices of the random interactions
Jµν . Show that, if the distribution out of which the Jµν are drawn
is held fixed, then the ground state energy does not seem to be
extensive (i.e., proportional to N) as N varies. In contrast, if the
variance of J scales ∝ 1/N , show that the average ground state
energy does seem to be proportional to the number of spins. Can
you give an analytic argument for why this scaling should work?

(c.) The exact ground state energy depends on the particular
choice of the interactions Jµν . One might hope that, as the system
becomes large, there is a “self–averaging,” so that the energy per
spin becomes independent of these details in the limit N → ∞. Do
you see any signs of this?

(d.) Having normalized the variance of the couplings 〈J2〉 =
1/N , so that the ground state energy is on the order of −1 per spin,
compute the gap ∆ between the ground state and the first excited
state of the system, again for many realizations of the matrix Jµν .
How does the probability distribution of this gap behave at small
values of the gap? In particular, is there a finite probability density
as ∆ → 0? How does this behavior of the gap compare with what
you expect in a ferromagnet?

(e.) Show that at least some of the low lying states have spin
configurations that are very different from the ground state. Again,
contrast this with the case of a ferromagnet.

The statistical mechanics of spin glasses is a very beau-
tiful subject, and we could spend a whole semester on
this. What we need for the moment, however, is an intu-
ition, something of the sort one can get from the numer-
ical simulation above. In systems with substantial frus-
tration, we expect that there will be many locally stable
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low energy states, and these will be very far apart in the
relevant state space. Thus, rather than having a well de-
fined ground state, with small fluctuations around this
state, there are many inequivalent near–ground states,
often with large barriers between them. If we think of
the dynamics of the system as motion on an energy sur-
face, then this surface will be rough, with many valleys
separated by high passes; indeed, in the Sherrington–
Kirkpatrick model there are valleys within valleys, hier-
archically. This needs a figure. It’s a bit conventional,
but maybe there is a reason for the convention?

What does all of this teach us about the protein fold-
ing problem? To the extent that we can make analogies
between spin glasses and heteropolymers with random se-
quences, we expect that these randomly chosen proteins
will not, in general, have unique ground state structures.
Instead, there will be many inequivalent structures with
nearly the same low energy, separated by large barriers.
Several groups have used modern tools from the statis-
tical mechanics of disordered systems to make this intu-
ition precise Should I say something about the heftier cal-
culations? An Appendix about replicas? Where else do
we really need those ideas?], and indeed the random het-
eropolymer is a kind of glass—the polymer has compact,
locally stable structures, but there are many of these, and
the system tends to get ‘stuck’ in one or another such
local minimum at random. This contrasts sharply the
ability of real proteins to fold into particular, compact
conformations that are (at some level of coarse graining)
unique, determined by the sequence. The real problem
is even worse, because we have only considered the sta-
tistical mechanics of one polymer in solution; in practice
the folded state of proteins competes not only with the
higher entropy unfolded state, but with states in which
multiple protein molecules aggregate and precipitate out
of solution.

The conclusion is that the proteins which occur in
Nature cannot be typical of sequences chosen at ran-
dom. At the same time, not every detail of the amino
acid sequence can be important. This is perhaps the
most fundamental example of the general question we
are exploring in this Chapter—our description of life
cannot depend on fine tuning, but neither are the phe-
nomena of life generic. Concretely, we can ask how to
describe the ensemble of sequences that we see in real
proteins. One possibility is that this ensemble is pro-
foundly shaped by history, and surely at some level this
is true—we can trace evolutionary relationships through
sequence data. Another possibility is that the ensemble
of possible sequences is enormously constrained by physi-
cal principles—ensuring that a protein will fold into some
compact, reproducible structure is very difficult, and per-
haps even enough to explain the dramatically restricted
range of sequences and even structures that we observe
in real proteins.

At this point we should pause to note that the prob-

FIG. 83 A schematic energy landscape for protein folding,
from Onuchic et al (1995). [Maybe redraw this? Would be
good to have equations in the text to point at for features of
the funnel.]

lem we are formulating is related to, but different from,
a much more widely discussed problem. The general
question of how protein structure emerges from the un-
derlying amino acid sequence is referred to as the “the
protein folding problem.” As a practical matter, one
might like to predict the three dimensional structure of
the folded state, starting only with the sequence. Many
approaches to this problem are based not on a physical
model for the interactions, but on attempts to gener-
alize from many known examples of sequence/structure
pairs. Faced with a particular sequence from Nature,
this is can be an extraordinarily effective approach. But
it doesn’t tell us why some heteropolymers fold into com-
pact, reproducible states, while others do not, and why
(presumably) some sequences will never be seen in real
organisms. It is this more general version of the question
that concerns us here.
One approach emphasizes that in a typical sequence

chosen at random, interactions among the different amino
acids will be frustrated, blocking the system from finding
a single well isolated folded structure of minimum energy.
A candidate principle for selecting functional sequences is
thus the minimization of this frustration. If frustration is
absent, there may be few if any major energetic barriers
on the path from an unfolded state to the compact, na-
tive conformation, although the need for local structural
rearrangements along the path may mean that there is
an irreducible ‘roughness’ to the energy surface that, in
a coarse grained picture, will limit the mobility of the
system along its path. This scenario has come to be
called a folding ‘funnel,’ emphasizing that there is a sin-
gle dominant valley in the energy landscape, into which
all initial configurations of the system will be drawn, as
shown schematically in Fig 83.
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At a technical level, if frustration is absent, then we
can look at the ground state or native structure and
“read off” an approximation to the interactions. Thus,
in a ferromagnet, all the spins are parallel in the ground
state, and if simply look at each neighboring pair, we
would guess that there is a ferromagnetic interaction be-
tween them; absent any other data, we should assume
that all these interactions have the same strength. Al-
though this might not be exactly right, the Hamiltonian
we get in this way will have the correct ground state.
In contrast, this doesn’t work with spin glasses, because
the (near–)ground states necessarily leave some fraction
of the interactions unsatisfied, due to frustration. In this

spirit, if we look at a small protein, we might try to gen-
erate a potential energy function which ties neighboring
amino acids together along the chain and, in addition,
has “bonds” between amino acids which are in contact
in the folded state. We should choose the scale of the po-
tential to have more or less the correct distance between
amino acids, and the right order of magnitude for the free
energy difference between folded and unfolded states.
Models which bond together amino acids that should

form contacts, and neglect all other interactions, actually
have a long history, and referred to as Gō models. Con-
cretely, this approach involves an energy function of the
form

E =
1

2

∑

bonds

κr(r − r0)
2 +

1

2

∑

angles

κθ(θ − θ0)
2 +

1

2

∑

dihedrals

∑

n

κ(n)
φ [1 + cos(n(φ− φ0))]

+ε
∑

i<j−3

[
5

(
σij

rij

)1

2− Cnative
ij 6

(
σij

rij

)10
]
, (480)

where the various κs are stiffnesses which hold bond
lengths r and angles θ,φ along the chain to their native
values. The crucial terms are those in the second line,
which serve to bond together pairs of residues ij which
form a contact in the native, folded state (Cnative

ij = 1)

while pushing apart those which do not (Cnative
ij = 0). In

principle the different bonds can have specific lengths σij,
but this is not so important qualitatively.

More recently it has been possible to test these ideas
in more detail, by complete simulations of the folding
process (cf Fig 84). To summarize the results of the sim-
ulation, we can measure the fraction Q of the contacts
which should form in the folded state that have actually
been made; by construction, as this order parameter in-
creases, the energy of the system decreases. But making
contacts lowers the entropy of the polymer, and exactly
how much the entropy is lowered depends on which con-
tacts are made. When the dust settles, we can see that
the free energy as a function Q has roughly a double well
structure. Importantly, one can also sample the configu-
rations in the transition state between the wells, and ask
which contacts have been made by the time the molecules
finds its way to the top of the barrier. Because there are
no competing interactions, the prediction is that the en-
semble of transition state configurations must reflect only
the geometry of the target, folded state.

Can we test the predictions of such simulations? We
expect, from the general arguments in Section II.A, that
the rate of folding will have an approximately Arrhenius
temperature dependence, k ∝ exp(−∆F/kBT ), where
∆F is the free energy difference between the unfolded
state and the “transition state” at the top of the barrier.

FIG. 84 Gō models for two particular proteins, dihydrofolate
reductase (DHFR at left) and interleukin 1β (IL–1β at right),
from Clementi et al (2000). Along the x–axis in all figures is
a parameter Q measuring the fraction of native contacts that
have formed. The top panels show the root–mean–square dif-
ference between the structures and the ground state, with
colors denoting the energy. Note that, because there are no
competing interactions, the energy decreases linearly as more
of the native contacts are formed. But different values of Q
can be achieved by different numbers of configurations, until
at Q = 1 there is only one possible structure. Thus the en-
tropy generally declines with Q, although there is also some
structure along the way determined by the geometry of the
native fold. The result, shown in the bottom panels, is that
the free energy has two distinct minima, corresponding to
folded (Q ≈ 1) and unfolded (Q ≈ 0) states. Different curves
correspond to different temperatures, as indicated.
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FIG. 85 Simulations of folding for two proteins, using Gō
models, from Clementi et al (2000). At each instant of time
in the simulation we can count the fraction Q of native con-
tacts, as in Fig 84; sampling the probability distribution of
Q we infer the free energy F (Q). At left, simulations of an
SH3 domain, which is known to fold rapidly with no obvious
intermediate states between folded and unfolded. At right,
simulations of the enzyme RNase, which folds more slowly
and occupies a well defined intermediate state. These differ-
ences are captured by the Gō models, suggesting that frustra-
tion does not play a role in slowing the folding of the larger
molecules.

Imagine that we mutate the protein to change amino acid
i. This has some effect on the free energy of every contact
between i and j, and we can measure at least the sum of
these effects by measuring the change in the free energy
difference between the folded and unfolded states. But
if along the “reaction coordinate” Q in Fig 84 these con-
tacts are made (on average) only once Q > Qc, where the
Qc is the position of the transition state, then changing
their energy doesn’t change the activation free energy for
the folding reaction. On the other hand if these contacts
are made at Q < Qc, they contribute to the free energy of
the transition state and should change the rate of folding.
Roughly speaking, the ratio between changes in the (ki-
netic) free energy of activation and the (thermodynamic)
free energy of folding tells us the fraction of contacts in-
volving residue i which are formed in the transition state,
and this is something we can get directly from the com-
putations summarized in Fig 84; it is also something one
can measure experimentally. Theory and experiment are
in surprisingly good agreement [show a figure with the
comparison!], which strongly suggests that, at least for
small proteins, frustration really has been minimized.

Problem 92: The location of transition states. Sup-
pose that the dynamics of a chemical reaction are described, as
in [pointer], by motion of a coordinate x in a potential V (x) that

has two minima separated by a barrier. Let the locations of the
two minima be at x1 and x2, while the peak of the barrier is at a
position xt. Assume that rate constants from transitions between
the two wells are governed by the Arrhenius law. Now imagine that
we apply a small force f directly to the coordinate x. How does
this change the equilibrium between the two states? How does it
change the rate of transition, say from the states near x1 to the
states near x2? Notice that these are measurable quantities. Can
you combine them to infer the location of xt along the line from x1

to x2? In particular, can you say something without knowing any
additional parameters?

Some proteins are known to fold slowly, moving
through a well defined intermediate state. Does this
represent a failure to relieve all of the frustration, or is
it somehow intrinsic to the size and structure of these
molecules? One can make Gō models of thee slower pro-
teins, and compare them with the smaller “two state fold-
ers.” Results of such a comparison are shown in Fig 85.
Perhaps surprisingly, intermediates emerge in the folding
of the larger protein even in a model where there is no
intrinsic frustration from the interactions among differ-
ent kinds of amino acids. [I’d like to understand if one
be more quantitative here ... can we really conclude that
frustration is approximately minimized?]
A second approach to our problem looks more explic-

itly at the mapping between sequences and structures.
The observation that changes in amino acid sequence
(mutations) don’t necessarily change protein structure
tells us that many sequences map into the same struc-
ture. But what about the other direction of the mapping?
If we imagine some compact structure of a hypothetical
protein, can we find a sequence that will fold into this
structure? This is the inverse folding problem, or the
problem of protein design.

FIG. 86 Compact “folded” structure of an N = 30 polymer
on a square lattice.
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FIG. 87 Exhaustive simulations of compact structures on a
lattice, from Li et al (1996). At left, the number of struc-
tures which are the ground state for exactly Ns distinct HP
sequences, plotted vs Ns for 3 × 3 × 3 (top) and 6 × 6 (bot-
tom) lattices. Note the small number of structures which are
the ground states for huge numbers of sequences. At right,
the energy gap between the ground state and the first “ex-
cited” state, showing that stability correlates with Ns; the
most highly designable structure has a distinctive pattern of
hydrophobic and polar residues alternating with residues that
are free to be either H or P with nearly equal probability.

To address the inverse folding problem it is helpful to
step back and work on a simpler version of the problem.
Imagine that there are just two kinds of amino acids, hy-
drophobic (H) and polar (P). Polar residues are happy to
be next to one another, but they are equally happy to on
the outside surface of the protein, interacting with wa-
ter. Hydrophobic residues are much happier to be next
to one another, and this includes the effect of not be-
ing near water. Finally, for hydrophobic residues, it is
likely that having a polar neighbor is marginally better
than having water as a neighbor. Thus there are three
interaction energies, EPP > EHP > EHH , where lower
energy is (as usual) more favorable. To simplify yet fur-
ther, let us assume that the structure of the protein lives
on a lattice, as in Fig 86. Now it’s clear what we mean
by ‘compact’ structures—if the protein is N = 27 amino
acids long, for example, a compact structure is one which
fills a 3× 3 cube—and similarly the definition of ‘neigh-
bor’ is unambigiuous.

Once we have simplified the problem, it is possible to
attack it by exhaustive enumeration. On the 3 × 3 × 3
cube, for example, there are only ∼ 50, 000 inequivalent
compact structures, and there are only 227 ∼ 108 se-
quences of this length in the HP model. These num-
bers are large, but hardly astronomical, so one can ex-
plore these sequences and structures completely, also for
two dimensional models with N = 30 and 36. To be-
gin, out of 227 sequences, less than 5% have a unique

compact structure with minimum energy; the majority
of sequences have multiple degenerate ground states with
inequivalent structures. Conversely, there are nearly 10%
of compact structures for which no sequence finds that
structure as its ground state; the vast majority of struc-
tures are connected to just a handful of sequences. But
if we ask how many sequences map into a given struc-
ture (Ns), there is a long tail to the distribution of this
number (Fig 87, at left), and some structures have thou-
sands of sequences that all reach that structure as their
ground state. We can say that these structures are easy
to design, or ‘highly designable.’ Structures with large
Ns also have a large energy gap between the compact
ground state and the next highest energy conformation,
so that highly designable structures are also thermody-
namically stable.
What are these highly designable structures? It is hard

to extrapolate from such small systems, but certainly the
structures with largest Ns have more symmetry and show
hints of extended elements such as helices and sheets,
as seen in the insets to Fig 87). Can we understand
why designability is so variable, and why these particular
structures are highly designable?
Before proceeding it is worth noting that finding se-

quences that stabilize certain structures can be done in
two ways. What we really want are sequences with the
property that the desired structure is actually the ground
state, which means we have to check all other possible
competing structures. A weaker notion is to ask for a
sequence that assigns a low energy to the desired struc-
ture, perhaps even the lowest possible energy across all
sequences. If we are just trying the lower the energy, then
the problem of choosing sequences is relatively simple—
we should try to put the polar residues on the outside,
and the hydrophobic residues on the inside. This version
of the inverse problem seems at most weakly frustrated,
so there are “downhill” paths to find good sequences. [Is
there more to say here?]
Analytic approaches to designability describe protein

structure not in terms of the positions of all the amino
acids, but in terms of a matrix Cij that specifies whether
monomers i and j are in contact (Cij = 1) or not (Cij = 0);
by convention Cii = 0. Assuming that all long ranged
interactions are screened we can approximate the energy
of the molecule as having contributions only from amino
acids that are in contact,

E =
∑

ij

Cij

∑

µν

sµi Vµνs
ν
j , (481)

where sµi = 1 if the amino acid at site i is of type µ, and
sµi = 0 otherwise. The matrix Vµν summarizes the in-
teractions among the different types of amino acids. To
approach the weaker notion of designability, we need to
ask how many sequences give a particular structure a low
energy. But asking about the numbers of sequences with
a particular energy is just like doing statistical mechanics
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where we keep the structure fixed and instead allow the
sequence {sµi } to be the dynamical variable. This sug-
gests that we compute the partition function in sequence
space,

Zseq(C) =
∑

{sµi }

exp



−β
∑

ij

Cij

∑

µν

sµi Vµνs
ν
j



 . (482)

Again, this is hard in general, but we can get some intu-
ition by doing a high temperature (small β) expansion.

Summing over all sequences is equivalent to averag-
ing over a distribution in which all sequences are equally
likely. Recall that computing the average value of an ex-
ponential generates a series of cumulants, or connected
correlations:

〈e−x〉 = exp

[
−〈x〉+ 1

2
〈x2〉c −

1

3!
〈x3〉c + · · ·

]
(483)

〈x2〉c = 〈x2〉 − 〈x〉2 = 〈(x− 〈x〉)2〉, (484)

〈x3〉c = 〈(x− 〈x〉)3〉, (485)

and so on. To use this in evaluating Zseq(C), we need to
compute quantities of the form

〈
∑

µν

sµi Vµνs
ν
j

〉
,

or

〈(
∑

µν

sµi Vµνs
ν
j

)2 〉
.

Since we are averaging over a distribution in which all
sequences are equally likely, the vector 6si that specifies
the choice of amino acid at site i is independent of the
vectors 6sj for any j 0= i. Pushing through the details, this
allows us to show that the free energy

Fseq(C) ≡ − 1

β
lnZseq(C) = ATr(C2) +BTr(C3) + · · · ,

(486)
where the coefficients depend on the details of the po-
tential Vµν , and the term ∼ Tr(C) is absent because
Tr(C) = 0.

Problem 93: Details of Fseq(C). Derive Eq (486), carrying
the expansion out to at least one more order. Relate the coefficients
in the expansion explictly to the properties of the potential Vµν .

Because the elements of the matrix C are either 1 or 0,
Tr(C2) just counts the number of contacts, while Tr(C3)

the number of n-step paths along the contact map which
return to their starting place, we know that all such
contact traces must be positive. Thus, the exact behavior
of the series in (10) will hinge on whether the largest
eigenvalues of v are positive or negative.

For either type of potential matrix v, however, we
expect that there will be some positive correlation be-
tween the trace of an even power of a structure’s contact
matrix and the number of low-energy monomer sequen-
ces in that structure. Furthermore, the dependence of the
free energy expansion in (10) on such coarse quantities as
the traces of powers of v suggests that the impact of the
contact matrix on the spectrum of sequence energies
should be relatively insensitive to the detailed features
of the potential. We therefore determined to empirically
test whether the above results remained valid for a dis-
crete monomer alphabet which violated the special form
of the potential assumed in (2). We first calculated the
contact matrices for all 103 346 different compact con-
formations of 27-mers on a cubic lattice [13]. Next, we
calculated hEi vs T annealing curves for random starting
sequences on different structures for a standard Monte
Carlo search of sequence space with a move set contain-
ing composition-preserving two-monomer and three-
monomer permutations. The energy of each sequence
was determined using a potential set given by Table 6 of
[14]. This set of interactions, where average interactions
are subtracted out, is one of the most diverse potentials
possible for a 20-letter alphabet, and therefore provides
the most general empirical test of the predicted relation-
ship between sequence energies and contact topology.
From the annealing curves, we then calculated the en-
tropy in sequence space S!E" according to the prescription
given by Eq. (11) of [2].

Figure 1 plots the sequence space entropy difference
between low and near-modal energy versus the largest
eigenvalue of the structure’s contact matrix for 86 ran-
domly selected lattice structures. As predicted, the en-
tropy difference between the peak and the left tail
decreased as the largest contact matrix eigenvalue in-
creased (correlation # $0:92), indicating that more se-
quences have low energy in high trace structures. Figure 2
illustrates that the effect observed in Fig. 1 results from
global differences in the shapes of the sequence spectra of
high trace and low trace structures. The higher the contact
trace, the more gradually the number of sequences falls
off as energy decreases, and therefore the greater the
relative number of sequences of low energy. Clearly, the
contact trace of the target structure controls how low in
energy a Monte Carlo sequence optimization algorithm
running at fixed temperature Tdes will be able to search.
The greater the contact trace, the larger the S!E" at low
energies, i.e., the greater the weak designability.

Interestingly, the most designable 27-mer structures
identified using our maximum eigenvalue determinant
are similar to the one identified in [15] using random
sampling of sequences and a different, ’’solvationlike’’

Miyazawa-Jernigan potential. This attests to the general-
ity of our proposed structural determinant of designabil-
ity with respect to potentials.

Structures of high contact trace are weakly designable,
but are they strongly designable? In order to address this
question, we examined the stability of sequences de-
signed on two structures of maximal and minimal contact
trace. For each target structure, we determined how many
of its designed sequences were ‘‘on target,’’ that is, had
the target structure as their unique energetic ground
state determined over all compact conformations, and
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FIG. 1. The difference in sequence space entropy between an
energy near the peak of all structural sequence spectra (E #
$2) and one in the lower tail of all spectra (E # $8) as a
function of the contact trace, measured here by the largest
eigenvalue of the structure’s contact matrix (which follows
from TrCn # P
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i ). Each point was generated from data

collected while slowly annealing a Monte Carlo sequence
design simulation from high temperature (T # 2) to low (T #
0:2), with 107 Monte Carlo steps taken at each temperature. The
boxed points correspond to structures which were chosen by
hand so as to ensure that the extrema of the range of possible
eigenvalues were represented. All other structures were chosen
randomly.
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FIG. 88 The connection between designability and the eigen-
values of the contact matrix. [explain]. From England &
Shakhnovich (2003).

counts the number of connected paths that lead from
site i to site j to site k and back to site i. Similarly,
the trace of higher powers counts the number of longer
paths. But we can also take a less local view and note
that Tr(Cn) =

∑
i λ

n
i , where λi are the eigenvalues of the

matrix C. As we consider higher powers in the expansion,
the result is dominated more and more by the largest of
these eigenvalues. Experimenting with small structures
as in the discussion above, one can show that the des-
ignability of a structure really does correlate strongly
with the largest eigenvalue of the contact matrix, and
the most designable structure have the largest eigenval-
ues, as in Fig 88. This is especially interesting since the
calculation we have outlined here does not depend on de-
tails of the assumptions about the interactions between
amino acids—all that matters is locality.
As noted above, computing Fseq(C) gives us a “weak”

notion of designability, counting the number of sequences
for which a particular structure will have low energy. If
we are willing to simplify our model of the interactions,
then we can make progress on the stronger notion of des-
ignability, that many sequences have the same minimum
energy structure. Suppose we return to the model in
which there are just two kinds of amino acids, hydropho-
bic and polar. Further, let’s describe the structure in
a similar binary fashion, labeling each amino acid by
whether it is on the surface of the molecule or in the
interior.63 Now there is a plausible energy function—
hydrophobic residues prefer interior sites, polar residues
prefer the surface. Thus the energy will be minimized

63 On a lattice, with the protein folded into a compact structure,
this categorization of sites is unambiguous, although one might
worry a bit about the more general case.
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when the binary description of the sequences (si = +1
for hydrophobic, si = −1 for polar) matches the bi-
nary description of the structure (σi = +1 for interior,
σi = −1 for the surface). Although we might not be
able to calculate the exact energy function, ground state
structures should correspond to the minimum of a very
simple energy that just counts the violations of the hy-
drophobic/interior, polar/surface rule,

E ∝
∑

i

(si − σi)
2. (487)

An important point about this binary description of
structures and sequences is that while all binary strings
{si} represent possible amino acid sequences, not all bi-
nary strings {σi} are possible compact structures of a
polymer [maybe it would be useful to have a figure illus-
trating this point?]. Thus in the space of binary strings,
and hence H/P sequences, there are special points that
correspond to realizable protein structures. The energy
function in Eq (487) tells us that the ground state struc-
ture for any sequence is the nearest such point, where
“near” is measured by a natural metric, the “Hamming
distance,” counting the number of bits that disagree in
the binary string. The set of sequences that will fold into
one particular structure are those which fall within the
Voronoi polygon surrounding the binary description of
that structure, as shown in Fig 89. In this picture, the
sequence literally encodes the structure, and the folding
process provides a kind of error correction in this code,
mapping arbitrary binary strings back to the sparse set of
realizable structures. By choosing structures which are
far from other structures in this binary representation,
one guarantees that many sequences will map to that
one structure. Again this picture can be tested against
simulations of the lattice models (as in the discussion
above), and the results are consistent.

The lesson from all this is that not all structures
are created equal, and that selection of structures for
their designability induces a nontrivial distribution on
the space of sequences. This constraint of course restricts
the set of allowed sequences, but at the same time focuses
precisely on those sequences for which not all details of
the sequence have functional relevance. [check if there is
more worth saying here]

There is yet another approach which tries to address
the ensemble of allowed sequences, leaning on theory but
also using a more direct experimental exploration. In or-
der to appreciate this approach, you need to know that
proteins form families. We have already met a simple
example of this, with rhodopsin. In your retina, there
are four kinds of photoreceptor cells—rods for night vi-
sion, and three kinds of cones that provide color vision at
higher light intensities—and each one expresses a differ-
ent pigment molecule, with a different absorption spec-
trum. Rhodopsin consists of a medium sized organic

molecule, retinal embedded in the protein; all the pig-
ments use retinal, so the differences in absorption spec-
trum reflect differences in the protein. All of these pro-
teins are doing the same job, and have recognizably re-
lated structures and amino acid sequences. Nonetheless,
they are not identical. In fact, they share sequence and
structural similarities with many more proteins, all of
which function as receptors (usually for the binding of
small molecules rather than the absorption of light), and
sit in a membrane rather than being free in solution.
Rhodopsin interacts with transducin (Section I.C), which
functions as the first stage of an amplification cascade,
and other rhodopsin–like molecules interact with similar
amplifier molecule. The family to which transducin be-
longs is called the “G proteins,” because part of their
function is driven by the hydrolysis of GTP to GDP [be
sure this was clear in Chapter 1!], while the rhodopsins
and relatives are referred to as G protein coupled recep-
tors (GPCRs). There are GPCRs that respond to hor-
mones, to neurotransmitters in the brain, and, notably,
to odorants in the receptor cells of the nose.
Important examples of protein families are provided by

enzymes. For example, there are many enzymes which
attach phosphate groups to other proteins, for example,
and there is variety even within an organism because
these protein kinases have different targets; there is even
more diversity across organisms. In order to digest our
food, we need to cut up the proteins that we ingest, and
all cells also need to cut up old proteins that have been
damaged or outlived their usefulness in other ways. Cut-
ting the peptide bond quickly and efficiently requires a
carefully engineered catalyst, but cells also need control
over which sequences they are cutting. Thus there are
several families of protein–cutting proteins, called pro-
teases, and there are remarkable structural similarities
among molecules separated by billions of yeras of evolu-

determine the details of the structure of a protein. The
advantage of considering only the hydrophobic force is that it
drastically simplifies the analysis and thereby elucidates some
essential features of the folding problem.

To simplify the application of Eq. 1, let us consider only
globular compact structures and let si take only two values: 0
and 1, depending on whether the amino acid is on the surface
or in the core of the structure, respectively. Therefore, each
compact structure can be represented by a string {si} of 0s and
1s: si ! 0 if the i-th amino acid is on the surface and si ! 1 if
it is in the core (see Fig. 1 for an example on a lattice).
Assuming every compact structure of a given size has the same
numbers of surface and core sites and noting that the term
"ih!

2 is a constant for a fixed sequence of amino acids and
does not play any role in determining the relative energies of
structures folded by the sequence, Eq. 1 is equivalent to:

H " !
i!1

N

#h!i
# si$

2. [2]

Having rewritten the Hamiltonian 1 in terms of Eq. 2, we now
proceed to make a few observations. The problem involves two
spaces: the sequence space and the structure space. We
represent a sequence by the vector of its hydrophobicities h !
(h!1,h!2,. . . ,h!N), and the sequence space {h} consists of 20N

sequences because there can be any of 20 amino acids at each
site. A structure also is represented by a vector s ! (s1,s2,. . .,
sN), where si ! 0 or 1, and the structure space {s} consists of
all of the structures. Note that only a small subset of the 2w

strings of 0s and 1s represents realizable structures. If two or
more structures map into the same string, we say that these
structures are degenerate (see Fig. 1a). It is evident that a
degenerate structure cannot be the unique ground state for any
sequence within this formulation. The fraction of all structures
that are nondegenerate depends on the ratio of surface sites to
core sites. This fraction approaches zero in the limits of very
large and very small surface-to-core ratios. It is worthwhile
noting that, for natural proteins, the surface-to-core ratio is of
the order one.

Now imagine embedding both the sequence space {h} and
the structure space {s} in an N-dimensional Euclidean space
(Fig. 2). This is simplest to picture if one normalizes the h! so
that 0 $ h! $ 1. Because the energy for a sequence h folded
into a structure s is the square of the distance between h and

s (Eq. 2), it is evident that h will have s as its unique ground
state if and only if h is closer to s than to any other structure.
Therefore, the set of all sequences {h(s)} that uniquely design
a structure s can be found by the following geometrical
construction: Draw bisector planes between s and all of its
neighboring structures in the N-dimensional space (see Fig. 2).
The volume enclosed by these planes is called the Voronoi
polytope around s. {h(s)} then consists of all sequences within
the Voronoi polytope. Hence, the designabilities of structures
are related directly to the distribution of the structures in the
N-dimensional space. A structure closely surrounded by many
neighbors will have a small Voronoi polytope and hence a low
designability whereas a structure far away from others will
have a large Voronoi polytope and hence a high designability.
Furthermore, the thermodynamic stability of a folded struc-
ture is related directly to the size of its Voronoi polytope. For
a sequence h, the energy gap between the ground state and an
excited state is the difference of the squared distances between
h and the two states (Eq. 2). A larger Voronoi polytope
implies, on average, a larger gap because excited states can only
lie outside of the Voronoi polytope of the ground state. Thus,
this geometrical representation of the problem naturally ex-
plains the positive correlation between the thermodynamic
stability and the designability, an observation made in ref. 12.

To further illustrate and elaborate on the above ideas, let us
proceed with a simple example: a two-dimensional lattice HP
model (26). Instead of 20, we use only two amino acids: H
(hydrophobic) and P (polar). The vector representing a se-
quence is now h ! (h1,h2,. . . ,hi,. . . ,hN), where hi ! 1 if the i-th
amino acid is an H and hi ! 0 if it is a P. The sequence space
now consists of all of the possible strings of 0s and 1s of length
N. To obtain a set of allowed structure strings, we focus on the
compact 6 % 6 two-dimensional lattice structures (Fig. 1),
which can be enumerated easily. We divide the 36 sites into 20
surface sites and 16 core sites; the surface-to-core ratio is 1.25.
There are 57,337 compact structures not related by symme-
tries. These structures map into 30,408 distinct strings, among
which 18,213 (&30% of all structures) represent nondegener-
ate structures. To obtain a histogram of the designability for all
structures, we randomly sampled the sequence space. We

FIG. 1. Structures are represented by strings s of 0s and 1s,
according to whether a site is on the surface or in the core, respectively.
Shown are two examples of compact 6 % 6 lattice structures. (a) A
typical structure. Dotted lines indicate local changes that can be
performed to transform it to other compact structures. Note that the
change at the lower right corner does not change the string pattern, so
this structure is a degenerate one. (b) The most designable structure.

FIG. 2. Schematic plot of the sequence and the structure spaces and
the Voronoi construction. The Voronoi polytope is the shaded region.

4988 Biophysics: Li et al. Proc. Natl. Acad. Sci. USA 95 (1998)

FIG. 89 Designability as seen in the binary description of
sequences and structures. [explain]. From Li et al (1998).
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FIG. 90 Comparison of the structure of SGPA (right) and
chymotrypsin (left), in the neighborhood of the active site;
from Brayer et al (1978). Note in particular the very similar
geometrical relations among His57, Asp 102 and Ser 195, the
triad of residues involved in the catalytic events.

tionary history. An example is shown in Fig 90, compar-
ing the structure of the bacterial enzyme SGPA and the
mammalian enzyme chymotryspin. These molecules have
recognizably similar amino acids along only ∼ 25% of
their sequences, yet the structures are very similar, espe-
cially in the active site where the crucial chemical events
occur—the proteins fold to bring these key elements into
a very specific geometrical arrangement, despite the se-
quence differences. Other interesting examples of protein
families include smaller parts of proteins (domains) which
can fold on their own and function as the interfaces be-
tween different molecules; there are hundreds of examples
in some of these families.

If we line up the sequences for all the proteins in a
family,64 as in Fig 91, we find that, at each site there are
some preferences for one amino acid over another. With
enough members in the family, we get a decent estimate
of the probability that an amino acid will be chosen in
each position along the sequence. Perhaps the simplest
hypothesis about the ensemble of allowed sequences is
that amino acids are chosen independently at every site,
with these probabilities. It should be emphasized that
such ‘one body’ constraints are strong, reducing the en-
tropy of the allowed sequences from a nominal ∼ log(20)
per site down to ∼ log(3) per site [check the exact num-

64 We need to explain that sequence alignment is not trivial. One
might even note that algorithms for alignment (or for the recog-
nition of family members) already embody hypotheses about the
answer to the question we are trying to formulate here. This
all needs some discussion, not least because it points to open
problems!

bers!]. But, this is not enough: if we synthesize proteins
at random out of this distribution, it is almost impossible
to find one which folds into something like the functional
structure characteristic of the original family.
Given that one body models don’t work, it seems the

next logical step is to look at two body effects: looking
across the family of proteins, we see that substitutions
at one site tend to be correlated with substitutions at
other sites. Can we sample an ensemble of sequences
that captures these pairwise correlations? Let us imag-
ine, for simplicity, that there are only two kinds of amino
acid; the real case of twenty possibilities just needs more
notation. Then we can use σi = +1 for one kind of amino
acid at position i, and σi = −1 for the other. The rel-
ative frequency of the two choices is measured by the
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FIG. 91 Alignment of the WW domains, showing (A) the se-
quences in the family and (B) the correlations between amino
acids at pairs of sites, measured by the mutual information.
The amino acids are indicated by the one letter codes from
Fig 80, with − for gaps. Figure from Mora & Bialek (2011),
based on data from [explain source!].
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“magnetization” 〈σi〉expt, where the subscript remind us
that we measure this from data. Similarly, the correla-
tions between amino acid substitutions at pairs of sites
is measured by

Cexpt
ij ≡ 〈σiσj〉expt − 〈σi〉expt〈σj〉expt. (488)

Imagine creating an artificial family of M sequences
{σµ

i }, with µ = 1, 2, · · · ,M . From this set of replica
sequences we can compute the same expectation values
that we computed fromt he real family of sequences,

〈σi〉model =
1

M

M∑

µ=1

σµ
i (489)

Cmodel
ij =

1

M

M∑

µ=1

σµ
i σ

µ
j − 〈σi〉model〈σj〉model. (490)

We would like to arrange for the model family of se-
quences to have these quantities match the experimental
ones. The first part (〈σi〉model = 〈σi〉expt) is easy, since
we can do this just by choosing the amino acids at every
site independently with the same probabilities as in the
experimental family. For the two–point correlations, we
can form a measure of error between our model sequence
ensemble and the real family,

χ2 =
∑

ij

∣∣∣∣C
model
ij − Cexpt

ij

∣∣∣∣
2

, (491)

and then we can promote this mean square error to an en-
ergy function, and adjust the M sequences according to
a Monte Carlo simulation with slowly decreasing (effec-
tive) temperature. At low temperatures, this procedure
should generate an ensemble of sequences which repro-
duce the pairwise correlations in the naturally occurring
sequences. This procedure has been implemented for a
real family of proteins, and novel sequences drawn out
of the resulting ensemble have been synthesized. Re-
markably, a finite fraction of these sequences fold into
something close to the proper native structure, and these
folded states are essentially as stable as are the natu-
ral proteins. [Reproduce a figure from the Ranganathan
work?]

In the limit that we are considering a very large fam-
ily (M → ∞) of artificial sequences, and we really take
the effective temperature to zero, the Monte Carlo pro-
cedure draws samples out of a probability distribution
that perfectly matches the measured one–point and two–
point correlations, but otherwise is as random or unstruc-
tured as possible, and hence has maximum entropy. We
will meet the maximum entropy idea again in Section
III.D, with more details in Appendix A.8. For now, we
note that the maximum entropy distribution of sequences
takes the form

P ({si}) =
1

Z
exp




N∑

i=1

ui(si) +
1

2

N∑

i,j=1

Vij(si, sj)



 , (492)

where the “fields” ui and the “interactions” Vij must be
chosen to reproduce the one–point and two–point corre-
lations, where now we allow for the amino acid identity at
each site to take on all twenty values, si = 1, 2, · · · , 20.
Actually finding these fields and interactions is the in-
verse of the usual problem in statistical mechanics, and
can be challenging. But if we can solve this problem, the
maximum entropy method provides a potential answer to
the question we posed at the outset—if random sequences
don’t fold, and the exact sequence doesn’t matter, how
do we describe the ensemble of sequences consistent with
a given protein structure or function? Equation (492)
gives an explicit answer, a formula for the probability
that a particular sequence will occur. Importantly, the
form of the distribution is the same as the Boltzmann
distribution, with the interactions and fields defining an
effective energy surface on the space of sequences. [not
sure how to end this .. maybe depends on what Thierry
finds in reanalysis of WW domains]

Problem 94: A small maximum entropy model. Give
a problem that takes the student through the maxent problem
for three spins. Emphasize distinction between interaction and
correlation—how much correlation can you get without any direct
interactions?

We recall from other problems in statistical mechanics
that correlations can extend over much longer distances
that the underlying interactions. Thus, although we may
detect significant correlations among the amino acid sub-
stitutions at many pairs of sites, it is possible that these
can be explained by Eq (492) with the interactions Vij

being nonzero only for a very small fraction of pairs ij.
Since the physical interactions between amino acids are
short ranged, it seems reasonable that if there is a di-
rect connection between the joint choice of residues at
sites i and j on the probability that the resulting protein
is a member of the family, then sites i and j should be
physically close to one another in the protein structure.
This idea was worked out in detail for pairs of recep-
tors and associated signaling proteins in bacteria, and it
was possible to identify, with high reliability, the amino
acids which make up the region of contact between these
molecules, as shown in Fig 92. This success raises the
tantalizing possibility that we could read off the physi-
cal contacts between amino acids—and hence infer the
three–dimensional structure of proteins—from analysis
of the covariations in amino acid substitutions across a
large family.
Should end with some review of what we have learned

about the interplay of tuning and robustness; at least
some of these questions have become more quantitative.
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FIG. 92 Interactions between residues in the ensemble of se-
quences predict spatial proximity, from Weigt et al (2009).
[Fill in caption! Do we need more discussion in the text to
define “direct information” as generalization of Jij?]

There is also a question about history vs. physics: is
the ensemble of sequences just a record of evolutionary
history, or more like an equilibrium distribution subject
to some sensible physical constraints? Do we want to
say something explicit about the antibodies? Empha-
size that the challenge of building the maximum entropy
distributions for larger proteins is really still open?

The amino acid sequences of proteins are translations
of the DNA sequences. But there are large parts of DNA
which are not coding for proteins. Important parts of
this “non–coding” DNA are involved in transcriptional
regulation, as discussed in Section II.B. The key steps
of this regulatory process involve the binding of tran-
scription factor proteins to DNA, and the architecture of
the regulatory network depends on the specificity of these
protein–DNA interactions. When we draw an arrow from
one transcription factor (TF) to its target gene, then as
schematized in Fig [** we had a schematic in a previous
chapter, but maybe need another one here?] there must
be a short sequence of DNA in or around the target gene
to which the transcription factor can bind. The fact that
a given TF activates or represses one gene, but not an-
other, then is controlled by the presence or absence of
the relevant sequences. But some transcription factors
are quite promiscuous, and in higher organisms the rel-
evant sequences often are quite short, so this specificity
is not all–or–none. Rather we should think that every
short sequence is a possible binding site, and there is a
binding energy that depends on the sequence.

Formally, a short piece of DNA sequence can be
thought of as a series of bases. Let’s write sµi = 1 if
the base at position i is of type µ; we have µ = 1, 2, 3, 4
and i = 1, 2, · · · , L, where L is the length of the possible
binding site. We can abbreviate s ≡ {sµi }. Then if we

look at one transcription factor, there is some binding
energy of that factor to the DNA, E(s), for every pos-
sible sequence. What does the function E(s) look like?
Obviously, if it’s a constant then there is no specificity at
all—a given transcription factor will influence every gene
in the genome—and this can’t be right. On the other
hand, if the binding is strong only for one specific se-
quence s0 (that is, E(s) = −E0 with large E0 > 0), while
E(s 0= s0) ∼ 0, then the transcription factor can success-
fully target a small subset of genes, but the landscape
for evolutionary change becomes very rugged—changing
a single base can completely eliminate one of the regu-
latory “arrows” in the network, or create a new one of
equal strength to all previous arrows—and this doesn’t
seem right either.
We can turn our question about the form of E(s)

around and ask about the set of sequences that will act
as functional binding sites, presumably those sequences
that have E(s) in some range. In one limit, this ensem-
ble would include all sequences; in the other limit, there
would be just one sequence. Thus the issue of specificity
in protein–DNA interaction is rather like the problem of
amino acid sequence ensembles with which we started
this Chapter: where do real biological systems sit along
the continuum between completely random sequences at
one extreme and unique sequences at the other?
Many of the ideas for analyzing the nature of the se-

quence ensemble for binding sites involve the starting as-
sumption that each base contributes linearly to the total
binding energy, so that

E(s) =
L∑

i=1

4∑

µ=1

Wiµs
µ
i , (493)

whereWiµ are the weights given to each position i. One of
the first ideas was, in the language we have already used,
a maximum entropy argument. If all we know is that
functional binding sites must have some average bind-
ing energy 〈E〉, then the maximum entropy distribution
consistent with this knowledge is

P (s) =
1

Z
exp [−λE(s)] , (494)

which of course is the Boltzmann distribution at some
effective temperature ∝ 1/λ. Importantly, if the energy
is additive as in Eq (493), then the probability of the en-
tire sequence is a product of probabilities at the different
sites,

P (s) =
1

Z

L∏

i=1

exp

[
−λ

4∑

µ=1

Wiµs
µ
i

]
. (495)

This means that the expected frequency of occurrence of
the different bases at each site—that is, the probability
that sµi = 1—can be related directly to the weight matrix,

fiµ ∝ exp [−λWiµ] . (496)
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Thus, if we could get a fair sampling of the ensemble
of sequences we could just read off the matrix elements
Wiµ. [Should I explain that Berg & von Hippel never
said “maximum entropy”? Does it matter?]

Problem 95: Random sequences. Take the students
through expectations about the distribution of binding energies for
the case where sequences are random.

When these ideas first emerged in the mid to late
1980s, in work by Berg & von Hippel, there were few
examples where one could point to multiple known bind-
ing sites for a single transcription factor. Two important
examples were the lac operon and the phage λ switch.
These are sufficiently important examples in the history
of the subject that it is worth taking some time to explain
here how they work. [Do this!]

Problem 96: A little more about λ. Depends on what gets
said in the text, but maybe ask the students to reproduce Ptashne’s
argument about the importance of cooperativity.

What was available to Berg and von Hippel were ∼ 100
examples of the DNA sequences to which RNA poly-
merase binds when it begins transcribing. This of course
is another example of protein–DNA interaction, not a
regulatory interaction but an essential part of all gene
expression.65 Further, there had been in vitro kinetic
measurements on transcription, so they knew something
about directly about the binding energies. If experiments
are done in the regime where the binding sites are usu-
ally empty, then the observed transcription rates will be
proportional to the concentration of polymerase and the
equilibrium constant K ∝ exp[−βE(s)]. The comparison
is shown in Fig 93, including some estimates of errors
in the measurements and predictions. The agreement is
quite good. Thus, it really does seem that one can, at
least roughly, estimate the energetics of binding events

65 Even in this case the number of sequences is not very large,
and we should remember that we are trying to estimate the fre-
quencies of four different bases at each site. To improve their
estimates, Berg & von Hippel (1987) used “psuedo–counts,” a
procedure explained in Appendix A.9.

from the statistics of sequences, which is quite surpris-
ing.
The sequencing of whole genomes, from many organ-

isms, created the opportunity for much more systematic
exploration of sequence ensembles. The fact that the
number of transcription factors is very much smaller than
the number of genes means that, generally, even in a
single organism there must be many examples of bind-
ing sites for each transcription factor. It seems likely,
then, that similar sequences—sequences with good bind-
ing energies—will appear more frequently than would be
expected at random, and these sequences should, in the
simplest cases, be positioned near the start sites of tran-
scription.
In written language, short sequences of letters that

occur more frequently than expected by chance have a
name—words. When we read, however, there are spaces
and punctuation that mark the limits of the words, so
we can recognize them. Interestingly, this is less true for
spoken language, where the sounds of words often run to-
gether, and pauses or gaps are both less distinguishable
and less reliable indicators of word boundaries. In fact,
we really don’t need these markers, even in the case of
written text, as you can see by reading Fig 94.
In the simplest view, words are independent, and all

structure arises from the fact that not all combinations of
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FIG. 93 Sequence dependence of RNA polymerase activity
compared with predictions from a maximum entropy model,
from Berg & von Hippel (1987). On the vertical axis, effective
second–order rate constants for the initiation of transcription
by combination of RNA polymerase and different promoter
sequences. On the horizontal axis, scaled binding energies
predicted from a maximum entropy model based on ∼ 100
sequences. Points refer to independent biochemical experi-
ments, with lines connecting measurements on the same se-
quences, giving a sense for the error bars. A solid line with
slope −1 is shown to guide the eye, with dashed lines indi-
cating roughly the errors in the model arising from the finite
sample size.
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FIG. 94 A passage from Beckett’s Waiting for Godot, spoken
by Vladimir. All punctuation and spaces have been removed,
but (hopefully) the text can still be understood.

letters form legal words. Then, if we know the boundaries
between words, the probability of observing a particular
text becomes

P =
∏

w

[P (w)]nw , (497)

where nw is the number of occurrences of the word w
in the text, and P (w) is the probability of this word.
But we don’t really know, a priori, the correct way of
segmenting the text into words, and so we need to sum
over all possible segmentations. Each segmentation S
generates a different combination of words, so the count
nw(S) depends on S. On the other hand, the probability
that a word appears is a property of the language, not of
our segmentation, and should be constant. Then

P =
∑

S

∏

w

[P (w)]nw(S). (498)

If we think of this as a model for a long text, then
given the vocabulary defined by the set of possible words
{w}, maximizing the likelihood of the data amounts to
setting the predicted probability of each word to the
mean number of occurrences of that word when aver-
aged over all segmentations. Because the text is one–
dimensional, there are methods to sum over segmenta-
tions that are analogous to transfer function methods for
one–dimensional models in statistical mechanics. The
real challenge in looking at a genome is that we don’t
know the vocabulary.

One approach to learning the vocabulary is iterative:
start with the assumption that words are single letters,
then add two letter words when the frequency of letter
pairs is significantly higher than predicted by the model,
and so on. To capture the the functional behavior of
real biological systems one needs to include words with

gaps, such as TTTCCNNNNNNGGAAA, in which “N”
can be any nucleotide. Indeed, this example is one of
the longer words that emerges from an analysis of pos-
sible regulatory regions of the yeast genome, and corre-
sponds to the binding site for MCM1, a protein involved
in (among other things) control of the cell cycle. Glob-
ally, this approach to “building a dictionary” identifies
hundreds words of more than four bases that pass rea-
sonable tests of significance. At the time of the original
work, there were ∼ 400 known, non–redundant binding
sites whose function had been confirmed directly by ex-
periment, and the dictionary reproduced one quarter of
these, a success rate 18 standard deviations outside what
might have been expected by chance.66 One can do even
better by repeating the analysis using as input text only
the regulatory regions of genes whose expression level is
affected during particular processes or by the deletion
or over–expression of other genes. More power is added
to the analysis by using the genomes of closely related
organisms. [What do we want to conclude from all of
this? Have we lost the notion of binding energy in this
discussion?]

Problem 97: Summing over segmentations. Give a prob-
lem to connect summing over segmentations with transfer matrix.
See Bussemaker et al (2000b).

A very different approach to our problem involves ex-
ploring sequence space more systematically. In a rel-
atively short time, several different technologies have
emerged for doing this, each of course with its own
strengths and weaknesses. [Explain protein binding mi-
croarrays, methods from the Quake lab for similar bind-
ing measurements, ChiP methods (but chip and seq).
Need one good figure illustrating all of these schemati-
cally!! Justin provided some input that I haven’t digested
yet here!]
How do we analyze all these data? Certainly we have

the impression that this new generation of experiments
provides much more systematic, quantitative data, but
there are problems. In the protein binding microarray,
for example, there seem to be no reliable calibration of
the relation between fluorescence levels and binding prob-
ability. Certainly if we see a very bright spot, we can be
sure that the protein is bound, but the actual distribu-
tion of fluorescence intensities has a long tail, as in Fig
95. Where in this tail do we decide that we have a “hit”?

66 Say something about what chance means here, and about the
general problem of statistical significance in bioinformatics ... .
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FIG. 95 Protein binding microarray data on the yeast tran-
scription factor Abf1, from Kinney et al (2007). In blue, a his-
togram of the fluorescence intensities (relative to background)
across all ∼ 6000 regulatory regions from the yeast genome
(Murkherjee et al 2004). In green, the line drawn in the orig-
inal experiments to define the threshold for binding. In red,
with error bars, estimates of the probability that binding has
occurred as a function of the fluorescence level, from the anal-
ysis described in the text.

In the experiments of Fig 95, fluorescence is a proxy for
protein binding, and if things come to equilibrium then
this depends on the DNA sequence through the binding
energy E(s). The space of sequences is huge, but the
model of Eq (493) says that the binding energy is a lin-
ear function of the sequence. Thus, fluorescence should
depend on sequence only through a single linear projec-
tion. Finding this projection is an example of the dimen-
sionality reduction problem discussed in Appendix A.7.
The key idea is that, no matter how complicated or noisy
the relationship that connects energy to binding to flu-
orescence, the sequence can’t provide more information
about the output of the experiment than it does about
the more fundamental quantity E(s). Similarly, if we try
to summarize the sequence by any reduced description,
we will lose information unless our reduction corresponds
to estimating E(s) itself. Thus, if we search for a one di-
mensional description, corresponding to a single linear
projections of the sequence that preserves as much in-
formation67 as possible about the experimental output,
then the projection we find must be our best linear ap-
proximation to E(s), up to a scale factor.68

Figure 96 show examples of the weight matrices Wiµ

67 “Information” here is used in the technical sense, in bits. See
Section IV.A.

68 The actual computation is a bit more involved because the pos-
sible regulatory regions are much larger than the binding sites,
and so we have to test not all projections, but all possible pro-
jections along the relevant ∼ 500 base regions. For details see
Kinney et al (2007).

obtained from the “maximally informative dimension”
analysis of experiments on the yeast transcription factor
Abf1, which is assumed to interact with a 20 base long
segment of the DNA. Individual matrix elements typi-
cally are determined with better than 10% accuracy, and
the interaction of the protein with the DNA evidently
is dominated by two approximately symmetric regions
of five bases, separated by a gap of another five bases.
Importantly, using this method it is possible to analyze
in vitro (protein binding microarray) and in vivo (ChiP)
experiments, and get consistent answers. In contrast,
if we just draw a conservative threshold on the signals
strengths (e.g., the green line in Fig 95), then these dif-
ferent sorts of experiments typically lead to divergent in-
terpretations. Once we have confidence in the estimates
of E(s), we can go back and ask how the probability that
the protein is bound is related to the fluorescence inten-
sity, and this is shown in Fig 95. There is nothing about
the analysis that forces this relationship to be smooth or
monotonic, but it is.
Can we go further, and relate these linear models of

binding energy to the control of gene expression itself?
Suppose that we put the expression of a fluorescent pro-
tein under the control of a known promoter, and then
randomly mutate the sequence. We can then generate
an ensemble of bacteria with slightly different sequences,
each of which will express the fluorescent protein at dif-
ferent levels, presumably because the relevant transcrip-
tion factor is binding more or less strongly. Experimen-

FIG. 96 Weight matrices Wiµ for Abf1 in yeast, from analysis
of ChiP (top) and protein binding microarray (bottom) exper-
iments (Kinney et al 2007). In these analyses the overall scale
of E(s) is not determined by the data, and so the two results
have been scaled to maximize their similarity. Importantly,
the two experiments are done in vivo and in vitro, respec-
tively, but nonetheless generate very similar estimates of the
underlying matrix governing protein–DNA interactions. The
two matrix elements with the poorest agreement are circled,
but even these differences have little effect on the predicted
binding energies.
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FIG. 97 Analysis of experiments in which the expression of
a fluorescent protein is placed under the control of promoter
sequences that are randomly mutated versions of the native
sequence binding the transcription factor CRP, from Kinney
et al (2010). At the top, separate analyses yield the weight
matrices Wiµ for the CRP binding site and for the RNA poly-
merase binding site, up to an arbitrary scale factor. At bot-
tom, a combined analysis places these energies on an absolute
scale and determines the interaction energy εi.

tally, one can sort the cells by their fluorescence, and se-
quence the promoter regions, and then search once more
for a reduction of dimensionality that captures as much
information as possible. If the mutations are sprinkled
throughout the promoter region, we expect that there
are at least two relevant dimensions, corresponding to
the binding energy of the transcription factor and the
binding energy of the RNA polymerase. The results of
such an experiment and analysis are shown in Fig 97.

As before, the search for maximally informative dimen-
sions does not determine the scale of the energies. But if
we take seriously that the quantities emerging from the
analysis really are energies, then we should be able to
compute the probability that the RNA polymerase site
is occupied, and it is this occupancy that presumably
controls the initiation of transcription. If the energies for
binding of the transcription factor (CRP) and RNA poly-
merase are εc and εr, respectively, then the probability
of the polymerase site being occupied is

τ =
1

Z
Cre

−εr/kBT
(
1 + Cce

−εc/kBT e−εi/kBT
)
, (499)

where the partition function

Z = 1 + Cce
−εc/kBT + Cre

−εr/kBT

+CrCce
−εr/kBT e−εc/kBT e−εi/kBT , (500)

where Cc and Cr are the concentrations of the transcrip-
tion factor and the RNA polymerase, and εi is the in-
teraction energy between the two proteins when they are
both bound to the DNA. Notice that the two binding

energies are quantities whose relation to the sequence
should already have been determined by search for max-
imally informative dimensions, except for the scale and
zero of energy. By trying to combine these energies we
need to set the scale (kBT ) and the zero (equivalently,
the concentrations of the proteins), and we have to fit
one more parameter, the interaction energy εi. All of
this works, with the results shown at the bottom of Fig
97. For this particular system there are independent mea-
surements of εi, and there is agreement with ∼ 10% accu-
racy. Even better, one can show that the single number
τ is Eq (499) captures as much information about the se-
quence dependence of the expression level as do the two
numbers εc and εr. All of this gives us confidence that
the use of statistical mechanics and linear energy models
really does make sense here.

Problem 98: RNA polymerase occupancy. Derive Eq
(499). Generalize to the case where there are two or more tran-
scription factors, each of which can “touch” the RNA polymerase
and contribute an interaction energy. Show that even if the bind-
ing of each transcription factor is independent (that is, there are no
direct interactions among the TFs), their mutual interactions with
the RNA polymerase gives rise to an effective cooperativity in the
regulation of transcription. What is the relation of this picture to
the MWC models of cooperativity discussed in Appendix A.4?

Now that we have some confidence in our description of
the binding energies, we can go back and ask once more
about the statistics of sequences, and problem of robust-
ness vs fine tuning. There are several things to say here.
I’d like ot cover what happens in Sengupta et al (2002)
and Mustonen et al (2008). I think that Justin’s obser-
vation that you can’t find a linear model which points
to random collections of genes also is interesting. I’m a
bit worried that all of this discussion is in the context of
single celled organisms, but there is a lot of stuff to say,
e.g., about flies. This needs ALOT of work.

A good general reference about proteins is Fersht (1998). For a
modern introduction to polymer physics, see de Gennes (1979).
The small simulation in the problems is not a substitute for ex-
ploring the theory of spin glasses; the classic papers are collected,
with an introduction, by Mézard et al (1986), and a textbook ac-
count is given by De Dominicis & Giardina (2006). Early efforts to
apply these methods to the random heteropolymer were made by
Shakhnovich & Gutin (1989).

De Dominicis & Giardina 2006: Random Fields and Spin
Glasses C De Dominicis & I Giardina (Cambridge University
Press, Cambridge, 2006).

Fersht 1998: Structure and Mechanism in Protein Science: A
Guide to Enzyme Catalysis and Protein Folding AR Ferhst
(WH Freeman, San Francisco, 1998).
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de Gennes 1979: Scaling Concepts in Polymer Physics PG de
Gennes (Cornell University Press, Ithaca, 1979).

Mézard et al 1986: Spin Glass Theory and Beyond M Mézard,
G Parisi & MA Virasoro (World Scientific, Singapore, 1986).

Shakhnovich & Gutin 1989: Formation of unique structure in
polypeptide chains: Theoretical investigation with the aid of
a replica approach. EI Shakhnovich & AM Gutin, Biophys
Chem 34, 187–199 (1989).

Models which incorporate only native interactions, with no frus-
tration, have their origin in work by Gō, reviewed in Gō (1983).
A more explicit discussion of minimizing frustration as a principle
was given by Bryngelson & Wolynes (1987), and the funnel land-
scape of Fig 83 is from Onuchic et al (1995). Detailed simulations
based on the Gō model are described by Clementi et al (2000a,b).

Bryngleson & Wolynes 1987: Spin glasses and the statistical
mechanics of protein folding. JD Bryngelson & PG Wolynes,
Proc Nat’l Acad Sci (USA) 84, 7524–7528 (1987).

Clementi et al 2000a: How native-state topology affects the
folding of dihydrofolate reductase and interleukin–1β. C
Clementi, PA Jennings & JN Onuchic, Proc Nat’l Acad Sci
(USA) 97, 5871–5876 (2000).

Clementi et al 2000b: Topological and energetic factors: What
determines the structural details of the transition state en-
semble and “en–route” intermediates for protein dolding?
An investigation for small globular proteins. C Clementi, H
Nymeyer & JN Onuchic, J Mol Biol 298, 937–953 (2000).

Gō 1983: Theoretical studies of protein folding. N Gō, Ann Rev
Biophys Bioeng 12, 183–210 (1983).

Onuchic et al 1995: Toward an outline of the topography of a
realistic protein–folding funnel. JN Onuchic, PG Wolynes,
Z Luthey–Schultern & ND Socci, Proc Nat’l Acad Sci (USA)
92, 3626–3630 (1995).

The lattice simulations which explored protein designability were
by Li et al (1996). The analytic argument connecting designability
to the eigenvalues of the contact matrix was given by England &
Shakhnovich (2003), and Li et al (1998) gave the argument relating
folding to error correction in the HP model. [Probably there is more
to say here!]

England & Shakhnovich 2003: Structural determinant of pro-
tein designability. JL England & EI Shakhnovich, Phys Rev
Lett 90, 218101 (2003).

Li et al 1996: Emergence of preferred structures in a simple
model of protein folding. H Li, R Helling, C Tang & N
Wingreen, Science 273, 666–669 (1996).

Li et al 1998: Are protein folds atypical? H Li, C Tang &
NS Wingreen, Proc Nat’l Acad Sci (USA) 95, 4987–4990
(1998).

[Need to start with a general reference about protein families]
The idea of protein families was essential in the experiments that
searched for, and found, the receptors in the olfactory system (Buck
& Axel 1991, Axel 2005, Buck 2005). [should give general reference
for serine proteases] The structural correspondence between bac-
terial serine proteases and their mammalian counterparts is from
Brayer et al (1978, 1979) and Fujinaga et al (1985). Experiments
on the sampling of sequence space while preserving one–point and
two–point correlations were done by Socolich et al (2005) and by
Russ et al (2005). The equivalence of these ideas to the maximum
entropy method was shown in Bialek & Ranganthan (2007). For
more on maximum entropy approaches to sequence ensembles, see
Weigt et al (2009), Halabi et al (2009), and Mora et al (2010). For
a broader view of maximum entropy models applied to biological
systems, see Appendix A.8 and Mora & Bialek (2011).

Axel 2005: Scents and sensibility: A molecular logic of olfactory
perception. R Axel, in Les Prix Nobel 2004, T Frängsmyr,
ed, pp 234–256 (Nobel Foundation, Stockholm, 2004).

Bialek & Ranganthan 2007: Rediscovering the power of pair-
wise interactions. W Bialek & R Ranganathan,
arXiv:0712.4397 [q–bio.QM] (2007).

Brayer et al 1979: Molecular structure of crystalline Strepto-
myces gresius protease A at 2.8 Å resolution: II. Molec-
ular conformation, comparison with α–chymotrypsin, and
active–site geometry. GD Brayer, LTJ Delbaere & MNG
James, J Mol Biol 124, 261–283 (1978).

Brayer et al 1979: Molecular structure of the α–lytic protease
from Myxobacter 495 at 2.8 Å resolution. GD Brayer, LTJ
Delbaere & MNG James, J Mol Biol 131, 743–775 (1979).

Buck & Axel 1991: A novel multigene family may encode odor-
ant receptors: A molecular basis for odor recognition. L
Buck & R Axel, Cell 65, 175–187 (1991).

Buck 2005: Unraveling the sense of smell. LB Buck, in Les Prix
Nobel 2004, T Frängsmyr, ed, pp 267–283 (Nobel Founda-
tion, Stockholm, 2004).

Fujinaga et al 1985: Refined structure of α–lytic protease at
1.7 Å resolution: Analysis of hydrogen bonding and solvent
structure. M Fujinana, LTJ Delbaere, GD Brayer & MNG
James, L Mol Biol 183, 479–502 (1985).

Halabi et al 2009: Protein sectors: Evolutionary units of three–
dimensional structure. N Halabi, O Rivoire, S Leibler & R
Ranganathan, Cell 138, 774–786 (2009).

Mora & Bialek 2011: Are biological systems poised at critical-
ity? T Mora & W Bialek. J Stat Phys 144, 268–302 (2011);
arXiv:1012.2242 [q–bio.QM] (2010).

Mora et al 2010: Maximum entropy models for antibody diver-
sity. T Mora, AM Walczak, W Bialek & CG Callan, Proc
Nat’l Acad Sci (USA) 107, 5405–5410 (2010).

Russ et al 2005: Natural–like function in artificial WW do-
mains. WP Russ, DM Lowery, P Mishra, MB Yaffe & R
Ranganathan, Nature 437, 579–583 (2005).

Socolich et al 2005: Evolutionary information for specifying a
protein fold. M Socolich, SW Lockless, WP Russ, H Lee, KH
Gardner & R Ranganathan, Nature 437, 512– 518 (2005).

Weigt et al 2009: Identification of direct residue contacts in
protein–protein interaction by message passing. M Weigt,
RA White, H Szurmant, JA Hoch & T Hwa, Proc Nat’l
Acad Sci (USA) 106, 67–72 (2009).

Should really give some pointers to the problem of sequence align-
ment!
[Check this against discussion and references in relevant part of
Chapter Two!] The modern picture of transcriptional regulation
traces its origins to Jacob & Monod (1961), another of the great
and classic papers that still are rewarding to read decades after
they were published. Their views were motivated primarily by
studies of the lac operon, and the origins of these reach back to
Monod’s thesis (1942), which was concerned the phenomenology
of bacterial growth. As recounted in Judson (1979), for example,
the idea that genes turn on because of the release from repres-
sion was due to Szilard; the written record of these ideas is not as
clear as it could be, but one can try Szilard (1960). For a mod-
ern view, faithful to the history, see Müller–Hill (1996). The other
“simple,” paradigmatic example of protein–DNA interactions in the
regulation of gene expression is the case of bacteriophage λ, which
is reviewed by Ptashne (1986), which has also evolved with time
(Ptashne 1992); see also Ptashne (2001). These systems provided
the background for the pioneering discussion of sequence specificity
in protein–DNA interactions (von Hippel & Berg 1986, Berg & von
Hippel 1987, 1988). In parallel to this statistical approach, there
were direct biochemical measurements of binding energies, and an
early attempt to bring these different literatures into correspon-
dence was by Stormo & Fields (1998).
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Berg & von Hippel 1987: Selection of DNA binding sites by
regulatory proteins. I: Statistical-mechanical theory and ap-
plication to operators and promoters. OG Berg & PH von
Hippel, J Mol Biol 193, 723–743 (1987).

Berg & von Hippel 1988: Selection of DNA binding sites by
regulatory proteins. II: The binding specificity of cyclic
AMP receptor protein to recognition sites. OG Berg & PH
von Hippel, J Mol Biol 200, 709–723 (1988).

von Hippel & Berg 1986: On the specificity of DNA–protein
interactions. PH von Hippel& OG Berg, Proc Nat’l Acad
Sci (USA) 83, 1608–1612 (1986).

Jacob & Monod 1961: Genetic regulatory mechanisms in the
synthesis of proteins. F Jacob & J Monod, J Mol Biol 3,
318–356 (1961).

Judson 1979: The Eighth Day of Creation HF Judson (Simon
and Schuster, New York, 1979).

Monod 1942: Recherche sur la Croissance des Cultures
Bactériennes J Monod (Hermann, Paris, 1942).

Müller–Hill 1996: The lac Operon: A Short History of a Ge-
netic Paradigm B Müller–Hill (W de Gruyter & Co, Berlin,
1996).

Ptashne 1986: A Genetic Switch: Gene Control and Phage λ.
M Ptashne (Cell Press, Cambridge MA, 1986).

Ptashne 1992: A Genetic Switch, Second Edition: Phage λ and
Higher Organisms. M Ptashne (Cell Press, Cambridge MA,
1992).

Ptashne 2001: Genes and Signals. M Ptashne (Cold Spring Har-
bor Laboratory Press, New York, 2001).

Stormo & Fields 1998: Specificity, free energy and information
content in protein–DNA interactions. GD Stormo & DS
Fields, Trends Biochem Sci 23, 109–113 (1998).

Szilard 1960: The control of the formation of specific proteins in
bacteria and in animal cells. L Szilard, Proc Nat’l Acad Sci
(USA) 46, 277–292 (1960).

The emergence of whole genome sequences opened several new ap-
proaches to the problem of specificity. One important idea is that
sequences that are targets for protein binding should have a non–
random structure, and we should be able to find this in a relatively
unsupervised fashion (Busemaker et al 2000a,b). [Need more here!]

Bussemaker et al 2000a: Building a dictionary for genomes:
Identification of presumptive regulatory sites by statistical
analysis. H Bussemaker, H Li & ED Siggia, Proc Nat’l Acad
Sci (USA) 97, 10096–10100 (2000).

Bussemaker et al 2000b: Regulatory element detection using a
probabilistic segmentation algorithm. H Bussemaker, H Li
& ED Siggia, Proc Int Conf Intell Sys Mol Biol—bf 8, 67–74
(2000).

Need pointers to different large scale experimental approaches—
protein binding arrays (Mukherjee et al 2004), ChiP, etc.. Circle
back to work from Quake group (Maerkl & Quake 2007). For an
approach to the analysis of such measurements making explicit use
of dimensionality reduction methods (Appendix **), see Kinney
et al (2007). This approach inspired experiments aimed at wider
exploration of sequence space (Kinney et al 2010). For other such
explorations, see Ligr et al (2006) and Gertz et al (2009).

Gertz et al 2009: Analysis of combinatorial cis–regulation in
synthetic and genomic promoters. J Gertz, ED Siggia &
BA Cohen, Nature 457, 215–218 (2009).

Kinney et al 2007: Precise physical models of protein–DNA in-
teraction from high-throughput data. JB Kinney, G Tkačik
& CG Callan Jr, Proc Natl Acad Sci (USA) 104, 501–506
(2007).

Kinney et al 2010: Using deep sequencing to characterize the
biophysical mechanism of a transcriptional regulatory se-
quence. JB Kinney, A Murugan, CG Callan Jr & EC Cox,
Proc Nat’l Acad Sci (USA) 107, 9158–9163 (2010).

Ligr et al 2006: Gene expression from random libraries of yeast
promoters. M Ligr, R Siddharthan, FR Cross & ED Siggia,
Genetics 172, 2113–2122 (2006).

Maerkl & Quake 2007: A systems appraoch to measuring the
binding energy landscape of transcription factors. SJ Maerkl
& SR Quake, Science 315, 233–237 (2007).

Mukherjee et al 2004: Rapid analysis of the DNA binding
specificities of transcription factors with DNA microarrays.
S Mukherjee, MF Berger, G Jona, XS Wang, D Muzzey,
M Snyder, RA Young & ML Bulyk, Nature Genetics 36,
1331–1339 (2004).

Need to segue to discussions of evolvability etc.. Probably more
references to cite!

Maerkl & Quake 2009: Experimental determination of the
evolvability of a transcription factor. SJ Maerkl & SR
Quake, Proc Nat’l Acad Sci (USA) 106, 18650–18655
(2006).

Mustonen et al 2008: Energy–depdendent fitness: A quantita-
tive model for the evolution of yeast transcription factor
binding sites. V Mustonen, J Kinney, CG Callan Jr &
M Lässig, Proc Nat’l Acad Sci (USA) 105, 12376–12381
(2008).

Sengupta et al 2002: Specificity and robustness in transcription
control networks. A Sengupta, M Djordjevic & BI Shraiman,
Proc Nat’l Acad Sci (USA) , 99, 2072–2077, (2002).

B. Ion channels and neuronal dynamics

The functional behavior of neurons involves the gen-
eration and processing of electrical signals. The dynam-
ics of these currents and voltages are determined by the
ion channels which sit in the cell membrane. As noted
in our discussion of the rod photoreceptor cell (Section
I.C), the cell membrane itself is insulating, and hence
there would be no interesting electrical dynamics if not
for specific conducting pores. These pores are protein
molecules that can change their structure in response to
various signals, including the voltage across the mem-
brane, and this means that the system of channels inter-
acting with the voltage constitutes a potentially complex
nonlinear dynamical system. We can also think of the
ion channels in the cell membrane as a network of in-
teracting protein molecules, with the interactions medi-
ated through the transmembrane voltage. In contrast to
many other such biochemical systems, we actually know
the equations that describe the network dynamics, and
as a result the questions of fine tuning vs. robustness can
be posed rather sharply.
When we move from thinking about individual neu-

rons to thinking about circuits and networks of neurons,



154

!!" !#" !$" !%" " %" $" #" !"
"

"&%

"&$

"&#

"&!

"&'

"&(

"&)

"&*

"&+

%

V − V1/2 (mV)

f eq(V )

Vw

FIG. 98 Activation curve for an ion channel, from Eq (505),
with Q = 4.

which really do the business of the brain, it is easy to
imagine that the neurons are ‘circuit elements’ with some
fixed properties. We enhance this tendency by drawing
circuit diagrams in which we keep track of whether neu-
rons excite or inhibit one another, but nothing else about
their dynamics is made explicit. In fact, our genome en-
codes ∼ 102 different kinds of channels, each with its
own kinetics, and this range is expanded even further by
the fact that many of these channels have multiple sub-
units, and it is possible to splice together the subunits
in different combinations. On the one hand, this creates
enormous flexibility, and presumably adds to the com-
putational power of the nervous system. On the other
hand, this range of possibilities raises a problem of con-
trol. A typical neuron might have eight or nine different
kinds of channels, and we will see that the dynamics of
the cell depend rather sensitively on how many of each
kind of channel is present. In keeping with the theme of
this Chapter, it might seem that cells need to tune their
channel content very precisely, yet this needs to happen
in a robust fashion.

To explore the tradeoff between fine tuning and robust-
ness in neurons, we need to understand the dynamics of
the channels themselves. For simplicity, let’s neglect the
spatial structure of the cell and assume we can talk about
a single voltage difference V between inside and outside.
Then since the membrane acts as a capacitor, we can
write, quite generally,

C
dV

dt
= Ichannels + Iext, (501)

where Iext is any external current that is being injected
(perhaps by us as experimenters) and Ichannels is the cur-
rent flowing through the channels. Each channel acts
more or less as an Ohmic conductance, and the structure
of the channel endows it with specificity for particular

ions. Since the cell works to keep the concentrations
of ions different on the inside and outside of the cell,
the thermodynamic driving force for the flow of current
includes both the electrical voltage and a difference in
chemical potential; it is conventional to summarize this
by the “reversal potential” Vi for the currents flowing
through channels of type i, which might involve a mix of
ions. Since current only flows through open channels, we
can write

Ichannels = −
∑

i

giNifi(V − Vi), (502)

where gi is the conductance of one open channel of type i,
Ni is the total number of these channels, fi is the fraction
which are open, and Vi is the reversal potential. If each
channel has just two states, open and closed, then their
dynamics would be described by

dfi
dt

= − 1

τi(V )
[fi − f eq

i (V )] . (503)

The equilibrium fraction of open channels as a function
of voltage, f eq

i (V ), often is called the activation curve,
and τi(V ) is the time constant for relaxation to this equi-
librium.
What is a reasonable shape for the activation curve?

We are describing a protein molecule that can exist in
two states, and the equilibrium between these two states
depends on voltage. This is possible only if the transition
from closed to open rearranges the charges in the protein.
In the simplest model, then, the opening of the channel
effectively moves a charge Q across the membrane, and
so the free energy difference between open and closed
states will be ∆F = F0 − QeV . Then the equilibrium
probability of a channel being open will be given by

f eq(V ) =
1

1 + exp [(F0 −QeV )/kBT ]
(504)

=
1

1 + exp
[
−(V − V1/2)/Vw

] , (505)

where the point of half maximal activation is V1/2 =
F0/(Qe), and the width of the activation curve is Vw =
kBT/Qe, as shown in Fig 98. The charge Q is referred to
as the “gating charge.” We recall that, at room tempera-
ture, kBT/e = 25mV, so that even with relatively small
values of Q we expect channels to make the transition
from closed to open in a window of ∼ 10mV or so. The
location of the midpoint V1/2 depends on essentially all
aspects of the protein structure in the open and closed
states, so it is harder to get intuition for this parame-
ter. In practice, different channels have V1/2 values in
the range [look this up to give a meaningful survey ..].

It’s useful to think about the linearized dynamics; we
imagine that there is some steady state at a “resting po-
tential” V = V0, and study small perturbations around
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this steady state. The full dynamics are

C
dV

dt
= −

∑

i

giNifi(V − Vi) + Iext, (506)

dfi
dt

= − 1

τi(V )
[fi − f eq

i (V )] , (507)

and the linearization is

C
dδV

dt
= −

∑

i

giNif
eq
i (V )δV −

∑

i

giNi(V0 − Vi)δfi + Iext, (508)

dδfi
dt

= − 1

τi(V0)

[
δfi −

df eq
i (V )

dV

∣∣∣∣∣
V=V0

δV

]
. (509)

Fourier transforming, we can solve for the channel dynamics,

dδfi
dt

= − 1

τi(V0)

[
δfi −

df eq
i (V )

dV

∣∣∣∣∣
V=V0

δV

]
(510)

−iωδf̃i(ω) = − 1

τi(V0)

[
δf̃i(ω)−

df eq
i (V )

dV

∣∣∣∣∣
V=V0

δṼ (ω)

]
(511)

δf̃i(ω) =
[df eq

i (V )/dV ]0
−iω + 1/τi(V0)

δṼ (ω), (512)

and then substitute,

C
dδV

dt
= −

∑

i

giNif
eq
i (V )δV −

∑

i

giNi(V0 − Vi)δfi + Iext

−iωCδṼ (ω) = −
∑

i

giNif
eq
i (V )δṼ (ω)−

∑

i

giNi(V0 − Vi)δf̃i(ω) + Ĩext(ω) (513)

−iωCδṼ (ω) = −
∑

i

giNif
eq
i (V )δṼ (ω)−

∑

i

[giNi(V0 − Vi)df
eq
i (V )/dV ]0

−iω + 1/τi(V0)
δṼ (ω) + Ĩext(ω). (514)

Collecting terms, we find
[
−iωC +

1

R0
+
∑

i

giNi(V0 − Vi)[df
eq
i (V )/dV ]0

−iω + 1/τi(V0)

]
δṼ (ω) = Ĩext(ω). (515)

The resting resistance of the membrane is defined by

1

R0
=

∑

i

giNif
eq
i (V ). (516)

The term in brackets in Eq (515) is the inverse impedance
(or “admittance”) of the system.

To understand what is going on here, it’s useful to
think about channels which have fast (1/τi ' ω) or slow
(1/τi , ω) responses. The fast channels renormalize the
resistance,

1

R0
→ 1

R0
+

∑

i∈fast

τi(V0)giNi(V0 − Vi)
df eq

i (V )

dV

∣∣∣∣∣
V=V0

.

(517)

Importantly, the correction to the resistance can be ei-
ther positive or negative. Suppose that, as in Fig 98, the
channels tend to open in response to increasing voltage,
as most channels do. Then [df eq

i (V )/dV ]0 > 0. But if
this channel is specific for an ion with a reversal poten-
tial above the resting potential (Vi > V0), then opening
the channel creates a stronger tendency to pull the volt-
age toward this higher potential, which is a regenerative
effect—a negative resistance.
If the channels are slow, they make a contribution to

the imaginary part of the admittance, along with the
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capacitance,

−iωC → −iωC +
1

−iω

∑

i∈slow

giNi(V0 − Vi)
df eq

i (V )

dV

∣∣∣∣∣
V=V0

.

(518)
Again the sign depends on details. If the channels are
opened by increasing voltage and the reversal potential
is below the resting potential, then their contribution is
(almost) like an inductance, and can generate a resonance
by competing with the capacitance. This resonance is at
a frequency

ω∗ =

[
1

C

∑

i∈slow

giNi(V0 − Vi)
df eq

i (V )

dV

∣∣∣∣∣
V=V0

]1/2

(519)

which, interestingly, does not depend on the precise value
of the time constants defining the channel kinetics, al-
though one must obey the condition ω∗ ' 1/τi(V0) for
all i ∈ slow.

Problem 99: Equivalent circuits. Equation (515) shows
that each type of channel contributes a parallel path for current
flow through the membrane. The impedance of this path is defined
by

1

Z̃i(ω)
= giNif

eq
i (V ) +

giNi(V0 − Vi)[df
eq
i (V )/dV ]0

−iω + 1/τi(V0)
. (520)

Without resorting to the fast/slow approximations above, draw
an equivalent circuit using the standard lumped elements (capaci-
tance, resistance, inductance) which realizes this impedance. Show
how the parameters of the lumped elements relate to the parame-
ters of the channels.

So, we have seen that even in response to small sig-
nals, the dynamics of ion channels generate an interest-
ing complement of electronic parts: resistors, inductors,
and negative resistors. Certainly one can put these to-
gether to make a filter, playing the effective inductance
of the channels against the intrinsic capacitance of the
membrane, as noted above. With the negative resistor
one can sharpen the resonance, and even generate an in-
stability; presumably on the other side of the instability
is a genuine oscillator.

Problem 100: Oscillations. Construct a minimal model for
ion channels in the cell membrane that supports a stable, limit
cycle oscillation of the voltage.

The negative resistance alone means that we can have
(without oscillations) an instability of the steady state
around which we were expanding, presumably because
the real system is multi–stable. To see this more clearly,
consider just two types of channels—a ‘leak’ channel
which is open independent of the voltage and has a rever-
sal potential of zero, and some other channel which opens
in response to increasing voltage. Then the dynamics are

C
dV

dt
= −GleakV − gNf(V − Vr), (521)

df

dt
= − 1

τ(V )
[f − feq(V )]. (522)

The steady state solutions are determined by solving two
simultaneous equations, usually called the nullclines, ob-
tained by setting the time derivatives equal to zero:

f = feq(V ) (523)

V = Vr
f

f +Gleak/gN
; (524)

these are shown schematically in Fig 99, for some rea-
sonable choice of parameters. Evidently there are three
solutions to the two simultaneous equations, and it is
fairly easy to show that two are stable and one is unsta-
ble. The two stable states correspond, roughly, to one
state in which all the channels are closed and the volt-
age is zero (the reversal potential of the leak), and one
state in which all the channels are open and the volt-
age is near the reversal potential for these channels. The
bistability means that, if the cell starts in the low volt-
age state, injection of a relatively small, brief current
can drive the system across a threshold (separatrix) so
that it falls into the high voltage state after the current
pulse is complete. This is a form of memory (interest-
ing, although not very realistic), but also a substantial
amplification of the incoming signal, especially if the pa-
rameters are tuned so that the difference in voltage to
the unstable state is small.

Problem 101: Bistability. Work through a concrete example
of the ideas in the previous paragraphs, perhaps using the detailed
model from Fig 99. You should be able to verify, analytically, the
claims about stability of the different steady states. Explain how
these analytic criteria can be converted into a test for stability of
each steady state that can be ‘read off’ directly from the plots in
Fig 99. Analyze the response to brief pulses of current, showing
that there is a well defined threshold for switching from one stable
state to the other.

All the different kinds of dynamics we have seen thus
far—filtering, oscillation, and bistability—can be gener-
ated by just one kind of channel with only two states.
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FIG. 99 Bistability in a simple model of a neuron. The chan-
nel nullcline is Eq (523), and the voltage nullcline is Eq (524).
To be explicit we choose feq(V ) from Eq (505), with V1/2 = 70
and Vw = 10, and Gleak/gN = 0.1. Note that there are three
crossing points, corresponding to steady states. The low volt-
age and high voltage states are stable; the intermediate volt-
age state is unstable.

Real neurons are much more complex. One important
class of dynamics that we can’t quite see in the simplest
models is ‘excitability.’ In this case, a small pulse again
drives the system across a threshold, but what would
have been a second stable state is destabilized by relax-
ation of some other degrees of freedom; the result is that
the system takes a long, and often stereotyped, trajec-
tory through its phase space before coming back to its
original steady state after the input pulse is over. The
action potential is an example of such excitable dynamics
[should we have a sketch of what this means in a simple
phase plane?].

Our understanding of ion channels goes back to the
classic work of Hodgkin and Huxley in the 1940s and
50s. They studied the giant axon, a single cell, visi-
ble to the naked eye, which runs along the length of a
squid’s body, and along which action potentials are prop-
agated to trigger the squid’s escape reflex. Passing a con-
ducting wire through the interior of the long axon, they
short–circuited the propagation, insuring that the volt-
age across the membrane was spatially uniform, as in our
idealization above. They then studied the current that
flowed in response to steps of voltage. If the picture of
channels is correct, then with the voltage held constant,
there should be an (Ohmic) flow of current through the
open channels. If we step suddenly to a new value of the
voltage, Ohm’s law tell us that the current through the
open channels will change immediately, but there will be
a prolonged time dependence that results from the open
or closing of channels as they equilibrate at the new volt-
age. In the simple model with two states, this changing

current should relax exponentially to a new steady state;
in particular, the initial slope of the current should be
finite.
Hodgkin and Huxley found that the relaxation of the

current at constant voltage has a gradual start, as if the
channels had not one closed state but several, and the
molecules had to go through these states in sequence be-
fore opening. They chose to describe these dynamics of
the currents by imagining that, in order for the chan-
nel to be open, there were several independent molecular
“gates” that all had to be open. Each gate could have
only two states, and would obey simple first order kinet-
ics, but the probability that the channel is open would
be the product of the probabilities that the gates were
open. In the simple case that the multiple gates are iden-
tical, the probability of the channel being open is just a
power of the ‘gating variable’ describing the probability
that one gate is open. Hodgkin and Huxley also discov-
ered that at least one important class of channels open
in response to increased voltage, and then seem to close
over time. They described this by saying that in addi-
tion to ‘activation gates’ that were opened by increasing
voltage, there were ‘inactivation gates’ which closed in
response to increasing voltage, but these had slower ki-
netics. Putting the pieces together, they described the
fraction of open channels as

fi = mαi
i hβi

i , (525)

where m and h are activation and inactivation gates, re-
spectively, and the powers α and β count the number of
these gates that contribute to the opening of one channel.
The kinetics are then described by

dmi

dt
= − 1

τ (m)
i (V )

[mi −meq
i (V )] (526)

dhi

dt
= − 1

τ (h)i (V )
[hi − heq

i (V )] , (527)

and finally the voltage (again neglecting spatial varia-
tions) obeys

C
dV

dt
= −

∑

i

giNim
αi
i hβi

i (V − Vi). (528)

Problem 102: Two gates. Suppose that each channel has
two independent structural elements (“gates”), each of which has
two states. Assuming that the two gates are independent of one
another, fill in the steps showing that the dynamics of the channels
are as described above. In particular, show that after a sudden
change in voltage, the fraction of open channels starts to change
as ∝ t2, not ∝ t as expected if the entire channel only has two
states. [This, and the preceding paragraph, might be a little too
telegraphic. Need feedback here!]
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Problem 103: Hodgkin and Huxley revisited. The origi-
nal equations written by Hodgkin and Huxley are as follows:69

C
dV

dt
= −ḡL(V − VL)− ḡNam

3h(V − VNa)

−ḡKn4(V − VK) + I(t) (529)

dn

dt
= (0.01V + 0.1) exp(−V/10)(1− n)− 0.125n exp(V/80)n

(530)

dm

dt
= (0.1V + 2.5) exp(−V/10− 1.5)(1−m)− 4 exp(V/18)m

(531)

dh

dt
= 0.07 exp(V/20)(1− h)− exp(−V/10− 4)h, (532)

where Na and K refer to sodium and potassium channels, respec-
tively; time is measured in milliseconds and V is measured in mil-
liVolts. These equations are intended to describe a small patch
of the membrane, and so many parameters are given per unit
area: C = 1µF/cm2, ḡL = 0.3mS/cm2, ḡNa = 120mS/cm2, and
ḡK = 36mS/cm2; the reversal potentials are VL = 10.613mV,
VNa = 115mV, and VK = −12mV.

(a.) Rewrite these equations in terms of equilibrium values and
relaxation times for the gating variables, e.g.

dm

dt
= −

1

τm(V )
[m−meq(V )] . (533)

Plot these quantities. Can you explain, intuitively, the form of the
curves?

(b.) Simulate the dynamics of the Hodgkin–Huxley equations in
response to constant current inputs. Show that there is a threshold
current, above which the system generates period pulses. Explore
the frequency of the pulses as a function of current.

(c.) Suppose that the injected current consists of a mean (less
than the threshold you identified in [b]), plus a small component
at frequency ω. By some appropriate combination of analytic and
numerical methods, find the impedance Z(ω) for different values
of the mean injected current. Show that the membrane has a res-
onance, and explore what happens to this resonance as the mean
current is increased toward threshold. How do your results connect
to the frequency of pulses above threshold?

(d.) Real axons are essentially long thin cylinders. Show that,
if we allow the voltage to vary along the length of the axon, there
should be a current per unit area flowing across the membrane of

I =
a

2R

∂2V

∂z2
, (534)

where z is the coordinate along the cylinder, a is its radius, and R is
the resistivity of the fluid filling the axon, assuming that resistance
outside the axon is negligible. For the squid giant axon, a ∼ 250µm
and R ∼ 35Ω·cm. Use this result to write equations for the voltage
and gating variables along the axon. Note that only the dynamics
of voltage is sensitive to spatial derivatives. Why?

(e.) Simulate the response of a long segment of the axon to a
current pulse injected at one end. Show that small pulses result in
spatially restricted voltage responses, while larger pulses produce a

69 The only difference from the original paper is that we use the
modern sign convention for the voltage. Notice that this original
formulation is in terms of a “maximal conductance” for each type
of “current,” while in modern language we could talk about the
number of each type of channel. In fact, the more phenomeno-
logical description persists, because it corresponds more directly
to what is measured, but this allows us to forget that parameters
such as ḡK actually measure the number of copies of a protein
that have been inserted into the membrane.

FIG. 100 The action potential that emerges from the
Hodgkin–Huxley model. Need to decide what to say, what
other things to reproduce ... .

propagating pulse. Confirm that these pulses become more stereo-
typed as the propagate, and have a velocity that is independent of
the input current. What is this velocity? How does it compare to
the observed speed of action potentials, v ∼ 20m/s?

Problem 104: Simplification. It is very hard to make ana-
lytic progress in understanding the dynamics of a system with five
variables. There is a history of trying to approximate the system
by exploiting the fact that the different variables have very differ-
ent time scales. See how far you can go along this path. I have
left this problem deliberately open–ended. For one approach, see
Abbott and Kepler (1990).

It is good to pause here and review how we know that
the Hodgkin–Huxley description of ion channels is cor-
rect. [Not sure how much of this should be illustrated by
figures from the original papers?] The initial triumph,
which you are asked to reproduce in the problem above,
is the prediction of the propagating action potential it-
self, as in Fig 100, with the correct speed. The model
also predicts that, as the action potential passes, there is
a net flux of potassium and sodium across the membrane.
On long time scales, this must be balanced by the action
of pumps that maintain the concentration differences be-
tween the inside and outside of the cell. But either by
looking quickly or by poisoning the pumps, one should
be able to detect the flux, for example using radioactive
tracers, and this works, quantitatively.
[This is all a little vague; should go back and try to do

better!] Nature provides a variety of toxins which block
the action potential in different ways, and we can also find
artificial blockers, for example using ions with very large
radius that can literally plug the hole in open channels.
It is striking that these agents act selectively on different
channels, and one can verify that this way of isolating the
dynamics of sodium and potassium channels matches the
Hodgkin–Huxley description. If we can arrange for the
channels to “open” but be blocked, then the structural
change of the channel molecule upon opening should still
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move the gating charge across the membrane, and if we
are careful this should be measurable essentially as a de-
layed capacitive response to changes in the applied volt-
age. These “gating currents” have indeed been detected,
and in some cases it has been possible to match these
quantitatively not only against predictions based on the
form of the activation curve, but also to genetically engi-
neer the channels and show that changes in the activation
curve and gating currents track one another. [How much
detail here? Give the example of shaker?]

If individual channels are independent of one another,
then their opening and closing events should be indepen-
dent. If we look at a small patch of the membrane, there
will not be that many channels present, and we might
be able to see that the discrete events in the individual
molecules don’t quite average out—there should be noise
from the random opening and closing of the single chan-
nels. This channel noise has been detected, and has the
spectral properties expected from the Hodgkin–Huxley
model. Finally, if we look at even smaller patches of the
membrane, and have proportionately more sensitive am-
plifiers, we should be able to see the opening and closing
of single channels. Again, this works. Most importantly,
we can look at the distribution of times that individual
channels spend in the open and closed states, and con-
nect this to the kinetics predicted by the Hodgkin–Huxley
model and its generalizations. Although these more de-
tailed measurements have revealed new features of chan-
nel kinetics even in well studied examples, in outline the
picture given to us by Hodgkin and Huxley has stood
the test of time. [Again, should probably show some fig-
ures. Emphasize how remarkable it is to be looking at
individual molecular events—current flow through sub–
nanometer pores! Maybe even discuss shot noise through
open channels?]

Problem 105: Channel noise. Give a problem that maps
the HH model onto a stochastic picture of channel states, and then
derive the expected properties of the channel noise. Remember
that we did the simplest version of this in Chapter 1.

Problem 106: Single channel kinetics. Give a problem that
explores how single channel kinetics are connected to the macro-
scopic kinetics.

Now that we have confidence in our mathematical de-
scription of neurons, it is time to realize now just how
many parameters are involved. A typical cell expresses
eight or nine different kinds of channels. Each channel
is described by the dynamics of two gating variables. If
we imagine that activation or inactivation curves have
the simple sigmoidal form as in Fig 99, then there are
roughly two parameters for each such curve—the voltage

at half activation and the slope or width—and at least
one more parameter to set the time scale of the kinet-
ics. Finally, there is the total number of channels, or
the maximum conductance achieved if all the channels
are open. All together, then, this is ∼ 7 parameters per
channel type, or roughly fifty parameters for the entire
neuron, conservatively. Importantly, to a large extent the
cell actually has control over these parameters, and, in a
meaningful sense, can adjust them almost continuously.
How do these adjustments occur? Most obviously, the

total number of open channels is controlled in the same
that all other protein copy numbers are controlled. Some-
times, because of the clearer connection to experiment,
one speaks about the ‘maximal conductance’ associated
with a particular type of channel (Gmax

i = giNi), but
this obscures the fact that this parameter really is the
total number of copies of the protein that the cell has
expressed and inserted into the membrane. The param-
eters of the activation curves and the time constants are
intrinsic properties of the proteins, but these too can be
adjusted in several ways. First, like all proteins, ion chan-
nels can be covalently modified by phosphorylation etc..
More importantly, the genome encodes a huge number of
different ion channels proteins; the human genome has
90 different potassium channels alone. While these do
form classes based on their dynamics, there is consid-
erable variation within classes, and since many of these
genes have multiple alternative splicings, there is the po-
tential for almost continuous parameter variation. These
different mechanisms of variation interact; as an example,
different splicing variants can exhibit different sensitivity
to phosphorylation.

Problem 107: Continuous adjustment of electrical dy-
namics. [It might be that I should take the students by hand
through the model; let’s see how this works.] To illustrate the pos-
sibility of nearly continuous adjustments in the electrical dynamics
of neurons, consider the case of the hair cells in the turtle ear. In
these cells (cf Section 2.5), one contribution to frequency selectivity
comes from a resonance in the electrical response of the hair cell
itself. This resonance is driven by a combination of voltage–gated
calcium channels and calcium–activated potassium channels. There
is a detailed model of this system, described by Wu & Fettiplace
(2001). Try to understand what they have done, and reproduce the
essential theoretical results. In particular, what is the role of “de-
tails” (e.g., the building of channels out of combinations of different
subunits) in generating the correct qualitative behavior?

One well studied example of channel dynamics is in the
stomatogastric ganglion of crabs and lobsters, schema-
tized in Fig 101. This is a network of ∼ 30 neurons which
generates a rhythm, and this rhythm in turn drives mus-
cles which actuate teeth in the crab stomach, grinding its
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FIG. 101 The stomatogastric ganglion (STG) in crustaceans, from Marder & Bucher (2007). At top left, the location of the
STG and the commissural ganglion (CoG) in a lobster. A top right, a schematic of the ganglion dissected out of the animal,
and the opportunities for recording the activity of the neurons. At bottom, simultaneous extracellular recordings from nine
motor nerves at the output of this network. Names indicate particular neurons which can be identified in each individual (as
with the named neurons in the fly visual system discussed in [pointer]), and in some cases (e.g., avn, mvn) we can identify
spikes from several individual neurons in the recording from one nerve. There are two main rhythms, the faster pyloric rhythm
in cells PD, LP, PY, VD and IC, and the slower gastric mill rhythm in cells MG, DG, GM, LPG and LG.

food. Evidently getting the correct rhythm is important
in the life of the organism. If one records the electrical
signals from individual neurons, several of the cells pro-
duce period bursts of action potentials, and a handful of
cells are ‘pacemakers’ that can generate this periodic pat-
tern without input from the other cells. In one such cell
(the lateral pyloric neuron), experiments show that there
are seven different channel types. An important feature
of this cell, shared by many other cells, is the presence
of voltage–gated calcium channels. This means that, as
action potentials occur, they trigger calcium flux into the
cell. Because there are also channels which are directly
affected by the calcium concentration, a complete model
must include a description of the calcium buffering or
pumping that counterbalances this flux.

It is worth being very explicit about all these ingredi-
ents in the dynamics of the lateral pyloric neuron, not
least to get a sense for the state of the art in such anal-
yses. As before, we will neglect the spatial structure of
the cell, so there is just one relevant voltage difference V
between the inside and outside of the cell, which obeys a
slight generalization of Eq (528),

C
dV

dt
= −

∑

i

giNim
αi
i hβi

i (V − Ei) + Iext, (535)

where Iext is any externally injected current and Ei is the
reversal potential for channel type i. The kinetics of the
gating variables mi and hi are governed by Eq’s (526)
and (527), respectively. For most of the channels, we can
take the equilibrium values of the gating variables to be
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channel type giNi (µS) Ei (mV) midpoints (mV) widths (mV) rates (s−1)

i = 1: “delayed rectifier” 0.35 EK = −80

activation equilibrium (α1 = 4) V m1
1/2 = −25 V m1

w = 17

activation kinetics V (m)
1 = 10 1/γ(m)

1 = 22 k(m)
1 = 180

i = 2: Ca++ current 1 0.21 ECa

activation (α2 = 1) V m2
1/2 = −11 V m2

w = 7 50

inactivation (β2 = 1) V h2
1/2 = −50 V h2

w = −8 16

i = 3: Ca++ current 2 0.047 ECa

activation (α3 = 1) V m3
1/2 = −22 V m3

w = 7 10

i = 4: “inward rectifier” 0.037 -10

activation equilibrium (α4 = 1) V m4
1/2 = −70 V m4

w = −7

activation kinetics V (m)
4 = −110 1/γ(m)

1 = 13 k(m)
1 = 0.33

i = 5: “leak” 0.1 -50

i = 6: “A–current” 2.2 EK = −80

activation equilibrium (α6 = 3) V m6
1/2 = −12 V m6

w = 26

activation kinetics k(m)
6 = 140

inactivation equilibrium (β6a = 1) V h6a
1/2 = ... V m6a

w = ...

inactivation kinetics k(h)
6a = ...

inactivation equilibrium (β6b = 1) V h6b
1/2 = ... V m6b

w = ...

inactivation kinetics k(h)
6b = ...

TABLE I A subset of channels in the lateral pyloric neuron, from Buchholtz et al (1992). For the delayed rectifier and the

second type of calcium channel, there is no evidence for inactivation. The negative value of V (h2)
w means, from Eq (505), that

the probability of the inactivation gate being “open” decreases with increasing voltage. For calcium channels, the reversal
potential varies, depending on the calcium concentration inside the cell, as in Eq (541), and the relaxation times do not have
a detectable voltage dependence. The voltage dependence of the inward rectifier kinetics is opposite to Eq (538), that is

1/τ ∝ 1 + exp[−γ(m)
i (V − V (m)

i )]. The leak current, by convention, is the current that exhibits no voltage or time dependence
of its conductance. Get details of the A–current right!

given by the generalization of Eq (505),

meq
i (V ) =

1

1 + exp[−(V − V mi

1/2)/V
mi
w ]

, (536)

heq
i (V ) =

1

1 + exp[−(V − V hi

1/2)/V
hi
w ]

, (537)

and the time constants for relaxation of the gating vari-
ables are, phenomenologically,

1

τ (m)
i (V )

=
k(m)
i

1 + exp[−γ(m)
i (V − V (m)

i )]
, (538)

1

τ (h)i (V )
=

k(h)i

1 + exp[−γ(h)
i (V − V (h)

i )]
. (539)

As shown in Table I, this description works for several
channel types, one selective for potassium, two for cal-
cium, and one mixed, plus a “leak” that exhibits no sig-
nificant time or voltage dependence of its conductance.

Two of the important channel types allow calcium to
flow into the cell. As we will see, this current is big
enough to change the concentration of calcium inside

the cell, and this has a variety of effects on other pro-
cesses, including one of the channels that doesn’t fit the
simple description we have given so far. So, we will
need to describe the dynamics of the calcium concen-
tration itself. The simplest model is that the calcium
relaxes back to some internally determined steady state,
[Ca]0 = 0.05µM, with a rate kCa = 360 s−1, in which
case

d[Ca]

dt
= −kCa ([Ca]− [Ca]0) +AICa, (540)

where ICa is the total calcium current (ICa = I2 + I3
from Table I). The constant A = 300µM/nC is inversely
proportional to the volume into which the current flows,
which experimentally comes out to be much smaller than
the total volume of the cell body. As the concentration
of calcium changes, the reversal potential for the calcium
currents also changes,

ECa =
kBT

2e
ln

(
[Ca]out
[Ca]

)
, (541)

where the calcium concentration outside the cell is
[Ca]out = 13mM.
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We are still missing three of the channel types in this
cell. First, there is another potassium channel that is
almost described by our standard model, but the inacti-
vation seems to involve two processes that occur on dif-
ferent time scales. This can be captured by replacing

h6 → x(V )h6a + [1− x(V )]h6b, (542)

where the weighting function

x(V ) =
1

1 + exp[−(V − 7)/15]
, (543)

with V measured in mV as before.
Next, there is a fast sodium channel not unlike the ones

that Hodgkin and Huxley found in the squid giant axon,
with α7 = 3 and β7 = 1. The activation is sufficiently
fast that it can be approximated as instantaneous, so
that m7 is always at its equilibrium value, which varies
with voltage in a slightly more complicated way than for
the other channels,

m7 = meq
7 (V ) =

1

1 + 136
V+6 (exp[−(V + 34)/13]− exp[−(V − 0.07)/7.9])

, (544)

where V again is measured in mV [Need to check this
carefully!]. The inactivation gates obey

dh7

dt
= a7(V )(1− h7)− b7(V )h7, (545)

where the rates

a7(V ) = 40 exp[−(V + 39)/8], and (546)

b7(V ) =
500

1 + exp[−(V + 40)/5]
, (547)

are measured in s−1. The total conductance that is con-
tributed by these channels is large, g7N7 = 2300µS, al-

though they are only open briefly.
The last type of channel, like the first two in Table

I, is selective for potassium ions, but the probability of
the channel being open is modulated by the intracellular
calcium concentration. This channel has α8 = β8, and
the equilibrium state of the inactivation gate depends
only on the calcium concentration,

heq
8 =

1

1 + [Ca]/(0.6µM)
. (548)

The equilibrium state of the activation gate, in contrast,
depends both on voltage and on calcium,

meq
8 =

1

1 + exp[−(V + f [Ca])/23]
· 1

1 + exp[−(V + 16 + f [Ca])/5]
· [Ca]

2.5µM+ [Ca]
, (549)

where f = 0.6mV/µM. The relaxation rates k(m)
8 =

600 s−1 and k(h)8 = 35 s−1 show little if any voltage de-
pendence. This seems like a complicated model, but it
fits the experimental results very well, as in Fig 102.

Problem 108: Calcium dependent potassium conduc-
tances. Develop a microscopic picture to explain the combination
of voltage and calcium dependences seen in Eq’s (548) and (549).
Remember that these equations describe the equilibrium fractions
of molecules in particular states, so you need to relate these back
to the free energies of the different states. Connect your discussion
with the MWC models discussed in Appendix A.4 and [elsewhere?].

The model of the lateral pyloric neuron which we have
described here represent the culmination of many years of
effort, both in experiments on this particular system and
in the exploration of these fully realistic generalizations
of the Hodgkin–Huxley model to what seems the more
typical case, with many different channel types function-
ing together. This model also represents a level of de-
tail and complexity that I have tried to avoid so far, so
some explanation is called for. First, the complexity con-
sists largely of variations on a theme. Many channels are
known to be described by the general picture of multi-
ple activation and inactivation gates, so this provides a
framework within which each new type of channel can be
fit. Second, the complexity is justified by a large body of
data. There are independent experiments on other sys-
tems, exploring quantitatively each of the types of chan-
nels that we see in this neuron, and detailed experiments
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on this one cell to tease out the contributions of each of
the channel types.

Problem 109: Justifying complexity. Go through
Golowasch & Marder (1992), Buchholtz et al (1992), and
Golowasch et al (1992), and explain the justification for each of
the channel types in the model discussed above.

Indeed, the program of describing the electrical dy-
namics of single neurons in terms of generalized Hodgkin–
Huxley models, usually with many different channel
types functioning together, became a small industry. It
really worked. In some cases one could go so far as
to characterize the kinetics of particular channel types
through measurements on single molecules, and then put
these single molecule properties together to reproduce the
functional behavior of the cell as a whole. This really is
quite a beautiful body of work, and implements what
many people would like to do in other systems, building
from measured properties of individual molecular events
up to macroscopic biological function. As emphasized
above, we can think of the ion channels in the cell mem-
brane as a network of interacting proteins, where the in-
teraction is mediated by the voltage across the membrane
rather than direct protein–protein encounters, and where
the equations for the dynamics of the individual channels
have a firm foundation. It is not unreasonable to claim
that ion channels in the cell membrane are in fact the

FIG. 102 Dynamics of the calcium dependent potassium cur-
rent, from Buchholtz et al (1992). Experimental data (noisy
traces) from Golowasch & Marder (1992), solid lines from the
model including Eq’s (548) and (549). [Go back and under-
stand how they isolate this contribution to the current]

FIG. 103 Simulations of a detailed model, with seven types
of channel, for the lateral pyloric neuron in the stomatogas-
tric ganglion of the crab. Changes in the pattern of activity
as a function of the numbers of two different kinds of chan-
nel, where channel number here is expressed as the maximal
conductance when all channels are open. Note that relatively
small changes in these parameters can result in both quan-
titative and qualitative changes in the pattern of electrical
activity, running the full range from silence to single spike
firing to bursting. From Le Masson et al (1993).

best understood examples of biochemical networks, al-
though the language typically used in describing these
systems obscures this connection.
Despite their success, it came to be known, though

not widely commented upon, that these models of cou-
pled ion channel dynamics had a problem. While ex-
periments often characterize the activation curves and
kinetics of the individual channels, it is hard to make
independent measurements of the total number of chan-
nels, or equivalently the maximum conductance when all
the channels are open. Thus, one is left adjusting these
parameters, trying to fit the overall electrical dynamics
of the neuron—for example, the rhythmic bursting of the
pyloric neuron. This fitting turns out to be delicate; as
one adjusts the (many) parameters, one finds bifurca-
tions to qualitatively different behaviors in response to
relatively small changes. An example of this is shown in
one two–dimensional slice through the seven dimensional
space of channel numbers in the pyloric model, at the top
in Fig 103.
Frankly, from a physicist’s point of view this all seems

a mess. There are many details one has to keep track of,
and many parameters to adjust. One might be tempted
just to walk away, and count this as a part of biology
we don’t want to know about. But there is a deep ques-
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tion here:70 if we have trouble adjusting the parame-
ters of our models in order to reproduce the observed
functional behaviors of particular cells, how do the cells
themselves adjust these parameters to achieve their cor-
rect functions? How does it choose the ‘correct’ number
of each type of channel to express? One could imagine
that the cell has some sort of lookup table—I am a cell of
type α, so I should express Nα

1 molecules of channel type
1, Nα

37 molecules of channel type 37, and so on. This is a
bit implausible. More likely would be that the cell has a
way of monitoring its activity and asking “how close am I
to doing the right thing?,” generating an error signal that
could be used to drive changes in the expression of the
channels or perhaps their insertion into the membrane.

How can a neuron “know” whether it is exhibiting the
desired pattern of electrical activity? It would need some
signal that couples voltage changes across the membrane,
which are quite fast, to the biochemical events regulating
gene expression, which are quite slow. One idea is to use
the intracellular calcium concentration as an intermedi-
ary. We know that many cellular processes are regulated
by calcium, so one end of this is easy to imagine. But
in the models described above the calcium concentration
is an explicit part of the dynamics, so we can calculate,
for example, the time average calcium concentration as
function of the parameters of the model. What we see
in Fig 104 is that [Ca++] does an excellent job of trac-
ing the pattern of electrical activity in this cell. Thus
if the system wants to stabilize a pattern of rhythmic
bursting, it can do so via feedback mechanisms which
try to hold the calcium concentration near a target value
of C0 ∼ 0.2µM.

Let us suppose that the expression of each channel pro-
tein is regulated by calcium, so that

τi
dNi

dt
= Nmax

i fi([Ca++]/C0)−Ni, (550)

where fi(x) is a sigmoidal function such as

fi(x) =
1

1 + x±n
. (551)

Of course these equations have their steady state at
Ni = Nmax

i fi([Ca++]/C0), but the calcium concentration
must be determined self–consistently through the full dy-
namics of the channels and voltage. We should choose
the signs of the calcium dependences to insure stabil-
ity: channels which allow excitatory currents to flow will
tend to drive increases in [Ca++], and so these should be

70 As in the case of kinetic proofreading, I think there is a tendency
to remember the original papers as having proposed mechanisms
that solve problems. But I think that, in many ways, it was a
much deeper contribution to formulate the problems. Even if the
solutions turn out not to be precisely the ones chosen by Nature,
the problems are important.

FIG. 104 Mean calcium concentration follows the pattern of
electrical activity. Main figure shows the mean calcium con-
centration as a function of the same two variables shown in Fig
103. Small figure at right shows that the region of bursting
activity corresponds almost perfectly to the region of parame-
ter space in which the mean calcium concentration is between
0.1 and 0.3 µM, so that holding the calcium level fixed will
stabilize bursting. From Le Masson et al (1993).

opposed by a decreasing function fi(x), and vice versa.
Once we do this, if the regulation functions are steep
[large value of n in Eq (551)], and the maximum possible
numbers of channels (Nmax

i ) are large, the dynamics will
always be pulled into regimes where [Ca++] ≈ C0. We
need a figure which illustrates this!

Problem 110: A simple example of a self–tuning neuron.
Need to find the simplest example of these models, and let the
students work it through for themselves.

How can we tell if something like this sort of self–tuning
really is happening? If neurons knew how many of each
kind of channel to make, then they would try to do this
no matter what the conditions. For example, inputs from
other neurons would drive changes in the electrical activ-
ity, but not changes in channel expression. On the other
hand, if the cell is ‘trying’ to maintain some mean cal-
cium concentration, or some other measure of activity,
then changing the environment in which the neuron op-
erates will change channel expression. As an extreme
example, if we rip the neuron from its network and put
it in a dish, the normal pattern of rhythmic bursting will
go (wildly) wrong, but the calcium–sensitive dynamics
of the channel expression levels will eventually bring the
system back into something close to the original pattern.
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In this new state, the channels are playing different roles
in the dynamics, because the driving forces for ionic cur-
rent flow are different, but the final pattern of activity
is the same. A literal version of this rather dramatic
scenario actually works experimentally, as shown in Fig
105.

We have noted already that, in invertebrates such as
flies and crabs, neurons have names, numbers and iden-
tifiable functions from individual to individual within a
species. This discussion of stabilizing patterns of activ-
ity rather than expression levels suggests that this repro-
ducibility of function can be achieved without exactly
reproducing the number of copies of each channel pro-
tein. Further, although the slice through parameter space
shown in Fig 104 suggests that the region compatible
with normal function is convex, this in fact is not the
generic case, and real models often have banana–shaped
volumes in parameter space which are consistent with
particular patterns of electrical activity. [Look through
Goldman et al (2001) & Golowasch et al (2002) to de-
cide on a figure.] Again this is consistent with what one
sees experimentally, most impressively in subsequent ex-
periments which measure directly the number of copies
of mRNA for several channel types in single cells [recent

FIG. 105 Changing intrinsic properties of the STG neurons,
from Turrigiano et al (1994). At left, an experiment in which
one cell is ripped from the network and placed in isolation. At
first (top) the electrical activity shifts from rhythmic bursts to
repeated (“tonic”) firing of single action potentials. After two
days in culture, the cell is silent but responds to small posi-
tive currents with tonic firing; after three days the response
consists of bursts not unlike those in the native network envi-
ronment. At bottom, continuous recordings demonstrate that
this switch from tonic firing to bursting can occur within an
hour. At right, one hour of stimulation with negative current
pulses drives a shift from bursting to tonic firing, which is
reversed after one hour of no stimulation. All these changes
in activity reflect changes in the numbers of different types
of ion channels in the cell membrane, as predicted from the
models discussed in the text.

refs from Eve’s group].
One might worry that we have replaced the tuning of

channel copy numbers with a fine tuning of the regulatory
mechanisms on all the channels. In fact, it is not plau-
sible that calcium acts directly on expression of genes.
More likely is that calcium binds to some protein, and
when its binding sites are occupied the protein can act,
directly or indirectly, as a transcription factor. Then
the fact that all the genes have the same calcium depen-
dence to their steady state values reflects the fact that
they are all being regulated by the same calcium bind-
ing protein. Exploring this scenario in more detail, one
realizes that the kinetics of binding and unbinding of cal-
cium to the sensitive protein can span the time scales of
action potentials, bursts, and even the basic rhythm it-
self. By combining signals from calcium binding proteins
with different kinetics [that’s a little quick!] one can thus
stabilize more subtle details in the pattern of electrical
activity. Maybe there is more to say about all this before
drawing the lessons. Check most recent papers.
Faced with a model that explains the behavior of cells

only when parameters are finely tuned, we become sus-
picious that we are missing something. One possibility—
often the most plausible—is that the model simply is
wrong. The models that we have for biological systems
are not like the Navier–Stokes equations for fluids or the
standard model of particle physics; we have many rea-
sons to doubt that we are simply solving the wrong equa-
tions. But the electrical dynamics of neurons are a spe-
cial case. Our mathematical models of channel dynamics
emerged as accurate summaries of a huge body of data,
and are nearly exact on the time scales that are exper-
imentally accessible. Rather than rejecting the models,
we must conclude that we are missing something, pre-
sumably on time scales longer than the experiments that
go into characterizing the channel kinetics. In partic-
ular, what look like constant parameters must become
slow dynamical variables. The simplest implementation
of this idea seems to work, and to generate several dra-
matic experimental predictions which have since been
confirmed. Indeed, this theoretical work on the prob-
lem of parameter determination has launched a whole
subfield of experimental neurobiology, investigating the
activity–dependent regulation of the ‘intrinsic’ electrical
properties of neurons [be sure there is a ref to recent
review].

Our understanding of ion channels goes back to the classic papers
of Hodgkin and Huxley (1952a–d), still very much worth reading.
The series of papers (of which the first really is Hodgkin, Huxely
& Katz 1952) describes many ingenious experiments, culminating
in a mathematical model which predicts the form and speed of the
action potential. Iinclude Hodgkin’s summaries—Croonian lecture,
plus the one from Pursuit of Nature] For a modern textbook ac-
count, see Dayan & Abbott (2001). The Hodgkin–Huxley model is
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complicated, so over the years there have been various attempts at
simplifying to the point where one can gain analytic insight; for one
approach, see Abbott & Kepler (1990) [also FitzHugh & Nagumo].

Abbott & Kepler 1990: Model neurons: From Hodgkin–
Huxley to Hopfield. LF Abbott & T Kepler, in Statisti-
cal Mechanics of Neural Networks, L Garrido, ed, pp 5–18
(Springer–Verlag, Berlin, 1990).

Dayan & Abbott 2001: Theoretical Neuroscience P Dayab &
LF Abbott (MIT Press, Cambridge, 2001).

Hodgkin et al 1952: Measurement of the current–voltage rela-
tions in the membrane of the giant axon of Loligo. AL
Hodgkin, AF Huxley & B Katz, J Physiol (Lond) 117, 442–
448 (1952).

Hodgkin & Huxley 1952a: Currents carried by sodium and
potassium ions through the membrane of the giant axon of
Loligo. AL Hodgkin & AF Huxley, J Physiol (Lond) 117,
449–472 (1952).

Hodgkin & Huxley 1952b: The components of membrane con-
ductance in the giant axon of Loligo. AL Hodgkin & AF
Huxley, J Physiol (Lond) 117, 473–496 (1952).

Hodgkin & Huxley 1952c: The dual effect of membrane poten-
tial on sodium conductance in the giant axon of Loligo.
AL Hodgkin & AF Huxley, J Physiol (Lond) 117, 497–506
(1952).

Hodgkin & Huxley 1952d: A quantitative description of mem-
brane current and its application to conduction and excita-
tion in nerve. AL Hodgkin & AF Huxley, J Physiol (Lond)
117, 500–544 (1952).

For a modern view of ion channels, see Hille (2001). [add some clas-
sic references about resonances etc.] For a detailed discussion of
system in which the effective resonance generated by channel kinet-
ics has functional importance, see Wu & Fettiplace (2001). [Need
references that survey the richness of ion channel diversity, phos-
phorylation, splicing variants, etc. Check Laughlin refs re splicing
variants in the fly eye.] For one example of this complexity, see
Tian et al (2001).

Hille 2001: Ion Channels of Excitable Membranes, Third Edi-
tion. B Hille (Sinauer, 2001).

Wu & Fettiplace 2001: A developmental model for generating
frequency maps in the reptilian and avian cochleas. YC Wu
& R Fettplace, Biophys J 70, 2557–2570 (1996).

Tian et al 2001: Altenative splicing switches potassium channel
sensitivity to protein phosphorylation. L Tian, RR Duncan,
MS Hammon, LS Coghill, H Wen, R Rusinova, AG Clark,
IB Levitan & MJ Shipston, J Biol Chem 276, 7717–7720
(2001).

[Need the list of references for the “how we know HH were right”
discussion.]

:

The problem of setting the numbers of each kind of ion channel
emerged in attempts to make quantitative models of individual neu-
rons in the stomatogastric ganglion. For a recent overview of the
STG, emphasizing its role as a model system for studying network
dynamics, see Marder & Bucher (2007). These models reached a
very high degree of sophistication, as described in the series of pa-
pers by Golowasch & Marder (1992), Buchholtz et al (1992) and
Golowasch et al (1992). The basic idea of regulating the number
of ion channels via feedback from the electrical activity of the cell
was described by LeMasson et al (1993); see Abbott & LeMasson
(1993) for a more complete account. Dramatic experimental ev-
idence for “self–tuning” of channel numbers came (quickly) from
Turrigiano et al (1994). For feedback mechanisms with sensitive to
multiple time scales, see Liu et al (1998).

Buchholtz et al 1992: Mathematical model of an identified
stomatogastric ganglion neuron. F Buchholtz, J Golowasch,
IR Epstein & E Marder, J Neurophysiol 67, 332–340 (1992).

Golowasch & Marder 1992: Ionic currents of the lateral pyloric
neuron of the stomatogastric ganglion of the crab. J Neuro-
physiol 67, 318–331 (1992).

Golowasch et al 1992: The contribution of individual ionic cur-
rents to the activity of a model stomatogastric ganglion neu-
ron. J Golowasch, F Buchholtz, IR Epstein & E Marder, J
Neurophysiol, 67, 341–349 (1992).

LeMasson et al 1993: Activity–dependent regulation of conduc-
tances in model neurons. G LeMasson, E Marder, & LF
Abbott, Science 259, 1915–1917 (1993).

Marder & Bucher 2007: Understanding circuit dynamics using
the stomatogastric nervous system of lobsters and carbs. E
Marder & D Bucher, Annu Rev Physiol 69, 291–316 (2007).

Abbott & LeMasson 1993: Analysis of neuron models with dy-
namically regulated conductances. LF Abbott & G LeMas-
son, Neural Comp 5, 823–842 (1993).

Liu et al 1998: A model neuron with activity–dependent con-
ductances regulated by multiple calcium sensors. Z Liu, J
Golowasch, E Marder & LF Abbott, J Neurosci 18, 2309–
2320 (1998).

Turrigiano et al 1994: Activity–dependent changes in the in-
trinsic properties of cultured neurons. G Turrigiano, LF
Abbott & E Marder, Science 264, 974–977 (1994).

Need references to second generation of experiments on mRNA
levels. Maybe some pointers to work on networks??

C. The states of cells

Cells have internal states. Sometimes these states are
expressed in a very obvious way, even to external ob-
servers, as when we see the alternating black and white
stripes of a zebra. In other cases, the states are hid-
den, as when a neuron stops responding to a constant
external stimulus, but then rebounds when the stimu-
lus is removed; the amplitude of the rebound reflects the
initial amplitude of the stimulus, which must have been
stored in some internal state, separate from the output.
In these two examples, we also see that these internal
states can be discrete or continuous. In many cases, the
states of cells are known to be encoded by the concen-
trations of particular, identifiable molecules, and these
concentrations in turn reflect a balance of multiple ki-
netic processes. If we try to transcribe these qualitative
ideas simply into quantitative models, we will find that
the states of cells depend on parameters. Most obviously,
these states will depend on absolute concentrations, and
there is a widespread suspicion that absolute concentra-
tions are highly variable, making them poor candidates
for the markers of cellular state. More generally, it would
seem that, unless we are careful, states will depend sen-
sitively on parameters, providing another example of the
problem of fine tuning vs. robustness that we have been
discussing.
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In this section we will look at the issue of fine tuning
in a variety of biochemical and genetic networks. His-
torically, these discussions have been independent of the
earlier work on protein folding or ion channel dynam-
ics, although I hope to make clear that the conceptual
questions are the same. We’ll start with the problem
of adaptation to constant sensory signals, and move to
more complex examples in the cell cycle and embryonic
development.
When you tie your shoes in the morning, you can

feel the pressure against the skin of your foot, but very
quickly this sensation dissipates. When you step out-
side on a bright summer morning, you are aware of the
light, but soon everything looks normal, and you would
have trouble reporting accurately the absolute light level.
These are examples of sensory or perceptual adaptation,
in which we gradually become unaware of constant stim-
uli, while maintaining sensitivity to small changes in
these incoming signals. One of the first things discov-
ered when it became possible to record the signals prop-
agating along individual nerve fibers is that this adap-
tation occurs, at least in part, in the response of the
single cells that first convert sensory inputs into electri-
cal signals, as shown in Fig 106. Further, as we have
seen in the discussion of bacterial chemotaxis (Section
II.B), adaptation occurs even in the sensory systems of
single celled organisms. As we will discuss in connection
with the problems of information transmission in neu-
ral coding (Section IV.C), adaptation can be a rich and
complex phenomenon, being driven not just by constant
background signals, but also by the statistical structure
of fluctuations around this background.
In the simplest case, where adaptation consists of re-

ducing the response to constant signals while maintaining

FIG. 106 The original experiments demonstrating adaptation
in the response of single sensory neurons (here from the muscle
spindle) exposed to constant stimuli (weights), from Adrian
& Zotterman (1926a).
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FIG. 107 A schematic of the mechanisms underlying sensory
adaptation. The branch which generates fast responses in-
sures that sudden changes in input will be transduced faith-
fully. The branch with the slower response causes a gradual
decay of the output in response to constant inputs. To have
truly zero response to constant input requires that the two
branches be perfectly balanced.

sensitivity to small transient changes, there is a natu-
ral schematic model (Fig 107) in which a rapid positive
response to the sensory input is cancelled by a slower
negative response. In several systems we can identify
the molecular or cellular components that correspond to
these different branches, and we will discuss the exam-
ple of bacterial chemotaxis in detail. For the moment,
however, our concern is more general. If adaptation is
accomplished through some pathway that is independent
of the basic response to incoming stimuli, then the ‘gain’
of the two pathways are set by independent parameters.
If we want the responses to constant inputs to be small,
then these two gains must be very similar, so that they
nearly cancel. In particular, if we want truly zero re-
sponse to constants—zero net gain at zero frequency—
then the signals passing through the two branches need
to cancel exactly, and this seems to require fine tuning of
the parameters.
Before saying that we have found a problem, we

should examine the precision of cancellation that is ac-
tually required. In the example of the fly photorecep-
tors, discussed in Section I.A, we saw that the system
acts as a nearly ideal photon counter up to rates of
∼ 105 photons/s. If the response to a single photon lasts
(at its shortest)∼ 10ms, this means that cell is effectively
counting up to ∼ 1000. But, as we noted, single photon
responses are on the order of a few milliVolts, so if things
just add up the voltage across the cell membrane would
have to change by several Volts, and this isn’t going to
happen—something like 90− 99% of this response needs
to be cancelled in order to fit into the available dynamic
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range.
In the case of bacterial chemotaxis, we have seen in

Section II.B that adaptation is essential for function (see
especially Problem **). Because the cell makes deci-
sions based on the time course of concentrations along its
trajectory, having a response to constant stimuli would
mean that the cell effectively confuses “things are good”
for “things are getting better,” and this would impede
progress up the gradient of desirable chemicals. Direct
measurements of the clockwise vs. counterclockwise ro-
tation of the flagellar motor, as in Fig 47, show that
the response to a small step in the concentration of at-
tractant molecules decays to zero, so that adaptation is
nearly perfect. Another way of seeing this is if one ex-
poses the cells to concentrations that are exponentially
increasing in time, the fraction time the motor spends
running clockwise become constant, depending on the
rate of exponential increase, rather than rising up to sat-
uration; an example is in Fig 108.

Problem 111: Exponential ramps. Give a problem to work
out why Fig 108 makes sense!

If we observe freely swimming bacteria, then we can
count the rate at which they initiate tumbles, and see
that this also adapts to constant stimuli; Fig 109 shows
an unnatural but dramatic example, in which a popula-
tion of bacteria is suddenly exposed to milliMolar concen-
trations of aspartate, starting from zero background con-
centration. Tumbling is almost completely suppressed

FIG. 108 Response of E coli to exponentially increasing (top)
or decreasing (bottom) concentrations of an attractant, from
Block et al (1983). Probably needs more explanation.

time (min)

tumbling 
rate

(1/sec)

FIG. 109 Experiments on adaptation in a large population
of E. coli (Alon et al 1999). At time t = 0, the population
is exposed to a high concentration of an attractive chemical,
and as a result the bacteria almost stop tumbling. Over time,
they adapt, and the average rate of tumbling approaches the
steady–state value observed in the absence of stimuli.

for nearly ten minutes, but eventually recovers to within
∼ 10% of its initial rate, despite the fact that the ini-
tially saturating stimulus continues to be present [show
an earlier figure of this flavor from Berg or Koshland?].
To understand how it’s possible to achieve near per-

fect adaptation without fine tuning of parameters (as
one might have thought from Fig 107), we have to dig
into the details of the molecular mechanisms involved.
In Section II.B we outlined the fast events involved in
the “positive” part of the chemotactic response (Fig 48).
To review briefly, receptor molecules on the cell surface
form a complex with the enzyme CheA (a kinase), held
together by a scaffolding molecule CheW. The complex is
in equilibrium between the active (CheA*) and inactive
(CheA) states, and this equilibrium is shifted by binding
of attractant or repellent molecules to their receptors; for
attractants, binding shifts the equilibrium toward the in-
active state. The active kinase CheA* phosphorylates the
protein CheY, which can diffuse through the cell from the
receptor complex to the flagellar motor, where it binds
and favors clockwise rotation, driving the tumbling mo-
tion of the cell; the action of the kinase is opposed by a
phosphatase, CheZ. Thus, an increase in the attractant
concentration drives the kinase toward its inactive state,
reducing the rate of phosphorylation of CheY; the con-
tinued action of the phosphatase results in a reduction of
the CheY–P concentration, and this reduces the proba-
bility of tumbling. This whole pathway is extraordinarily
sensitive, responding reliably to individual molecules as
they bind to their receptors.
How does the extremely sensitive response of the

chemotactic system get cancelled when stimuli are main-
tained at constant levels? In addition to binding the
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chemoattractant or repellent molecules, the receptors can
be modified by covalent attachment of methyl groups.
Much as with ligand binding, these modifications shift
the equilibrium between active and inactive conforma-
tions of the kinase CheA—binding of attractants favors
the inactive state, addition of methyl groups favors the
active state. The key point is that the active kinase
not only phosphorylates CheY, leading to clockwise rota-
tion of the motor, it also phosphorylates CheB, and then
CheB–P removes methyl groups from the receptor. Thus,
when an attractant lowers the activity of the kinase, it
also allows more methyl groups to be attached, driving
the activity back toward its original level—adapting.

Although the methylation system provides a pathway
to cancel the effect of the immediate response to sensory
inputs, it isn’t clear that this cancellation should be any-
where near exact. In general, one would need to tune the
activity of the methylation and de–methylation enzymes
to make sure that their effects exactly balance the direct
response to sensory input. So, this system provides an
example of our general problem of fine tuning, as empha-
sized by Barkai and Leibler. In addition to identifying the
problem, they proposed that one can evade this need for
fine tuning by assuming that the de–methylation enzyme
CheB only recognizes the active state of the receptor–
kinase complex, and ignores the inactive conformation.
If this is true, one doesn’t even need the phosphorylation
of CheB in order to close the feedback loop.

To see how the Barkai–Leibler scheme works, let’s

CheB

CheB-P

CheW CheA*

receptor

CheW

CheA

receptor

CheW

CheA*

receptor

CheW

CheA

CH3

CH3

CH3

receptor

CheW

CheA*

CH3

CH3

CH3

CheR

+ methyl groups

CheB-P

FIG. 110 Methylation of the receptors allows for adapta-
tion of the chemotactic response. At left, addition of methyl
groups acts, similarly to ligand binding, as an allosteric effec-
tor, shifting the equilibrium between the active and inactive
states of the kinase CheA; the schematic is meant to indicate
that there are multiple methylation sites. At right, the feed-
back loop is closed by having the active kinase CheA* trigger
activation of the de–methylation enzyme CheB. Need to re-
draw to remind that methylation is working opposite to the
effects of an attractant binding.

imagine that the whole receptor complex, which might
include a cluster of several receptor molecules, switches
as a whole between active an inactive states. There is
some free energy difference ∆F between these states, and
there are two contributions to this difference—one from
the binding of attractants, and one from methylation.
Assume that the contribution of the methyl groups is
additive, and that the contribution from ligand binding
has some arbitrary dependence on ligand concentration
c (which we could work out from a model like that in Fig
110; see Problem 112 [check] below). Then the number
of active enzymes is given by

A∗ =
Atotal

1 + exp [FL(c)− nM∆M]
, (552)

where nM is the number of methyl groups per receptor
complex. This number reflects a balance between the ac-
tivities of CheR and CheB, so we can write schematically

dnM

dt
= VR − VB , (553)

where VR and VB are the ‘velocities’ of the methylation
and de–methylation enzymes, respectively.
The key assumptions suggested by Barkai and Leibler

are that CheR is running at some maximal rate, limited
by its internal dynamics and not by the availability of
substrate, while the velocity of CheB does depend on the
availability of its substrate A∗ according to some function
f(A∗) that we don’t need to specify. Then

dnM

dt
= V max

R − V max
B f(A∗). (554)

In order to reach steady state (dnM/dt = 0), we must
have

A∗ = A∗
0 = f−1(V max

R /V max
B ), (555)

independent of the ligand concentration c. Thus all
steady states in the system must have the same level of
activation of the kinase, hence the same level of phospho-
rylation of CheY and the same rate of tumbling. These
steady states at varying c are not identical—they involve
different levels of methylation—but they have the same
functional output.

Problem 112: Allosteric model for chemotactic recep-
tors. [check for earlier problem about this ...] The schematic in Fig
48 is equivalent to a Monod–Wyman–Changeaux model (all rele-
vant pointers) in which the whole complex of the receptor, CheW
and CheA has two states, and the equilibrium is shifted by binding
of the attractant molecule. In Fig 110, attachment of methyl groups
also shifts this equilibrium, but the binding and unbinding of these
groups is part of an energy–yielding reaction, and so doesn’t have
to obey detailed balance. Show that, nonetheless, these schematics
generate Eq (552), which has a decidedly Boltzmann form. Why
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does this work? What would change if groups or clusters of N
receptor complexes were tied together, and forced to all be in the
same activation state?

If the scenario sketched here is correct, then we
should be able to test it by manipulating the activity of
the methylation and de–methylation enzymes, using the
modern tricks of molecular biology to modify the genome
of E coli. To begin, one can replace CheB with a mutant
form which cannot be phosphorylated; adaptation still
works, and still is nearly perfect, suggesting that phos-
phorylation is not the key step in closing the feedback
loop. Then one can delete the normal CheR gene and
replace it with a plasmid which carries the CheR coding
region under the control of a promoter that responds to
external signals. In this way one can generate roughly
100–fold variations in CheR expression levels, from half
the normal level to 50× over–expression, as in Fig 111.
Throughout this range, adaptation to large inputs (as in
Fig 109) is within ∼ 10% of being exact. Although the
mean rate of tumbling to which the system adapts, as
well as the time scale of this adaptation, depends on the
amount of CheR in the cell, the fact that this rate is in-
dependent of input concentration does not. Are there ex-
periments that look at adaptation in response to smaller
signals? Maybe from Sourjik?

There is a lot of evidence that the methylation level of
the receptors really is the molecular representation of the
cell’s adaptation state. As such, we might have expected
that over– or under–expressing the enzyme that carries
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FIG. 111 Chemotactic responses in the presence of varying
amounts of CheR, from Alon et al (1999). At the top, ‘adapta-
tion precision’ is measured as the ratio of the mean tumbling
rates in the presence and absence of 1mM aspartate (as in
the experiments of Fig 109). The actual tumbling rates and
the time required to reach steady state after sudden exposure
to 1mM aspartate are shown in the bottom panel.

out the methylation reaction would shift the actual state
of the system, and this would show up as a change in the
output. In the model considered here, however, this last
expectation is violated. The absolute level of kinase ac-
tivity, and hence the absolute tumbling rate, does indeed
change when we change the expression of CheR. But Fig
111 shows us that the average steady state response to
an applied step in attractant concentration remains zero,
independent of the CheR level. Thus, the precision of the
balance between the processes responsible for excitation
and adaptation does not depend on fine tuning of the
underlying kinetics.

Problem 113: Calcium driven adaptation in neurons.
Consider a neuron that generates spikes at rate r. Let’s assume
the response to external inputs I involves this rate relaxing toward
some steady state,

τ
dr

dt
= rmaxf(I, [Ca])− r, (556)

where we note explicitly that the rate depends both on the inputs
and on the intracellular calcium concentration. Write an equation
for the dynamics of [Ca], assuming that each spike brings in a fixed
number of calcium ions, and that there is a pump which extrudes
the ions at some opposing rate. The pumping rate must depend
on the concentration, but for the moment take this dependence
as some unknown function Vpump([Ca]). Find equations that de-
scribe the steady state of this system. Are there conditions on
Vpump([Ca]) that lead to a steady state spike rate that is indepen-
dent of the input I? If the input changes suddenly, does the spike
rate still respond? Explain how this relates to the discussion of
chemotaxis given here.

Are we done? I think there is still more to this prob-
lem. To begin, the fact that motor output is an extremely
steep function of the CheY–P concentration (pointer)
means that successful adaptation requires more than just
a constant level of CheY–P in steady state, independent
of the input signal—this level actually has to fall into a
very narrow range, or else the cells will be always run-
ning or tumbling. The parameters which determine the
steady state level of CheY–P are independent of the prop-
erties of the motor, which determine the functional op-
erating range for this concentration. This seems like the
same sort of balancing problem that Barkai and Leibler
were worried about, but in a different part of the sys-
tem, where their solution has no obvious analog. [Has
somebody worried about this?]
Next, you should also be a little suspicious about the

simple equations above. At best, they are some sort of
mean field theory in a system where fluctuations could
be important. Also, while it’s plausible that CheB recog-
nizes CheA* as opposed to CheA, one might worry that
the rate of removing methyl groups depends on how many
are there (especially if that number goes to zero!). There
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must be some regime in which the simple argument is
right, but we need a more honest calculation. [several
groups have tried this; look closely at Wingreen et al,
and check for others, to decide what to say here.]

Finally, although one can manipulate the E coli
genome to change expression level of individual proteins
by large factors, the many protein components of the
chemotactic system are encoded on just two operons,
which means that the expression of the different com-
ponents is tightly coupled under normal conditions [be
sure to have talked about operons before this, or maybe
this is really a good place to introduce the idea?].

The mocha operon encodes CheA and CheW, along
with the flagellar motor proteins, and the meche operon
encodes CheR, CheB, CheY and CheZ, along with two
classes of receptor proteins. Recent experiments indicate
that there is covariation even between the expression lev-
els of CheA and CheY, suggesting that the cell can in fact
control at least the relative concentrations of these pro-
teins fairly precisely. Further, there is direct evidence
that tight correlation between protein concentrations ac-
tually improves chemotactic performance, as shown in
Fig 112.

Problem 114: Balancing CheY and CheZ. Take the stu-
dents through a model in which it becomes clear why variations in
the relative levels of CheY and CheZ are detrimental for chemo-
taxis, thus making sense out of Fig 112.

It is interesting to compare the problem of robustness
vs. fine tuning in the case of chemotaxis with what we
learned in the case of ion channels (Section III.B). For
ion channels, function really does depend sensitively on
the number of copies of the different proteins in the net-
work, and neurons have evolved control mechanisms that
use their functional output (or a near surrogate) to con-
trol these copy numbers. Importantly, there are many
ways to achieve the same function, so it is not the num-
ber of copies of each component that is tuned, but rather
some possibly complex combinations of these quantities.
For chemotaxis, the message of the experiments in Fig
111 is that large variations in the copy number of just
one component can be tolerated, pointing toward net-
works that are intrinsically insensitive to this parameter
variation rather than any hidden control or tuning mech-
anisms. This suggests that one system is tuned, and the
other is robust.

On the other hand, Fig 112 shows that, as with ion
channels, the relative copy numbers of the proteins in
the chemotaxis network are controlled, and that this con-
trol contributes to function. Experiments more directly

FIG. 112 Better chemotactic performance is associated with
correlated fluctuations in protein levels, from Løvdok et al
(2009). At right, E coli swarm outward toward attractants.
Cells have been engineered to express CheY and CheZ only
under the control of a promoter induced by external signals.
If we select cells from regions B or C of the swarm, we see that
the cells which have been efficient (B) have tightly correlated
variations in the two protein levels, while cells that have been
inefficient (C) have weaker correlations. Thus, selection for
chemotactic efficiency will drive down the relative fluctuations
in expression levels, even there is substantial tolerance for
variation in the absolute levels.

analogous to Fig 111 have now been done in stomatogas-
tric ganglion neurons, and one finds that there are control
mechanisms which can compensate for over–expression of
particular channel types by changing the expression lev-
els of other channels see Fig 113. Perhaps surprisingly,
these compensation mechanisms are triggered even if the
first channel is non–functional and hence doesn’t effect
the electrical output, suggesting that the there are signals
internal to the transcriptional and translational networks
which encode something about the correct, functional op-
erating point of the system. This could be a much more
general phenomenon.
Before moving on, there is also a somewhat philosoph-

ical point to be made about the mechanism of robustness
in chemotaxis, or perhaps even about the idea of robust-
ness itself. If we expect the function of a biochemical
network to be robust against parameter variation, this
robustness must be a property of the network topology—
which nodes (molecules) are connected by arrows (reac-
tions). In the specific model considered by Barkai and
Leibler, for example, it is essential that CheB acts on
CheA∗ as a substrate, but not on the inactive CheA—
what is important in this case is the absence of an link
in the network connecting CheB with CheA.
The particular links that appear (or don’t appear) in a

biochemical network reflect the specificity of the various
enzymatic and protein–protein binding reactions. Sub-
strate specificity is a classical topic in biochemistry, and
much of what we understand about this topic was learned
through painstaking experiments on purified samples of
particular enzymes. The ideas of robustness emerged at
a time when the community started to wonder if there
wasn’t something a bit hopeless about the overall project
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of this classical biochemical approach. While one can
study individual enzymes in detail, many interesting bi-
ological functions emerge from networks with many in-
teracting proteins engaged in dozens if not hundreds of
individual reactions. Further, the conditions inside the
living cell may be far from those that we can reproduce
in a test tube. How then could we ever study every one of
the relevant reactions, under the right conditions? Seen
in this light, it just doesn’t seem plausible that the ac-
cumulated biochemical knowledge will “add up” to give
us an understanding of how cells function as complete
systems. Robustness was one of several ideas offered as
an alternative—if Nature has selected networks that are
robust to parameter variations, then the (already some-
what hopeless) project of measuring all these parameters
could safely be abandoned. But because network topol-
ogy is an encoding of substrate specificity, we can’t really
brush aside all of classical biochemistry. Indeed, the ex-
ample brought forward by Barkai and Leibler is one in
which the biochemistry is subtle, with one protein recog-
nizing different conformations of another. At the end of
the day, then, biochemistry has its revenge—robustness
may be an emergent, system level property, driven by
network topology, but this topology is an expression of
the underlying, detailed biochemistry.

[I’d like put here a discussion of the work by Tang
and coworkers on the cell cycle. The idea is that not
just states, but trajectories through the space of states,
are robust. Need to sort through the papers for details.
Should also discuss the results from the Siggia/Cross col-

FIG. 113 Responses to over–expression of a channel, from
Maclean et al (2003). At left, injecting mRNA for the A cur-
rent channel (see Table I) produces, after 72 hrs, an increase
in the current that flows when the voltage is stepped through
the range expected to activate this channel. This shows that
injecting the mRNA really does result in more channels be-
ing synthesized and inserted into the membrane. At right,
a demonstration that this increased number of channels (in
the “Shal” trace) does not perturb the basic pattern of ac-
tivity (seen in the control). This is possible only because the
cell compensates by increasing the expression levels of other
channels.

laboration on the cell cycle, in particular what makes the
decision to go from one state to the next reliable and ir-
reversible.]
Another example of “robust” output from a biological

network is that almost everyone you know was born with
five fingers on each hand. In insects, one can count even
more instances in which discrete pieces of the body are
arranged in a repetitive pattern, from the segments of the
body itself (as in the beautiful caterpillar shown in Fig
114) to the hairs or bristles on the body surface; essen-
tially every member of a particular species has the same
number of body segments, the same number of hairs, and
even the positions of the hairs are identifiable from in-
dividual to individual. It is not at all obvious how this
level of reproducibility is achieved.

FIG. 114 Insects provide many examples of re-
peated, reproducible structures visible on the outside
of the body. Image of tiger moth caterpillar from
http://www.hsu.edu/content.aspx?id=7435.[probably should
take our own picture; also, maybe another panel about
segments, or bristles?]

Broadly speaking we can distinguish two classes of ex-
planations for the reproducibility of pattern formation
(‘morphogenesis’) in the embryo. In the first kind of ex-
planation, the organism works to set the initial conditions
and boundary conditions very precisely, and each step in
the process has been tuned to minimize noise. Patterns
then develop in a reproducible fashion in the same way
that accurate clocks continue the same time even though
tick independently. Alternatively, it is possible that noise
and errors abound, but that there are error correction
mechanisms that pull the pattern back to its ideal struc-
ture. Of course, it is also possible that both scenarios
are correct: nature has selected for systems with minimal
noise, and taken care to control the conditions of devel-
opment, but error correction mechanisms still are needed
to deal with the vagaries of a fluctuating environment.
To appreciate why the observations of reproducibility

in morphogenesis are so puzzling, we need to review some
of the basic mechanisms by which patterns form in the
developing embryo. We will also need to check our quali-
tative impressions of reproducibility against quantitative
data. Let’s start with the background.



173

We recall that embryos start as just one cell, the fertil-
ized egg, and then there are multiple cell divisions. Every
one of these cells (as in our adult bodies) has the same
DNA, assuming that nothing has gone wrong. What
makes the different cells different is that they “express”
different genes. The genes code for proteins, but not all
of the proteins are made in all cells; the reading of the
code to make the proteins is called the expression of the
genes, as we have discussed before. Importantly, the reg-
ulation of gene expression is not just the flipping of a
switch sometime in development, but rather something
that all cells (from neurons in our brain down to bacte-
ria) are doing all the time. Embryos come in all shapes
and sizes throughout the animal kingdom, but for vari-
ous reasons people have focused on a few model systems,
and we will do the same.
The fly embryo is an interesting model system for many

reasons. One is that there is a well developed genet-
ics for fruit flies (the species Drosophila melanogaster),
made possible not least by their rapid growth and repro-
duction. Embryonic development itself is rapid as well,
leading from a fertilized egg to the hatching of a fully
functional maggot (the larvae of flies, like caterpillars for
butterflies) within 24 hours. All of this happens inside
an egg shell, so there is no growth—pattern formation
occurs at constant volume. The egg is ∼ 1/2mm long,
so one starts with one rather large cell, which has one
nucleus. In the maggot there are ∼ 50, 000 cells. For
the first three hours of development, during which the
“blueprint” for the body plan is laid out, something spe-
cial happens: the nuclei multiply without building walls
to make separated cells. Thus, for about three hours,

FIG. 115 Electron micrographs of a Drosophila embryo in cy-
cle 14, before (top) and after (bottom) gastrulation. Note, in
particular, the cephalic furrow roughly one third of the dis-
tance from the left in the bottom image. Micrographs taken
by EF Wieschaus.

the fly embryo is close to the physicists idealization of a
box in which chemical reactions are occurring, with the
different molecules free to move from one end of the box
to the other (perhaps even by diffusion, although this is
a more subtle question).
The duplication of the nuclei is more or less syn-

chronous for the first 13 mitotic divisions, or nuclear
cycles, which is visually quite striking. During cycles 8
through 10, almost all of the nuclei move to the surface of
the egg, where they form a fairly regular two dimensional
lattice; conveniently, with all the nuclei at the surface of
the egg, we have a much better chance to “see” what
is going on (see Figs ?? et seq). With each subsequent
cycle, this lattice dissolves and reforms. With cycle 14,
the synchronous duplication of nuclei stops, and there is
a pause while the embryo builds walls between the nu-
clei to make separate cells. If you stop the action at this
point and take an electron micrograph of the embryo,
what you see is at the top in Fig 115. If you count, you’ll
find that there are ∼ 6000 cells on the surface. This is
smaller than 213, but thats because not all of the nu-
clei make it to the surface; some stay in the interior of
the embryo, probably not by accident since these become
cells with special functions. Notice that all the cells look
pretty much alike. If instead of stopping at this point, we
wait just 15 minutes more, we see something very differ-
ent, shown at the bottom in Fig 115. Notice that there
is a vertical cleft, about one-third of the way from the
left edge of the embryo. This is the “cephalic furrow,”
and defines which part of the body will become the head.
There is also a furrow along the bottom of the embryo,
which is where the one layer of cells on the surface starts
to fold in on itself so that you can have two “outside” sur-
faces (think about the inside and outside of your cheek,
both of which are outside of the body from the topo-
logical point of view we are not simply connected!), a
process called “gastrulation.”
Its not just that the embryo breaks into a head and

a non–head. In fact there are many different pieces to
the body, usually called segments, as noted above. The
obvious question is how the cells at different points in
the embryo know to become parts of different segments.
The answer is quite striking, and one of the great tri-
umphs of modern biology. Long before cells start mov-
ing around and making the three dimensional structures
that one sees in the fully developed organism, there is a
“blueprint” that can be made visible by asking about the
expression levels of particular genes. A now classic set
of genetic experiments showed that the number of genes
that are relevant in these early patterning events is small,
on the order of 100 out of the roughly 25,000 genes in the
whole fly genome; if we focus on the pattern along the
anterior–posterior axis of the embryo, the number of rel-
evant genes is less than 20. Most of these genes code for
transcription factors that control the expression of other
genes.
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FIG. 116 [...] Thanks again to EF Wieschaus for these im-
ages.

Suppose we stop that action in the embryo at cycle 14
and measure the concentration of two of these key pro-
teins. One way to do this is to make antibodies against
the protein we are interested in, and then make antibod-
ies against the antibodies, but before using the secondary
antibodies we attach to them a fluorescent dye molecule.
So if we expose the embryo first to one antibody (which
should stick to the protein we are interested in, and not
anywhere else, if were lucky) and to the other, we should
have the effect of attaching fluorescent dyes to the protein
we are looking for, and hence if we look under a micro-
scope the brightness of the fluorescence should indicate
the concentration of the protein (not obvious if this re-
lationship is quantitative; hold that question). One such
experiment is shown in Fig 116. Evidently the concentra-
tion of the proteins varies with position, and this varia-
tion corresponds to a striped pattern. The stripes should

FIG. 117 A combination of Figs 115 and 116, emphasizing
that the cephalic furrow occurs along a single line of cells that
can be identified from the pattern of pair rule gene expression.

position along the anterior-posterior axis

intensity of immuno-staining

0

FIG. 118 Antibody staining for the protein Bicoid in the early
Drosophila embryo, from the original experiments by Driever
& Nüsslein–Vollhard (1988a). The plot at the bottom repre-
sents means and 2× standard deviations from ten embryos;
units of staining intensity are arbitrary. [Are these errors bars
realy 2× the standard deviation, or just ± the standard de-
viation? Might have to ask the authors—for a preliminary
result, one can’t complain about a factor of two, but I want
to get it right!]

remind you of the segments in the fully develop animal,
and this is actually quite precise. Mutations that move
the stripes around, or delete particular stripes, have the
expected correlates in the pattern of segmentation. To
illustrate this point, we can blow up corresponding pieces
of this image and the electron micrograph above, showing
the cephalic furrow (Fig 117); hopefully you can see how
the furrow occurs at a place defined by the locations of
the green and orange stripes. At the moment the names
of these molecules don’t really matter. What is impor-
tant is to realize that the macroscopic structure of the
fully developed organism largely follows a blueprint laid
out within about three hours after fertilization, and that
this blueprint is “written” as variations in the expression
level of different genes. Furthermore, we know which
genes are the important ones, and there aren’t too many
of them.
We have pushed the problem of pattern formation in

the embryo back to spatial variations in the pattern of
gene expression, but how do these arise? You could imag-
ine, as Turing did, that these patterns reflect a sponta-
neous breaking of symmetries in the egg. This, for better
or worse, is not how it works. When the mother makes
the egg, she places the mRNA for a handful of proteins
at cardinal points. For example, there is a protein called
Bicoid for which the mRNA is placed at the end that will
become the head; importantly, the mRNA is attached to
the end of the egg, not free to move. Once the egg is
laid, translation of this mRNA begins, and the resulting
Bicoid protein is free to move through the embryo. If we
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use the same trick as above and stop the action, labeling
the embryo antibodies against the protein, we see images
like those in Fig 118. Evidently there is a rather smooth
gradient in the concentration of Bicoid protein, high at
one end and low at the other. A cell sitting at some point
in the embryo thus can “know” where it is along this long
(anterior–posterior) axis by measuring the Bicoid concen-
tration. This is an example of the very general idea of
“positional information” in the embryo.

Since Bicoid is a transcription factor, it provides an
input signal to a whole network of interacting genes, and
this network can (if we speak colloquially) interpret the
positional information, ultimately driving the emergence
of the beautiful striped patterns as in Fig 117. We’ll look
in more detail at how this happens, but for now let’s try
to sharpen our questions about reproducibility.

Measurements on the profile of Bcd concentration show
rather decent agreement with an exponential decay, as
was noted already in the very first experiments (Fig 118),
so that

c(x) ≈ c0e
−x/λ, (557)

where x is measured from the anterior end of the egg.
Suppose, then, that the cephalic furrow is placed at the
point where the Bcd concentration reaches some thresh-
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FIG. 119 Reproducibility of various spatial markers along the
anterior–posterior axis in the early Drosophila embryo, from
Dubuis et al (2011). At top, fluorescent antibody staining
of the protein Eve; scale bar is 50µm. Middle, normalized
spatial profiles of the fluorescent intensity in 14 embryos; the
darker red line is the embryo shown at the top. At right, a
small region is blown up to show the variability of the peak;
error bars show standard deviations of position and ampli-
tude. Bottom, standard deviations of position for peaks and
troughs of several gene expression profiles, as well as for the
position of the cephalic furrow measured in live embryos.

old value θcf . The position of the cephalic furrow is then

xcf = λ ln(c0/θcf). (558)

Thus, if c0 changes by ∼ 10%, the location of the fur-
row would shift by δxcf ∼ 0.1λ. Experimentally, modern
experiments show that λ ∼ 100µm, and the location of
the cephalic furrow is reproducible with a standard devi-
ation of ∼ 1% of the length of the embryo, or ∼ 5µm in
absolute length. In fact, one can look at other positional
markers, such as the locations of peaks or troughs in the
striped patterns of expression for the “pair rule” genes in
Fig 116, and these are all reproducible at the ∼ 1% level,
as shown in Fig 119. Thus, taken at face value, if the
Bcd profile provides the basic “map” of position along
the anterior–posterior axis, then the absolute concentra-
tion of Bcd, c0, would have to be reproducible to better
than ∼ 10% from embryo to embryo in order to gener-
ate the observed reproducibility of these patterns. This
problem exists even before we ask how to maintain con-
stant proportions in the face of variations in the overall
size of the embryo.
I think that, when people started to think about this

problem quantitatively, it seemed implausible that the re-
producibility of embryonic development would depend on
controlling absolute concentrations with 10% accuracy.
One the other hand, the paper which first characterized
the spatial profile of Bicoid protein actually reported data
on the variations across embryos (Fig 118), and the re-
sults are roughly consistent with ∼ 10% reproducibility,
at least near the anterior end of the embryo.
Let’s take seriously the simplest possible model for the

spatial profile of Bicoid (Bcd), described above in words:
the mRNA placed by the mother acts (as it is translated)
as a source, the Bcd protein diffuses through the embryo,
and the protein is also degraded by some first order reac-
tion. If we simplify and think of the system as just being
one dimensional (along the anterior–posterior axis), then
the concentration c(x, t) should obey

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
− 1

τ
c(x, t), (559)

where τ is the lifetime of the protein against degradation.
The boundary conditions are

−D
∂c(x, t)

∂x

∣∣∣∣∣
x=0

= R, (560)

∂c(x, t)

∂x

∣∣∣∣∣
x=L

= 0, (561)

where R is the strength of the source at x = 0 and the last
condition states that there is no flux out of the other end
of the embryo. If we imagine that development is slow
enough for the system to come to steady state, and that
the embryo is long, the concentration profile becomes

cs(x) =
Rτ

λ
e−x/λ, λ =

√
Dτ . (562)
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Problem 115: Details of the Bicoid profile.
(a.) What are the units of concentration in one dimension?

Show that, with this proper choice of units, R is the number of
Bcd molecules being translated per second.

(b.) Derive the steady state solution in Eq (562). What is
the precise criterion for the embryo to be long enough that this is
approximation is accurate?

(c.) At this writing, there is controversy about whether the
Bcd profile really reaches steady state during the early stages of
development. Although this is an experimental question, we can
ask what the simplest model predicts. Intuitively, there is some
time scale t∗ do you expect the solution of Eq(559) reaches steady
state; how does this time scale relate to the other parameters of
the problem? Answer this without doing any detailed calculations,
and think about how your intuition might go astray.

(d.) Try to do a more detailed calculation to address the ap-
proach to steady state. It is useful to assume from the beginning
that L is large [in the sense of part (b.)], and to replace the bound-
ary condition at x = 0 with a source in the symmetrized version of
the problem,

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
−

1

τ
c(x, t) + 2Rδ(x), (563)

where now −∞ < x < ∞; be sure you understand why we need a
factor of 2 in front of the source term. At t = 0, before any protein
has been translated, we must have c = 0 everywhere. By Fourier
transforming in space, show that the exact time dependent solution
is

c(x, t) = 2R

∫ ∞

−∞

dk

2π

eikx

Dk2 + 1/τ

[
1− e−(Dk2+1/τ)t

]
. (564)

Verify that this approaches cs(x) from Eq (562) as t → ∞.
(e.) Find a simple closed form for the time derivative of concen-

tration at a point, ∂tc(x, t). Show that, expressed as a fraction of
the local steady state concentration, this derivative peaks at a point
x∗ = 2λt/τ , and that at this peak [∂tc(x∗, t)]/cs(x∗) = 1/

√
πτ t.

(f.) Suppose we could establish experimentally that, for exam-
ple, after t = 1hr, at each point x that we can see, c(x, t) changes
by less than 1%/min (or ∼ 10% across the time required for the
cell cycle). What can you conclude about the parameters of the
system, taking the simple model seriously?

We see that this simplest model recovers Eq (557),
which was suggested by the data. It gives us an explicit
formula for the length constant λ, and tells us (not sur-
prisingly) that the absolute concentration scale c0 is pro-
portional to the strength of the source—that is, to the
rate at which proteins can be translated from the mRNA
bound to the anterior end of the embryo. In this sim-
ple model, then, if we want c0 to be reproducible with
10% accuracy, the source strength must also be repro-
ducible. Is it plausible that the mother can count out
mRNA molecules, with 10% accuracy, and create an en-
vironment in the embryo where the efficiency of trans-
lation is similarly well controlled? Alternatively, can we
escape from these requirement of fine tuning by moving
away from the simplest model?

Suppose that the processes which degrade the Bicoid
molecule act not on individual molecules, but on dimers,

and these dimers are rare. We then expect that the con-
centration of dimers will be proportional to the square
of the Bcd concentration, and the dynamics become [in-
stead of Eq (559)]

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
− 1

τc2
c2(x, t), (565)

where c2 is the concentration scale for dimer formation.
Now the steady state solution must obey

d2cs(x)

dx2
=

1

Dτc2
c2s(x). (566)

Notice that if we look for a solution of the form cs(x) =
Axn, we have

d2(Axn)

dx2
=

1

Dτc2
(Axn)2 (567)

An(n− 1)xn−2 =
A2

Dτc2
x2n, (568)

which is solved by n = −2 and A = 6Dτc2. Thus,
far from the source, the concentration profile is cs(x) =
6Dτc2/x2 independent of the strength of the source. More
precisely, to match the boundary condition describing the
source at x = 0, we have to have

cs(x) =
6Dτc2

(x+ x0)2
, x0 = (12D2τc2/R)1/3. (569)

The strength of the source appears only in x0; for x ' x0

this term is negligible, and for large R this condition itself
sets in at very small x. In this model, then, just mak-
ing the source very strong—but not setting the strength
precisely—is sufficient to insure that almost the entire
concentration profile will be independent of variations in
this source strength.

Problem 116: Fill in the arguments leading to Eq (569).

It is interesting that a relatively small change in molec-
ular mechanism makes such a dramatic change in the ro-
bustness of the system to variations in parameters. One
might object, of course, that here is no free lunch here.
While Eq (569) predicts that the Bcd profile is indepen-
dent of the source strength, the concentration scale is now
set by c2, which has something to do with the dimeriza-
tion of the molecules. The source strength R depends on
how many copies of mRNA the mother places in the egg,
but the scale c2 is determined by more global physical–
chemical parameters of the cytoplasm, and perhaps these
are easier to control. On the other hand, if degradation is
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active, via enzymatic reactions, then τ itself will depend
on the number of copies of the enzyme that are present in
the embryo. Still, it is interesting to ask whether Nature
makes use of such a scheme to reduce the sensitivity of
morphogen profiles to variations in the strength of the
source. [Should also discuss Bollenbach et al (2005).]

Another approach is to give up on making a single
morphogen signal reproducible, and to assume that the
embryo makes use of multiple signals, hoping that the
dominant sources of variation are in a “common mode”
that can be rejected by the network that processes these
signals. Several models of this flavor have been suggested
[refs: Houchmandzadeh et al (2005), McHale et al (2006),
others?]. Need to sort out how much of this is about
scaling, and how much about reproducibility.

Problem 117: [Should be able to get one or two problems
from the model in the last two paragraphs!]

With all this theoretical background, what can we say
about the experimental situation? As noted at the out-
set, there are hints from the earliest literature that Bicoid
profiles in Drosophila might indeed be reproducible. We
also know that the notion of robustness should not be ex-
aggerated. The success of classical genetics in identifying
the components of these networks immediately tells us
that the system is not resistant to the elimination of sin-
gle components. More subtly, one of the key experiments
in establishing that Bicoid is a primary source of posi-
tional information was to change the number of copies
of the bcd gene; with more (or fewer) copies of the gene
in its genome, the mother makes more (or less) mRNA
and hence drives the strength of the Bcd source up (or
down). In response to these changes, the patterns in the
early embryo shift, with the cephalic furrow in particular
moving—with higher concentrations of Bicoid, the em-
bryo tries to make a larger head, as shown in Fig 120.71

These results suggest that the embryo does not engage
mechanisms which buffer the Bcd profile against varia-
tions in the strength of the source. For the morphogens
whose concentration profile varies along the other axis of
the embryo, however, there are signatures of the nonlin-
ear degradation mechanism which, as we have seen, can

71 It is not so easy to interpret these results quantitatively, because
we don’t really know if adding more copies of the gene produces
proportionately higher concentrations of the protein. Still, Fig
120 is prima facie evidence against robustness of the pattern to
variations in the strength of the source.
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FIG. 120 Variations in the position of spatial markers along
the anterior–posterior axis in response to changes in the num-
ber of copies of the bcd gene, from Driever & Nüsslein–
Vollhard (1988b). [explain!]

generate substantial robustness. [Should we have a figure
from Eldar et al?]
If there is no buffering, then it really does seem that

reproducible outputs require reproducible inputs. Can
we see this directly? As discussed in Section II.B, one
can genetically engineer flies to express a fusion of Bcd
with the green fluorescent protein (GFP), and show that
this fusion protein quantitatively replaces the function
of the native molecule. Figure 121 shows measurements
of the concentration of Bicoid in nuclei from 15 different
embryos, using this Bcd–GFP fusion. The raw fluores-
cence intensity (or the inferred concentration) is plotted
vs. position along the anterior–posterior axis for each nu-
cleus. Evidently the variability from embryo to embryo
is small, with a standard deviation of less than 20%, and
some of this variability can be traced to measurement er-
rors, suggesting that the true variability is ∼ 10% or even
less. If the mother has only one copy of the Bcd–GFP
gene instead of the usual two, the fluorescence really is
cut in half, so again there is no evidence of mechanisms
which buffer the observable profile against variations in
the strength of the source. This strongly suggests that
the mother can place a reproducible number of mRNA
molecules into the egg, and that the apparatus for trans-
lation has an efficiency that is constant from embryo to
embryo as well. It would be attractive to have direct
measurements that confirm these conclusions. Of course,
this also pushes the problem back. How does the mother
count mRNA molecules with ∼ 10% accuracy? How
does the embryo ensure that the efficiency of translation,
which depends on myriad factors, is reproducible?
Can we make the same argument in any other system?

Maybe the Dpp experiments of Bollenbach et al (2008)?
Others?
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The problem we have been discussing thus far emerges
as soon as we claim that position in the embryo is en-
coded by the concentration of specific molecules. In such
a scheme, if we want neighboring cells to do different
things, reliably, then we will be driven to questions about
how these cells can distinguish small differences in con-
centration, as discussed in Section II.B.72 Conversely, if
we want two cells that occupy corresponding positions
in different embryos to do the same thing, then we are
driven to ask how the concentrations at these correspond-
ing points can be the same. These issues of precision and
reproducibility arise even if the size of the embryo and the
external conditions of development are identical. There
is another problem, related to the variations in size of the
embryo, and this is the problem of scaling.

To a remarkable extent, the proportions of organisms
are constant, despite size variations. We all know peo-
ple who have especially large heads, but certainly the
proportions of the body vary much less than the over-
all size, and again insects provide clear examples of this,
both within species and across species. Different species
of flies, for example, have embryos that span a factor of
five or more in length, yet they have the same number of

FIG. 121 Measurements of the Bicoid concentration in nuclei
along the anterior–posterior axis of the Drosophila embryo,
from Gregor et al (2007b). Each point corresponds to one
nucleus in one embryo; points of the same color come from
the same embryo, and error bars show the means and stan-
dard deviations across the fifteen embryos in the experiment.
The vertical axis shows the fluorescence signal in embryos en-
gineered to make the Bcd–GFP fusion protein, which can be
calibrated to give the absolute concentration (at left). The
horizontal axis shows the position of the nucleus as a fraction
of the overall length of the embryo.

72 See also the discussion of positional information, in bits, in Sec-
tion IV.A.

FIG. 122 Immunofluorescence stainings for products of the
gap and pair–rule genes in flies of different sizes, from Gre-
gor et al (2005). (A) Staining of L sericata (upper em-
bryos) and D melanogaster (lower embryos) for Hunchback
(green) and Giant (red) in the left column, and for Paired
(green) and Runt (red) in the right column. (B) Staining of
D melanogaster (upper embryos) and D busckii (lower em-
bryo) for Hunchback (green) and Runt (red). Scale bars:
100µm. [Should give typical sizes of the embryos in the dif-
ferent species!]

body segments, and individual segments have dimensions
that scale with the overall size of the organism. You can
see this scaling not just in the macroscopic patterns of
the developed organisms, but also in the patterns of gene
expression, as shown in Fig 122. Indeed, when we have
looked at the problem of reproducibility above, we have
implicitly used the idea of scaling, always plotting posi-
tion as a fractional distance along the anterior–posterior
axis.73

Scaling is deeply puzzling, perhaps more so for physi-
cists who have thought about pattern formation in non–
biological systems. To make this point, let’s imagine
making a model of the whole network of interactions
that lead to, for example, the beautiful stripes of gene
expression. In each nucleus there are chemical reactions
corresponding to the transcription of the relevant genes,
and the rates of these reactions are determined by the
concentrations of the appropriate transcription factors.
More equations will be needed to describe translation (al-
though maybe one can simplify, if, for example, mRNA
molecules degrade quickly and proteins live longer). Dif-
ferent points in space are coupled, presumably through
diffusion of all these molecules, although we should worry

73 [I want to emphasize the distinction between the problems of
reproducibility and scaling, but need to think about how to do
this. For example, in Fig 121 the embryos have lengths with
standard deviation of only ∼ 4%.]
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about whether diffusion is the correct description. Even
if youre not sure about the details, you can see the form of
the equations: some sort of partial differential equations,
in which the local time dependence of concentrations has
contributions both from nonlinear terms describing the
various chemical reactions and from spatial derivatives
describing diffusion or other transport processes,

∂gi(x, t)

∂t
= Digi(x, t) + Fi({gj}). (570)

But we have seen equations like these before in the
study of non–biological pattern forming systems such as
Rayleigh–Bernard convection, directional solidification,
... .

Many non–biological pattern forming system generate
periodic spatial patterns that remind us of the segments
in the insect and the patterns of pair rule gene expression.
The scale of these patterns, however, is set by combina-
tions of parameters in the equations. For example, we
can combine a diffusion constant with a reaction rate or
lifetime to get a length, as in the discussion of the Bicoid
profile above (λ =

√
Dτ). What happens if you put these

equations in a larger box? Well, from Rayleigh–Bernard
convection, we know the answer. [should really have an
image of convection, or some other ‘physical’ pattern for-
mation problem]. In this system—a fluid layer heated
from below—we see a collection of convective rolls, some-
times in stripes and sometimes in 2D cellular patterns.
Again, the length scale of the stripes is determined by
the parameters of the equation(s). If you put the whole
system in a bigger box, you get more stripes, not wider
stripes.

Problem 118: A lightning review of pattern formation.
[give the students a tour of instabilities etc in some simple case!]

The results in Fig 122 come close to saying that we
can put all the same equations into a bigger box, and
the stripes come out wider in proportion to the length of
the box. One might worry that these are different organ-
isms, and so perhaps evolution has tuned the properties
of the proteins involved so that the relevant combinations
of parameters turn out to scale with embryo size. The
differences can’t be too large, because we can identify the
same molecules as being involved through similarities of
amino acid sequence, and because the same antibodies
react with these molecules in different species. Still, it is
possible that scaling across embryos in different species
reflects an evolutionary adaptation.

If we look across related species of flies with embryos
of very different sizes, then the Bcd profiles (as measured

with antibody staining) seem to scale with the length of
the egg. One can use the same experimental methods
used in making the Bcd–GFP fusion more aggressively,
extracting the sequences of Bicoid from flies of different
sizes and re–inserting green versions of these different Bi-
coids into the Drosophila genome. The striking result is
that the resulting spatial profiles are those appropriate
to the host embryo, not the source of the Bicoid. Taken
together, all of these results suggest that, as with the
problem of variability, the scaling problem is solved at
the level of Bicoid itself. It would appear that there is
something about the environment or geometry of the em-
bryo itself that couples the global changes in the size of
the embryo to the local dynamics.
Scaling might not be so mysterious. Suppose that we

think of the (roughly ellipsoidal) embryo as a cylinder,
with the source covering one end of this cylinder; since
most of the interior of the egg is yolk, we imagine that
all degradation of proteins occurs near the surface. If
the degradation reaction is rapid, then the surface of the
embryo acts as a sink, and in the interior of the embryo
the concentration obeys the diffusion equation, with no
additional terms. Assuming cylindrical symmetry, the
steady state profile must then obey

∂2cs(x, r)

∂x2
+

1

r

∂

∂r

[
r
∂cs(x, r)

∂r

]
= 0 (571)

−D
∂cs(x, r)

∂x
=

R

πr20
(572)

c(x, r = r0) = 0, (573)

where x measures position along the axis of the cylin-
der (the anterior–posterior axis of the embryo), r0 is the
radius of the cylinder, R is once again the number of
molecules per second being injected by the source, and
the last condition follows in the limit that degradation re-
actions at the surface are fast. If we using the standard
separation of variables method and look for solutions of
the form cs(x, r) = e−x/λf(r), then we must have

1

r

d

dr

[
r
df(r)

dr

]
+

1

λ2
f(r) = 0, (574)

with the boundary condition f(r0) = 0. You may rec-
ognize this as the differential equation which defines the
Bessel function,

d2J0(r)

dr2
+

1

r

dJ0(r)

dr
+ J0(r) = 0, (575)

so that f(r) ∝ J0(r/λ). But then to obey the boundary
condition at the surface of the cylinder, we must have
λ = r0/z01, where z01 is the location of the first point
where J0(z) = 0. So, in this model, the length scale
of the Bicoid profile λ is automatically proportional to
the radius of the embryo; if variations in aspect ratio are
smaller than variations in length, this will serve, at least
approximately, to scale the profile to the size of the egg.
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Problem 119: Could it be so simple?. Work out the details
of the scenario in the last paragraph. Looking at images of the
fly embryo earlier in this section, estimate the radius r0 assuming
that the length of the embryo is L ∼ 0.5mm. Does the prediction
λ = r0/z01 actually work quantitatively?

While simple geometrical mechanisms of scaling might
be too simple to work, we should note that embryos of
different linear dimensions have the same number of cells.
Further, because the nuclei arrange themselves more or
less regularly over the embryo surface, the distance from
one nucleus to the next provides a local measure propor-
tional to the global size of the egg. Finish this discussion!!

Complementary to the problem of scaling is the prob-
lem of size control. In many developmental problems
(even in later fly development), tissues are growing as
they differentiate, and cells have to know both where
they are and whether they should still be dividing and
hence expanding the size of the tissue. [Add discussion
of work by Shraiman on size control, and subsequent ex-
periments.]

The discussion so far has taken very seriously the idea
that there are “primary morphogens,” placed by the
mother, which define provide the basic signal for posi-
tion in the embryo. Position is a continuous variable, as
is concentration. A very different perspective emphasizes
that, when development is finished, cells have adopted
distinct types or “fates,” which define their function in
the adult organism. These fates persist long after the pri-
mary morphogen signals have disappeared, and so they
must represent stable states of the cells, thus bringing
us back to the theme of this section. Cells even main-
tain their identity and state when separated from their
neighbors, which suggests that the biochemical and ge-
netic networks in each cell have multiple attractors. A
minimal model of the networks relevant for development,
then, would have the right number of attractors but a
limited number of dynamical variables, perhaps much
fewer than the number of genes involved in the entire
network. As with the attractors in the Hopfield model,
there is a plausible path to “robustness,” because chang-
ing the qualitative behavior of the system would actually
require changing the number of attractors—the develop-
ment of cells into types becomes a matter of topology
rather than geometry in the model, and hence invariant
to a finite range of parameter variation.

Need to fill out the discussion of attractors. In some
ways this is a mathematization of Waddington’s “canal-
ization,” which is an old idea. In modern times, there
is work by Reinitz, Sharp and colleagues that tries to
make a more direct analogy between genetic and neural

networks. Most recently there is work by Siggia and Carl-
son on vulva development in C elegans that pushes the
“minimal model” strategy the furthest, arguing that we
can choose coordinates to make the attractors obvious,
and then try to map the known biochemical signals into
these coordinates, rather than the more usual effort to
use biochemical coordinates and decipher the attractors.
This belongs here, but isn’t published yet .. hopefully
by the time I finalize the text there will be something to
cite.
This section needs a conclusion. We have covered a

lot of territory, from chemotaxis to development ... what
have we learned?

Some of the basic idea about adaptation in sensory neurons were
established early on, by Adrian and Zotterman; for a review see
Rieke et al (1997).

Adrian 1926: The impulses produced by sensory nerve endings:
Part I. ED Adrian, J Physiol (Lond) 61, 49–72 (1926).

Adrian & Zotterman 1926a: ED Adrian & Y Zotterman, The
impulses produced by sensory nerve endings: Part II. The
response of a single end organ. J Physiol (Lond) 61, 151–
171 (1926).

Adrian & Zotterman 1926b: ED Adrian & Y Zotterman, The
impulses produced by sensory nerve endings: Part III. Im-
pulses set up by touch and pressure. J Physiol (Lond) 61,
465–483 (1926).

Rieke et al 1997: Spikes: Exploring the Neural Code. F Rieke,
D Warland, R de Ruyter van Steveninck & W Bialek (MIT
Press, Cambridge, 1997).

[Need to check on references for adaptation in bacterial chemo-
taxis in Chapter 2] Renewed interest in this system was triggered
by the work of Barkai and Leibler (1997), who used adaptation in
chemotaxis as an example for the more general problem of robust-
ness. The idea that perfect adaptation could be achieved even in
the presence of variations in protein copy numbers was then tested
more directly by Alon et al (1999). [Need to reference subsequent
work that goes beyond the mean–field level, e.g. from Wingreen et
al] Recent work suggests that, although the biochemical network
responsible for chemotaxis may allow for robustness against vari-
ations in protein copy numbers, under natural conditions there is
relatively precise control over (at least) relative copy numbers, even
for proteins on different operons (Kollman et al 2005). In competi-
tion experiments, one can even show that tight correlations between
protein concentrations improves chemotactic performance (Løvdok
et al 2009).

Alon et al 1999: Robustness in bacterial chemotaxis. U Alon,
MG Surette, N Barkai & S Leibler, Nature 397, 168–171
(1999).

Barkai & Leibler 1997: Robustness in simple biochemical net-
works. N Barkai & S Leibler, Nature 387, 913–917 (1997).

Kollman et al 2005: Design principles of a bacterial signalling
network. M Kollmann, L Løvdok, K Bartholome, J Timmer
& V Sourjik Nature 438, 504–507 (2005).

Løvdok et al 2009: Role of translational coupling in robustness
of bacterial chemotaxis pathway. L Løvdok, K Bentele, N
Vladimirov, A Müller, FS Pop, D Lebiedz, M Kollmann &
V Sourjik, PLoS Biology 7, e1000171 (2009).

Pointers toward work on the cell cycle.
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Bean et al 2006: Coherence and timing of cell cycle start exam-
ined at single–cell resolution. JM Bean, ED Siggia & FR
Cross, Mol Cell 21, 3–14 (2006).

Di Talia et al 2007: The effects of molecular noise and size con-
trol on variability in the budding yeast cell cycle. S Di Talia,
JM Skotheim, JM Bean, ED Siggia & FR Cross, Nature 448,
947–952 (2007).

Li et al 2004: The yeast cell cycle network is robustly designed.
F Li, Y Lu, T Long, Q Ouyang & C Tang, Proc Nat’l Acad
Sci (USA) 101, 4781 (2004).

Zhang et al 2006: A stochastic model of the yeast cell cycle net-
work. Y Zhang, M Qian, Q Ouyang, M Deng, F Li & C
Tang, Physica D 219, 35 (2006).

Lau et al 2007: Function constrains network architecture and
dynamics: A case study on the yeast cell cycle Boolean net-
work. K Lau, S Ganguli & C Tang, Phys Rev E 75, 051907
(2007).

Skotheim et al 2008: Positive feedback of G1 cyclins ensures co-
herent cell cycle entry. JM Skotheim, S Di Talia, ED Siggia
& FR Cross, Nature 454, 291–297 (2008).

A modern textbook account of development in the fly embryo is
provided by Lawrence (1992). We know which genes are relevant to
the earliest events in patterning because of pioneering experiments
first by EB Lewis and then by EF Wieschaus and C Nüsslein–
Vollhard. Lewis identified a series of puzzling mutant flies where
a mutation in a single gene could generate flies that were missing
segments, or had extra segments. It is as if the “program” of em-
bryonic development has subroutines (!). Wieschaus and Nüsslein–
Vollhard decided to search for all the genes such that mutations in
those genes would perturb the formation of spatial structure in the
embryo, and they found that there are surprisingly few such genes,
on the order of 100. To get a feeling for all this, one can certainly
do worse than to read the Nobel lectures from 1994 (Lewis 1997;
Nüsslein–Volhard 1997; Wieschaus 1997).

Lawrence 1992: The Making of a Fly: The Genetics of Animal
Design PA Lawrence (Blackwell, Oxford, 1992).

Lewis 1995: The bithorax complex: The first fifty years. EB
Lewis, in Nobel Lectures, Medicine or Physiology 1991–1995
N Ringertz, ed, pp 247–272 (World Scientific, Singapore,
1997).

Nüsslein–Volhard 1997: The identification of genes controlling
development in flies and fishes. C Nüsslein–Volhard, in No-
bel Lectures, Medicine or Physiology 1991–1995 N Ringertz,
ed, pp 285–306 (World Scientific, Singapore, 1997).

Wieschaus 1997: Molecular patterns to morphogenesis: The
lessons from Drosophila. EF Wieschaus, in Nobel Lectures,
Medicine or Physiology 1991–1995 N Ringertz, ed, pp 314–
326 (World Scientific, Singapore, 1997).

The classical ideas about pattern formation in non–equilibrium sys-
tems were presented by Turing (1952), who was aiming specifically
at an understanding of embryonic development. Modern views are
given by Cross & Hohenberg (1993) and by Cross & Greenside
(2009).

Cross & Greenside 2009: Pattern Formation and Dynamics in
Nonequilibrium Systems M Cross & H Greenside (Cam-
bridge University Press, Cambridge 2009).

Cross & Hohenberg 1993: Pattern formation outside of equi-
librium. MC Cross & PC Hohenberg, Revs Mod Phys 65,
851–1112 (1993).

Turing 1952: The chemical basis of morphogenesis. AM Turing,
Phil Trans R Soc Lond B 237, 33–72 (1952).

The general idea that cells know their position, and hence their
fate, in an embryo by responding to the concentration of some
special “morphogen” molecule is very old, and it didn’t take too

long before people started to think about the role of diffusion in
establishing morphogen gradients. Some milestones are Wolpert’s
discussion of positional information (Wolpert 1969), and Crick’s
surprisingly influential discussion of diffusion (Crick 1970). The
transcription factor bicoid, in the Drosophila embryo, provides a
very clear example of these ideas (Driever & Nüsslein–Vollhard
1988a,b; Ephrussi & St Johnston 2004). I am embarrassed not to
know who first wrote down the simple model for Bcd profiles, and
I should check!

Crick 1970: Diffusion in embryogenesis. F Crick, Nature 225,
420–422 (1970).

Driever & Nüsslein–Vollhard 1988a: A gradient of Bicoid
protein in Drosophila embryos. W Driever & C Nüsslein–
Vollhard, Cell 54, 83–93 (1988).

Driever & Nüsslein–Vollhard 1988b: The Bicoid protein de-
termines position in the Drosophila embryo in a
concentration–dependent manner. W Driever & C Nüsslein–
Vollhard, Cell 54, 95–104 (1988).

Ephrussi & St Johnston 2004: Seeing is believing: The bicoid
morphogen gradient matures. A Ephrussi & D St Johnston,
Cell 116, 143–152 (2004).

Wolpert 1969: Positional information and the spatial pattern of
cellular differentiation. L Wolpert, J Theor Biol 25, 1–47
(1969).

Houchhmandzadeh et al (2002) drew attention to the problem of
variability in morphogen gradients, and their suggestion that the
emergence of reproducible patterns was an example of robustness in
biochemical networks attracted considerable attention. Among the
models that emerged in an attempt to flesh out the idea of robust-
ness, some make specific use of gradients from the two ends of the
embryo to compensate for global parameter variations and allow
for scaling with the size of the egg (Houchmandzadeh et al 2005,
McHale et al 2006), while others use nonlinearities in degradation
reactions (Eldar et al 2002) or in the transport process (Bollenbach
et al 2005) to generate spatial profiles that are robust against varia-
tions in source strength. Although much of this discussion focuses
on early events in embryonic development, there is also the idea
that the final patterns of gene expression, which are more closely
tied to cell fate, should be robust steady states of the relevant
biochemical networks (von Dassow et al 2000). Even earlier work
emphasized the similarity of these networks to neural nets, with
stable patterns being analogous to stored memories (Mjolsness et
al 1991), and one can see this as a modern formulation of the ideas
of “canalization” (Waddington 1942). Most recent work from Sig-
gia & Carlson. Have to see what gets said about size control, but
certainly will cite Shraiman (2005).

Bollenbach et al 2005: Robust formation of morphogen gradi-
ents. T Bollenbach, K Kruse, P Pantazis, M Gonzalés–
Gaitán & F Jülicher, Phys Rev Lett 94, 018103 (2005).

von Dassow et al 2000: The segment polarity network is a ro-
bust developmental module. G von Dassow, E Meir, EM
Munro & GM Odell, Nature 406, 188–192 (2000).

Eldar et al 2002: Robustness of the BMP morphogen gradient in
Drosophila embryonic development. A Eldar, R Dorfman, D
Weiss, H Ashe, B–Z Shilo & N Barkai, Nature 419, 304–308
(2002).

Houchmandzadeh et al 2002: Establishment of developmental
precision and proportions in the early Drosophila embryo.
B Houchmandzadeh, E Wieschaus & S Leibler, Nature 415,
798–802 (2002).

Houchmandzadeh et al 2005: Precise domain specification in
the developing Drosophila embryo. B Houchmandzadeh, E
Wieschaus & S Leibler, Phys Rev E 72, 061920 (2005).

McHale et al 2006: Embryonic pattern scaling achieved by op-
positely directed morphogen gradients. P McHale, W–J
Rappel & H Levine, Phys Biol 3 , 107–120 (2006).
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Mjolsness et al 1991: A connectionist model of development. E
Mjolsness, DH Sharp & J Reinitz, J Theor Biol 152, 429–
453 (1991).

Shraiman 2005: Mechanical feedback as a possible regulator of
tissue growth. BI Shraiman, Proc Nat’l Acad Sci (USA)
102, 3318–3323 (2005).

Waddington 1942: Canalization of development and the inheri-
tance of acquired characters. CH Waddington, Nature 150,
563–565 (1942).

For measurements on the reproducibility of the early events in the
fly embryo, see Dubuis et al (2011). Are there classical references?
As noted above, and in Section 2.3, the overall precision and repro-
ducibility of pattern formation in the fruit fly embryo is equivalent
to ∼ 10% accuracy in the concentration of Bicoid. Although this
might not be how things actually work, it does suggest a standard
for making measurements of the Bicoid concentration (and, per-
haps, for other morphogens as well). For a recent discussion of
the state of the art in these experiments, see Dubuis et al (2010).
The measurements on reproducibility of the Bcd profiles shown in
Fig 121 are from Gregor et al (2007b), cited in Section [** Gen-
eral decision—is it ok to give references more than once in different
sections?]. Experiments on the scaling of Bcd profile across species
include Gregor et al (2005) and Gregor et al (2008).

Dubuis et al 2010: Quantifying the Bicoid morphogen gradient
in living fly embryos. J Dubuis, AH Morrison, M Scheeler
& T Gregor, arXiv:1003.5572 [q–bio.QM] (2010).

Dubuis et al 2011: Positional information, in bits. JO Dubuis,
G Tkačik, W Bialek, EF Wieschaus & T Gregor, in prepa-
ration (2011).

Gregor et al 2005: Diffusion and scaling during early embryonic
pattern formation. T Gregor, W Bialek, DW Tank, RR de
Ruyter van Steveninck, DW Tank & EF Wieschaus, Proc
Nat’l Acad Sci (USA) 102, 18403–18407 (2005).

Gregor et al 2008: Shape and function of the Bicoid morphogen
gradient in dipteran species with different sized embryos.
T Gregor, AP McGregor & EF Wieschaus, Dev Biol 316,
350–358 (2008).

D. Long time scales in neural networks

The basic time scales of electrical dynamics in neurons
are measured in milliseconds, yet the time scales of our
mental experience are much longer. From the fraction of
a second that we need to integrate sounds as we identify
words or phrases, to the minutes of memory for a phone
number, to the decades over which our recollections of
childhood experiences can stretch, the brain has access
to time scales far beyond those describing the elementary
events of action potential generation and synaptic trans-
mission. If we write a set of dynamical equations, and the
time scales which emerge to describe the whole system
are much longer than the time scales which appear as
parameters in the equations, then something special has
happened. How does this work in the brain? How does
the system insure that this seemingly special separation
of time scales occurs robustly?

One possible solution to the wide range of relevant
time scales is to invoke a correspondingly wide range of
mechanisms, and surely this is part of the right answer.
Thus, it seems unlikely that memories of things long past
are stored as continuing patterns of electrical activity
in the brain, which somehow last for ∼ 1010× longer
than their natural time scale, and are always present to
be examined as we reminisce. On the other hand, for
working memory—holding the words of a sentence in our
minds, or doing mental arithmetic—the time scales in-
volved seem at once long compared with natural time
scales for electrical activity, yet too short to engage bio-
chemical mechanisms, such as the regulation of gene ex-
pression, which could have more stable, semi–permanent
effects.
In fact, we know a whole class of examples in which

long time scales emerge naturally. When a ball rolls down
a hill, the time scale of the rolling may be short, but
once at the bottom the ball can stay there (more or less)
forever. So, perhaps we can arrange for the dynamics
of neurons in an interconnected network to be like the
motion of a particle on a (multidimensional) landscape,
with nice deep valleys corresponding to patterns of ac-
tivity that can persist for a long time once the system
find itself in the right neighborhood. In two hugely in-
fluential papers in the early 1980s, Hopfield showed how
to do exactly this.
A typical neuron in the brain receives inputs from

many other neurons [need to see where we’ve had a
chance to talk about axons, dendrites, synapses .. should
be before this!]; in the cortex ‘many’ is several thousand,
and in the extreme case of the cerebellum ‘many’ actu-
ally means ∼ 105. Conversely, although each cell has
only one axon along which its output action potentials
are sent, this axon can branch to contact thousands of

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

W13 W23 W33 W43 W53 W63

FIG. 123 A schematic network of neurons, focusing on one
cell i that receives inputs from may other cells j = 1, 4, 8, · · · .
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other cells. Let’s focus on one cell i, which receives inputs
from many other cells j, as in Fig 156. Schematically, we
can imagine that each cell is either active or inactive, on
or off, and hence the state of one cell can be represented
by a binary variable σi = ±1; for the moment we will
leave this as schematic, and not try to interpret σi too
closely in terms of action potentials or membrane volt-
age. In the simplest view, each cell j sends its output to
cell i, and as these inputs are collected from the synapses,
they are summed with some weights Wij which we can
think of as the “strengths” of the synapses from cell j to
cell i. Having summed its inputs, cell i must then decide
whether to be on or off, comparing the total input to a
threshold θi. These words are equivalent to saying that
the state of cell i is set according to the equation

σi → sgn




∑

j

Wijσj − θi



 . (576)

Models of this flavor go back at least to the 1940s, when
McCulloch and Pitts explored the idea that the on/off
states of neurons could implement a kind of logical calcu-
lus. Precisely because they can perform such operations,
these sorts of discrete dynamics can be almost arbitrarily
complicated. Thus, in general, it’s hard to say anything
about the dynamics generated by Eq (576).

Suppose, however, that if neuron j synapses onto neu-
ron i with strength Wij, then neuron i synapses onto neu-
ron j with the same strength, so that the matrix of synap-
tic strengths Wij is symmetric. Then the updating of the
state of neruon i in Eq (576) serves to reduce an ‘energy’
function defined by

E = −1

2

∑

ij

σiWijσj +
∑

i

θiσi. (577)

Indeed, we recognize Eq (576) as being the dynamics of
a zero temperature Monte Carlo simulation of an Ising
model with energy defined by Eq (577). Now, we can
make progress.

Problem 120: Energy in the Hopfield model. Show ex-
plicitly that the dynamics in Eq (576) serves to decrease the energy
function in Eq (577).

If we can map the dynamics of a neural network onto
the Ising model, then we can bring an enormous amount
of our intuition (and mathematical tools) from statistical
mechanics. We know that, since the dynamics we have
defined are at zero temperature—we are neglecting, for
the moment, any noise in the neurons or synapses—it

is possible to have collective states of the whole system
which are stable forever. The simplest example is with
all thresholds equal to zero, and all synaptic strengths
equal and positive. Then the energy function becomes

E = −W

2

∑

ij

σiσj = −W

2

(
∑

i

σi

)2

. (578)

This is the mean–field ferromagnet. In this model there
are two stable ground states—all neurons ‘on’ (σi = +1
for all i) and all neurons ‘off’ (σi = −1 for all i). Two
states aren’t many, and these states seem especially odd,
but maybe we are on the right track.
If instead of making all the Wij equal, we choose them

at random, then the Ising model we have constructed
is the mean–field or Sherrington–Kirkpatrick spin glass.
We know that this system has many locally stable states,
with an energy landscape that has valleys within valleys,
as discussed in Section III.A. This is probably too much,
since the structure of these exponentially large number of
states depends very sensitively on the precise form of the
couplings Wij. More generally, since we only have ∼ N2

parameters at our disposal when we adjust the Wij, it is
difficult to imagine how we could ‘program’ the network
to store exponentially many independent patterns.
To find a compromise between the ferromagnet and the

spin glass, we recall a trick from the history of models for
magnetism. Suppose that

Wij = W ξiξj, (579)

where 6ξ is an arbitrary binary vector, ξi = ±1, and for
simplicity let the thresholds θi = 0. Then the energy
becomes

E = −1

2

∑

ij

σiWijσj

= −W

2

∑

ij

σiξiξjσj (580)

= −W

2

∑

ij

(ξiσi) (ξjσj) (581)

= −W

2

∑

ij

σ̃iσ̃j, (582)

where σ̃i = ξiσi is again a binary variable, σ̃i = ±1. The
transformation σi → σ̃i is a discrete gauge transforma-
tion, so we see that the model with weights in Eq (579)
is gauge equivalent to a ferromagnet. Rather than the
stable states of the system being σi = +1 for all i and
σi = −1 for all i, the stable states are σi = +ξi and
σi = −ξi. Importantly, this construction can be general-
ized.
Rather than Eq (579), let us imagine that

Wij = W
(
ξ(1)i ξ(1)j + ξ(2)i ξ(2)j

)
. (583)
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Now we have

E = −1

2

∑

ij

σiWijσj

= −W

2




∑

ij

σiξ
(1)
i ξ(1)j σj



− W

2




∑

ij

σiξ
(2)
i ξ(2)j σj





(584)

= −W

2

[(
6ξ(1)·6σ

)2
+
(
6ξ(2)·6σ

)2
]
. (585)

Clearly the energy will be low if the pattern of neural
activity 6σ is parallel to the vector 6ξ(1) or to the vector
6ξ(2). But in a high dimensional space, two randomly cho-
sen vectors are, with high probability, nearly orthogonal.
This means that the two terms in the Hamiltonian can’t
both be important at once. Thus, the energy function
will have a minimum near 6σ = 6ξ(1) and a separate min-
imum near 6σ = 6ξ(2), as well as the flipped versions of
these states, 6σ = −6ξ(1) and 6σ = −6ξ(2).

Problem 121: Random vectors in high dimensions.
Consider random binary vectors 2v in an N–dimensional space:
2v ≡ {v1, v2, · · · , vN}, where each vi = ±1 is chosen independently
and at random. The angle φ between two such vectors is defined
in the usual way by normalizing the dot product,

cosφ ≡
1

N
2v(1)·2v(2). (586)

Before calculating anything, explain why, if 2v(1) and 2v(2) are chosen
independently, it must be that 〈cosφ〉 = 0. Calculate the variance
〈cos2 φ〉 to show that the typical values of | cosφ| ∼ 1/

√
N , which

vanishes as N → ∞. Can you use the central limit theorem to say
something about the whole probability distribution P (cosφ) in this
limit? Show that the distribution can be written exactly as

P (z = cosφ) =

∫
dk

2π
e−ikz [cos(k/N)]N . (587)

Connect this result to the predictions of the central limit theorem.
Develop a saddle point approximation so that you can calculate, at
large N , P (z) for values of |z| " 1/

√
N . Verify your approxima-

tions with a simulation.

The key idea now is to go further, with not just two
patterns but many, writing the weights as

Wij = W
K∑

µ=1

ξ(µ)i ξ(µ)j . (588)

Then the energy becomes

E = −W

2

∑

ij

σi

[
K∑

µ=1

ξ(µ)i ξ(µ)j ]

]
σj = −W

2

K∑

µ=1

(
6ξ(µ)·6σ

)2
.

(589)

Certainly if K , N our intuition from the case of two
patterns should carry over, since almost all of the vectors
6ξ(µ) will be nearly orthogonal, and we should find that
the energy function has 2K minima, near the vectors
±6ξ(µ). At some value of K this must stop being true;
indeed if we let K itself become large we must get back
to the spin glass model in which there are many locally
stable states, but they don’t have any connection to the
patterns 6ξ(µ) that we have ‘programmed’ into the system.
In his original work on this model, Hopfield gave rough
arguments to suggest that this transition from ordered
to disordered behavior occurs at roughly K ∼ 0.15N ,
so that it should be possible to have a number of states
which is proportional to the number of neurons, and he
verified this in simulations with N = 100 [should break
this off as a paragraph and give the argument, rather
than pointing].

Problem 122: Simulating the Hopfield model. Given a
matrix Wij it is straightforward to simulate the dynamics of the
Hopfield model, as defined by Eq (576); try the simplest case, with
θi = 0. To run the simulation, you can go through these steps:

1. Start a collection of N spins in some randomly chosen state.

2. Choose one spin i at random.

3. Set σi = sgn
[∑

j Wijσj

]
.

4. Choose another spin and repeat the update, again and again

Produce a series of simulations to convince yourself that, with Wij

chosen as in Eq (588) and a small value of K, the dynamics always

stop in the neighborhood of one of the vectors 2ξ(µ) that you have
used in sculpting the energy landscape. Explore what happens as
K becomes larger. If you jump to K ∼ N/2, can you see the emer-
gence of more random stopping points for the dynamics? Perhaps
even if you start at one of the vectors 2ξ(µ), the interference from
the other vectors destabilizes this state? If the dynamics stops at
a state 2σs, define an order parameter by finding the nearest vector
2ξ(µ), and measuring the normalized dot product,

ms = max
µ

∣∣∣∣∣
2ξ(µ)·2σs

∣∣∣∣∣. (590)

From many random starting points, what is the mean value of
ms as a function of K and N? As N gets larger, do you see the
emergence of a ‘thermodynamic limit,’ where the (intensive) order
parameter 〈ms〉 depends only on the ratio K/N? Are there signs
of a phase transition at some critical value of K/N?

The idea that the dynamics of neural networks could
be mapped onto the Ising model immediately captured
the imagination of the physics community. But before ex-
ercising ourselves in this direction, let’s think about how
much progress we have made toward solving our original
problem. The Hopfield model shows how the dynamics
of a neural network can correspond to ‘downhill’ motion
on an energy landscape, much like a ball rolling down a
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hill. Thus, the system as a whole has collective, macro-
scopic states which will persist for times arbitrarily long
compared with the basic time scales of the system, the
time scales on which the individual neurons update their
microscopic states according to Eq (576). Importantly,
there are not just a few of these stable states, but many,
in proportion to the number of neurons. Unlike the case
of the ball coming to a stop at the bottom of the hill, the
stability of these states is the result of activity, each neu-
ron receiving continuous input from other neurons in the
network; in effect the stable states are patterns of electri-
cal activity which can reinforce themselves as they propa-
gate through the network, embodying old ideas about the
‘reverberation’ of activity patterns through the extensive
feedback loops found in the brain.

It is tempting to think of the stable patterns of activity,
6σ ≈ 6ξ(µ) as being memories. When we set the synaptic
connection matrix to the form shown in Eq (588), we
“store” the memories, and as the dynamics settles into
one of its locally stable states, one of these memories
is “recalled.” Each of the stored memories has a large
basin of attraction, so the network will recall the mem-
ory given only a relatively weak “hint” that the memory
is somewhere in the neighborhood of the current state.
I use quotation marks extensively here to highlight the
fact that we are sliding from properties of the equations
into the everyday language that we use in describing our
internal mental experiences, and this is dangerous. But,
of course, it is also great fun.
A crucial property of the model is that a particular

memory—e.g., µ = 42—is not stored in any particular
place. There is no single neuron or synapse that has re-
sponsibility for remembering this single recallable item.
Instead, the memory is distributed over essentially all of
the elements in the system. Correspondingly, if we elim-
inate one neuron or one synapse, there is no catastrophic
loss of one memory, but at worst a gentle degradation
of all the memories; in the limit K , N we might even
imagine that, as N → ∞ deletion of anything less than
a finite fraction of cells or synapses would have a van-
ishingly small effect. This ‘fault tolerance’ is a highly
attractive property.

Problem 123: Fault tolerance. Develop a small simulation
to illustrate the idea of fault tolerance in the Hopfield model.

One might worry that all of this depends upon a very
particular form of the synaptic weight matrix, Eq (588).
But this form is both natural and, perhaps surprisingly,
well connected to experiment. Suppose that the current
state of activity in the network, 6σ(t) represents something

that we would like to store and be able to recall later. If
every synaptic strength is changed by the rule

Wij → Wij +Wσi(t)σj(t), (591)

then, assuming that we have not already tried to store too
many patterns in the network, the current state 6σ(t) will
act as one more pattern that can be recalled, one more
stable state in the energy landscape—the network will
have “learned” the state 6σ(t). Importantly, the change in
strength of the synapse from neuron i to neuron j depends
only on the states of neurons i and j. Thus, although the
memory is distributed throughout the network, the rule
for storing the memory is completely local.
The rule for modification of synaptic strengths in Eq

(591), sometimes called a “learning rule,” means that,
over time, the strength of the synapse from neuron j to
neuron i will be proportional to the correlation between
the activities of these two cells. Learning based on corre-
lations is an idea that goes back at least to Hebb in the
1940s, although there are clear precursors in the writ-
ing of William James fifty years earlier. Both James
and Hebb were making an intuitive leap between the
macroscopic phenomena of human and animal learning
and what they imagined could be the underlying neural
mechanisms. Although their words admit some breadth
of interpretation, to a remarkable extent they were right,
and many synapses are found to exhibit “Hebbian plas-
ticity.”
At this point we should say something about the ex-

periments which demonstrate Hebbian plasticity at real
synapses. Should get as far as explaining that there is
a new issue of time scale separation, since the mem-
ory trace should be written quickly (so that the relevant
biochemical mechanisms must switch quickly) but then
be stable for long times, despite the fact that all the
molecules get replaced fairly often. Models for this bring
us back to the question of stability against noise in bio-
chemical networks, which is something that should have
been covered, in part in Section II.B. There is a lot that
one could say here (one could make a nice course about
synaptic plasticity alone), so careful selection is required.
What is the evidence that something like the Hopfield

model is actually a correct description of real neural net-
works? The essence of the model, shorn of the analogies
to magnetism, is that a recalled memory is a stable state
of neural activity, one which persists in the absence of ex-
ternal stimuli by reverberating in the network. Persistent
activity of neurons has been observed. The canonical ex-
ample occurs when an animal has to remember a sensory
stimulus for a brief time (a few second to a minute) in
order to compare it with another image or more simply
because an immediate response would be impossible. In
the period between the stimulus and the cue for the re-
sponse, where the subject has to remember what has been
seen or heard, these neurons continue to generate action
potentials at a rate very different from the ‘resting’ rate
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before exposure to the initial stimulus, as shown in Fig
124. Although the behavior of each cell is different in de-
tail, in many cases the activity during this ‘delay period’
is steady, as if the system were simply locked into a new
state, but the state into which the system falls is differ-
ent depending on the image which is being remembered.
Persistent activity is not just a feature of our cortex, but
appears also in many other systems, from the primate
spinal cord to the goldfish brainstem. [Probably need
more here: demonstrate that persistent activity varies in
relation to the triggering inputs, in some cases is contin-
uously graded, etc..]

One would like to demonstrate directly that the per-
sistent activity of individual neurons during the delay
period really reflects a collective state of the network.
This is not so easy to do. Need to decide how far to
go here—are there good experiments in cortex looking at
synaptic inputs? Maybe say that this is an important
reason to look for simpler examples ... Also want at least
to point toward Amit’s analysis of the Miyashita cor-
relations, where the persistent patterns of activity have
a trace of the sequence in which images were presented
during learning.

At this point it would be nice to say a little about the
more sophisticated analysis of the Hopfield model using
replicas. The goal is to calculate the ‘capacity,’ that is
the maximum number of patterns K that can be stored

stimulus

cue

(variable)

delay period 10 sec

response

cues

FIG. 124 The activity of a single neural in primate prefrontal
cortex during short–term memory, from Fuster & Alexander
(1971). In these experiments a rhesus monkey is trained to
open one of two doors when he receives a cue that they are
unlocked (response cues). Some time before this, the subject
has been allowed to see which of the doors has a piece of apple
behind it (stimulus cue). This neuron seems to be active
during the delay period, and this persistent activity plausibly
is part of the memory that the subject hold. These data
record the results of five such experiments, where the vertical
lines mark the times of spikes, and the arrows mark the times
of the cues, as labelled.

and successfully retrieved. This can be formulated as a
problem in the statistical mechanics of disordered sys-
tems. I am not sure how much technical force is needed
here (or in the discussion of protein above). Advice is
welcome!
There is a very different way of connecting the Hop-

field model to experiment. Imagine that we divide time
into small bins of duration ∆τ . If ∆τ is sufficiently small,
then each neuron either generate an action potential in
this bin, or it does not not, so that the neural response
is naturally binary: σi = +1 for a spike, σi = −1 for si-
lence. for a large network it is impossible to ‘measure’ the
probability distribution of all the network states, P (6σ).
But even recording from neurons one by one it is possi-
ble to measure the mean rate at which each cell generates
spikes, which is equivalent to the expectation value 〈σi〉,
and it is becoming increasingly common to record at least
from pairs of cells, which makes it possible to estimate
the correlations Cij ≡ 〈σiσj〉−〈σi〉〈σj〉. One could ask, as
a purely practical question, what do these measurements
tell us about the full distribution P (6σ)? In general, of
course, there are infinitely many distributions (over the
2N states) that are consistent with theseN(N+1)/2 mea-
surements. Out of all these possible distributions, there
is one which reproduces the measurements but otherwise
describes a system which is as random or unstructured as
possible, and this is the maximum entropy distribution,
as we discussed in Section III.A; see also Appendix A.8.
We recall that the maximum entropy distribution con-

sistent with a certain mean energy for a system is the
Boltzmann distribution. This construction generalizes.
Suppose that we are looking for the probability distribu-
tion P (6σ), and we know the expectation values of some
functions on the state, 〈fµ(6σ)〉 = f̄µ. Then to maxi-
mize the entropy of the distribution subject to these con-
straints, we use Lagrange multipliers as usual. Thus, our
problem is to maximize [again, let’s be careful about how
this is done here vs. earlier vs. Appendix A.8]

F = −
∑

.σ

P (6σ) lnP (6σ)−
∑

µ

λµ

[
∑

.σ

P (6σ)fµ(6σ)− f̄µ

]

−Λ

[
∑

.σ

P (6σ)− 1

]
, (592)

where the last term fixes the normalization of the dis-
tribution. Following through the steps, the optimum is
defined by

0 =
δF

δP (6σ)
= − [lnP (6σ) + 1]−

∑

µ

λµfµ(6σ)− Λ(593)

lnP (6σ) = −
∑

µ

λµfµ(6σ)− (Λ+ 1) (594)

P (6σ) =
1

Z
exp

[
−
∑

µ

λµfµ(6σ)

]
, (595)
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where the partition function Z = e−(Λ+1), or, fixing nor-
malization,

Z({λµ}) =
∑

.σ

exp

[
−
∑

µ

λµfµ(6σ)

]
. (596)

The multipliers λµ are determined by matching the ex-
pectation values in the distribution to those observed ex-
perimentally. We recall the usual identity

〈fν(6σ)〉 = −∂ lnZ({λµ})
∂λν

, (597)

so we have to solve the equations

−∂ lnZ({λµ})
∂λν

= f̄µ (598)

to complete the construction of the model; in general
this is a hard task, the inverse of what we usually do in
statistical mechanics.

If the expectation values that we measure are 〈σi〉 and
〈σiσj〉, then the corresponding maximum entropy distri-
bution can be written as

P (6σ) =
1

Z
exp




M∑

i=1

hiσi +
1

2

N∑

i -=j

Jijσiσj



 , (599)

where the ‘magnetic fields’ {hi} and the ‘exchange cou-
plings’ {Jij} have to be set to reproduce the measured
values of {〈σi〉} and {Cij}. This of course is an Ising
model with pairwise interactions among the spins. What
is crucial is that this model emerges here not through
hypotheses about the network dynamics, but rather as
the least structured model that is consistent with the
measured expectation values. The mapping to the Ising
model is a mathematical equivalence, not an analogy, and
the details of the model are specified by the data.

The emergence of the Ising model is an attractive as-
pect of the maximum entropy construction. But, there
is no obvious reason why real biological networks should
have this maximum entropy property. Indeed, one might
guess that there are complicated, higher order correla-
tions which are important for the function of the net-
work, and these will be missed by a maximum entropy
model built only from pairwise correlations. It thus came
as a surprise when it was found that these models really
do provide an accurate description of the full correlation
structure in the vertebrate retina as it responds to nat-
uralistic stimuli. This has led to considerable interest in
the use of these models more generally for the description
of real neural networks; for details, see Appendix A.8.

Problem 124: Maximum entropy model for a simple
neural network. Imagine that we record from N neurons and we

find that all of them have the same mean rate of spiking, r̄. Further,
if we look at any pair of neurons, the probability of both spiking
in the same small window of duration ∆τ is pc = (r̄∆τ)2(1 + ε).
We want to describe this network as above, with Ising variables
σi = +1 for spiking and σi = −1 for silence.

(a.) Show that

〈σi〉 = −1 + r̄∆τ (600)

Cij ≡ 〈σiσj〉 − 〈σi〉〈σj〉 = 4ε(r̄∆τ)2. (601)

(b.) Since all neurons and pairs are equivalent, the maximum
entropy model consistent with pairwise correlations has the simpler
form,

P (2σ) =
1

Z
exp



h
M∑

i=1

σi +
J

2

N∑

i &=j

σiσj



 , (602)

which is just the mean field ferromagnet (assuming that J is pos-
itive). If N is large, one might expect that there is a ‘thermody-
namic limit’ in which quantities like energy and entropy become
extensive, proportional to N . Show that this requires scaling of
the coupling, J = J0/N . With this scaling, derive the relationship
between the derivatives of lnZ and the expectation values 〈σi〉 and
Cij.

(c.) Some of you will be very familiar with the substitution tricks
that we’re about to use, others less so. To be sure, let me take you
through the steps. We notice that the interactions are described
by a term

J

2

N∑

i &=j

σiσj =
J

2

N∑

i,j=1

σiσj −
NJ

2
=

J

2

(
N∑

i=1

σi

)2

−
NJ

2
. (603)

Thus the partition function can be written as

Z =
∑

(σ

exp



h
M∑

i=1

σi +
J

2

N∑

i &=j

σiσj



 (604)

= e−NJ/2
∑

(σ

exp

[
h

M∑

i=1

σi

]
exp



J

2

(
N∑

i=1

σi

)2


 . (605)

Then the key step is to realize that

exp

[
A

2
(x)2

]
=

∫
dφ

√
2πA

exp

[
−

φ2

2A
+ φx

]
. (606)

Applied to Eq (605) this allows us to write

Z = e−NJ/2
∑

(σ

exp

[
h

M∑

i=1

σi

]
exp



J

2

(
N∑

i=1

σi

)2


 .

= e−NJ/2
∑

(σ

exp

[
h

M∑

i=1

σi

]∫
dφ

√
2πJ

exp

[
−

φ2

2J
+ φ

N∑

i=1

σi

]

(607)

= e−NJ/2
∫

dφ
√
2πJ

exp

[
−

φ2

2J

]∑

(σ

exp

[
(h+ φ)

N∑

i=1

σi

]
. (608)

Now we see that the spins have decoupled, and you should be able
to do the sum over states,

∑
(σ , inside the integral. Show that, with

the scaling from (b.),

Z = e−NJ/2
∫

dφ
√
2πJ

exp [−NF (φ;h, J0)] , (609)

where the effective free energy F (φ;h, J0) has no explicit N depen-
dence.

(d.) Use steepest descent to approximate Eq (609) at large N .
Derive an expression for lnZ which captures both the leading be-
havior (lnZ ∝ N) and the first two corrections.

(e.) To finish the construction of the model, we have to adjust h
and J to match the measured means and pairwise correlations, Eq’s
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(600) and (601). Using the scaling required for a thermodynamic
limit, is there a prediction for the N dependence of the correla-
tion strength ε? This should bother you—ε is a quantity that is
measured from pairs of cells, and shouldn’t really depend on the
number of cells in the network. Suppose we measure ε among more
and more pairs of cells, so we have to describe larger and larger
networks. Is it possible to have ε small and constant as N → ∞?
What conditions need to be met in order for this to happen?

The Hopfield model provides a scheme for the stabi-
lizing multiple, discrete patterns of activity. But there
certainly are situations in which the brain must hold a
memory of a continuous variable. This is even less generic
than the case of discrete attractors. In order to have a
memory of a continuous variable, there must be (at least)
a whole line or curve in state space along which the sys-
tem can stop; if we think it terms of an energy landscape,
then there must be one big valley, and the bottom of this
valley must be precisely flat along one direction. Im-
plausible as all this sounds, the brain really does hold
memories of continuous variables, and it does so even in
simple situations.

When you turn your head, cells in the semicircular
canals, buried in the same bone as the cochlea, sense the
rotational motion; this is called our “vestibular” sense.
This angular motion input passes through the brain and
drives a motor output which counter–rotates the eyes.
This happens automatically, and is called the vestibulo–
ocular reflex. You can demonstrate it for yourself by
shaking your head from side to side as you read this text.
If you are holding the book at arm’s length, then in order
to read you have to have your fovea—the ∼ 1◦ wide area
of highest image quality—focused on the words as you
read them. If you move your head from side to side,
and don’t move your eyes to compensate, the text will
blur. In fact, you (hopefully) have no trouble reading and
shaking your head at the same time, suggesting that your
eyes are being moved to compensate with an accuracy of
better than ∼ 1◦. When you are reading, of course, there
are visual cues to help guide you eye movements, but it
turns out that even if you close your eyes or sit in a dark
room, seeing nothing, your eyes still counter–rotate to
compensate for your head motions.

Problem 125: Mechanics of the semicircular canals. Give
a problem to develop the simple mechanical model of the canal, ex-
plaining how one gets velocity sensitivity over a reasonable band-
width. Use real dimensions of the canal (e.g., in humans) to get
numbers out.
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FIG. 125 Integration as memory for a continuous variable.
Dashed lines show possible velocity signals, and the solid lines
show corresponding position signals, obtained by integrating
the velocity. After the transient inputs die away, the output
of the integrator is stable for all time (a memory) and can
take on any real value.

There is a subtlety of the vestibulo–ocular reflex, how-
ever. If we relax all the muscles to our eyes, then they ro-
tate to a resting position in which we are looking more or
less straight ahead (as defined by where our nose is point-
ing). Thus, if we turn out head to the right and stop, we
need to keep tension on the eye muscles to be sure that
they don’t drift away from where we were looking before
we turned. That is, to fully compensate for rotation of
the head we need a signal related to the desired angular
displacement of the eyes. But the vestibular system is an
inertial sensor, driven by angular accelerations; the me-
chanics of canal turn this into a velocity signal over a wide
range of frequencies, but the sensors really have zero re-
sponse to constant displacements. Thus, the brain needs
to take a input related (at best) to head velocity, and
generate an output related to head displacement—it has
to integrate, where here ‘integrate’ has the literal mean-
ing from calculus, rather than being a qualitative state-
ment about the gathering of multiple signals. Although
we don’t usually think about it this way, an integrator
is a device which, once the input signals die away, has a
perfect memory for a continuous variable, as schematized
in Fig 125. Although these properties of the integral are
obvious mathematically, it it less obvious how to build a
network of neurons that implements this mathematics.
Before continuing, it should be noted that the move-

ment of our eyes is not the perfect integral of our head
velocity. On a longer time scale, roughly thirty seconds,
our eyes do drift back to a resting position if there is no
further stimulus. But this time scale is very long com-
pared with the natural time scales of individual neurons,
perhaps by a factor of as much as ∼ 103. Could this gap
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be closed by an emergent long time scale in the network,
resulting from a line or curve of fixed points?

Suppose that the activity of each neuron is described
by a coarse–grained continuous variable, such as the rate
r at which it generates action potentials. If we inject a
current I into the neuron directly, we find that the rate
changes, along some curve r(I). Each spike arriving at a
synapse onto cell i effectively injects current into that cell,
but this current is smoothed by some dynamics which we
will summarize by a time scale τ , and the spikes from cell
j are weighted by the strength of the synapse Wij. This
suggests a simple model,

τ
dIi
dt

+ Ii =
∑

j

Wijr(Ij) + Iexti , (610)

where Iexti represents currents injected from outside the
network, including from sensory inputs. Typical exam-
ples of the response function g(I) are sigmoids, threshold
linear relations, and other monotonic functions. [add fig-
ure to show some examples of g(I)?]
What would it mean for the dynamics of Eq (610) to

be an integrator? At the very least, the dynamics has to
look like an integrator in its linear response to inputs, so
let’s see how this is possible. Assume that in the absence
of inputs, there is some steady state at which Ii = I∗i .
Then if we linearize around this, writing Ii = I∗i + ui, we
have

τ
dui

dt
+ ui =

∑

j

Wijr
′(I∗j )uj + Iexti . (611)

As always with linear problems, we want to change coor-
dinates so that matrices become diagonal. If we denote
quantities in this new coordinate system by tildes, then
we will have

τ
dũn

dt
+ ũn = Λnũn + Ĩextn , (612)

where the eigenvalues are defined as solutions to

∑

j

Wijr
′(I∗j )ψ

(n)
j = Λnψ

(n)
j . (613)

If one of the Λn → 1, then along this direction we have
simply

τ
dũn

dt
= +Ĩextn , (614)

⇒ ũn(t) = ũn(0) +
1

τ

∫ t

0
dt′ Ĩextn (t′), (615)

so that ũn is the time integral of its inputs. Thus, be-
ing an integrator means arranging the matrix of synap-
tic strength so that it (is appropriate units) has a unit
eigenvalue, which means that (at least in this one mode)
the signals which are being received from other cells
in the network perfectly balance the decay processes

within each cell. This of course is a critical point in the
dynamics—if the eigenvalue is larger than one, the dy-
namics become unstable, if it is less than one it is stable
but an imperfect integrator. Only at the critical point is
true integration achieved. If we are within ε of the crit-
ical point, the system will hold a memory for ∼ τ/ε, so
if we really need to span three orders of magnitude (or
even two), then the adjustment to the critical point must
be quite precise.
The language of eigenvalues and critical points makes

precise our initial intuition that there is something highly
non–generic about memory for a continuous variable.
Most valleys have a single lowest point, and balls keep
rolling downhill until they find it. Only at the critical
point is there one perfectly neutral direction in the val-
ley, along which the ball feels no force.

Problem 126: Details of the line attractor. [go through
Seung (1996) to look for good questions about the linear algebra
of the model]

The fact that the position of our eyes is the integral
of the velocity signals from our semicircular canals, and
that there is (apparently) a continuum of stable points
where our eyes can sit, means that something like this
description in terms of line attractors must be true for
the system as a whole. Indeed this is more general: the
fact that we (and other animals) can stabilize a contin-
uously variable set of postures means that the combined
dynamics of our limbs, muscles, sensors and brain must
have a line or manifold of attractors. It is more chal-
lenging to point to a particular part of the system—e.g.,
a particular sub–network of neurons in one part of the
brain—and claim that the dynamics of this subsystem
must have a line or attractors.
Seeing a model which explains things but only for par-

ticular choices of parameters makes us uneasy, as in our
previous examples in this chapter. But in this case, we
know that the relevant parameters—synaptic strengths—
are adjustable, because this is how we learn. Also, we
know that if we make errors, then under normal condi-
tions (with the lights on) these errors are literally visible
as slippage of the image on our retina as we turn out
heads. There must be some way to use this error signal
to adjust the synaptic weights and tune the network to
its critical point. Does this happen?
To test the idea that the brain tunes the dynamics of

the integrator circuit to its critical point, Major et al did
a seemingly simple but beautiful experiment using gold-
fish, which also exhibit oculomotor integration. Essen-
tially they built a planetarium for the goldfish, and then
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hold the eyes still. However, if the integrator’s parameters are
mistuned, for example, because of insufficient internal positive
feedback, so that firing rates decay toward a ‘‘null’’ rate, then the
eyes will follow suit, and the retinal image will slip in the opposite
direction (Fig. 2a Upper). In the case of simple exponential
decay, seen in many models when internal positive feedback is
too weak, the visual surround will appear to move with a velocity
proportional to eye position, with the proportionality constant
equal to 1!(time constant). This pattern of retinal slip vs. eye
position (‘‘leaky slip’’) could be used to generate a signal to
increase positive feedback within the integrator, which would
tune it back toward stability. Conversely, if the integrator is
unstable, with eye position deviating exponentially away from a
null position, as seen in many models when internal positive
feedback is too strong, the visual surround will appear to move
with a velocity proportional to minus eye position (Fig. 2a
Lower). This pattern of slip (‘‘unstable slip’’) could generate a
signal to decrease positive feedback within the integrator, which
would again tune it back toward stability.

Here we test the hypothesis that external visual feedback tunes
the integrator. We reasoned that if visual feedback normally
tunes integrator stability, it should be possible to detune it to
instability by using an electronically controlled visual stimulus to
impose a retinal slip vs. eye-position relationship consistent with
the integrator being leaky. This effect could be achieved by
rotating the visual surround horizontally with a velocity propor-
tional to eye position (Fig. 2b, ‘‘training to instability’’; see
Supporting Methods, which is published on the PNAS web site).
Conversely, rotating the surround with a velocity proportional to
minus eye position, imposing unstable slip, should drive the
integrator leaky (‘‘training to leak’’). Both manipulations simu-
late the normal pattern of visual feedback, but with an altered
gain between retinal slip and eye position.

We report that the goldfish oculomotor neural integrator
demonstrates remarkable plasticity when visual feedback is
manipulated in this manner and is capable of being trained to
instability or leak with an effective time constant reduced to !1
or 2 s, respectively, a two-orders-of-magnitude change from
control. Conversely, visual feedback from a stationary surround
can gradually retune the neural integrator back toward stability.
Judging by independent tests of responses to vestibular inputs,
fixation instability and leak represent genuine detuning of the
neural integrator. This is a clear demonstration of a progressive
tuning mechanism for the dynamics of a model biological system

for persistent neural activity. Corresponding changes in area I
neural responses are described in a companion paper (25).

Methods
Preparation. All experiments (n " 100 fish) were Institutional
Animal Care and Use Committee approved and performed in
compliance with the National Research Council Guide for the
Care and Use of Laboratory Animals. Goldfish [Carassius auratus,
3–5 inches (8–13 cm) tip to peduncle, from a commercial
supplier] were acclimated to 20–23°C in a 50-gallon aquarium
with daily light exposure. Awake fish were mounted head-fixed
horizontally under water in the experimental tank (6, 22) at a
temperature of 20–22°C. Eye movements were measured with
scleral search coils (26) and were digitized along with planetar-
ium velocity and head position (Digidata and CLAMPEX, Axon
Instruments, Foster City, CA).

Visual Training. A planetarium above the head was rotated by a
velocity-controlled servo motor and projected a random pattern
of white dots moving horizontally on a plastic white screen,
15-cm radius, surrounding the animal (Fig. 2b). During training,
the voltage output of one eye coil was filtered (50-Hz low pass),
offset, amplified, and used as the planetarium velocity drive
signal. This amplification or training gain (g) is presented in units
of (degree!s of planetarium velocity per degree of eye position)
or s#1. The offset E0 (eye position at which spots stationary) was
adjusted to achieve roughly symmetrical leftward and rightward
movements. Generally the eye providing the command was
alternated every 10 or 20 min. Effective training was achieved by
starting with a low g, then gradually increasing it (range, $0.5 to
$5 s#1). If too high a g was imposed when training to leak, the
eyes would become trapped in a rapid sawtooth motion on one
side, impairing training. A light shield surrounded the apparatus
so that the planetarium provided the only source of light.
Training was continued for up to 22 h, during which fixation
performance was monitored every 20 min or longer by recording
for 3–10 min in the dark.

Saccade Detection. When analyzing data, the beginning and end
of a saccade were identified as the first and last time points at
which the absolute value of acceleration exceeded a threshold
(100–500 degrees!s2) after filtering with a 25-ms Gaussian.

Fig. 2. Simulating leaky and unstable retinal slip. (a) Eye drift and retinal slip
of detuned integrator with a stationary visual surround. (Upper) Leaky.
(Lower) Unstable. (Left) Integrator output (eye position) E vs. time (green).
(Right) Position–velocity (PV) plots of eye drift velocity (green) and apparent
motion of visual surround (retinal slip, red) against E. (b) Training paradigm.
The fish is positioned horizontally. Horizontal eye position E measured with
scleral coil, offset by E0, and amplified by g controls horizontal rotation
velocity of planetarium above fish, projecting spots onto wall of tank. This
provides visual feedback consistent with a leaky (g % 0) or unstable (g & 0)
integrator, which gradually drives the integrator to the opposite condition.

Fig. 1. Normal eye movements and firing pattern of a generic area I cell. (a)
Right horizontal eye position recorded in dark. Fixations were approximately
stable between saccades. L, left; R, right. Positions L (R) of midrange were
taken to be positive (negative). (b) Action potentials of right-side area I
neuron recorded with extracellular electrode. (c) Cyan, instantaneous firing
rate (1!interspike interval); black, smoothed progressively more away from
saccades (see ref. 25, Methods); green arrows, ‘‘ON’’ direction saccades; red
arrow, ‘‘OFF’’ direction saccade.
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FIG. 126 Schematic of the “planetarium experiment,” from
Major et al (2004a). At left, the dynamics of a leaky (top)
or unstable (bottom) integrator are evident as exponential
decay or growth of eye position. This can be analyzed by
plotting eye velocity vs eye position, revealing a straight line
with a sign that indicates stability or instability, and a slope
that measures the time constant of the system. At right, the
planetarium setup, in which eye movements are monitored
and fed back to movements of the surrounding scene.

coupled the rotation of this ‘world’ to their eye move-
ments, as in Fig 126. Under normal conditions, when
the eyes move by an angle θ, this is equivalent to the
world moving the other way by the same angle. But if
we give an additional rotation, we can create a situation
in which the world slips on the retina even when the in-
tegrator network is set correctly. If the system in fact
continuously uses slip signals to tune the system, this
will drive a mistuning, either toward stability or insta-
bility. If we remove the feedback, we should then see
that the fish can no longer stabilize its gaze, with the
eyes either quickly relaxing to their resting position or
exploding wildly away from rest, needing correction by
frequent saccades.

The quick summary is that all of what we expect to
see is observed experimentally, as summarized in Fig 127.
Importantly, one can record from neurons in the relevant
circuit and demonstrate that the detuning of the behav-
ioral integration is mirrored by changes in the dynamics
of persistent neural firing. While this does not prove that
the line attractor scenario is correct, it does show that
the long time scale of memory exhibited by the oculo-
motor integrator is the result of an active tuning process
which uses visual feedback as a control signal. In this
way, non–generic behavior of the system is learned, ro-
bustly.

Need an introduction.

Eye Position–Velocity (PV) Plots. Ocular drift during fixations was
measured after excluding saccade-related transients in eye po-
sition (22). A period ta after every saccade was excluded, to avoid
‘‘postsaccadic slide’’ in eye position and firing rate (6), as was a
period tb ! 0.1 s before the next saccade; ta ranged from 0.5 to
1.5 s (constant for a given animal, but varied between animals to
allow for different slide durations). A straight line was fit by
regression through the first tf ! 1 s segment of the remainder of
the fixation (if at least tf long), to minimize effects of saturation
and null-point shifts (see below) which were more pronounced
at the ends of fixations. Eye position was the mean position of
the fitted segment, and eye velocity was the slope of the
regression line. Each fitted segment yielded a single (position,
velocity) data point for the PV plot. Finally, standard least-
squares linear regression was performed to obtain the slope k of
the best-fit line through all points in the PV plot.

Training Time Course Experiments. Twelve animals were trained to
instability by using training gain 0.5 s"1 for 80 min, then 1 s"1 for
80 min. Every 20 min, fixations were assessed in the dark for 3
min, except immediately after training finished, when the as-
sessment period was 10 min (5 # 2-min measurement periods).
After this, the fish were split into two groups. One group was left
in the light (spots still) and tested in the dark for 3 min every 20
min. The other group was left in the dark. After a total of 380
min, fish kept in the dark were switched to the light recovery
protocol. A similar experiment was performed on 10 fish trained
to leak, following the same protocol but with negative training
gains.

VOR. For vestibular stimulation, the tank, planetarium, field coils,
and light shield were mounted on a rate table with a computer-
controlled servo motor. Eye position was measured relative to
head position. The fish’s head was at the center of rotation about
a vertical axis, and the angular position of the table was
measured with an axial potentiometer. Horizontal sinusoidal
vestibular stimulation was carried out at 1!32, 1!16, or 1!8 Hz
with 8–32 degrees!s peak head velocity. Peaks or troughs of eye
position more than 4° into the opposite half of the oculomotor
range to the head were selected for phase-shift analysis (see
Supporting Methods). Apparent phase shifts were determined
from times of peaks and troughs of the eye position relative to
the nearest trough or peak of the head position, respectively.

All data presented are from animals in the dark, unless
otherwise stated.

Results
Artificially Imposed Visual Feedback Can Detune Stability of Fixations.
In the dark, control animals had approximately stable fixations
(Fig. 3a). Over the course of an hour or more of training under
a planetarium rotating with velocity proportional to eye position,
animals developed pronounced fixation instability when tested in
the dark (n ! 58 fish). The instability became more extreme the
longer the animals were trained or the greater the training gain
g. The eyes deviated centrifugally from midpositions at a rate
that increased with eccentricity before saturating near the
extremes of the oculomotor range (Fig. 3b). Likewise, over the
course of an hour or more of training under a planetarium
rotating with velocity proportional to minus eye position, ani-
mals developed striking fixation leak when tested in the dark
(n ! 45 fish), with eye position decaying centripetally toward
midpositions (Fig. 3c). Again, the leak grew more severe the
longer the training or the more negative the training gain. The
same animal could be trained first to leak and then to instability,
or vice versa (n ! 23), indicating that the plasticity process is
both bidirectional and reversible. Oculomotor behavior during
training, which resembled a more extreme version of the trained

behavior, is illustrated in Fig. 7, which is published as supporting
information on the PNAS web site.

Fixations Can Be Detuned to Extreme Instability or Leak. Integrator
performance was assessed from fixations in the dark, by means
of PV plots (22), illustrated in Fig. 3 (see Methods), obtained by
fitting straight lines to segments of fixations (Left, red). The slope
k of the regression line through all of the PV data points, and !e,
the effective time constant, defined as 1!"k", were used as
measures of fixation performance. This procedure could be
applied across the range of fixation behaviors explored, unlike
exponential fitting, which could not be used on control data
because the time constant was generally much longer than the
fixations.

Control animals had roughly stable fixations in the dark, in the
absence of visual feedback, yielding PV plots with nearly hori-
zontal best-fit lines (Fig. 3a Right), with median k "0.004 s"1

(range "0.068 to 0.032 s"1, n ! 85 fish), equivalent to median
!e ! 250 s (range 15 s leaky to 31 s unstable). Following sufficient
training to instability, generally 20 min or longer, PV plots
developed positive slopes (Figs. 3b and 4a). Similarly, training
control animals to leak for 20 min or more resulted in PV plots
with negative slopes (Figs. 3c and 4b). In general, the longer an
animal was trained (Fig. 4 a and b), and the more extreme the
training gain g, the steeper the slope k of the PV plot would
become (when the animal was tested in the dark). Over the entire
data set, the most positive k value achieved was 0.92 s"1 (!e !
1.1 s). Three animals were trained to k $ 0.8 s"1 or !e % 1.25 s,
13 to k $ 0.4 s"1 or !e % 2.5 s, and 30 to k $ 0.2 s"1 or !e % 5 s.
The median k for animals trained to instability for at least an
hour with g " 0.5 was 0.23 s"1, equivalent to a !e of 4.3 s (n !

Fig. 3. Artificially imposed visual feedback can detune fixations to extreme
instability or leak. (Left) Eye movements in dark, control animal. Red, fitted 1-s
segments of data; each contributes one point to the PV plot. (Right) Quanti-
fication by PV plot least-squares fit line, slope k, effective time constant !e !
1!"k" (5 min of data). (b) Same animal as in a, in dark, after training to instability
for 6 h, with gain 2.5 s"1. (Right) PV plot of 3 min of data. (c) Another animal,
in dark, after training to leak for 16.5 h, with gain "2 s"1. (Right) PV plot of
14 min of data. Drift depends primarily on eye position, as opposed to previous
saccade direction (b and c). Green arrows highlight fixations following sac-
cades toward but not crossing midposition; direction of drift is the same as in
the previous fixation. When saccades cross midposition, the direction of drift
reverses.
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FIG. 127 Results of the planetarium experiment, from Major
et al (2004a). At the top (a), control experiments showing the
eye trajectories and position vs velocity plots before exposure
to the feedback system in the planetarium. Note that the
time constant of the system is ∼ 20 s. After exposure to
feedback which should “teach” the system to be unstable (b)
or leaky (c), trajectories and position vs velocity plots show
the expected behaviors, with time constants for growth or
decay on the oder of 1− 5 s.

Amit 1989: Modeling Brain Function: The World of Attractor
Neural Networks. DJ Amit (Cambridge University Press,
Cambridge, 1989).

Cooper 1973: A possible organization of animal memory and
learning. LN Cooper, in Collective Properties of Physical
Systems: Proceedings of Nobel Symposium 24, B Lundqvist
& S Lundqvist, eds, pp 252–264 (Academic Press, New York,
1973).

Hertz et al 1991: Introduction to the Theory of Neural Compu-
tation J Hertz, A Krogh & RG Palmer (Addison Wesley,
Redwood City, 1991).

Hopfield 1982: Neural networks and physical systems with emer-
gent collective computational abilities. JJ Hopfield, Proc
Nat’l Acad Sci (USA) 79, 2554–8 (1982).

Hopfield 1984: Neurons with graded response have collective
properties like those of two–state neurons. JJ Hopfield, Proc
Nat’l Acad Sci (USA) 81, 3088–3092 (1984).

McCulloch & Pitts 1943: A logical calculus of ideas immanent
in nervous activity. WS McCulloch & W Pitts, Bull Math
Biophys 5, 115–133 (1943).

Now talk about connections to real neurons

Hebb 1949: The Organization of Behavior: A Neuropsychologi-
cal Theory. DO Hebb (Wiley, New York , 1949).

James 1892: Psychology: The Briefer Course. W James (Henry
Holt and Company, 1892). There is a modern edition from
Dover Publications (New York, 2001), based on the 1961
abridged version from Harper and Row (New York, 1961).

Lorente de No 1938: Analysis of the activity of the chains of
internuncial neurons. R Lorente de No, J Neurophysiol 1,
207–244 (1938).

Introduce more powerful stat mech approaches

Amit et al 1985: Spin–glass models of neural networks. DJ
Amit, H Gutfreund & H Sompolinsky, Phys Rev A 32, 1007–
1018 (1985).



191

Amit et al 1987: Statistical mechanics of neural networks near
saturation. DJ Amit, H Gutfreund & H Sompolinsky, Ann
Phys 173, 30–67 (1987).

Crisanti et al 1986: Saturation level of the Hopfield model for
neural networks. A Crisanti, DJ Amit & H Gutfreund, Eu-
rophys Lett 2, 337–341 (1986).

Pointers to experiments on persistent activity (need more!).

Funahashi et al 1989: Mnemonic coding of visual space in the
monkey’s dorsolateral prefrontal cortex. S Funahashi, CJ
Bruce & PS Goldman–Rakic, J Neurophysiol 61, 331–349
(1989).

Fuster & Alexander 1971: Neuron activity related to short–
term memory. JM Fuster & GE Alexander, Science 173,
652–654 (1971).

Prut & Fetz 1999: Primate spinal interneurons show pre–
movement instructed delay activity. Y Prut & EE Fetz,
Nature 401, 590–594 (1999).

The idea of using maximum entropy models to think about correla-
tions in networks of neurons arose from a very practical problem—if
we observe correlations among pairs of neurons, should we be sur-
prised if we observe, for example, three or four neurons generating
action potentials simultaneously? For continuous variables, we can
separate different orders of correlations quite simply (recall the idea
of cumulants in statistics, or “connected diagrams” in field theory).
For discrete variables, pairwise correlations imply higher order cor-
relations, even without any further assumptions. One touchstone
for this idea is in statistical mechanics—recall that the usual Ising
model has only interactions between two spins at a time, but when
we coarse grain this model to give the Landau–Ginzburg Hamilto-
nian, we generate φ4 interaction terms, so that the magnetization
φ (which is a spatially smoothed version of the original spins) must
have nontrivial fourth order correlations [should give some stan-
dard ref]. Schneidman et al (2003) showed how one could use the
maximum entropy construction to generalize the idea of connected
correlations to discrete variables. [Be careful here .. maybe push
more into Appendix A.8?]

Schneidman et al 2003: Network information and connected
correlations. E Schneidman, S Still, MJ Berry II & W
Bialek, Phys Rev Lett 91, 238701 (2003).

When we set out to use the maximum entropy method to analyze
the responses of real neurons in the vertebrate retina, we expected
we would “clean out” the pairwise correlations and uncover the
higher order effects which were responsible for the known tendency
of many neurons to fire simultaneously (Schnitzer & Meister 2003).
The surprising result was that the pairwise Ising model provides a
very accurate description of the combinatorial patterns of spiking
and silence in ganglion cells of the salamander retina as they re-
spond to natural and artificial movies, and in cortical cell cultures
(Schneidman et al 2006). After the initial success in the salaman-
der retina, similarly encouraging results were obtained in the pri-
mate retina, under very different stimulus conditions (Shlens et al
2006, 2009), in visual cortex (Ohiorhenuan & Victor 2007, Yu et al
2008), and in networks grown in vitro (Tang et al 2008). Most of
these detailed comparisons of theory and experiment were done for
groups of N ∼ 10 neurons, small enough that the full distribution
Pexpt({σi}) could be sampled experimentally and used to assess
the quality of the pairwise maximum entropy model. Attempts to
push to larger networks are described by Tkačik et al (2006, 2009)
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E. Perspectives

The exploration of fine tuning vs. robustness in bi-
ological systems encourages us to think beyond models
for this or that particular system. To ask whether some
function requires fine tuning of parameters, we imagine
that the system we are looking at is just one member in
a class of possible systems. Whatever the answer to our
initial questions, this effort at generalization clearly is an
important step on the path to a physicist’s view of life.
When we think about individual proteins, generaliza-

tion is easy—proteins are polymers, and there is a nat-
ural class of molecules that can be built from the same
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monomers, but with different sequences. When we think
about a biochemical or genetic network, with many in-
teracting protein molecules, it seems natural to general-
ize to a class of networks that has the same topology,
but different parameters on each node or link. The ion
channels in a single neuron provide an important exam-
ple of a network of interacting proteins, where the in-
teractions are mediated by the (global) transmembrane
voltage and, importantly, experiments on single channel
molecules serve to validate the equations describing what
happens at each node. Finally, for networks of neurons,
the fact that the strengths of synaptic connections are
‘plastic’ makes it natural to think about classes of net-
works that have the same topology of connections among
neurons, but with different strengths. In all of these
cases, we can see that the generalization to a class of
networks is not just a useful theoretical construct, but
also something which has meaning in the life or evolu-
tion of the organism.

In the extreme, “robustness” would mean that func-
tional behavior is largely invariant over the whole class of
networks. If this really is the case, then we should be able
to choose networks at random and have them function.
This is essentially the strategy employed by many groups
searching for robustness in biochemical networks, and
long before this there was a serious exploration of neu-
ral networks with randomly chosen strengths of synap-
tic connections among all the cells, using analytic meth-
ods borrowed from the dynamical theory of spin glasses.
In the context of neural networks, the model with ran-
dom connections indeed behaves chaotically, which seems
odd, although it has been suggested that in the absence
of other inputs this is the right answer—sensory inputs
serve to drive the network out of the chaotic phase into
an ordered state. For biochemical and genetic networks
chaos seems less generic, but to obtain functional behav-
ior without adjusting parameters there is general agree-
ment that the topology of the network must be chosen
carefully. There are several open questions here. Why is
chaos not more common in large networks of biochemi-
cal reactions? What is the boundary between changing
parameters (e.g., make the rate on one particular chemi-
cal reaction smaller) and changing topology (setting that
rate exactly to zero)? To speak precisely about what will
be typical of a randomly chosen network, we need a mea-
sure on the space of parameters; is there a natural choice
of this measure?

In most of the systems we have studied, the randomly
chosen parameters do not correspond to functional be-
havior. Random amino acid sequences don’t fold into
functional proteins, randomly chosen numbers of ion
channels will not generate the correct rhythms of elec-
trical activity, and while random neural networks may
perform some functions, they certainly don’t provide for
stable storage and recall of memories. In each of these
cases there are mechanisms for tuning or selecting the

functional regions of parameter space. In single neurons,
adjusting the numbers of copies of different channels is
a form of physiological adaptation, connecting electri-
cal activity, intracellular messengers, and the control of
gene expression. In neural networks, the strengths of
synapses are adjusted during learning, and for some key
processes this learning happens all the time—as perhaps
is necessary if the behavior the system is trying to sta-
bilize is very far from typical in the space of possible
networks. Finally, for amino acid and DNA sequences,
the “adjustment” to functional behavior occurs on evo-
lutionary time scales.74 In this context, we can think of
adaption, learning and evolution as different mechanisms
for accomplishing the same task, albeit on different time
scales.
As we will see in Section IV.D, there is a sophisticated

mathematical theory of learning, combining ideas from
mathematics, computer science and statistical physics.
In particular, in different contexts, this theoretical ap-
proach places bounds on what can be learned, and how
quickly. If we see adaptation, learning and evolution as
different approaches to the same problem, should there
be a comparable theoretical framework limiting the speed
of evolution, or the effectiveness of adaptation? For evo-
lution there is, in the long run, an obvious external defini-
tion of correct functional behavior (successful reproduc-
tion), and for learning there are often external signals
(as in the case of the oculomotor integrator) that define
the goal of the learning process; in adaptation, how do
cells “know” the correct behavior that they are trying to
stabilize? In the models for regulation of ion channel den-
sities that we discussed in Section III.B, this is (weakly)
programmed into the cell by the parameters that define
a target calcium concentration; is there a more general
definition of when cells are getting things right? Are
there, as with learning, limits on how precisely one can
get things right if the system needs to adjust quickly?
To return to the opening remarks in this Chapter, we

wanted to distinguish between the usual physicist’s mis-
trust of explanations that rest on fine tuning of param-
eters, and some specifically biological notions of robust-
ness or evolvability. Part of the motivation for robustness
as a biological principle is the intuition that living organ-
isms simply can’t adjust parameters accurately enough to
guarantee reliable, reproducible functions. I think this
intuition turns out to be wrong—cells can and do ex-
ercise precise control over the numbers of molecules that
they make, so that the absolute concentrations of relevant
molecules can be reproducible from cell to cell (or, in the

74 It is worth emphasizing that, in the immune system, there is a
kind of accelerated evolution within individual organisms, and
this serves to select a nontrivial distribution of sequences for the
antibody molecules. See the discussion in Section III.A.
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discussion of Section III.C, embryo to embryo) with high
precision. I emphasize “can be,” because one clearly can-
not conclude that all concentrations or molecule counts
will be reproducible in this way. Indeed, the example
of ion channels makes clear that, in the natural param-
eter space for the cell, there are many different ways of
achieving essentially the same function, and so there is
no reason for the cell to control the number of copies
of any one particular molecule very precisely; what is
important are the tight correlations among variations in
different molecule counts, and these correlations are of-
ten expected and observed to be nonlinear, even defining
non–convex regions of parameter space.

The fact that they can exert precise control over the
concentrations, or combinations of concentrations, of cer-
tain molecules does not solve all of the organism’s prob-
lems. Most fundamentally, life as a cold blooded organ-
ism75 means having to function across a range of condi-
tions where all chemical reaction rates vary, often by an
order of magnitude or more, with no guarantee that the
different rates in a given network will scale together; for
an example of this problem one need look no further than
the familiar circadian rhythms, which have long been
known to be invariant to temperature changes. At the
same time, diversity of environments is one of the driving
forces for speciation, so that (for example) the fruit flies
that live at different latitudes, and hence different tem-
perature ranges, are genetically distinguishable. Natural
history abounds with stories of animals that seek out very
special environments in which to lay their eggs, casting
doubt on any glib statement that embryonic development
is robust against environmental perturbations. Still, sim-
ple laboratory experiments demonstrate that many as-
pects of life are nearly invariant over a wide range of
temperatures, much wider than we might expect from
simple models.

Locating life on the spectrum between precisely con-
trolled (rather than finely tuned) dynamics and some
more generic or robust behavior is an incredibly impor-
tant question. It touches, as we have seen, phenomena
ranging from the states of single cells to the nature of
our memories. It connects to theoretical ideas that have
the potential to reach deeply into statistical physics and
dynamical systems. Still, at the risk of making clear the
limits of my own understanding, I would say that we are
still searching for the best formulations of these ques-
tions. We need more experimental guidance about what
features of behavior are robust against which variations,
and we need evidence that organisms actually face these
variations in their natural environment. On the theoret-
ical side, we need more anchor points like the random

75 Most of the biomass on our planet is cold blooded, so this is a
very general problem.

heteropolymer and the random neural network, where
we have a complete analytic understanding of what is
expected in the truly generic case, and we need a statis-
tical mechanics of systems with random parameters that
allows us to deal with the case where these parameters
have nontrivial distributions. These are substantial chal-
lenges.

The idea of choosing parameters at random in biochemical networks
was explored by Barkai and Leibler (1999) and by von Dassow et al
(2000), among others, using simulations; see Sections III.C. Much
earlier, Sompolinsky et al (1988) had analyzed the dynamics of ran-
dom neural networks, identifying a transition between a stationary
phase and a chaotic phase at a critical value of the typical synaptic
strength. For attempts to connect these random networks to the
behavior of cortex, see van Vreeswijk & Sompolinksy (1996, 1998).
More recently, Rajan et al (2010) have emphasized that input sig-
nals can drive random networks across the transition between order
and chaos, providing a possible new view of the nature of variability
in cortical responses (Abbott et al 2010).

Abbott et al 2010: Interactions between intrinsic and stimulus–
evoked activity in recurrent neural networks. LF Ab-
bott, K Rajan & H Sompolinsky, in Neuronal Variabil-
ity and Its Functional Significance, M Ding & D Glanz-
man eds, in press (Oxford University Press, Oxford, 2010);
arXiv:0912.3832 (2009).

Rajan et al 2009: Input–dependent suppression of chaos in re-
current neural networks. K Rajan, LF Abbott & Sompolin-
sky, Phys Rev E 82, 011903 (2010).

Sompolinsky et al 1988: Chaos in random neural networks. H
Sompolinsky, A Crisanti & HJ Sommers, Phys Rev Lett 61,
259–262 (1988).

van Vreeswijk & Sompolinsky 1996: Chaos in neuronal net-
works with balanced excitatory and inhibitory activity. Sci-
ence 274, 1724–1726 (1996).

van Vreeswijk & Sompolinsky 1998: Chaotic balanced state
in a model of cortical circuits. Neural Comp 10, 1321–1371
(1998).

There is work on why chemical dynamics tends to be “simple.”
Should give pointers here. Maybe also some refs on circadian clocks,
and speciation of flies in different latitudes.
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IV. EFFICIENT REPRESENTATION

The generation of physicists who turned to biologi-
cal phenomena in the wake of quantum mechanics noted
that, to understand life, one has to understand not just
the flow of energy (as in inanimate systems) but also the
flow of information. There is, of course, some difficulty
in translating the colloquial notion of “information” into
something mathematically precise. Almost all statisti-
cal mechanics textbooks note that the entropy of a gas
measures our lack of information about the microscopic
state of the molecules, but often this connection is left
a bit vague or qualitative. In 1948, Shannon proved a
theorem that makes the connection precise: entropy is
the unique measure of available information consistent
with certain simple and plausible requirements. Further,
entropy also answers the practical question of how much
space we need to use in writing down a description of the
signals or states that we observe. This leads to a notion
of efficient representation, and in this Chapter we’ll ex-
plore the possibility that biological systems in fact form
efficient representations, maximizing the amount of rele-
vant information that they transmit and process, subject
to fundamental physical constraints.
The idea that a mathematically precise notion of “in-

formation” would be useful in thinking about the repre-
sentation of information in the brain came very quickly
after Shannon’s original work. There is, therefore, a well
developed set of ideas about the how many bits are car-
ried by the responses of neurons, in what sense the encod-
ing of sensory signals into sequences of action potentials
is efficient, and so on. More subtly, there is a body of
work on the theory of learning that can be summarized
by saying that the goal of learning is to build an effi-
cient representation of what we have seen. In contrast,
most discussions of signaling and control at the molec-
ular level has left “information” as a colloquial concept.
One of the goals of this Chapter, then, is to bridge this
gap. Hopefully, in the physics tradition, it will be clear
how the same concepts can be used in thinking about
the broadest possible range of phenomena. We begin,
however, with the foundations.

A. Entropy and information

Two friends, Max and Allan, are having a conversa-
tion. In the course of the conversation, Max asks Allan
what he thinks of the headline story in this morning’s
newspaper. We have the clear intuitive notion that Max
will ‘gain information’ by hearing the answer to his ques-
tion, and we would like to quantify this intuition. Let
us start by assuming that Max knows Allan very well.
Allan speaks very proper English, being careful to fol-
low the grammatical rules even in casual conversation.
Since they have had many political discussions Max has

?

a b

a1 a2 a3 b1 b2

FIG. 128 The branching postulate in Shannon’s proof. The
idea is to break a big question into multiple parts, as in the
familiar game of twenty questions. We start with some initial
question, at the top (?). Depending on the answer to this
question (a or b), we ask a new question. This second question
in turn has multiple possible answers (a1, a2, a3 or b1, b2). In
this tree structure, the various sub–questions live at branch
points, with the answers emerging along the branches; finding
our way to the full answer means following one path through
the tree. The average information that we gain along this path
should be additive, the weighted sum of information gained
at every branch point.

a rather good idea about how Allan will react to the lat-
est news. Thus Max can make a list of Allan’s possible
responses to his question, and he can assign probabilities
to each of the answers. From this list of possibilities and
probabilities we can compute an entropy, and this is done
in exactly the same way as we compute the entropy of a
gas in statistical mechanics. Thus, if the probability of
the nth possible response is pn, then the entropy is

S = −
∑

n

pn log2 pn bits. (616)

Our intuition from statistical mechanics suggests that
the entropy S measures Max’s uncertainty about what
Allan will say in response to his question, in the same way
that the entropy of a gas measures our lack of knowledge
about the microstates of all the constituent molecules.
Once Allan gives his answer, all of this uncertainty is
removed—one of the responses occurred, corresponding
to p = 1, and all the others did not, corresponding to
p = 0—so the entropy is reduced to zero. It is appealing
to equate this reduction in our uncertainty with the in-
formation we gain by hearing Allan’s answer. Shannon
proved that this is not just an interesting analogy; it is
the only definition of information that conforms to some
simple constraints.
If we want to have a general measure of how much in-

formation is gained on hearing the answer to a question,
we have to put aside the details of the questions and the
answers—although this might make us uncomfortable,
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and is something we should revisit. If we leave out the
text of the questions and answers themselves, then all
that remains are the probabilities pn of hearing the dif-
ferent answers, and so Shannon assumes that the infor-
mation gained must be a function of these probabilities,
I({pn}). The challenge is to determine this function.76

The first constraint is that, if all N possible answers
are equally likely, then the information gained should
be a monotonically increasing function of N—we learn
more by asking questions that have a wider range of pos-
sible answers. The next constraint is that if our ques-
tion consists of two parts, and if these two parts are en-
tirely independent of one another, then we should be able
to write the total information gained as the sum of the
information gained in response to each of the two sub-
questions. Finally, more general multipart questions can
be thought of as branching trees, as in Fig 128, where
the answer to each successive part of the question pro-
vides some further refinement of the probabilities; in this
case we should be able to write the total information
gained as the weighted sum of the information gained at
each branch point. Shannon proved that the only func-
tion of the {pn} consistent with these three postulates—
monotonicity, independence, and branching—is the en-
tropy S, up to a multiplicative constant. The proof is
sufficiently simple that it seems worth going through the
details, not least to be sure we understand how little is
required to derive such a powerful result.

To prove Shannon’s theorem we start with the case
where all N possible answers are equally likely. Then
the information must be a function of N , and let this
function be I({pn}) = f(N). Consider the special case
N = km. Then we can think of our answer—one out of N
possibilities—as being given in m independent parts, and
in each part we must be told one of k equally likely possi-
bilities. But we have assumed that information from in-
dependent questions and answers must add, so the func-
tion f(N) must obey the condition

f(km) = mf(k). (617)

Notice that although we are focusing on cases where
N = km, we have a condition that involves f(k) for ar-
bitrary k. It is easy to see that f(N) ∝ logN satisfies
this equation. To show that this is the unique solution,
consider another pair of integers & and n such that

km ≤ &n ≤ km+1, (618)

76 Notice that Shannon’s ‘zeroth’ assumption—that the informa-
tion gained is a function of the probability distribution over the
answers to our question—means that we must take seriously the
notion of enumerating the possible answers. In this framework
we cannot quantify the information that would be gained upon
hearing a literally unimaginable answer to our question. It is
interesting to think about whether this is a real restriction.

or, taking logarithms,

m

n
≤ log &

log k
≤ m

n
+

1

n
. (619)

Now because the information measure f(N) is monotoni-
cally increasing with N , the ordering in Eq. (618) means
that

f(km) ≤ f(&n) ≤ f(km+1), (620)

and hence from Eq. (617) we obtain

mf(k) ≤ nf(&) ≤ (m+ 1)f(k). (621)

Dividing through by nf(k) we have

m

n
≤ f(&)

f(k)
≤ m

n
+

1

n
, (622)

which is very similar to Eq. (619). The trick is now that
with k and & fixed, we can choose an arbitrarily large
value for n, so that 1/n = ε is as small as we like. Then
Eq. (619) is telling us that

∣∣∣∣
m

n
− log &

log k

∣∣∣∣ < ε, (623)

and Eq. (622) for the function f(N) can similarly be
rewritten as

∣∣∣∣
m

n
− f(&)

f(k)

∣∣∣∣ < ε. (624)

Putting these together, we have
∣∣∣∣
f(&)

f(k)
− log &

log k

∣∣∣∣ ≤ 2ε, (625)

so that f(N) ∝ logN as promised. Note that if we were
allowed to consider f(N) as a continuous function, then
we could have made a much simpler argument. But,
strictly speaking, f(N) is defined only at integer argu-
ments.
We are not quite finished, even with the simple case

of N equally likely alternatives, because we still have
an arbitrary constant of proportionality. We recall that
the same issue arises in statistical mechanics: what are
the units of entropy? In a chemistry course you might
learn that entropy is measured in “entropy units,” with
the property that if you multiply by the absolute tem-
perature (in Kelvin) you obtain an energy in units of
calories per mole; this happens because the constant of
proportionality is chosen to be the gas constant R, which
refers to Avogadro’s number of molecules.77 In physics

77 I have to admit that whenever I read about entropy units (or
calories, for that matter) I imagine that there was some great
congress on units at which all such things were supposed to be
standardized. Of course every group has its own favorite non-
standard units. Perhaps at the end of some long negotiations
the chemists were allowed to keep entropy units in exchange for
physicists continuing to use electron Volts.
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courses entropy is often defined with a factor of Boltz-
mann’s constant kB , so that if we multiply by the abso-
lute temperature we again obtain an energy (in Joules)
but now per molecule (or per degree of freedom), not per
mole. In fact many statistical mechanics texts take the
sensible view that temperature itself should be measured
in energy units—that is, we should always talk about the
quantity kBT , not T alone—so that the entropy, which
after all measures the number of possible states of the
system, is dimensionless. Any dimensionless proportion-
ality constant can be absorbed by choosing the base that
we use for taking logarithms, and in measuring informa-
tion it is conventional to choose base two. Finally, then,
we have f(N) = log2 N . The units of this measure are
called bits, and one bit is the information contained in
the choice between two equally likely alternatives.

Ultimately we need to know the information conveyed
in the general case where our N possible answers all have
unequal probabilities. Consider first the situation where
all the probabilities are rational, that is

pn =
kn∑
m km

, (626)

where all the kn are integers. If we can find the correct
information measure for rational {pn} then by continuity
we can extrapolate to the general case; the trick is that
we can reduce the case of rational probabilities to the case
of equal probabilities. To do this, imagine that we have
a total of Ntotal =

∑
m km possible answers, but that

we have organized these into N groups, each of which
contains kn possibilities, as in Fig 129. To specify the
full answer, we would first tell which group it is in, then
tell which of the kn possibilities is realized. In this two
step process, at the first step we get the information we

k1 = 3 k2 ! " k3 = 4 kN = 2kN−1 = 5

1 2 3 N − 1 N

p1 p2 p3 pN−1 pN

I = I({pn})

In = log2 kn

Itotal = log2

(
∑

n

kn

)

FIG. 129 Grouping. To determine the information gained
with unequal probabilities, we consider a “big question” with
answer that fall into N groups. By hypothesis, in each the kn
answers are equally likely.

are really looking for—which of the N groups are we in—
and so the information in the first step is our unknown
function,

I1 = I({pn}). (627)

At the second step, if we are in group n then we will
gain In = log2 kn bits, because this is just the problem
of choosing from kn equally likely possibilities, and since
group n occurs with probability pn, the average informa-
tion we gain in the second step is

I2 =
∑

n

pnIn =
∑

n

pn log2 kn. (628)

But this two step process is not the only way to com-
pute the information in the enlarged problem, because,
by construction, the enlarged problem is just the problem
of choosing from Ntotal equally likely possibilities. The
two calculations have to give the same answer, so that

I1 + I2 = log2 (Ntotal) , (629)

I({pn}) +
∑

n

pn log2 kn = log2

(
∑

m

km

)
. (630)

Rearranging the terms, we find

I({pn}) = −
∑

n

pn log2

(
kn∑
m km

)
(631)

= −
∑

n

pn log2 pn. (632)

Again, although this is worked out explicitly for the case
where the pn are rational, it must be the general answer
if the information measure is continuous. So we are done:
the average information gained on hearing the answer to
a question is measured uniquely by the entropy of the
distribution of possible answers.
It is worth pausing here to note that what Shannon

did is very different from our conventional experience in
using mathematics to describe the natural world. In most
of physics, we have some set of observations (the motion
of the planets in the night sky, for example) that can
be made quantitative (as Brahe did), and we search for
mathematical structures that can explain and unify these
data (Kepler, Newton). In contrast, Shannon considered
an everyday phenomenon for which we have a colloquial
language, and asked if this language itself could be made
mathematically precise, without reference to quantitative
data. It is remarkable that this actually worked, and
that Shannon’s construction has, as we will see, so many
consequences.
When we try to quantify the information we gain from

hearing the answer to a question, it seems natural to
think about a discrete set of possible answers. On the
other hand, if we think about gaining information from
the acoustic waveform that reaches our ears, then there
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is a continuum of possibilities. Naively, we are tempted
to write

Scontinuum = −
∫

dxP (x) log2 P (x), (633)

or some multidimensional generalization. The difficulty
is that probability distributions for continuous variables
have units—P (x) has units inverse to the units of x—and
we should be worried about taking logs of objects that
have dimensions. Notice that if we wanted to compute
a difference in entropy between two distributions, this
problem would go away. This is a hint that only entropy
differences are going to be important.

Problem 127: Dimensionality and the scaling of the en-
tropy. As written, Eq (633) doesn’t really make sense, because we
are taking the log of something with units. Suppose we try to clean
this up, and make bins along the x axis, each bin of width ∆x and
the nth bin centered at xn. Then if the bins are reasonably small,
the probability of falling in the nth bin is pn = P (xn)∆x.

(a.) Show that if you calculate the entropy in the usual way, you
find

S = −
∑

n

pn log2 pn = Scontinuum − log2(∆x) (634)

in the limit ∆x → 0. More generally, show that in D dimensions

S = −
∑

n

pn log2 pn = Scontinuum −D log2(∆x). (635)

The result in Eq (635) suggests that the scaling of the entropy
with bin size provides a measure of the dimensionality D of the
underlying space. This is especially interesting if the intrinsic di-
mensionality is different from the dimensionality we happen to be
using in describing the system. As an example, if we describe a
system by its position in a two dimensional space (x, y), but really
the points fall on a curve, then the right answer is that the system
is one dimensional, not two dimensional.

(b.) Write a small program in MATLAB to generate 106 points
in the (x, y) plane that fall on the circle x2 + y2 = 1. Then divide
the plane (you can confine your attention to the region −2 < x < 2,
and similarly for y) into boxes of size (∆x) × (∆x), and estimate
the fraction of points that fall in each box. From this estimate,
compute the entropy, and see how it varies as a function of ∆x.
Can you identify the signature of the reduced dimensionality?

(c.) Suppose that you take the 106 points from (b) and add, to
each point, a bit of noise in the x and y directions, for example
Gaussian noise with a standard deviation of σ = 0.05. Repeat
the calculation of the entropy vs. box size. If you look closely
enough (∆x % σ) the underlying probability distribution really is
two dimensional, since there is independent noise along x and y.
But if your resolution is more coarse (∆x " σ) you won’t be able
to “see” the noise and the points will appear to fall on a circle,
corresponding to a one dimensional distribution. Can you see this
transition in the plot of S(∆x)?

The problem of defining the entropy for continuous

variables is familiar in statistical mechanics.78 In the
simple example of an ideal gas in a finite box, we know
that the quantum version of the problem has a discrete
set of states, so that we can compute the entropy of the
gas as a sum over these states. In the limit that the box is
large, sums can be approximated as integrals, and if the
temperature is high we expect that quantum effects are
negligible and one might naively suppose that Planck’s
constant should disappear from the results; we recall that
this is not quite the case. Planck’s constant has units of
momentum times position, and so is an elementary area
for each pair of conjugate position and momentum vari-
ables in the classical phase space; in the classical limit
the entropy becomes (roughly) the logarithm of the occu-
pied volume in phase space, but this volume is measured
in units of Planck’s constant. If we start with a classi-
cal formulation (as did Boltzmann and Gibbs, of course)
then we would find ourselves with the problems of Eq.
(633), namely that we are trying to take the logarithm of
a quantity with dimensions. If we measure phase space
volumes in units of Planck’s constant, then all is well.
The important point is that the problems with defining
a purely classical entropy do not stop us from calculat-
ing entropy differences, which are observable directly as
heat flows, and we shall find a similar situation for the
information content of continuous (“classical”) variables.
In the simple case where we ask a question and there

are exactlyN = 2m possible answers, all with equal prob-
ability, the entropy is just m bits. But if we make a list of
all the possible answers we can label each of them with
a distinct m–bit binary number: to specify the answer
all we need to do is write down this number. Note that
the answers themselves can be very complex—different
possible answers could correspond to lengthy essays, but
the number of pages required to write these essays is ir-
relevant. If we agree in advance on the set of possible
answers, all we have to do in answering the question is
to provide a unique label. If we think of the label as a
‘code word’ for the answer, then in this simple case the
length of the code word that represents the nth possible
answer is given by &n = − log2 pn, and the average length
of a code word is given by the entropy.
The equality of the entropy and the average length of

code words is much more general than our simple ex-
ample. Before proceeding, however, it is important to
realize that the entropy is emerging as the answer to two

78 Indeed, this problem is so troublesome that it has led to a serious
shift in our teaching. It is simpler to define everything in the
case where states are discrete, and this has led many people
to argue that we shouldn’t teach statistical physics until after
students have learned quantummechanics. Whatever advantages
this might have, it guarantees that many US students never see
anything statistical (beyond a few lectures on the kinetic theory
of gases) until their third year of university, which is quite late.
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very different questions. In the first case we wanted to
quantify our intuitive notion of gaining information by
hearing the answer to a question. In the second case,
we are interested in the problem of representing this an-
swer in the smallest possible space. It is quite remarkable
that the only way of quantifying how much we learn by
hearing the answer to a question is to measure how much
space is required to write down the answer.

Clearly these remarks are interesting only if we can
treat more general cases. Let us recall that in statistical
mechanics we have the choice of working with a micro-
canonical ensemble, in which an ensemble of systems is
distributed uniformly over states of fixed energy, or with
a canonical ensemble, in which an ensemble of systems
is distributed across states of different energies accord-
ing to the Boltzmann distribution. The microcanonical
ensemble is like our simple example with all answers hav-

ing equal probability: entropy really is just the log of the
number of possible states. On the other hand, we know
that in the thermodynamic limit there is not much differ-
ence between the two ensembles. This suggests that we
can recover a simple notion of representing answers with
code words of length &n = − log2 pn provided that we can
find a suitable analog of the thermodynamic limit.
Imagine that instead of asking a question once, we ask

it many times. As an example, every day we can ask
the weatherman for an estimate of the temperature at
noon the next day. Now instead of trying to represent
the answer to one question we can try to represent the
whole stream of answers collected over a long period of
time. Let us label the sequences of answers n1n2 · · · nN ,
and these sequences have probabilites P (n1n2 · · · nN ).79

From these probabilities we can compute an entropy that
must depend on the length of the sequence,

S(N) = −
∑

n1

∑

n2

· · ·
∑

nN

P (n1n2 · · · nN ) log2 P (n1n2 · · · nN ). (636)

Now we can draw on our intuition from statistical me-
chanics. The entropy is an extensive quantity, which
means that as N becomes large the entropy should be
proportional to N ; more precisely we should have

lim
N→∞

S(N)

N
= S, (637)

where S is the entropy density for our sequence in the
same way that a large volume of material has a well de-
fined entropy per unit volume.
The equivalence of ensembles in the thermodynamic

limit means that having unequal probabilities in the
Boltzmann distribution has almost no effect on anything
we want to calculate. In particular, for the Boltzmann
distribution we know that, state by state, the log of the
probability is the energy and that this energy is itself
an extensive quantity. Further we know that (relative)
fluctuations in energy are small. But if energy is log prob-
ability, and relative fluctuations in energy are small, this
must mean that almost all the states we actually observe
have log probabilities which are the same. By analogy, all
the long sequences of answers must fall into two groups:
those with − log2 P ≈ NS, and those with P ≈ 0. Now
this is all a bit sloppy, but it is the right idea: if we are
willing to think about long sequences or streams of data,
then the equivalence of ensembles tells us that ‘typical’

79 Notice that, at this point, we do not need to assume that suc-
cessive questions have independent answers.

sequences are uniformly distributed over N ≈ 2NS possi-
bilities, and that this appproximation becomes more and
more accurate as the length N of the sequences becomes
large.

Problem 128: Probabilities and the equivalence of en-
sembles.80 Consider an ideal monatomic gas in three dimensions,
for which the energy is

E =
1

2m

3N∑

i=1

p2i , (638)

where m is the atomic mass. We will define the classical sum over
states to be an integral over positions and velocities, normalized by
appropriate powers of Planck’s constant h.

(a.) The partition function in the microcanonical ensemble is

Zmicro(E) ≡
1

h3N

∫
d3x

∫
d3p δ

(
E −

1

2m

3N∑

i=1

p2i

)
(639)

=

(
V

h3

)N ∫
d3p δ

(
E −

1

2m

3N∑

i=1

p2i

)
. (640)

If the energy is fixed with precision ε, then Zmicro(E)ε is the num-
ber of accessible states, all occurring with equal probability, and so
the microcanonical entropy is Smicro(E) = log2[Zmicro(E)ε]. Use
the Fourier representation of the delta function and the method of

80 This should be a review of things you learned in a statistical
mechanics class, though perhaps in slightly different language.
It is useful to make all of this explicit here.
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steepest descent to derive the asymptotic behavior of Smicro(E) at
large N .

(b.) In the canonical ensemble, at inverse temperature β, the
probability of being in any state is given by the Boltzmann distri-
bution,

P =
1

Z(β)
e−βE , (641)

where

Z(β) =
1

h3N

∫
d3x

∫
d3p exp

(
−

β

2m

3N∑

i=1

p2i

)
. (642)

Evaluate Z(β) and the entropy S(β). Review what we mean when
we say that the entropy is the same in the canonical and micro-
canonical ensembles at large N .

(c.) The typical probability of a state in the canonical ensem-
ble is Ptypical = 2−S(β). Define the deviation from this typical
probability as ∆ = log2(P/Ptypical). What can you say about the
distribution of ∆ over all the states? Can you make a precise ver-
sion of the statement that “most” states have either “almost” the
typical probability or zero probability? For example, can you put
a bound on the fraction f of states which have |∆| > δc? How does
the relation between f and δc change with N?

Problem 129: More about typicality. Consider drawing
N samples of a variable that can take on K different values, with
probabilities p1, p2, · · · , pK . Let the sequence of samples that you
observe be called i1, i2, · · · , iN , which has probability

P =
N∏

n=1

pin . (643)

It should be easy to show that the average of L = −(1/N) log2 P
is the entropy of the underlying distribution, S = −

∑
i pi log2 pi.

Say as much as you can about the distribution of L as N becomes
large.

The idea of typical sequences, which is the information
theoretic version of a thermodynamic limit, is enough to
tell us that our simple arguments about representing an-
swers by binary numbers ought to work on average for
long sequences of answers. An important if obvious con-
sequence is that if we have many rather unlikely answers
(rather than fewer more likely answers) then we need
more space to write the answers down. More profoundly,
this turns out to be true answer by answer: to be sure
that long sequences of answers take up as little space as
possible, we need to use &n ≈ − log2 pn bits to represent
each individual answer n. Thus, even individual answers
which are more surprising require more space to write
down.

As a simple example, imagine that we have four an-
swers, with probabilities p1 = 1/2, p2 = 1/4, and
p3 = p4 = 1/8. Naively, if we use a binary representation
we will need two bits to represent the four possibilities.
But the entropy is

S ≡
4∑

i=1

pi log2 pi =
1

2
log2 2 +

1

4
log2 4 +

2

8
log2 8 =

7

4
,

(644)

which is less than two bits (as it must be). Suppose
that we represent the four possibilities by the binary se-
quences:

1 → 0, (645)

2 → 10, (646)

3 → 110, (647)

4 → 111. (648)

Notice that the length of each code word obeys &i =
− log2 pi, so we know that, on average, the number of bi-
nary digits that we use per answer will be equal to the en-
tropy. This illustrates the idea that, by using code words
of different lengths, we can reduce the average amount of
space we need to write things down.

Problem 130: Do we need commas? When we represent
a sequence of answers, we have to be sure that we can find the
boundaries between the code words. If all the words have the same
length, we can just count, but this doesn’t work if we use unequal
lengths. At worst, we could add an extra symbol to “punctuate”
the stream of words, but this takes extra space and surely is in-
efficient. Convince yourself that the code defined by Eqs (645)
through (648) does not need any extra symbols—all sequences of
code words can be parsed uniquely.

To complete the picture, we have to put together the
ideas of typicality and code words of varying length. Sup-
pose that we look at a block of N answers, n1, n2, · · · , nN
as before; let’s label this block (or “state,” to reinforce
the analogy with statistical physics) by s, which occurs
with probability ps. We choose the labels so that all the
states are numbered in order of their probability, that is
p1 ≥ p2 ≥ · · · ≥ pK , where K is the number of possible
sequences of length N . For each state s we can compute
the cumulative probability of lower energy (higher prob-
ability) states, Ps ≡

∑s−1
i=1 pi. Now take this cumulative

probability and expand it as a binary number. If we stop
after ms digits, where

− log2 ps ≤ ms < − log2 ps + 1, (649)

then we guarantee that this binary number we are looking
at will be different from any subsequent number with
larger s, so it is a unique encoding of the state s, as
shown schematically in Fig 130. But now we can see
that the average number of binary digits we have used to
encode the blocks of length N will be

L(N) ≡
∑

s

psms, (650)



201

FIG. 130 Coding of sequences with variable word length. In
a stream where ‘0’ and ‘1’ occur independently, but with un-
equal probabilities, we can compress our description by coding
N–bit blocks; here N = 10. Each block can be labelled by
s, the number equivalent to the binary string (top). These
states have widely varying probability ps (lower left). We
can compute the cumulative probability of states with higher
probability (lower right), as described in the text, and use the
binary expansion of this cumulative probability as the code
word W . We stop the expansion at a number of digits given
by rounding up from − log2(ps).

and we can bound this from both sides,
∑

s

psms (− log2 ps) ≤L(N)<
∑

s

ps (− log2 ps + 1)(651)

S(N) ≤L(N)< S(N) + 1, (652)

where S is the entropy of the N–answer blocks, S(N) =
−
∑

s ps log2 ps. If we count the length of the code per
answer, then

S(N)

N
≤ L(N)

N
<

S(N)

N
+

1

N
. (653)

But, as before, we know that the entropy per degree of
freedom should approach a finite entropy density, as in
Eq (637), and now we see that the average code length
per answer is within 1/N of this entropy density. Thus,
as N → ∞, the entropy and the minimum code length
are equal.

To summarize, if we need to write down answers many
times, then the minimum space required to write down
these answers is, per answer, the entropy of the distri-
bution out of which the answers are drawn. Notice that
our choice of alphabet in which to write is arbitrary, but
we also had an arbitrariness in choosing the units of en-
tropy; this is the same arbitrariness. Thus, the statement
that entropy is both the amount of information we gain

and the amount of space we need to write down what we
have learned is not arbitrary, and there are no constants
floating around to spoil the exact equality. To reach this
maximally compact representation, we must at least im-
plicitly use the structure of the probability distribution
out of which the answers are drawn, adjusting the lengths
of individual code words in relation to the probability of
the answer.

Problem 131: Coding rare events. Suppose that we have
two possible answers, A and B, which occur with very unequal
probabilities, pA % pB . Show that the entropy of the distribution
of answers is approximately S ≈ pA log2(e/pA). If we have a long
sequence of answers, most are B with a sprinkling of As. Try
to encode such a sequence in binary form, using a code in which
some symbol (e.g., 1111) is reserved for A, and the blocks of B
are encoded by writing the number of consecutive Bs as a binary
number. To make this work—that is, to be sure that your encoding
can be uniquely decoded—you obviously have to be careful in the
special case where the number of Bs is equal to 15 (1111 in binary
form). Are there any other problems? Can you find a solution?
Does this code come close to the lower bound on code length set
by the entropy?

The idea that there is a minimum amount of space
required to write down a description of a system is in-
credibly important. At a practical level, we pay for the
resources needed to write things down, or to transmit
information from one place to another, and so there is
a premium on using as little space as possible. This is
often called “data compression.” More generally, this is
the first indication that there is a general notion of ef-
ficiency in representing data, and we will see how this
becomes relevant to biological systems.
The argument we have just given tells us that once

we know the probability distribution for the states s, we
have a code that we can use to represent these states, and
asymptotically this code is of minimum length. Suppose
that states really are chosen out of a distribution p ≡
{ps}, but we don’t know this; instead, we think that
the distribution is q. Then (neglecting terms that are
unimportant in the large N limit), we assign a code word
of length &s = − log2 qs to each state, and so the mean
code length is

L = −
∑

s

ps log2 qs. (654)

This is different than the entropy of the distribution p,
and the difference
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L− Lmin = L− S = −
∑

s

ps log2 qs −
[
−
∑

s

ps log2 ps

]
=

∑

s

ps log2

(
ps
qs

)
. (655)

This quantity is zero if the two distributions are the same,
and is positive for any pair of distributions p and q; it is
called the Kullback–Leibler divergence between the two
distributions, and usually is written as

DKL(p||q) =
∑

s

ps log2

(
ps
qs

)
. (656)

Notice that this is not a symmetric quantity, and hence
is not a metric on the space of distributions, although
it does say something about the degree of similarity or
difference between p and q. DKL also is sometimes called
the “relative entropy” of the distribution p with respect
to q.

To emphasize the role of DKL as a measure of differ-
ence between distributions, suppose that we are given N
samples and have to decide whether they came from p
or q. Out of the N samples, n1 come from state 1, n2

come from state 2, and so on. So the probability that the
distribution p generated these samples is

P (samples|p) = A
∏

s

pns
s , (657)

where A is a combinatorial factor, and similarly

P (samples|q) = A
∏

s

qns
s . (658)

What we want to know is, given the samples, what is
the probability P that they came from the distribution
p as opposed to q? Let us say that, a priori, the two
possibilities are equally likely. Then, by Bayes’ rule,

P =
P (samples|p)P (p)

P (samples)
(659)

=
P (samples|p)

P (samples|p) + P (samples|q) (660)

=
1

1 + 2−Λ
, (661)

where

Λ = log2

[
P (samples|p)
P (samples|q)

]
=

∑

s

ns log2

(
ps
qs

)
. (662)

As discussed in Chapter 1 [give specific pointer], Λ is
called the log likelihood ratio. We notice that since it is
proportional to all the ns, it must also be proportional
to N , and hence grows (on average) linearly with the
number of samples. We can think of this as the accumu-
lation of evidence for p vs. q, and the rate at which this

evidence accumulates is, asymptotically,

lim
N→∞

1

N
Λ =

∑

s

[
lim

N→∞

ns

N

]
log2

(
ps
qs

)
(663)

=
∑

s

ps log2

(
ps
qs

)
(664)

= DKL(p||q). (665)

Thus, the Kullback–Leibler divergence is, like the entropy
itself, the answer to two very different questions: the cost
of coding data using codes based on the wrong distribu-
tion, and the ease of discriminating the distributions from
one another based on samples.

Problem 132: A little more about the Kullback–Leibler
divergence.

(a.) Show that DKL(p||q) is positive (semi–)definite, and is
minimized when p = q.

(b.) DKL(p||q) is unbounded, so some probability distributions
are infinitely different from one another. Explain, using the con-
nection to the accumulation of evidence, how to make sense out of
this divergence.

(c.) If we have a family of distributions that depend on a pa-
rameter, pθ, show that DKL(pθ||pθ′ ) behaves as F (θ)× (θ − θ′)2

when the parameters θ and θ′ are close. Give an explicit formula
for F (θ).

(d.) Imagine that we draw N samples out of the distribution pθ0 ,
but all we know is that the distribution is in the family pθ. Use
Bayes’ rule to construct P (θ|samples), and show that as N becomes
large this becomes peaked around the right answer, θ = θ0. Show
that the variance around this peak is related to F (θ0).

(e.) If the two distributions p and q are Gaussians, it’s rela-
tively easy to evaluate DKL(p||q). Suppose that the two Gaussian
differ in either their means or their variances, but not both. You
should find that the choice of changing mean vs. variance makes a
difference to the (a)symmetry of DKL. Make this explicit, and use
what we have shown about DKL as a measure of discrimination to
explain the origin of this difference.

The connection between entropy and information has
(at least) one more very important consequence: corre-
lations or order reduce the capacity to transmit informa-
tion. Perhaps the most familiar example is in spelling. If
all possible combinations of letters were legal words, then
there would be (26)4 = 456, 976 four letter words. But
if you look through a large, reasonably coherent body
of English text—the collected works of a prolific author,
or the last year of newspaper articles—you will find that
there at most a few hundred four letter words being used.
Most of this restriction of vocabulary comes from corre-
lations among the letters in the word: once we have put
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a ‘t’ in the first position, it is much more likely that we
will put a vowel in the second position; if we want to
put a consonant then it has a high probability of being
an ‘h’, and so on. It is important that, while correla-
tions have signs—we speak both of correlation and anti–
correlation—with respect to the entropy all correlations
have the same effect, namely reducing the entropy. In-
deed, as explained in [pointer to appendix on maximum
entropy], we can construct models for the probability dis-
tribution of the states in a system that are consistent
with some measured correlations but otherwise have the
maximum possible entropy, and we can build a hierarchy
of these models with ever smaller entropies as we take
account of more correlations; once we capture all the
relevant correlations, the entropy converges to its true
value.

For four letter words, as an example, the entropy for
random letters would be Srand = 4 log2(26) = 18.8 bits.
In the collected works of Jane Austen, the “one body”
correlations, which measure unequal frequencies with
which letters are used, reduces this to Sind = 14bits.
Taking account of the “two body” correlations between
pairs of letters cuts this entropy nearly in half, to S2 =
7.48 bits, while the true entropy of the distribution of
four letter words in these texts in only slightly less, at
S = 6.92 bits. Thus the entropy is nearly reduced by a
factor of three from the case of completely random let-
ters, and most of this reduction is explained by one and
two body correlations. Again, the important point is that
these correlations, which may have many advantages, cer-
tainly have the consequence of reducing our vocabulary
and hence our capacity to transmit information.

This seems an appropriate moment to recall that en-
tropy is a very old idea. It arises in thermodynamics
first as a way of keeping track of heat flows, so that a
small amount of heat dQ transferred at absolute tem-
perature T generates a change in entropy dS = dQ/T .
While there is no function Q which measure the heat con-
tent of a system, there is a function S that characterizes
the (macroscopic) state of a system independent of the
path to that state. But now we know that the entropy
of a probability distribution also measures the amount
of space that we need to write down a description of the
(microscopic) states drawn out of that distribution.

[Would a schematic help here?] Let us imagine, then,
a thought experiment in which we measure (with some
fixed resolution) the positions and velocities of all the
gas molecules in a small box, and type these numbers
into a file on our computer. There are relatively effi-
cient programs (gzip, or “compress” on a UNIX machine)
that compresses such files to nearly their shortest possi-
ble length. If this really works, then the length of the
file tells us the entropy of the distribution out of which
the numbers in the file are being drawn, but this is the
entropy of the gas. Thus, if we heat up the room by
ten degrees, and repeat the process, we will find that the

resulting data file is longer. More profoundly, if we mea-
sure the increase in the length of the file, we know the
entropy change of the gas and hence the amount of heat
that we had to add to the room in order to increase the
temperature. This connection between a rather abstract
quantity such as the length, in bits, of a computer file and
a very tangible physical quantity such as the amount of
heat added to a room has long struck me as one of the
more dramatic, if elementary, examples of the power of
mathematics to unify our description of very disparate
phenomena.

Problem 133: Heat flows and file sizes. Give a problem
that expands the thought experiment in the previous paragraph ...
maybe with a polymer and entropic forces, where we can simulate?

Returning to the conversation between Max and Allan,
we assumed that Max would receive a complete answer
to his question, and hence that all his uncertainty would
be removed. This is an idealization, of course. The more
natural description is that, for example, the world can
take on many states w, and by observing data d we learn
something but not everything about w. Before we make
our observations, we know only that states of the world
are chosen from some distribution P (w), and this distri-
bution has an entropy S[P (w)]. Once we observe some
particular datum d, our (hopefully improved) knowledge
of w is described by the conditional distribution P (w|d),
and this has an entropy S[P (w|d)] that is smaller than
S[P (w)] if we have reduced our uncertainty about the
state of the world by virtue of our observations. We iden-
tify this reduction in entropy as the information that we
have gained about w,

I(d → w) ≡ S[P (w)]− S[P (w|d)]. (666)

Notice that this depends on exactly what datum d we
have observed.
Before proceeding, I should draw attention to some no-

tational issues. Strictly speaking, entropy is a property
of the probability distribution out of which the states of
a system are drawn. Thus, we write S[P (w)] to mean the
entropy of the states of the world when these are drawn
out of P (w). Similarly, we should write S[P (w|d)] for
the entropy of states of the world conditional on having
observed the data d. Notice that S[· · · ] is the same func-
tional in both cases. But, this is slightly cumbersome.
Indeed, in statistical mechanics and thermodynamics we
seldom talk about “the entropy of the distribution out of
which the states of the gas have been drawn” (although
we should); instead we just say “the entropy of the gas.”
In this spirit, sometimes I will write in the shorthand
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S(w) ≡ S[P (w)], and S(w|d) ≡ S[P (w|d)]. I hope this
doesn’t cause any confusion.

There is one more notational difficulty. When we talk
about the states w of the world, it is natural to say that
these states are drawn from the distribution P (w). Sim-
ilarly, when we talk about the data that we will collect,
it is natural to write that particular observations d are
drawn from the distribution P (d). The problem is that
P (·) refers to different functions in these two cases. We
could solve this by noting carefully that the states of
the world w come from a set of possible states, w ∈ W ,
and the distribution over these states should be written
PW (w). Similarly, individual observations come from a
set of possible observations, d ∈ D, and the distribution
of these data should be written PD(d). Whenever there
is a possibility for confusion, I’ll try to adhere to this
convention. In other cases, I’ll slide to the more informal
P (w) and P (d). Again, I hope this doesn’t cause prob-
lems. [I am not sure that the current draft lives up to
this policy, so please read carefully!]

With the notational issues settled, let’s go back to our
problem. Having defined the information gained in Eq
(??), we should appreciate that this is not guaranteed

to be positive. Consider, for instance, data which tell us
that all of our previous measurements have larger error
bars than we thought: clearly such data, at an intuitive
level, reduce our knowledge about the world and should
be associated with a negative information. Another way
to say this is that some data points d will increase our
uncertainty about state w of the world, and hence for
these particular data the conditional distribution P (w|d)
has a larger entropy than the prior distribution P (w), so
that Id will be negative. On the other hand, we hope
that, on average, gathering data corresponds to gaining
information: although single data points can increase our
uncertainty, the average over all data points does not.
If we average over all possible data—weighted, of

course, by their probability of occurrence PD(d)—we ob-
tain the average information that d provides about w:

〈(d → w)〉 = S(w)−
∑

d

PD(d)S(w|D). (667)

This can be rearranged and simplified, and the result is
so important that it is worth being very explicit about
the algebra:

〈(d → w)〉 = −
∑

w

PW (w) log2 PW (w)−
∑

d

PD(d)

[
−
∑

w

P (w|d) log2 P (w|d)
]

(668)

= −
∑

w

∑

d

P (w,D) log2 PW (w) +
∑

w

∑

d

P (w|D)PD(d) log2 P (w|d) (669)

= −
∑

w

∑

d

P (w,D) log2 PW (w) +
∑

w

∑

d

P (w,D) log2 P (w|d) (670)

=
∑

w

∑

d

P (w,D) log2

[
P (w|d)
PW (w)

]
(671)

=
∑

w

∑

d

P (w,D) log2

[
P (w, d)

PW (w)PD(d)

]
, (672)

where we identify the joint distribution of states of the
world and data, P (w, d) = P (w|d)PD(d).
We see that, after all the dust settles, the average infor-

mation which d provides about w is symmetric in d and
w. This means that we can also view the state of the
world as providing information about the data we will
observe, and this information is, on average, the same
as the data will provide about the state of the world.
This ‘information provided’ is therefore often called the
mutual information, and this symmetry will be very im-
portant in subsequent discussions; to remind ourselves of
this symmetry we write I(d;w) rather than 〈(d → w)〉.
One consequence of the symmetry or mutuality of in-

formation is that we can write the mutual information as

a difference of entropies if two different ways,

I(d;w) = S(w)−
∑

d

PD(d)S(w|d) (673)

= S(d)−
∑

w

PW (w)S(d|w). (674)

If we consider only discrete sets of possibilities then en-
tropies are positive (or zero), so that these equations im-
ply

I(d;w) ≤ S(w) (675)

I(d;w) ≤ S(d). (676)

The first equation tells us that by observing d we can-
not learn more about the world then there is entropy in
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the world itself. This makes sense: entropy measures
the number of possible states that the world can be in,
and we cannot learn more than we would learn by re-
ducing this set of possibilities down to one unique state.
Although sensible (and, of course, true), this is not a ter-
ribly powerful statement: seldom are we in the position
that our ability to gain knowledge is limited by the lack of
possibilities in the world around us. On the other hand,
there is a tradition of studying the biological systems
as they responds to highly simplified signals, and under
these conditions the lack of possibilities in the world can
be a significant limitation, substantially confounding the
interpretation of experiments.

Equation (676), however, is much more powerful. It
says that, whatever may be happening in the world, we
can never learn more than the entropy of the distribution
that characterizes our data. Thus, if we ask how much
we can learn about the world by taking readings from a
wind detector on top of the roof, we can place a bound on
the amount we learn just by taking a very long stream of
data, using these data to estimate the distribution PD(d),
and then computing the entropy of this distribution.

The entropy of our observations thus limits how much
we can learn no matter what question we were hoping to
answer, and so we can think of the entropy as setting (in
a slight abuse of terminology) the capacity of the data
d to provide or to convey information. As an example,
the entropy of neural responses sets a limit to how much
information a neuron can provide about the world, and
we can estimate this limit even if we don’t yet understand
what it is that the neuron is telling us (or the rest of the
brain).

Problem 134: Maximally informative experiments.
Imagine that we are trying to gain information about the correct
theory T describing some set of phenomena. At some point, our
relative confidence in one particular theory is very high; that is,
P (T = T∗) > F · P (T -= T∗) for some large F . On the other hand,
there are many possible theories, so our absolute confidence in the
theory T∗ might nonetheless be quite low, P (T = T∗) % 1. Sup-
pose we follow the “scientific method” and design an experiment
that has a yes or no answer, and this answer is perfectly correlated
with the correctness of theory T∗, but uncorrelated with the cor-
rectness of any other possible theory—our experiment is designed
specifically to test or falsify the currently most likely theory. What
can you say about how much information you expect to gain from
such a measurement? Suppose instead that you are completely
irrational and design an experiment that is irrelevant to testing
T∗ but has the potential to eliminate many (perhaps half) of the
alternatives. Which experiment is expected to be more informa-
tive? Although this is a gross cartoon of the scientific process, it
is not such a terrible model of a game like “twenty questions.” It
is interesting to ask whether people play such question games fol-
lowing strategies that might seem irrational but nonetheless serve
to maximize information gain. Related but distinct criteria for op-
timal experimental design have been developed in the statistical
literature.

[I wonder if I should go through the basic calculation
of maximum entropy counting here ... since the “things”
we count have a cost, this would complete the thought
about bounds. At least need a pointer to Appendix A.8.]
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FIG. 131 A schematic of how a train of action potential is
converted to discrete “words” at different times resolutions
∆τ . There is a minimum inter–spike interval, the “refractory
period” (here, ∼ 2ms), so that for sufficiently small ∆τ the
words are binary. Highlighted is the case where ∆τ = 2ms
and T = 8ms, so this segment of the spike train becomes
three successive four bit words, 0101, 0100, and 0110.

To see how the ideas of entropy reduction and informa-
tion work in a real example, let’s consider the response of
a neuron to sensory inputs. As we have discussed [start-
ing in Chapter One; give specific pointers], most neurons
in the brain generate a sequence of brief (∼ 1ms), iden-
tical electrical pulses called action potentials or spikes.
Since these events are identical, we can think of them as
marking points in time, and then we can build a discrete
vocabulary of responses by fixing some limited time res-
olution ∆τ , as in Fig 131. More precisely, if ∆τ is small,
then in each small time window of duration ∆τ we will
see either one or zero spikes, and so the response is nat-
urally discrete and binary. Then segments of the spike
train of duration T can be thought of as T/∆τ–letter bi-
nary words. Recording from a single neuron as the animal
experiences some reasonably complex, dynamic sensory
inputs, it is relatively easy to estimate the distribution of
these these words, P (W ), so long as we don’t make the
ratio T/∆τ too large. Then we can compute the entropy
of this distribution, S(T,∆τ).
Figure 132 shows the results of experiments on the

motion sensitive neuron H1 in the fly visual system that
we met earlier, in Section [**], when we discussed noise
and the precision of visual motion estimation. In these
experiments, the fly sees a randomly moving pattern, and
H1 responds with a stream of spikes. If we fix ∆τ = 3ms
and look at T = 30ms segments of the spike train, there
are 2T/∆τ ∼ 103 possible words, but the distribution is
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analysis of Fig. 3. The total entropy (Stotal !
5.17 bits) is almost the same as that of the real
spike trains, whereas the noise entropy (Snoise
! 4.22 bits) is substantially larger: Real spike
trains are almost as variable as possible given
the mean spike rate, but they are much more
reproducible than Poisson trains. H1 thus
transmits more than twice as much informa-
tion (2.43 versus 0.95 bits in a 30-ms window)
about these stimuli as would be the case if the
neuron exhibited the noisiness found with
constant inputs (23).

Several mechanisms may contribute to
the reproducibility of responses. First, to
achieve millisecond precision in the spiking
of H1, the fly’s visual system must resolve
events in the motion stimulus on this time
scale; more detailed analysis suggests that
this is close to the limit set by photoreceptor
noise. Second, neural computation and en-
coding must be adaptive in order to follow
rapid modulations of the stimulus over a
wide dynamic range (24). Finally, refractori-
ness regularizes spike trains at high firing
rates (11), enforcing a more deterministic
relation between stimulus and response (25).

In summary, during stimulation dynam-

ic H1 makes efficient use of its capacity to
transmit information. This efficiency is
achieved by establishing precise temporal
relations between individual action poten-
tials and events in the sensory stimulus.
These observations on the encoding of
naturalistic stimuli cannot be understood
by extrapolation from quasistatic experi-
ments, nor do such experiments provide
any hint of the timing and counting accu-
racy that the brain can achieve. Just as H1
resembles cortical neurons in its noisy re-
sponse to static stimuli, many systems may
resemble H1 in their reproducible re-
sponse to dynamic stimuli (26).
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traces of H1, starting at about 600 and 1800 ms, respectively, after onset of the repeated stimulus of Fig.
2. (B) Construction of local word frequencies. We start with a set of spike trains in response to a repeated
random velocity sequence. Beginning at 600 ms these spike trains are divided in 10 contiguous 3-ms
bins, as indicated by the array of vertical lines. For each trial, the spikes in each of the 10 bins are
counted, and this set of 10 numbers forms a word, W. Here almost all words are binary strings, as two
spikes occur only very rarely within 3 ms. This procedure gives us as many words as there are trials (here
900). From this set we compute the probability for each word, and the resulting distribution is depicted
in the histogram, P(W!t) ! 600 ms, where the words are ordered according to their probability. (C) As
in (B), but now starting at 1800 ms. (D) Distribution, P(W ), of all words throughout the experiment. Words
are defined in the same way as in (B) and (C). However, here they are taken from the long (900 times 10 s)
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describes their ranked frequencies. In these windows, by far the most likely word is 0000000000, and
roughly 1500 different words are observed.
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FIG. 132 [Make a new version of this.] A neuron responds to dynamic stimuli with sequences of spikes. In this case, as
described in the text, we look at the motion sensitive neuron H1 in the fly’s visual system. (A) Each line across time is a single
presentation of a movie, and dots mark the arrival times of spikes on each trial. (B) and (C) show the discretization of the
spike trains into binary “words” with ∆τ = 3ms resolution, and the distribution of words that occur at a particular moment
in the movie, P (w|t). (D) The distribution of words averaged over all times, in rank order. From de Ruyter van Steveninck et
al (1997).

strongly biased and the entropy is only S(T,∆τ) ∼ 5 bits.
This relatively low entropy means that we can still sample
the distributions of words even out to T ∼ 50 − 60ms,
which is interesting because the fly can actually generate
a flight correction in response to visual motion inputs
within ∼ 30ms.

The entropy S(T,∆τ) should be an extensive quan-
tity, which means that, for large T , we should have
S(T,∆τ) ∝ T . More strongly, if the correlations in the
spike train are sufficiently short ranged, then we expect
that at large T we will have

1

T
S(T,∆τ) = S(∆τ) +

C(∆τ)

T
+ · · · , (677)

where · · · vanish more rapidly than 1/T . In fact we see
this in the real data (Fig 133), which suggests that we
really can estimate the entropy rate S(∆τ).
Connecting to the discussion above, the entropy rate

S(∆τ) sets a limit on the rate at which the spikes can

provide information about the sensory input. When we
make ∆τ smaller, the entropy rate necessarily goes up,
because previously indistinguishable responses map to
different words at higher time resolution. Concretely, if
we make ∆τ smaller by a factor of two, then every ‘1’ in
the coarse words can become either a ‘01’ or a ‘10’ in the
higher resolution words, and so we expect the entropy to
increase by roughly one bit for every spike, as in Fig 131.

Problem 135: Entropy and entropy rate in simple mod-
els. Going back to Chapter 1, you know how to generate events
drawn from a Poisson process with an arbitrary time dependent
rate r(t). Here you should take this (semi–)seriously as a model
for spike trains, and use the resulting simulations to explore the
entropy and entropy rate of neural responses.

(a.) Start with r = r0, a constant. Generate a long sequence
of spikes (e.g., ∼ 104). Choose a time resolution ∆τ such that
r0∆τ % 1, and turn your simulated spike train into a binary se-
quence; for simplicity ignore the (rare) occurrence of two spikes
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FIG. 133 Entropy is extensive. From the experiments on the
neuron H1 in Fig 132, we compute the entropy of words at
fixed time resolution ∆τ == 3ms and variable length T , stop-
ping when T is so large that we can no longer reliably sample
the distribution P (W ). The data (error bars are smaller than
the symbols) fall on the line predicted in Eq (677), and we can
thus extract an estimate of the entropy rate S(∆τ). Redrawn
from Strong et al (1998a).

in one bin. Form “words” with T/∆τ bits, and estimate the dis-
tribution of these words from your simulated data. Compute the
entropy of this distribution, and explore its dependence on T , r0,
and ∆τ . Do you see the emergence of an entropy rate, S ∼ ST?

(b.) Explain why, for a Poisson process with a constant rate,
S = ST should be exact. From this result, you can calculate S
by thinking about just one bin of size ∆τ , and you should do this.
How does your analytic result compare with the simulation results
in (a)?

(c.) Suppose that x(t) is a Gaussian stochastic process with

correlation function 〈x(t)x(t′)〉 = σ2e−|t−t′|/τc .[This should be ex-
plained somewhere already!] Samples of this process can be gener-
ated by simulating the Langevin equation,

τc
dx

dt
= −x+ 2ση(t), (678)

where 〈η(t)η(t′)〉 = δ(t − t′). Consider a Poisson process with
rate r(t) = r0ex(t). Generate spike sequences for this process,
and follow the procedures in (a) to estimate the entropy in binary
words of duration T at resolution ∆τ , with reasonable choices of
parameters. Can you observe the emergence of extensive behavior,
S ∼ ST? Does this (as seems plausible) require T " τc? How do
your results depend on σ?

A long standing question in thinking about the brain
has been whether the precise timing of individual spikes
is important, or whether the brain is capable of count-
ing spikes only in relatively coarse time bins, so that the
“rate” of spikes over longer periods of time is all that
matters. We now have the tools to give a more precise
formulation of this question. As we increase our time
resolution, the entropy of the spike trains goes up, and

hence so does the capacity of the neuron to convey infor-
mation. The question is whether this capacity is used—
does the information about sensory inputs also rise as the
time resolution is improved, or is the extra entropy just
‘noise’?
If the sensory inputs are called s, then the information

that the spike sequences in some window T provide about
these inputs can be written, as in Eq (674), as a difference
of entropies,

I(s;W ) = S(W )− 〈S(W |s)〉s, (679)

where 〈· · · 〉s denotes an average over the distribution of
inputs. We have already discussed the entropy of the
neural vocabulary, S(W ); the problem is how to esti-
mate S(W |s), the entropy of the words given the sensory
input s. To do this we need to sample the distribution
P (W |s), that is the distribution of neural responses when
the stimulus is fixed. At a minimum, this requires that
we repeat the same stimuli many times. So, if the visual
stimulus is a long movie, we have to show the movie over
and over again. But how do we pick out a particular
stimulus s from the continuous stream? One way to do
this is to realize that the flow of time in the movie pro-
vides an index into the stimuli, and all we need is to be
able to compute averages over the distribution of stimuli.
If the source of stimuli is ergodic (which we can arrange
to be true in the lab!), then an average over stimuli is
equivalent to an average over time. So, if we repeat the
movie many times, and focus on events at time t relative
to the start of the movie, we can sample, in repeats of
the movie, the distribution P (W |t), as in Fig 132, and
hence estimate S(W |t). Finally, the information is ob-
tained by explicitly replacing the ensemble average with
a time average,

I(s;W ) = S(W )− 〈S(W |t)〉t. (680)

Each of the entropy terms on the right should behave as
in Eq (677), and so we can extract an estimate of the in-
formation rate Rinfo(∆τ) as a function of time resolution.
Results are shown in Fig 134.
We see that, as we vary the time resolution from 800ms

down to 2ms, the information rate follows the entropy
rate, with a nearly constant 50% efficiency. Although
we should not generalize too much from one example,
this certainly suggests that neurons are making use of a
significant fraction of their capacity in actually encod-
ing sensory signals. Also, this is true even at millisec-
ond time resolution. The idea that the entropy of the
spike train sets a limit to neural information transmis-
sion emerged almost immediately after Shannon’s work,
but it was never clear whether these limits could be ap-
proached by real systems.
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FIG. 134 Entropy and information in a spike train. Exper-
iments on the fly’s motion sensitive visual neuron were ana-
lyzed as described in the text (following Fig 132) to estimate
the total entropy and the information carried about the sen-
sory input. As we vary the time resolution of our analysis
from ∆τ = 800ms down to ∆τ = 2ms, we distinguish finer
details of the neural response and expand the capacity of the
putative neural code; this enhanced capacity is measured by
the increasing entropy. Remarkably, across this huge range,
capacity is used with almost constant efficiency. From Strong
et al (1998a).

Problem 136: Information from single events. This sec-
tion began by defining the information gained in a single observa-
tion. Here, we would like to give the parallel for individual neural
responses, but there is a twist because spikes are rare compared
with silences. Thus it makes sense to ask how much information
we obtain per spike, or per non–silent word W . Imagine that we
look in a window of duration ∆τ at time t, and we are looking
for some event e—this event could be a single action potential, or
some combination of multiple spikes with specific intervals between
them. On average these events occur with some rate r̄e.

(a.) In the small window ∆τ , either the event e occurs or it
does not; for sufficiently small ∆τ , the probability of occurrence is
pe = r̄e∆τ . What is the entropy of the binary variable marking
the occurrence of the event? Can you simplify your result when
pe % 1? You’ll see that the entropy in this limit is small, but so is
the expected number of events. What is the entropy per event?

(b.) If we know the sensory inputs to this neuron, then the prob-
ability of an event depends on time, locked to the time dependence
of the sensory signal. Let’s call the time dependent rate re(t). As
in (a.), compute the entropy of the binary event/nonevent variable,
but now conditional on knowledge of the sensory inputs.

(c.) Combine your results in (a.) and (b.) to give an expression
for the mean information that the occurrence or non–occurrence
of the event provides about the sensory input. Normalize by the
expected number of events, to give bits per event. Is the limit
∆τ → 0 well behaved? When the dust settles, you should find that
the information per event is

Ie =

〈
re(t)

r̄e
log2

[
re(t)

r̄e

]〉

t

. (681)

(d.) As an alternative view of the same question, suppose that
we observe a large window of time T . If T is sufficiently large, we
can be sure that the event e will occur, but we don’t know when.

Problem 137: Information from single spikes in a simple
model. In Problem [**] above, you constructed a model spike train
using a Poisson process with a time varying rate r(t) = r0ex(t),
where x(t) is a Gaussian stochastic process. Show that, for this

model, the information carried by a single spike about x(t) is lin-
ear in the variance of the signal 〈x2〉. This suggests that if the
signal variance grows, the information carried by spikes grows with
it, without bound. Explain what is wrong with this picture. Sup-
pose instead that the spike rate r(t) depends on x through some
saturating function, for example

r(t) =
r0

1 + exp[−x(t) + θ]
. (682)

Reduce the formula for Ie in this model to a single integral which
you can do numerically. Can you see how the results simplify as
〈x2〉 becomes large? As a hint, notice that this is equivalent to a
model in which

r(t) =
r0

1 + exp[−γ(x(t) + θ̃)]
, (683)

where γ → ∞ while 〈x2〉 stays constant. Is there a setting of the
threshold θ which maximizes Ie? Is there a cost to achieving this
optimum?

One might worry that the high efficiency of coding seen
in the fly’s H1 neuron arises because the fly has relatively
few neurons, and thus is under greater pressure to be ef-
ficient. While this may be true, it seems that high coding
efficiencies are there to be found even in animals like us
and our primate cousins who have very large numbers of
neurons. In humans it is possible to record from individ-
ual receptor cells in our hands and fingertips, contacting
the axons of these cells as they course along the arm to
the spinal cord. Data are more limited than in the fly,
so one has to be more careful to avoid systematic errors,
but the lower bound on the efficiency of coding com-
plex, dynamic variations in the indentation of the skin
is above 50%. In the visual cortex of non–human pri-
mates, there is a classic series of experiments correlating
the perception of motion with the activity of single neu-
rons in area MT. [probably this needs more explanation!]
The standard stimuli for these experiments are random
dot patterns in which a fraction of the dots move coher-
ently while another fraction are randomly deleted and
replaced at new locations; the perception of motion di-
rection becomes less reliable as the degree of coherence
decreases. The evidence that single neurons are mak-
ing a measurable contribution to the perceptual decision
is strong, since one can correlate the number of spikes
generated by a neuron with the animal’s decision about
leftward vs. rightward motion even when the coherence
is zero, and the animal is just guessing.
The experiments in MT focused on asking the animal

to report a decision about motion direction across a two
second window of stimulation. When we look at these
random patterns, however, we see a certain amount of
“jiggling,” especially at low coherence. If we present ex-
actly the same pattern of random dots vs. time, we find
that the neurons respond with a fair degree of reliabil-
ity to the temporal details of the movie, certainly down
to time scales below 10ms. In Fig 135 we see what this
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FIG. 135 Entropy and information in spike trains from a mo-
tion sensitive neurons in the primate visual cortex (area MT);
experiments by Britten et al (1993) and analysis by Strong et
al (1998b). [fill in the caption]

means in terms of the information carried by the spike
trains about the time–varying details of the visual stim-
ulus, rather than just the overall direction of motion.
Here the information, at ∆τ = 6ms time resolution, is
25− 30%. Experiments on the same neurons using stim-
uli that alternated between moving left and right81 on
the 30 − 100ms time scale found information rates of
1 − 2.5 bits/spike, quite comparable to the results with
H1. In summary, although there are differences in the de-
tails of the spike trains from motion sensitive neurons in
flies and monkeys, there is little different in the amount
of information they carry, or the efficiency with this in-
formation is encoded, if we asking about the kinds of
complex, dynamic stimuli that are relevant to the real
world.

We now want to look at information transmission in
the presence of noise, connecting back a bit to what we
discussed in Chapters 1 and 2. Imagine that we are in-
terested in some signal x, and we have a detector that
generates data y which is linearly related to the signal

but corrupted by added noise:

y = gx+ ξ. (684)

It seems reasonable in many systems to assume that the
noise is Gaussian, either for fundamental physical rea-
sons (as with thermal noise), or because it arises from
a superposition of many independent sources, in which
case the central limit theorem takes over. We will also
start with the assumption that x is drawn from a Gaus-
sian distribution just because this is a simple place to
start; we will see that we can use the maximum entropy
property of Gaussians to make some more general state-
ments based on this simple example. The question, then,
is how much information observations on y provide about
the signal x.
The problem of information transmission with Gaus-

sian signals and noise is sufficiently important that it is
worth going through all the algebra quite explicitly; this
is also one of those pleasing problems where, as we cal-
culate, terms proliferate and then collapse into a much
simpler result. So, onward. The statement that ξ is
Gaussian noise means that

P (y|x) = 1√
2π〈ξ2〉

exp

[
− 1

2〈ξ2〉 (y − gx)2
]
. (685)

Our simplification is that the signal x also is drawn from
a Gaussian distribution,

P (x) =
1√

2π〈x2〉
exp

[
− 1

2〈x2〉x
2

]
, (686)

and hence y itself is Gaussian,

P (y) =
1√

2π〈y2〉
exp

[
− 1

2〈y2〉y
2

]
(687)

〈y2〉 = g2〈x2〉+ 〈ξ2〉. (688)

To compute the information that y provides about x we
use Eq. (672):

I(y → x) =

∫
dy

∫
dxP (x, y) log2

[
P (x, y)

P (x)P (y)

]
bits (689)

=
1

ln 2

∫
dy

∫
dxP (x, y) ln

[
P (y|x)
P (y)

]
(690)

=
1

ln 2

〈
ln

[√
2π〈y2〉√
2π〈ξ2〉

]
− 1

2〈ξ2〉 (y − gx)2 +
1

2〈y2〉y
2

〉
,

(691)

where by 〈· · · 〉 we understand an expectation value over the joint distribution P (x, y). Now in Eq. (691) we can
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see that the first term is the expectation value of a con-
stant. The third term involves the expectation value
of y2 divided by 〈y2〉, so we can cancel numerator and
denominator. In the second term, we can take the ex-
pectation value first of y with x fixed, and then aver-
age over x, but since y = gx + ξ the numerator is just
the mean square fluctuation of y around its mean value,
which again cancels with the 〈ξ2〉 in the denominator. So
we have, putting the three terms together,

I(y → x) =
1

ln 2

[
ln

√
〈y2〉
〈ξ2〉 − 1

2
+

1

2

]
(692)

=
1

2
log2

(
〈y2〉
〈ξ2〉

)
(693)

=
1

2
log2

(
1 +

g2〈x2〉
〈ξ2〉

)
bits. (694)

Another way of arriving at these results is to remem-
ber that the information is a difference of entropies [Eq
(674)], but in this case the underlying distributions are
all Gaussian. Thus it’s useful to know, in general, the
entropy of a Gaussian distribution. Suppose that

P (z) =
1√

2π〈(δz)2〉
exp

[
− (z − 〈z〉)2

2〈(δz)2〉

]
. (695)

Now our task is to compute

S = −
∫

dz P (z) log2 P (z) = −
〈
log2 P (z)

〉
. (696)

But

log2 P (z) =
1

ln 2

[
ln

(
1√

2π〈(δz)2〉

)
− (z − 〈z〉)2

2〈(δz)2〉

]
,

(697)
and hence

S = −
〈
log2 P (z)

〉
(698)

=
1

ln 2

[
ln
(√

2π〈(δz)2〉
)
+

〈
(z − 〈z〉)2

2〈(δz)2〉

〉]
(699)

=
1

ln 2

[
1

2
ln
(
2π〈(δz)2〉

)
+

1

2

]
(700)

=
1

2
log2

[
2πe〈(δz)2〉

]
. (701)

Notice that the entropy is independent of the mean, as we
expect, since entropy measures variability or uncertainty.

Problem 138: Using the entropy of Gaussians. Use the
general result on the entropy of Gaussian distributions, Eq (701),

to rederive Eq (694) for the information transmission through the
“Gaussian channel.”

We can gain some intuition by rewriting Eq (694).
Rather than thinking of our detector as adding noise af-
ter generating the signal gx, we can think of it as adding
noise directly to the input, and then transducing this
corrupted input:

y = g(x+ ηeff), (702)

where ηeff = ξ/g. Note that the “effective noise” ηeff is in
the same units as the input x; this is called “referring the
noise to the input” and is a standard way of characteriz-
ing detectors, amplifiers and other devices, as discussed
above.82 Written in terms of the effective noise level, the
information transmission takes a simple form,

I(y → x) =
1

2
log2

(
1 +

〈x2〉
〈η2eff〉

)
bits, (703)

or

I(y → x) =
1

2
log2(1 + SNR), (704)

where the signal to noise ratio is the ratio of the variance
in the signal to the variance of the effective noise, SNR =
〈x2〉/〈η2eff〉.
The result in Eq. (704) is easy to picture: When we

start, the signal is spread over a range δx0 ∼ 〈x2〉1/2, but
by observing the output of our detector we can localize
the signal to a small range δx1 ∼ 〈η2eff〉1/2, and the reduc-
tion in entropy is ∼ log2(δx0/δx1) ∼ (1/2) · log2(SNR),
which is approximately the information gain.

Problem 139: A small point. Try to understand why the
simple argument in the preceding paragraph, which seems sensible,
doesn’t give the exact answer for the information gain at small
SNR.

82 As a reminder, if we build a photodetector it is not so useful to
quote the noise level in Volts at the output—we want to know
how this noise limits our ability to detect dim lights. Similarly,
when we characterize a neuron that uses a stream of pulses to
encode a continuous signal, we don’t really want to know the
variance in the pulse rate (although this is widely discussed); we
want to know how noise in the neural response limits precision
in estimating the real signal, and this amounts to defining an
effective noise level in the units of the signal itself. In the present
case this is just a matter of dividing, but generally it is a more
complex task.
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FIG. 136 Spatial profiles of Hunchback expression in the early
Drosophila embryo. Small dots show experiments from indi-
vidual embryos; circles with error bars are mean and standard
deviation across 51 embryos. In the inset, image in red shows
fluorescent antibody staining for Hb, and green shows the
corresponding measurement for Krüppel. These images are
taken by optical sectioning along the midline of the embryo,
and the intensity is measured in a small area, roughly the size
of a nucleus, the slides along the “rim” of the embryo where
the nuclei are sitting. From Dubuis et al (2011).

To illustrate these ideas, consider the expression of the
“gap genes” in the fly embryo, which we have seen in
Sections [pointers to specific sections in previous chap-
ters]. We recall that, in response to the primary, ma-
ternally supplied morphogens, these genes have varying
levels of expression which provide a first step in building
the blueprint for the fully developed organism. One of
the basic ideas in developmental biology is that these ex-
pression levels carry “positional information,” i.e. that
cells know where they are in the embryo, and hence their
fate in the developed organism, as a result of knowing
the concentrations of these molecules. It seems natural
to ask if we can quantify this positional information, in

bits. To do this, as in Fig 136, we can look at many em-
bryos and measure the concentration vs. position in each
one. If there is a perfect functional relationship, with no
noise, then the transmission of positional information is
limited only by the number of samples that we take along
the position axis, and hence the information in bits will
just be the log of the number of cells. But there is noise,
and this sets a limit to the positional information.
The position along the embryo can be measured by

0 ≤ x ≤ 1. If we assume that the cells acquiring po-
sitional information are distributed uniformly (which is
approximately true), then P (x) is uniform, P (x) = 1.
The expression level of the gene we are looking at will
be called g. What we need to know is the distribution
of expression levels at one position, P (g|x). Experiments
give us samples out of this distribution, but we may or
may not have enough samples to characterize the whole
distribution. What we can do more easily is to measure
the mean ḡ(x) and the variance σ2

g(x), and then approx-
imate P (g|x) as being Gaussian. One might worry that
this approximation is uncontrolled, but in fact we can
say more.
Suppose that all we know is the mean and variance of

the distribution P (g|x). The mutual information I(g;x)
is the difference between the entropy of the distribution
P (g) and the average entropy of the distribution P (g|x),

I(g;x) = S[P (g)]− 〈S[P (g|x)]〉x. (705)

Thus if we can put an upper bound on the entropy
S[P (g|x)], we can put a lower bound on the information.
Suppose we search for a distribution P (g|x) that maxi-
mizes the entropy, while reproducing the measured mean
and variance. As explained in more detail in Appendix
[**], we can do this constrained optimization using the
standard method of Lagrange multipliers. To maximize
S[P (g|x)] we introduce a functional

S̃[P (g|x)] = S[P (g|x)]− λ1

[∫
dg P (g|x)g − ḡ(x)

]
− λ2

[∫
dg P (g|x) (g − ḡ(x))2 − σ2

g(x)

]
. (706)

Now if we maximize S̃[P (g|x)] with respect to P (g|x),
and then extremize with respect to the Lagrange multi-
pliers λ1 and λ2, we will find a distribution that maxi-
mizes the entropy and reproduces the observed mean and
variance. The solution to this problem, as shown in Ap-
pendix [**], is the Gaussian distribution. Thus, when
we approximate P (g|x) as being Gaussian, we generate
a lower bound on the information I(g;x).
In the example of Fig 136, this variance at each posi-

tion is relatively small, with σg(x) ∼ 0.1 in units where

the maximum mean expression level is one. Following
through the computation of entropies as outlined above,
one finds from these data that the expression level of
Hunchback protein provides nearly two bits (give exact
answer, with error bars) of information about position
in the embryo. In the Gaussian approximation this is a
lower bound on the information, but in fact the data sets
are just large enough to make more direct estimates, and
to show that this bound is tight [add a figure to illustrate
this]. Classically, the gap genes have been described as
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specifying boundaries, dividing the embryo into patches
of high (on) and low (off) expression. Evidently a simple
on/off picture corresponds at most to one bit of positional
information, and so a quantitative analysis teaches us
that the focus on “expression boundaries” literally misses
half of the story.

Problem 140: Details of positional information. [Develop
a problem that asks the students to use some of the real data on
the gap genes ...]

As a next step consider the case where we ob-
serve several variables y1, y2, · · · , yK in the hopes of

learning about the same number of underlying signals
x1, x2, · · · , xK . The equations analogous to Eq. (684)
are then

yi = gijxj + ξi, (707)

with the usual convention that we sum over repeated
indices. The Gaussian assumptions are that each xi and
ξi has zero mean, but in general we have to think about
arbitrary covariance matrices,

Sij = 〈xixj〉 (708)

Nij = 〈ξiξj〉. (709)

The relevant probability distributions are

P ({xi}) =
1√

(2π)K detS
exp

[
−1

2
xi · (S−1)ij · xj

]
(710)

P ({yi}|{xi}) =
1√

(2π)K detN
exp

[
−1

2
(yj − gikxk) · (N−1)ij · (yj − gjmxm)

]
, (711)

where again the summation convention is used; detS de-
notes the determinant of the matrix S, (S−1)ij is the ij
element in the inverse of the matrix S, and similarly for
the matrix N .

To compute the mutual information we proceed as be-
fore. First we find P ({yi}) by doing the integrals over
the xi,

P ({yi}) =
∫

dKxP ({yi}|{xi})P ({xi}), (712)

and then we write the information as an expectation
value,

I({yi} →{ xi}) =
〈
log2

[
P ({yi}|{xi})

P ({yi})

]〉
, (713)

where 〈· · · 〉 denotes an average over the joint distribu-
tion P ({yi}, {xi}). As in Eq. (691), the logarithm can
be broken into several terms such that the expectation
value of each one is relatively easy to calculate. Two of
three terms cancel, and the one which survives is related
to the normalization factors that come in front of the
exponentials. After the dust settles we find

I({yi} →{ xi}) =
1

2
Tr log2[1+N−1 · (g · S · gT )], (714)

where Tr denotes the trace of a matrix, 1 is the unit
matrix, and gT is the transpose of the matrix g.

Problem 141: The multi–dimensional Gaussian. Fill in
the details leading to Eq (714). [where do I give the problem Tr ln
= ln det? connect here]

The matrix g · S · gT describes the covariance of those
components of y that are contributed by the signal x. We
can always rotate our coordinate system on the space of
ys to make this matrix diagonal, which corresponds to
finding the eigenvectors and eigenvalues of the covariance
matrix; these eigenvectors are also called “principal com-
ponents.” For a Gaussian distribution, the eigenvectors
describe directions in the space of y which are fluctuat-
ing independently, and the eigenvalues are the variances
along each of these directions. If the covariance of the
noise is diagonal in the same coordinate system, then the
matrix N−1 · (g · S · gT ) is diagonal and the elements
along the diagonal are the signal to noise ratios along
each independent direction. Taking the Tr log is equiv-
alent to computing the information transmission along
each direction using Eq. (704), and then summing the
results.
An important case is when the different variables xi

represent a signal sampled at several different points in
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time. Then there is some underlying continuous func-
tion x(t), and in place of the discrete Eq. (707) we have
the continuous linear response of the detector to input
signals,

y(t) =

∫
dt′M(t− t′)x(t′) + ξ(t). (715)

In this continuous case the analog of the covariance ma-
trix 〈xixj〉 is the correlation function 〈x(t)x(t′)〉. We are
usually interested in signals (and noise) that are station-
ary. This means, as discussed in Appendix A.2, that all
statistical properties of the signal are invariant to trans-
lations in time: a particular pattern of wiggles in the
function x(t) is equally likely to occur at any time. Thus,
the correlation function which could in principle depend
on two times t and t′ depends only on the time difference,

〈x(t)x(t′)〉 = Cx(t− t′). (716)

The correlation function generalizes the covariance ma-
trix to continuous time, but we have seen that it can be
useful to diagonalize the covariance matrix, thus finding
a coordinate system in which fluctuations in the different
directions are independent. From [pointer] we know that
the answer is to go into a Fourier representation, where
(in the Gaussian case) different Fourier components are
independent and their variances are (up to normaliza-
tion) the power spectra.

To complete the analysis of the continuous time Gaus-
sian channel described by Eq. (715), we again refer noise

to the input by writing

y(t) =

∫
dt′M(t− t′)[x(t′) + ηeff(t

′)]. (717)

If both signal and effective noise are stationary, then each
has a power spectrum; let us denote the power spectrum
of the effective noise ηeff by Neff(ω) and the power spec-
trum of x by Sx(ω) as usual. There is a signal to noise
ratio at each frequency,

SNR(ω) =
Sx(ω)

Neff(ω)
, (718)

and since we have diagonalized the problem by Fourier
transforming, we can compute the information just by
adding the contributions from each frequency compo-
nent, so that

I[y(t) → x(t)] =
1

2

∑

ω

log2[1 + SNR(ω)]. (719)

Finally, to compute the frequency sum, we recall that [I
think this is found also in an Appendix; check!]

∑

n

f(ωn) → T

∫
dω

2π
f(ω). (720)

Thus, the information conveyed by observations on a
(large) window of time becomes

I[y(0 < t < T ) → x(0 < t < T )] → T

2

∫
dω

2π
log2[1 + SNR(ω)] bits. (721)

We see that the information gained is proportional to the
time of our observations, so it makes sense to define an
information rate:

Rinfo ≡ lim
T→∞

1

T
· I[y(0 < t < T ) → x(0 < t < T )]

(722)

=
1

2

∫
dω

2π
log2[1 + SNR(ω)] bits/sec. (723)

Note that in all these equations, integrals over frequency
run over both positive and negative frequencies; if the
signals are sampled at points in time spaced by τ0 then
the maximum (Nyquist) frequency is |ω|max = π/τ0.

Problem 142: How long to look? We know that when we
integrate for longer times we can suppress the effects of noise and

hence presumably gain more information. Usually we would say
that the benefits of integration are cut off by the fact that the
signals we are looking at will change. But once we think about
information transmission there is another possibility—perhaps we
would learn more by using the same time to look at something
new, rather than getting a more accurate view of something we
have already seen. To address this possibility, let’s consider the
following simple model. We look at one thing for a time τ , and
then jump to something completely new. Given that we integrate
for τ , we achieve some signal–to–noise ratio which we’ll call S(τ).

(a.) Explain why, in this simple model, if the noise is Gaussian
then the rate at which we gain information is at most

Rinfo(τ) =
1

τ
log2 [1 + S(τ)] . (724)

How does the assumption that we ‘jump to something completely
new’ enter into the justification of this formula?

(b.) To make progress we need a model for S(τ). Since this is
the signal–to–noise ratio let’s start with the signal. Suppose that
inputs are given by x, and the output is y. At t = 0, the value of
y is set to zero, and after that our sensory receptor responds to its
inputs according to a simple differential equation

τ0
dy

dt
= −y + x. (725)
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Show that y(τ) = x[1 − exp(−τ/τ0)]. Now for the noise, suppose
that ηeff(t) has a correlation function

〈ηeff(t)ηeff(t′)〉 = σ2
0e

−|t−t′|/τc . (726)

Show that if we average the noise over a window of duration τ ,
then the variance

σ2(τ) ≡
〈[

1

τ

∫ τ

0
dt ηeff(t)

]2 〉
≈ σ2

0 (τ % τ0) (727)

≈
2σ2

0τc

τ
(τ " τ0). (728)

Give a more general analytic expression for σ2(τ). Put these factors
together to get an expression for S(τ) = y2(τ)/σ2(τ). To keep
things simple, you can assume that the time scale which determines
the response to inputs is the same as that which determines the
correlations in the noise, so that τc = τ0.

(c.) Hopefully you can show from your results in [b] that S(τ "
τ0) ∝ τ . This corresponds to our intuition that signal–to–noise
ratios grow with averaging time because we beat down the noise,
not worrying about the possibility that the signal itself will change.
What happens for τ % τ0?

(d.) Suppose that τ0 is very small, so that all “reasonable” values
of τ " τ0. Then, from [c], S(τ) = Aτ , with A a constant. With this
assumption, plot Rinfo(τ); show that with proper choice of units,
you don’t need to know the value of A. What value of τ maximizes
the information rate? Is this consistent with the assumption that
τ " τ0?

(e.) In general, the maximum information is found at the point
where dRinfo/dτ = 0. Show that this condition can be rewritten as
a relationship between the signal–to–noise ratio and its logarithmic
derivative, z = d lnS(τ)/d ln τ . From your previous results, what
can you say about the possible values of z as τ is varied? Use this
to bound S(τ) at the point of maximum Rinfo. What does this say
about the compromise between looking carefully at one thing and
jumping to something new?

(f.) How general can you make the conclusions that you draw in
[e]?

In the same way that we used the Gaussian approxima-
tion to put bounds on the positional information carried
by the gap genes, we can put bounds on the informa-
tion carried by sensory neurons. As discussed in Section
[**], we can reconstruct continuous sensory input signals
from the discrete sequences of action potentials, some-
times quite accurately. Concretely, the sensory stimulus
s(t) could be light intensity as a function of time in a
small region of the visual field, sound pressure as a func-
tion of time at the ear canal, the amplitude of mechanical
vibrations in sensors such as the cricket cercus and frog
sacculus, ... . We can estimate the signal from the spike
times {ti} in a single neuron as

sest(t) =
∑

i

f(t− ti), (729)

where the filter f(τ) is chosen to minimize χ2 = 〈|sest(t)−
s(t)|2〉. Then the quality of the reconstructions can be
evaluated by measuring the power spectrum of errors in
the reconstruction, and referring these errors to the in-
put, frequency component by frequency component,

s̃est(ω) = g(ω) [s̃(ω) + η̃eff(ω)] . (730)

(A)

(C) (D)

(B)

FIG. 137 Coding efficiency in cricket and frog vibration sen-
sors. (A) A schematic of experiments on the cricket cercal sen-
sors, with direct stimulation of the sensory hairs and record-
ing from the primary sensory neurons. (B) Stimulus (dashed)
and reconstruction (Solid line) in experiments on the cercal
neurons. (C) Power spectral density of the signal, and the
noise ηeff in the reconstructions, from Eq(730). (D) Coding
efficiency for example neurons in the cricker cercus and the
frog sacculus, using successively higher order approximations
to the spike train entropy. Variable timing precision is im-
plemented by providing the reconstruction algorithm in Eq
(729) with spike times ti at limited resolution. From Rieke et
al (1993).

Although the errors in the reconstruction might not be
exactly Gaussian, the maximum entropy argument above
tells us that we can put a lower bound on the informa-
tion which the spike train provides about the stimulus
s(t) by measuring the power spectrum of the effective
noise ηeff . An example is shown in Fig 137, from ex-
periments on the mechanical sensors in the cricket and
frog. Importantly, we can also put upper bounds on the
entropy of the spike train, first by assuming that spikes
occur independently, then by assuming that the inter-
vals between spikes are independent, then allowing for
correlations between successive intervals. With a lower
bound on the information and an upper bound on the
entropy, we have a lower bound on their ratio, the cod-
ing efficiency. In these systems, as with the case of H1 in
Fig 134, we see that efficiencies reach ∼ 50% with timing
precision in the millisecond range.
By now both the “direct” and the “reconstruction”

methods have been used to measure information rates
and coding efficiencies in a wide range of neurons re-
sponding to sensory stimuli, from the first steps of sen-
sory coding in invertebrates, such as the cricket cercal
system in Fig 137, to cells deep in primate visual cortex.
The result that single neurons use 30–50% of their spike
train entropy to encode sensory information, even down
to millisecond resolution, has been confirmed in many
systems [maybe reminder that references are at the end
of the section?]. An important thread running through
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this work is that information rates and coding efficien-
cies are higher, and the high coding efficiency extends
to higher time resolution, when sensory inputs are more
like those which occur in nature—complex, dynamic, and
with enormous dynamic range; an example from the frog
auditory system is shown in Fig 138 [do we need more
examples here?]. These results suggest not only that the
brain is capable of efficient coding, but also that this ef-
ficiency is achieved by matching neural coding strategies
to the structure of natural sensory inputs. We will return
to this idea in Section IV.C.

The Gaussian channel gives us the opportunity to ex-
plore the way in which noise limits information trans-
mission. Imagine that we have measured the spectrum
of the effective noise, Neff(ω). By changing the spec-
trum of input signals, S(ω), we can change the rate of
information transmission. Can we maximize this infor-
mation rate? Clearly this problem is not well posed with-
out some constraints: if we are allowed just to increase
the amplitude of the signal—multiply the spectrum by a
large constant—then we can always increase information
transmission. We need to study the optimization of in-
formation rate with some fixed ‘dynamic range’ for the
signals. A simple example, considered by Shannon at the
outset, is to fix the total variance of the signal, which is
the same as fixing the integral of the spectrum. We can
motivate this constraint by noting that if the signal is
a voltage and we have to drive this signal through a re-

FIG. 138 Coding efficiency in frog auditory neurons. At left,
the power spectrum of a broadband, artificial stimulus (top)
and a stimulus shaped to have the same spectrum as bull-
frog calls (bottom). These stimuli were played to the bullfrog
while recording from individual auditory neurons emerging
from the amphibian papilla. Reconstructing the sound pres-
sure as a function of time allows us to bound the information
transmission rate, as explained in the text, and from this we
estimate the coding efficiency—the ratio of the information
rate to the entropy rate. In this example, at right, we see
clearly that the coding efficiency is substantially higher for
the more naturalistic stimuli, approaching 90%. From Rieke
et al (1995).

sistive element, then the variance is proportional to the
mean power dissipation. Alternatively, it might be easy
to measure the variance of the signals that we are inter-
ested in (as for the visual signals in the example below),
and then the constraint is empirical.
So the problem we want to solve is maximizing Rinfo

while holding 〈x2〉 fixed. As before, we introduce a La-
grange multiplier and maximize a new function

R̃ = Rinfo − λ〈x2〉 (731)

=
1

2

∫
dω

2π
log2

[
1 +

Sx(ω)

Neff(ω)

]
− λ

∫
dω

2π
Sx(ω).

(732)

The value of the function Sx(ω) at each frequency con-
tributes independently, so it is easy to compute the func-
tional derivatives,

δR̃

δSx(ω)
=

1

2 ln 2
· 1

1 + Sx(ω)/Neff(ω)
· 1

Neff(ω)
−λ, (733)

and the optimization condition is δR̃/δSx(ω) = 0. The
result is that

Sx(ω) +Neff(ω) =
1

2λ ln 2
. (734)

Thus the optimal choice of the signal spectrum is one
which makes the sum of signal and (effective) noise equal
to white noise! This, like the fact that information is
maximized by a Gaussian signal, is telling us that effi-
cient information transmission occurs when the received
signals are as random as possible given the constraints.
Thus an attempt to look for structure in an optimally en-
coded signal (say, deep in the brain) will be frustrating.
In general, complete whitening as suggested by Eq.

(734) can’t be achieved at all frequencies, since if the
system has finite time resolution (for example) the effec-
tive noise grows without bound at high frequencies. Thus
the full solution is to have the spectrum determined by
Eq. (734) everywhere that the spectrum comes out to a
positive number, and then to set the spectrum equal to
zero outside this range. If we think of the effective noise
spectrum as a landscape with valleys, the condition for
optimizing information transmission corresponds to fill-
ing the valleys with water; the total volume of water is
the variance of the signal.

Problem 143: Whitening. Consider a system that responds
linearly to a signal s(t), with added noise η(t):

x(t) =

∫
dτ F (τ)s(t− τ) + η(t). (735)

Assume that the noise is Gaussian and white, with power spectrum
N0, so that

〈η(t)η(t′)〉 = N0δ(t− t′). (736)
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For simplicity, assume that the signal s(t) is Gaussian, with a power
spectrum S(ω),

〈s(t)s(t′)〉 =
∫

dω

2π
S(ω) exp[−iω(t− t′)]. (737)

(a.) Write an expression for the rate Rinfo at which the observ-
able x(t) provides information about the signal s(t).

(b.) The variance of the variable x(t) is not well defined. Why?
Consider just the component of x(t) that comes from the signal
s(t), that is Eq (735) but with η = 0. Find an expression for the
variance of this “ouput signal.”

(c.) Consider the problem of maximizing Rinfo by adjusting the
filter F (τ). Obviously the information transmission is larger if F is
larger, so to make the problem well posed assume that the variance
of the output signal (from [b]) is fixed. Show that this variational
problem can be solved explicitly for |F̃ (ω)|2, where F̃ (ω) is the
Fourier transform of the filter F (τ). Can you explain intuitively
why only the modulus, and not the phase, of F̃ (ω) is relevant here?

(d.) Find the limiting form of the optimal filter as the noise
becomes small. What does this filter do to the input signal? Ex-
plain why this makes sense. Saying that “noise is small” is slightly
strange, since N0 has units. Give a more precise criterion for your
small noise limit be valid.

(e.) Consider the case of an input with exponentially decaying
correlations, so that

S(ω) =
2〈s2〉τc

1 + (ωτc)2
, (738)

where τc is the correlation time. Find the optimal filter in this
case, and use this to evaluate the maximum value of Rinfo as a
function of the output signal variance. You should check that your
results for Rinfo, which should be in bits/s, are independent of the
units used for the output variance and the noise power spectrum.
Contrast your result with what would happen if |F̃ (ω)| were flat as
a function of frequency, so that there was no real filtering (just a
multiplication so that the output signal variance comes out right).
How much can one gain by building the right filter?

These ideas have been used to characterize informa-
tion transmission across the first synapse in the fly’s vi-
sual system. We have seen these data before, in think-
ing about how the precision of photon counting changes
as the background light intensity increases. Recall from
Section I.A that, over a reasonable dynamic range of in-
tensity variations, the average voltage response of the
photoreceptor cell is related linearly to the intensity or
contrast in the movie, and the noise or variability δV (t)
is governed by a Gaussian distribution of voltage fluctu-
ations around the average:

V (t) = VDC +

∫
dt′T (t− t′)C(t′) + δV (t). (739)

This (happily) is the problem we have just analyzed.
As before, we think of the noise in the response as

being equivalent to noise δCeff(t) that is added to the
movie itself,

V (t) = VDC +

∫
dt′T (t− t′)[C(t′) + δCeff(t)]. (740)

Since the fluctuations have a Gaussian distribution, they
can be characterized completely by their power spectrum

N eff
C (ω), which measures the variance of the fluctuations

that occur at different frequencies,

〈δCeff(t)δCeff(t
′)〉 =

∫
dω

2π
N eff

C (ω) exp[−iω(t− t′)].

(741)
There is a minimum level of this effective noise set by
the random arrival of photons (shot noise). The photon
noise is white if expressed as N eff

C (ω), although it makes
a nonwhite contribution to the voltage noise. As we have
discussed, over a wide range of background light intensi-
ties and frequencies, the fly photoreceptors have effective
noise levels that reach the limit set by photon statistics.
At high frequencies there is excess noise beyond the phys-
ical limit, and this excess noise sets the time resolution
of the system.
The power spectrum of the effective noise tells us, ul-

timately, what signals the photoreceptor can and cannot
transmit. How do we turn these measurements into bits?
One approach is to assume that the fly lives in some
particular environment, and then calculate how much in-
formation the receptor cell can provide about this par-
ticular environment. But to characterize the cell itself,
we might ask a different question: in principle how much
information can the cell transmit? To answer this ques-
tion we are allowed to shape the statistical structure of
the environment so as to make the best use of the recep-
tor (the opposite, presumably, of what happens in evo-
lution!). This is just the optimization discussed above,
so it is possible to turn the measurements on signals and
noise into estimates of the information capacity of these
cells. This was done both for the photoreceptor cells and
for the large monopolar cells (LMCs) that receive direct
synaptic input from a group of six receptors. From mea-
surements on natural scenes the mean square contrast
signal was fixed at 〈C2〉 = 0.1. Results are shown in Fig
139.
The first interesting feature of the results is the scale:

individual neurons are capable of transmitting well above
1000 bits per second. This does not mean that this ca-
pacity is used under natural conditions, but rather speaks
to the precision of the mechanisms underlying the detec-
tion and transmission of signals in this system. Second,
information capacity continues to increase as the level of
background light increases: noise due to photon statistics
is less important in brighter lights, and this reduction of
the physical limit actually improves the performance of
the system even up to very high photon counting rates,
indicating once more that the physical limit is relevant to
the real performance. Third, we see that the information
capacity as a function of photon counting rate is shifted
along the counting rate axis as we go from photoreceptors
to the LMCs, and this corresponds (quite accurately!) to
the fact that LMCs integrate signals from six photore-
ceptors and thus act is if they captured photons at a six
times higher rate. Finally, in the large monopolar cells in-
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FIG. 139 At left, the effective contrast noise levels in a single
photoreceptor cell, a single LMC (the second order cell) and
the inferred noise level for a single active zone of the synapse
from photoreceptor to LMC. The hatching shows the signal
spectra required to whiten the total output over the largest
possible range while maintaining the input contrast variance
〈C2〉 = 0.1, as discussed in the text. At right, the resulting
information capacities as a function of the photon counting
rates in the photoreceptors. From de Ruyter van Steveninck
& Laughlin (1996).

formation has been transmitted across a synapse, and in
the process is converted from a continuous voltage signal
into discrete events corresponding to the release of neuro-
transmitter vesicles at the synapse. As a result, there is
a new limit to information transmission that comes from
viewing the large monopolar cell as a “vesicle counter.”

[This discussion needs to be fleshed out. It’s also the
second independent use of max ent in this section, which
makes me worry that leaving max ent to an Appendix
may be a mistake, although it also comes up earlier ..
this is a pretty big organizational isse. Also was think-
ing of being explicit about max ent for counting, above,
which would make things easier here! If every vesicle
makes a measurable, deterministic contribution to the
cell’s response (a generous assumption), then the large
monopolar cell’s response is equivalent to reporting how
many vesicles are counted in a small window of time
corresponding to the photoreceptor time resolution. We
don’t know the distribution of these counts, but we can
estimate (from other experiments, with uncertainty) the
mean count, and we know that there is a maximum en-
tropy for any count distribution once we fix the mean
(see, for example, Appendix A.8). No mechanism at the
synapse can transmit more information than this limit.
Remarkably, the fly operates within a factor of two of
this limit, and the agreement might be even better but
for uncertainties in the vesicle counting rate.

[This section needs a summary and conclusion!]
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I haven’t said anything about error correcting codes. I don’t see, in
the short run, how to connect these elegant ideas to real biological
phenomena. On the other hand, they are so interesting ... at the
very least I will need to give references, and some commentary
about why we should be trying to think about this.

B. Does biology care about bits?

The question for this section has been with us almost
since Shannon’s original work. One the one hand, the
few examples we have seen in the last section certainly
suggest that organisms are squeezing more bits out of
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their hardware than we might naively have expected, per-
haps even coming close to physical limits on information
transmission. On the other hand, the usual view of in-
formation theory is as a theory for communication, with
its most sophisticated developments in the context of er-
ror correcting codes, which seem of little relevance to
the natural (as opposed to the engineered) world. Here
we’ll review old ideas about the connection of informa-
tion to gambling, and see how closely related ideas have
reappeared in thinking about the life strategies of bac-
terial populations. Then we’ll step back and try to look
more generally at the connections among information, bi-
ological function and evolutionary fitness, and argue that
evolution really can select for biological mechanisms that
are efficient in an information theoretic sense.

To start, let us consider a simple game; this may seem
like a strange topic for a physics course, but please bear
with me! I will flip a coin, and you bet on whether it
will come up heads or tails. If you get it right, I double
your money. If you’re wrong, you lose what you bet. If
this is a fair coin, so that heads and tails each come up
half the time, there really isn’t anything to analyze, what
happens is “just chance.” But if you know, for example,
that this is a biased coin, and that the probability of
heads really is 60%, you might be tempted to put all of
your money on heads. On average, if you bet one dollar
you will receive 2 × (0.6) = 1.2 dollars in return, which
sounds good. Indeed, if we play only once then this is
what you should do, since it will maximize your expected
return.

But what happens if we are going to play repeatedly,
which you might think is a better metaphor for life? Now
if you put all your money on heads, there is a 40% chance
that, in one flip, you’ll lose it all. Suppose that instead
you put a fraction f of your money on heads and a frac-
tion 1−f on tails. If we introduce a binary variable n = 1
for heads and n = 0 for tails, then on the ith flip your
winnings will change by a factor

Gi = 2× [fni + (1− f)(1− ni)] , (742)

where ni marks what happens on the ith flip. After N
successive flips you will have a gain

Gtotal(N) = 2N
N∏

i=1

[fni + (1− f)(1− ni)] , (743)

where we are assuming that you consistently put a frac-
tion f of your accumulated winnings down as a bet on

heads, and the remainder on tails.
To keep going, we want to write the product in Eq

(743) as the exponential of a sum. It’s useful to notice
that, becuase ni is either 0 or 1, we have

fni+(1−f)(1−ni) = exp [ni ln(f) + (1− ni) ln(1− f)] .
(744)

This means that we can write the total gain

Gtotal(N) = 2N
N∏

i=1

[fni + (1− f)(1− ni)]

= 2N
N∏

i=1

exp [ni ln(f) + (1− ni) ln(1− f)]

(745)

= exp [NΛ(f ; {ni})] , (746)

where

Λ(f ; {ni}) = ln 2 +
1

N

N∑

i=1

[ni ln(f) + (1− ni) ln(1− f)]

(747)
Written this way, Λ(f ; {ni}) define a rate of exponential
growth for your winnings. But Λ(f ; {ni}) depends not
only on your betting strategy, summarized by the fraction
f that you put on heads, but also on the sequence of
heads and tails that come up in the game, denoted by
{ni}. The key point is that, if we play many times, so
we can think about the limit N → ∞, this dependence
on the details of the flips goes away.

We recall that, for any well behaved random vari-
able, the average over N observations must approach the
mean computed from the probability distribution as N
becomes large. In the present case, if ni is a binary vari-
able that takes the value ni = 1 with probability p and
ni = 0 with probability 1 − p, then as N becomes large
we should have

1

N

N∑

i=1

ni → p, (748)

and similarly

1

N

N∑

i=1

(1− ni) → 1− p. (749)

We can use this to evaluate the long term growth of your
winnings, simplifying the results of Eq (747):
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1

N
lnGtotal(N) ≡ Λ(f) = ln 2 +

1

N

N∑

i=1

[ni ln(f) + (1− ni) ln(1− f)] (750)

= ln 2 +

(
1

N

N∑

i=1

ni

)
ln(f) +

(
1

N

N∑

i=1

(1− ni)

)
ln(1− f)

→ ln 2 + p ln(f) + (1− p) ln(1− f), (751)

where again p is the probability of heads. To maximize
the growth rate Λ(f), as usual we differentiate and set
the result to zero:

Λ(f) = ln 2 + p ln(f) + (1− p) ln(1− f)

dΛ(f)

df
= p

1

f
+ (1− p)(−1)

1

1− f
; (752)

dΛ(f)

df

∣∣∣∣∣
f=fopt

= 0

⇒ 0 = p
1

fopt
+ (1− p)(−1)

1

1− fopt
(753)

1− p

1− fopt
=

p

fopt
, (754)

or more simply fopt = p. This is an interesting result:
you maximize the rate at which your winnings will grow
by “matching” the fraction of your resources that you
bet on heads to the probability that the coin will come
up heads, and similarly for tails.

Problem 144: Check that fopt = p is a maximum, and not a
minimum, of Λ(f).

Problem 145: If we bet only once, then in this simple game the
maximum mean payoff is obtained by betting on the most likely
outcome. On the other hand, as we play many times—more pre-
cisely, in the limit that we play infinitely many times—what we
have seen is that a sort of matching strategy, or “proportional gam-
bling” maximizes the growth rate. Explore the crossover between
these limits. You might start with some simple simulations, and
then see if you can make analytic progress, perhaps saying some-
thing about the leading 1/N corrections at large N . I am leaving
this deliberately vague and open ended, hoping that you will play
around.

Something even more interesting happens when we
evaluate the optimal growth rate, that is Λopt = Λ(fopt):

Λopt = Λ(f = p) (755)

= ln 2 + p ln(p) + (1− p) ln(1− p) (756)

= ln 2− [−p ln(p)− (1− p) ln(1− p)] . (757)

These terms should be starting to look familiar. The
term ln 2 is the entropy for a binary variable (heads/tails)
if you don’t know anything about what to expect, and

hence the two alternatives are equally likely. In contrast,
the term in brackets,

−p ln(p)− (1− p) ln(1− p),

is the entropy of a binary variable if you know that the
two alternatives come up with probabilities p and 1− p.
Thus the optimal growth rate is the difference in entropy
between what might happen with an arbitrary coin and
what you know will happen with this coin. In other
words, the maximum rate at which your winnings can
grow in a simple gambling game is equal to the infor-
mation that you have about the outcome of a single coin
flip.
This connection between information theory and gam-

bling was discovered in the 1950s by Kelly, who was
searching for some interpretation of Shannon’s work that
didn’t refer to the process of communication. Obviously
what we have worked out here is a very simple and spe-
cial case, and we need to do much more in order to claim
that the connection is general. But before launching into
this let me emphasize something about Kelly’s result.
At some intuitive level, we can all agree that if we know
more about the outcome of the coin flip (or the horse
race, or the stock market, or ... ) then we should be
able to make more money. In a very general context,
Shannon proved that “know more” should be quantified
by various entropy–like quantities, but it’s not obvious
that the knowledge measured by Shannon’s bits is actu-
ally the useful knowledge when it comes time to make a
bet. Even if bits are the right measure, the connection
between information and the growth of winnings could
have been much more vague; you could imagine, for ex-
ample, that the growth rate is bounded by some func-
tion of the information, and that this bound might or
might not be realizable with feasible strategies. In con-
trast to these pessimistic alternatives, Kelly showed that
the maximum growth rate is the information, and his
proof is constructive so we actually know how to achieve
this maximum. This really is quite astonishing.
Let’s try to generalize what what we have done. Sup-

pose that on each trial i, there are many possible out-

comes, µ = 1, 2, · · · ,K; we’ll write n(µ)
i = 1 if on the ith

trial the outcome is µ, and n(µ)
i = 0 otherwise. Further,

let’s say that you bet a fraction of your assets fµ on each
of the possible outcomes µ, and if µ actually happens
then each dollar bet on this outcome becomes gµ dollars;
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all money bet on things that don’t happen is lost. If you
need an example of this sort of game, think of a horse
race in which you get something back only if you pick the
winner. We’ll assume that the different outcomes occur
with probability pµ, but we won’t assume anything about
the relationship between these odds and the payoffs gµ.

Having defined all the factors, the analog of Eq (743),
is

Gtotal(N) =
N∏

i=1

[
K∑

µ=1

fµgµn
(µ)
i

]
. (758)

Now we can follow the same steps as before:

lnGtotal(N) =
N∑

i=1

ln

[
K∑

µ=1

fµgµn
(µ)
i

]
(759)

=
N∑

i=1

K∑

µ=1

n(µ)
i ln(fµgµ) (760)

1

N
lnGtotal(N) =

K∑

µ=1

[
1

N

N∑

i=1

n(µ)
i

]
ln(fµgµ) (761)

→ Λ({fµ}) =
K∑

µ=1

pµ ln(fµgµ). (762)

We want to maximize the growth rate Λ, subject to the
normalization condition that the fractions of our assets
placed on all the options add up (

∑
µ fµ = 1), so we

introduce a Lagrange multiplier α and find the maximum
of the function

Λ̃({fµ}) =
K∑

µ=1

pµ ln(fµgµ)− α

[
K∑

µ=1

fµ − 1

]
. (763)

The equations for the maximum are, as usual,

∂Λ̃({fµ})
∂fµ

∣∣∣∣∣
{fµ}={fopt

µ }

= 0 (764)

⇒ 0 =
pµ

fopt
µ

− α, (765)

fopt
µ =

pµ
α
; (766)

since
∑

µ fµ =
∑

µ pµ = 1, we must have α = 1, so that

fopt
µ = pµ. (767)

Substituting, we find the maximum growth rate

Λopt =
K∑

µ=1

pµ ln(pµgµ). (768)

The first interesting thing is that we recover from
the simpler heads/tails problem the idea of proportional
gambling [Eq (767)]: you maximize the rate at which

your winnings will grow by “matching” the fraction of
your resources that you bet on each horse in the race to
the probability that this horse will win. Strangely, this is
independent of the rewards or gains as expressed in the
parameters {gµ}.
[At some point should make a connection between pro-

portional gambling and “matching” behavior .. is this
understood?]
The second point is that we can see what it means for

the odds to be truly fair. If our opponent in this game
(the track operator) sets the returns in inverse propor-
tion to the probability that each horse wins, gµ = 1/pµ,
then the maximum growth rate of our winnings, Λopt, is
exactly zero.
This notion of fairness leads us to an information the-

oretic interpretation of Λopt. Notice that we have done
our calculation on the assumption that we have perfect
knowledge of the distribution {pµ}. Perhaps the track
operators have less knowledge, and so they set the odds
as if the distribution were something else, which we can
call {qµ}. More generally, we can define

qµ =
1

Z

1

gµ
, (769)

with Z chosen so that
∑

µ qµ = 1. If Z = 1, then the
payoffs {gµ} are fair in the distribution {qµ}, while if
Z < 1 the track operators are keeping something for
themselves (as they are wont to do). Then we can see
that

Λopt = − lnZ +
K∑

µ=1

pµ ln

(
pµ
qµ

)
. (770)

You should recognize the second term as the Kullback–
Leibler divergence between the probability distributions
p ≡ {pµ} and q ≡ {qµ}, from Eq (656).

DKL(p||q) ≡
K∑

µ=1

pµ ln

(
pµ
qµ

)
. (771)

We recall that the KL divergence measures the cost
of coding signals with the wrong distribution. Equation
(770) shows us that better knowledge of the probability
distribution doesn’t just allow us to make shorter codes.
The amount by which we can compress the data describ-
ing the sequence of winners in the horse race is exactly
the amount by which our winnings can grow. More pre-
cisely, if we can build a shorter code than the one built
implicitly by the track operators, then we will gain ex-
actly in proportion to this shortening. Thus, in this con-
text, we literally get paid for constructing more efficient
representations of the data (!).
We have connected the growth rate of winnings to the

efficiency with we can represent data, but this isn’t quite
as compelling as a direct connection to how much infor-
mation we have about the outcome of the game, which
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is where we started in the case of coin flips; let’s see if
we can do better. Imagine that, on each trial i, we have
access to some signal xi that tells us something about the
likely outcome. More precisely, when we observe xi, the
probability that the outcome will be µ on trial i is not
pµ but rather some conditional probability p(µ|xi); if the
signals x are themselves chosen from some distribution
P (x), then for consistency we must have

pµ =

∫
dxP (x)p(µ|x). (772)

To use the extra information provided by the signal x,
you will adjust your strategy to bet a fraction fµ(xi)
on the outcome µ given that you have ‘heard’ xi. How
does the extra information provided by x improve your
winnings?
To compute the growth of winnings in the presence of

extra information, we proceed along the same lines as
before, to find the analog of Eq (762):

Λ[{fµ(x)}] =
∫

dxP (x)
K∑

µ=1

p(µ|x) ln[fµ(x)gµ]. (773)

Now we need to maximize this, choosing strategies that
are defined by the functions fµ(x), where for each x we
have the constraint that

∑
µ fµ(x) = 1. Once again

the solution to this optimization problem is proportional
gambling, but now the proportions are conditioned on
your knowledge, so that the analog of Eq (767) becomes

fopt
µ (x) = p(µ|x). (774)

This determines the optimal growth rate,

Λopt =

∫
dxP (x)

K∑

µ=1

p(µ|x) ln[p(µ|x)gµ]. (775)

Problem 146: Fill in the steps leading to the derivation of
Λ[{fµ(x)}] in Eq (773) and the consequences of optimizing this
functional, Eq’s (774) and (775).

The important result is the gain in growth rate that is
possible by virtue of having access to the signal x, that

is the difference between Λopt in Eq (775) and Eq (768):

∆Λopt =

∫
dxP (x)

K∑

µ=1

p(µ|x) ln[p(µ|x)gµ]

−
K∑

µ=1

pµ ln[pµgµ] (776)

=

∫
dxP (x)

K∑

µ=1

p(µ|x) ln[p(µ|x)gµ]

−
∫

dxP (x)
K∑

µ=1

p(µ|x) ln[pµgµ] (777)

=

∫
dxP (x)

K∑

µ=1

p(µ|x) ln
[
p(µ|x)
pµ

]
. (778)

We see that the details of the payoffs gµ drop out, and
that the gain in growth rate is exactly the mutual infor-
mation between the signal x and the outcomes µ.
Once again information translates directly into the (in-

creased) rate at which capital can grow. Thus, the ab-
stract measure of information has a clear impact on very
down to earth measures of performance in a real world
task. But, beyond metaphor,83 what does this have to
do with life?
The most direct connection between life and gambling

is through the phenomenon of persistence. Many bac-
teria have two distinct lifestyles. In one (for example),
they grow quickly in most environments, but are very
susceptible to being killed by antibiotics. In the other,
they grow very slowly, but survive the antibiotics. This
is almost exactly the horse race—if the bacterium bets
correctly, it grows, but if it bets incorrectly it dies (or
grows at rates far below what is possible). Absent any
direct measurements on the environment, a population
of genetically identical bacteria will maximize its growth
rate by a form of proportional gambling, so that even
in a healthy person, not taking antibiotics, we should
see that some of the resident bacteria persist in a state
of slow growth and (eventual) antibiotic resistance;84 the
fraction of bacteria in this states reflects the population’s
estimate of the probability that they will encounter the
hostile environment of antibiotics [do we know anything
about whether bacteria are doing this correctly?]. We
also see that gaining information about the environment
opens the possibility of faster growth, in precise propor-
tion to the information gained.

83 Life is a gamble, etc..
84 Here “resistance” is used colloquially. Technically, antibiotic re-

sistance refers to a trait which is encoded genetically, and hence
inheritable, rather than a lifestyle choice. The (choosable) state
in which bacteria grow slowly but are not killed by antibiotics is
called “persistent.”
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In a world of two alternatives, there is not much in-
formation to gain. There are examples of bacteria that
choose among a wider variety of lifestyles, and these phe-
nomena (including the simple example of two alterna-
tives) are called ‘phenotypic switching.’ In the approxi-
mation that for each environment there is only one phe-
notype which grows, phenotypic switching is exactly the
horse racing problem.

Problem 147: Something based on phenotypic switching ..
look through Kussell et al for ideas.

The example of phenotypic switching makes a nice map
back to the early work about gambling, but is perhaps
still a bit too simple. Let’s try to be more general. Imag-
ine a bacterium that lives in an environment in which
the concentrations of nutrients are fluctuating (slowly, so
we don’t have to worry about dynamics). In order to
make use of the currently available nutrients, the bac-
terium must express the relevant enzymes involved in
metabolism. Let’s simplify and assume that there is one
nutrient or substrate at concentration s and one relevant
gene at expression level g. The bacterium will then grow
at some rate r(s, g) that depends both on the state of the
world (s) and on its internal state (g).
The growth rate of the bacterium is a compromise be-

tween two effects. On the one hand, growth requires
metabolism of the available nutrient, and so growth
should be faster if there is either more nutrient or more
enzyme. On the other hand, making the enzyme itself
takes resources, and this should slow the growth; in the
limit of small nutrient concentrations, this cost can be-
come dominant, and growth would stop if the cell tried to
make too much enzyme. This scenario is shown schemat-
ically in Fig 140.

Problem 148: A simple fitness landscape. The schematic
in Fig 140 is based on a simple model. Suppose that growth is
precisely proportional to the rate at which the enzyme degrades the
substrate. In a Michaelis–Menten kinetic scheme for the enzyme
[poiner to earlier discussion of MM kinetics], this means that the
rate of degradation (in molecules per second) will be

V = Vmaxg
sfree

K + sfree
, (779)

where g is the number of copies of the enzyme molecule, Vmax is
the maximum rate at which the enzyme can run, sfree is the con-
centration of the substrate free in solution, and K is the ‘Michaelis
constant’ that sets the scale for half–saturation of the enzyme. The
total substrate concentration is the sum of that free in solution and
bound to the enzyme,

s = sfree +
1

Ω
g

sfree
K + sfree

, (780)

FIG. 140 A schematic of bacterial growth rate as a function
of available substrate concentration and enzyme expression
level. The growth rate is a compromise between metabolizing
the substrate and the cost of making the enzyme. The thin
white line [redraw!] traces the optimal setting of expression
level as a function of substrate availability.

where Ω is the cell volume. If the growth rate is proportional to the
metabolic rate, less a correction for the cost of making the enzymes,
we should have

r(s, g) = αg
sfree

K + sfree
− βg. (781)

Solve for sfree to rewrite r(s, g) explicitly in terms of s. Then
show that by proper choice of units, there is only one arbitrary
parameter. What is the meaning of this remaining parameter?
Make some reasonable choices, and plot your own version of Fig
140.

Imagine a bacterium whose life is governed by Fig 140.
As the available substrate concentration fluctuates, one
possibility is that all bacteria carefully adjust their en-
zyme expression levels to achieve optimal growth rate
under each condition. An extreme alternative is that dif-
ferent bacteria in the population choose their expression
levels at random out of some distribution, and hope that
some of them by chance have made good choices, much as
in the proportional gambling scenario. In the first case,
the expression level carries an enormous amount of infor-
mation about the concentration of available substrate—
indeed, if we imagine that the optimum is traced per-
fectly, then knowing the expression level would tell us
the exact substrate concentration, and this represents an
infinite amount of information (!). In contrast, the gam-
bling strategy involves no correlation of the internal and
external states, and hence no information in conveyed.
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Evidently, the average growth rate across an ensemble
of environments will be larger if the bacteria can adjust
their expression levels perfectly, but maybe this is so ob-
vious as not to be interesting. We know that there is
some average growth rate which can be achieved with no
information about the outside world, and that an infi-
nite amount of information would allow the population
to grow faster. What happens in between?

The mutual information between the internal state g
and the external world s can be written as

I(g; s) =

∫
dsP (s)

∫
dg P (g|s) log2

[
P (g|s)
P (g)

]
. (782)

We can make I(g; s) as small as we like by letting P (g|s)
approach P (g). But suppose that we want to maintain
some average growth rate in the ensemble of environ-
ments defined by P (s). This average growth rate is

〈r〉 =
∫

dsP (s)

∫
dg P (g|s)r(s, g). (783)

Now it seems clear that not all conditional distributions
P (g|s) are consistent with a given 〈r〉. What we would
like to show is that there is a minimum value of I(g; s)
consistent with 〈r〉.
The problem we have is a constrained minimization, so

as usual we introduce a Lagrange multiplier and minimize

F [P (g|s)] ≡ I(g; s)− λ〈r〉 −
∫

ds µ(s)

∫
dg P (g|s),

(784)
where the second set of Lagrange multipliers µ(s) en-
forces normalization of the distributions P (g|s) at each
value of s. Finding the minimum in this case is straight-
forward. The key step is to evaluate the derivative of the
information with respect to the conditional distribution:

δI(g; s)

δP (g|s) =
δ

δP (g|s)

∫
dsP (s)

∫
dg P (g|s) log2

[
P (g|s)
P (g)

]
(785)

= P (s) log2

[
P (g|s)
P (g)

]
+

1

ln 2
P (s)P (g|s) · 1

P (g|s) −
1

ln 2

∫
ds′ P (s′)P (g|s′) 1

P (g)

δP (g)

δP (g|s) (786)

= P (s) log2

[
P (g|s)
P (g)

]
+

1

ln 2
P (s)− 1

ln 2
P (g)

1

P (g)
P (s)

(787)

= P (s) log2

[
P (g|s)
P (g)

]
, (788)

which is nice because all the messy bits cancel out. Now we can solve our full problem:

0 =
δF [P (g|s)]
δP (g|s) (789)

=
δ

δP (g|s)

[
I(g; s)− λ

∫
dsP (s)

∫
dg P (g|s)r(s, g)−

∫
ds µ(s)

∫
dg P (g|s)

]
(790)

= P (s) log2

[
P (g|s)
P (g)

]
− λP (s)r(s, g)− µ(s) (791)

log2

[
P (g|s)
P (g)

]
= λr(s, g) +

µ(s)

P (s)
(792)

P (g|s) = 1

Z(s)
P (g) exp [βr(s, g)] , (793)

where β = λ ln 2, and Z(s) = exp[ln 2µ(s)/P (s)] is a
normalization constant,

Z(s) =

∫
dg P (g) exp [βr(s, g)] , (794)

and of course we must obey

P (g) =

∫
dsP (s)P (g|s). (795)

Notice that our solution for P (g|s) is (roughly) a Boltz-
mann distribution, where −r(g, s) plays the role of the
energy and β is the inverse temperature. As expected
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FIG. 141 Mean growth rate as a function of the mutual in-
formation between expression levels and substrate availability
for the system in Fig 140. We assume that the (log) substrate
is chosen from a distribution that is uniform over the 16–fold
range shown in Fig 140, and then we solve for the optimal
P (g|s) using Eq’s (793–794).

from this analogy, we can write the information and av-
erage growth rate as derivatives,

I(g; s) = λ〈r〉 −
∫

dsP (s) log2 Z(s), (796)

〈r〉 =
∫

dsP (s)
d lnZ(s)

dβ
. (797)

The Boltzmann form of the optimal solution in Eq
(793) helps our intuition. At small β, the distribution
P (g|s) is almost the same as P (g), so that very little
information is conveyed between internal and external
states. In contrast, as λ̃ becomes large, the distribution
P (g|s) becomes sharply peaked around the value expres-
sion level gopt(s) that maximizes the growth rate. Vary-
ing β should trace out a curve of mean growth rate vs. in-
formation, and this is shown in Fig 141. We see from the
derivation that this curve represents the maximum mean
growth rate achievable given a certain amount of mu-
tual information, or alternatively the minimum amount
of information required to achieve a certain mean growth
rate, Imin(〈r〉).

Problem 149: Asymptotics of growth rate vs informa-
tion. The precise form of the relationship between the mean
growth rate and the minimum information depends, of course, on
details of the function r(s, g). Show that the behavior at large val-
ues of the minimum information is more nearly universal. To do

this, develop an asymptotic expansion at large values of λ,

P (g|s) =
1

Z(s)
P (g) exp

[
λ̃r(s, g)

]

≈
1

Z(s)
P (g) exp

[
λ̃r(s, gopt(s)) +

λ̃

2
A(g − gopt(s))

2

]
,

(798)

A =
∂2r(s, g)

∂g2

∣∣∣∣∣
g=gopt(s)

(799)

and use this expansion to evaluate Z(s), from which you can cal-
culate Imin(〈r〉). Can you generalize your discussion to the case
where there are many substrates and many genes to control?

It is important to take seriously the scales in Fig 141.
It could have been that the full growth advantage de-
rived from controlling expression levels was achievable
with only a small fraction of a bit, or conversely that
it required many tens of bits. In fact, for this simple
problem the answer is that cells can make use of more
than one bit, but not too much more. This means that
(near–)optimal growth requires more than just turning a
gene on and off, and presumably this is even more clear
if we think about more realistic situations where there
are multiple substrates and multiple genes. As we will
see in the next section, the noise levels measured for the
control of gene expression set a limit of ∼ 1 − 3 bits to
the information that can be transmitted through these
control elements. Thus, the amount of information that
cells need in order to optimize their growth in varying en-
vironments is plausibly close to the maximum they can
transmit, and this limit in turn is set by the number of
molecules that the cell is devoting this these tasks.
Just to be clear, it’s useful to think about the alter-

natives. If information is cheap, so that it is easy for
cells to transmit many bits, then evolution selects for
mechanisms that drive the system upward in the infor-
mation/fitness plane of Fig 141. But if information itself
is hard to come by, evolutionary pressure (which really
only acts to increase growth rates) must necessarily drive
cells outward along the information axis.
Sometimes the fact that organisms have to be flexible

and survive in a fluctuating environment is offered as a
qualitative argument against the possibility of optimiza-
tion. Indeed, if the environment fluctuates, it may not
be advantageous for organisms to drive toward “perfect”
performance under any one set of conditions. But the
argument we have given here shows that strategies for
dealing with varied environments are themselves subject
to optimization, making the most of a limited amount of
information and eventually being pushed by selection to
gather more bits.
In the problem of horse races, or phenotypic switching,

information translated directly into a growth rate. Here
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we see that, more generally, there is a minimum amount
of information needed to achieve a given average growth
rate. In both of these cases, information is necessary and
permissive, but not sufficient. Thus organisms can grow
faster if they gather and represent more information, but
this is not guaranteed—they might make poor use of the
information, and fail to reach the bound on their growth
rate. We have focused here on achieving a certain aver-
age growth rate, but it should be clear that the whole
discussion can be transposed to other domains. For ex-
ample, if I ask you to point at a target that can appear
at random in your visual field, and reward you in pro-
portion to how close you come to the exact position of
the target, then in order to collect a certain level of av-
erage reward your brain must represent some minimum
amount of information about the target location. Quite
generally, we can imagine plotting some “biological” mea-
sure of performance—probability of catching a mate, nu-
tritional value extracted from picking fruit, growth rate,
happiness, ... —versus the amount of information that
the organism has about the relevant variables. This “in-
formation/fitness” plane will be divided by a curve which
separates the possible from the impossible, since without
a certain minimum level of information, higher fitness is
impossible.

Problem 150: Information and motor control. Give a
simple example, maybe from smooth pursuit?

In the information theory literature, the sort of bounds
we are computing here go by the name of “rate–
distortion” curves. For example, if we measure image
quality by some complicated perceptual metric, then to
have images of a certain quality, on average, we will need
to transmit a minimum number of bits. In this spirit,
we can think about more complicated situations, such as
organisms foraging or acting in response to sensory stim-
uli and collecting rewards. Although one is not rewarded
specifically for bits, the message of rate–distortion theory
is that to collect rewards at some desired rate will always
require a minimum number of bits of information.

In constructing a rate distortion curve, we implicitly
define some bits as being more relevant than others.
Thus if I need to match my state to that of the envi-
ronment, presumably some environmental variables need
to be tracked more accurately than others; since the rate
distortion curves gives the minimum number of bits, I
need to get this right and put the precision (extra bits)
in the right place. This is important, because it means
that we have a framework for assigning value to bits. To
be concrete, in Fig 794 it is possible to imagine an infinite

variety of mechanisms that gather the same number of
bits but fail to achieve the maximum mean growth rate,
either because the use the bits incorrectly or because they
have gathered the wrong bits. Bits in and of themselves
are not guaranteed to be useful, but to do useful things
there is a minimum number of bits that we need.
An interesting if unfinished connection of rate–

distortion theory to biological systems is the case of pro-
tein structure. If I want to describe protein structures
with high precision, I need to tell you where every atom
is located. But if sequence determines structure, then
to some accuracy I just need to tell you the amino acid
sequence, which is at most log2(20) bits per amino acid,
and many fewer per atom. In fact, as we have discussed
in Section III.A, many different sequences generate es-
sentially the same structure, so there must be an even
shorter description. Thus, if we imagine taking the en-
semble of real protein structures, there must be a descrip-
tion in very few bits that nonetheless generates rather
small errors in predicting the positions of the atoms.
Finding the optimally compact description (i.e., along
the true rate–distortion curve) would be a huge help in
understanding protein folding, because the joint table of
sequences and (compactly described) structures would be
much smaller. There is even an intuition that there must
be such a compact representation with high accuracy in
order to make folding rapid, essentially because the num-
ber of states needed for an accurate description should
be connected to the number of states that the protein
much “search” through as it folds. I am not sure how to
make this rigorous, but it’s interesting.

Problem 151: Clustering structures. Give an example of
constructing rate–distortion curves via clustering ... maybe some-
thing plausibly connected to molecular structures?

We can search for compact descriptions of pro-
tein structure by approximating the local path of the
α−carbon backbone as moves on a discrete lattice, mak-
ing the lattic progressive more complex. We can do better
by moving off the lattice to cluster the natural dihedral
angles describing the path from one amino acid to the
next Be sure we talk about φ,ψ description of proteins
before this, and point back]; results are shown in Fig 142.
Indeed, by the time we have assigned 10 or 20 states per
amino acid, we can reconstruct structures with 1 − 2 Å
rms accuracy.
Another very specific connection between biology and

bits is in the case of embryonic development. In the sim-
plest model of morphogen gradients, each independently
“reads out” the local concentration of the morphogen(s),
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we find that the relat ionship is a lmos t  <c.r.m.s.> = 

k(Complexi ty)  -w2. In re t rospect ,  such  a s imple de- 

p e n d e n c e  of  c.r.m.s, on complexi ty  can be  quite  

easily explained,  as follows. 

A s s u m e  that res idues  1 to i - 1 of a prote in  have 

b e e n  fit perfec t ly  by  a mode l  of complexi ty  m. What  

is the average dis tance f rom the fit posi t ion of  res idue 

i to its actual  posi t ion? Residue i lies s o m e w h e r e  on 

a sphere  of  rad ius  b, the fixed b o n d  length, centered 

on a tom i - 1. The m possible  fit posi t ions for a tom 

i are, we  will assume,  evenly dis t r ibuted on the 

surface of  this sphere,  wh ich  has a surface area 4/rb 2. 

On  average, the surface area per  state will be  41rb2/m, 
and  the separat ion of states along the surface of the 

sphere  will scale as x/(47rb2/nl). This separat ion is 

p ropor t iona l  to the accuracy (c.r.m.s. deviation) with 
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Figure 3. (a) Values of <c.r.m.s.>, the sequence length weighted average c.r.m.s, deviations for best fits to all proteins 
in our database, are plotted as a function of model complexit)~ The diamonds are all the naive models from Table 1. 
The crosses correspond to our optimized 4-state models, and 6 and W to our and Rooman's selected 6-state models 
(Rooman et al., 1991). Beyond a certain point, added complexity improves accuracy very little. Optimized models show 
marked improvement over unoptimized models of the same complexit)~ (b) Values of <c.r.m.s.> are plotted against 
complexity on a log-log scale. A linear least-squares fit gives <c.r.m.s.> =6.59 (complexity) -°51~, very close to 
<c.r.m.s.> = k(complexity) ./2 predicted by a simple analysis (see the text). 
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Discussion 

The relationship between complexity 
and accuracy 

We have found the accuracy of fit of lattice and 
naive off-lattice models to X-ray structures to follow 
a simple law: 

(c.r.m.s.> ~ (Complexity) -'/2 

This indicates that increasing model complexity, 
above a certain point, yields little improvement  in 

accuracy Other measures of accuracy, however, can 
distinguish be tween models with similar average 

c.r.m.s, fits. For instance, when using a simple lattice 
representation of protein structure, a tetrahedral 

lattice is preferable to a cubic lattice. In addition to 
having a complexity 3 /5  of that of the cubic lattice, 

the tetrahedral lattice preserves X-ray contacts 
slightly better with a 78.2% preserved, against 77.6% 

for the cubic. The average c.r.m.s, fit for the cubic 
lattice is better, at 2.84 A against 3.63/~. Neverthe- 

less, for most prediction strategies, which rely on 
residue-residue contacts, the value for X-ray contacts 
is likely to be more important.  Thus, even though the 

cubic lattice is capable of representing protein 

structures more accurately than the tetrahedral, 
there are likely to be many  conformations on the 
cubic lattice which have a high percentage of X-ray 

contacts correct, but  are inaccurate in a c.r.m.s, sense. 

The reason for the better  than expected preservation 
of X-ray contacts by the tetrahedral lattice is not clear. 

One explanation is that the 109.5 ° pseudo-bond angle 
of the tetrahedral lattice allows a more natural 

representation of certain protein structural features, 
in particular, 13-strands. Indeed, the tetrahedral 

lattice preserves an average of 80.2% of X-ray 13 
structure. It seems likely that the geometry  of a 
tetrahedral lattice allows not only actual X-ray 

13-strands to be preserved, but  also s t rand-s t rand 
contacts. 

Another result of these studies is that optimized 

off-lattice models can, for the same complexity, 
represent X-ray protein conformations much more 

accurately than lattice models. For example, any one 

of our optimized 4-state models is considerably more 
accurate than the (5-state) cubic lattice. A rationally 

selected set of 6-states, either ours or those described 
by Rooman et al. (1991), is as good as a naive 18- 

state model. Clearly, any attempt to predict protein 
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Figure 6. This shows fitted models (broken lines) superimposed over the X-ray conformations (continuous lines) of 
myoglobin (1 mba) and plastocyanin (1 pcy). Note the difference between a naive 4-state model (upper left) and an 
optimized 4-state model (lower left). The improvement in fit for the all c(-protein, 1 mba, is remarkable. There is no 
improvement in fit for the all-13 protein, 1 pcy. On the right-hand side, we compare the fits of an 18-state model and a "hand" 
optimized 6-state model (Rooman et al., 1991). 1 mba is fitted almost as well by the simple model as by the complex one, 
whereas plastocyanin is fit significantly better by the complex model. However, for many purposes, the poorer fit of the 
6-state model is still adequate. 0 10 20 30 40 50 60
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FIG. 142 Rate–distortion curve (or its moral equivalent) for
protein structures, from Park and Levitt (1995). The path
of the α−carbon backbone is approximated by a discrete set
of local ‘moves’ along the chain, which is roughly equivalent
to forcing the structure to live on a lattice. Diamonds cor-
respond to lattices with different structures (e.g., 3 possible
moves on a tetrahedral lattice); + and W correspond to dis-
crete approximations obtained by clustering known structures
based on the Ramachandran angles at each site. Plotted on
the y−axis is the root mean square error in the positions of
all the α−carbons along the chain. Inset shows two examples
of protein structures, compared with their discrete approxi-
mations.

and makes decisions—most importantly, about the reg-
ulation of gene expression—based on this local measure-
ment, as in Fig 143. In this model, the only thing that
a cell knows about its position in the embryo is the mor-
phogen concentration, and so the information that cells
have about position can be no larger than the informa-
tion that they extract about this concentration. In effect
there is a communication channel from the morphogen
to the expression levels of the genes which defines the
blueprint for development, and the information that can
be transmitted along this channel sets a bound on the
complexity and reliability of the blueprint. As an exam-
ple, if we haveN rows of cell along one axis of the embryo,
and each row reliably adopts a distinct fate that we can
‘see’ by looking at the expression levels of a handful of
genes, then (again, in the simplest model) there must
be log2 N bits of information transmitted through the
regulatory network that takes the morphogens as input
and gives the gene expression levels as output. As in the
discussion of growth rates, this becomes interesting be-
cause, as we shall see, the information capacity of gene
regulatory elements is quite limited. Rough estimates of
the relevant quantities in the Drosophila embryo suggest
that the embryo might indeed be forming patterns near
the limits set by the information capacity of gene regu-
lation.

What happens if things are more complicated than in
Fig 143? In particular, we know about plenty of systems
which form patterns spontaneously, without any analog
of the “maternal” signal to break the translational sym-
metry. It is important to realize that while patterns can
form spontaneously, information can’t really be created,
only transmitted. In a crystal, for example, once we know
that one atom is in a particular position we can predict
the position of other atoms, but this is only because of
the bonds that connect the atoms. Because all the atoms
undergo Brownian motion, the transmission of informa-
tion is not perfect, and knowledge of one atomic position
provides only a limited number of bits about the position
of another atom; this limit on information transmission
becomes tighter as the temperature—and hence the noise
level in the “communication channel” which connects the
distant atoms—becomes larger, until the crystal melts
and there is no information transmitted over long dis-
tances.

Problem 152: Transmitting positional information in a
crystal. Take the students through an explicit calculation of the
mutual information between positions of atoms in a harmonic solid.

In non–equilibrium systems, such as the Rayleigh–
Bernard convection cell shown in Fig 144, we see spatial
patterns in which some local variable such as the temper-
ature, fluid density or velocity at one position predicts
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FIG. 143 Information flow in a “feed–forward” model of ge-
netic control in the early embryo. The concentration C of the
primary morphogen depends on position x, and each cell re-
sponds independently by modulating the expression level G of
some target gene (or genes). In this simple view, information
about position only reaches the gene expression level through
the intermediary of the primary morphogen concentration,
and hence we have I(x;G) ≤ I(C;G).
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FIG. 144 This looks like a perfect crystal of beads, but it
actually is a small (∼ 10 cm diameter) container filled with
carbon dioxide at high pressure, and heated from below. The
image is formed by passing light through the gas, sometimes
called a ‘shadowgraph.’ The temperatures at the top and
bottom of the container are held very constant (to within a
few thousandths of a degree) so that the patterns will not
be disrupted by variations in conditions; similarly, the top
and bottom of the container are extremely flat (smooth to
within the wavelength of light), and the whole system is held
horizontal with high precision so that the direction of gravity
is aligned with the axis of symmetry through the center of the
circle. From E Bodenschatz et al (1991).

the value of the corresponding variable at another posi-
tion. If we call this local variable φ(x), then if we imagine
a large ensemble of snapshots like the one in Fig 144, we
can build up the distribution functional P [φ(6x)]. The
statement that we have a periodic pattern, for example,
is the statement that if we look at two points separated by
an appropriately chosen vector 6d, then φ(6x) ≈ φ(6x+ 6d).
But if we point to the first point 6x at random, we can
get a broad range of values for φ1 ≡ φ(6x), drawn from
a distribution P1(φ1). Similarly, if we are choosing 6x at

random then φ2 ≡ φ(6x + 6d) is also broadly distributed;
in fact, it must come from the same distribution as φ1.
But once we know φ1, if there is a periodic pattern then
the distribution P (φ2|φ1) must be sharply peaked around
φ1 = φ2, and hence very different from the “prior” distri-
bution of φ2. But this is exactly the condition for there to
be mutual information between φ1 and φ2. Thus, the ex-
istence of a spatial pattern is equivalent to the presence of
mutual information between the local variables at distant
points. Where does this information come from? As with
the bonds connecting the atoms in the crystal, it must be
transmitted through the dynamics of the system, which
connect points only to their immediate neighbors.

In a strict interpretation of the concept of positional
information in embryo, we actually require more than
mutual information between local variables at distant

points. We require that the value of some local vari-
able(s), typically the expression levels of several genes,
tell us about the location of the point where we have
observed them. In this way, cells would “know” their po-
sition in the embryo by virtue of their expression levels,
and these signals could drive further processes in a way
that is appropriate to the cell’s location—not just rela-
tive to other cells, but in absolute terms.85 If we call the
local variables {gi}, for gene expression levels, then the
positional information is I(6x; {gi}. But the local vari-
ables at point x are controlled by a set of inputs which
may include external, maternally supplied morphogens,
the expression levels {gi} in neighboring cells, and per-
haps other variables as well. We can always write the
distribution of expression levels at one point in terms of
this inputs,

P ({gi}|x) =
∫

d(inputs)P ({gi}|inputs)P (inputs|x).
(800)

Noise in the control of gene expression corresponds to
the fact that the distribution P ({gi}|inputs) is not in-
finitely narrow. Now because, at any one point, informa-
tion flows from x to the inputs to the {gi}, we must have
I(x; {gi}) ≤ I(inputs; {gi}), and this is true no matter
how complicated the inputs might be. More importantly,
as hinted at in the analysis of the first synapse in fly vi-
sion (Fig 139), any input/output device has a maximum
amount of information it can transmit that is determined
by its noise level. Thus, if we think of all the whole net-
work of interactions that result in the regulation of the
gene expression levels {gi}, the noise in this network de-
termines a maximum value for I(inputs; {gi}), and this
sets a limit to the amount of positional information that
cells in the embryo can acquire and encode with these
genes.

Problem 153: The data processing inequality. What we
need in the previous paragraph is a special case of a more general
inequality .. derive it.

To summarize, the reliability and complexity of the
patterns that can form during embryonic development

85 This is certainly what “positional information” means in the
usual descriptions of the concept; see the discussion of the in-
formation carried by Hunchback expression levels in the fly em-
bryo, surrounding Fig 136. There are almost no measurements
of this information, in bits, so it remains possible that real cells
know much more about their relative position than about their
absolute position. This wouldn’t change the spirit of what I am
saying here, but the details would matter. This is one of many
open questions about information flow in the embryo.
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are limited by the amount of positional information that
cells can acquire and represent. This information in turn
is limited by the “capacity” of the genetic or biochemi-
cal networks whose outputs encode the positional infor-
mation. Therefore, if real networks operate in a regime
where this capacity is small, the complexity of body plans
will be limited by the ability of the organism to squeeze
as much information as possible out of these systems.

Most of the examples we have considered thus far have
the feature that the information is “about” something
that has obvious relevance for the organism. Can we
find some more general way at arriving at such notions
of relevant? It is useful to have in mind an organism
collecting a stream of data, whether the organism is like
us, with eyes and ear, or like a bacterium, sensing the
concentrations of various molecules in its external and
internal environment. Of all these data, the only part
we can use to guide our actions (and eventually collect
rewards, reproduce, etc.) is the part that has predictive
power, since by the time we act we are already in the
future. Thus we can ask how to squeeze, out of all the
bits we collect, only those bits which are relevant for
prediction.
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FIG. 145 A schematic of the prediction problem. We observe
a time series, and at some moment (now) we look back at
a segment of the recent past with duration T , Xpast. From
this, we try to infer something about what will evolve in the
future.

[I am worried that this goes a little quickly.] More con-
cretely, as in Fig 145, if we observe a time series through
a window of duration T (that is, for times −T < t ≤ 0),
then to represent the data Xpast we have collected re-
quires S(T ) bits, where S is the entropy, but the infor-

mation that these data provide about the future Xfuture

(i.e., at times t > 0) is given by some I(Xpast;Xfuture) ≡
Ipred(T ) , S(T ). In particular, while for large T the
entropy S(T ) is expected to become extensive, the pre-
dictive information Ipred(T ) always is subextensive. Thus
we expect that the data Xpast can be compressed signifi-
cantly into some internal representationXint without los-
ing too much of the relevant information about Xfuture.
Formally, we can construct the optimal version of this
mapping by solving

max
Xpast→Xint

[I(Xint;Xfuture)− λI(Xint;Xpast)] , (801)

where Xpast → Xint is the rule for creating the internal
representation and λ is a Lagrange multiplier. This sort
of problem has been dubbed an ‘information bottleneck,’
because we try to preserve the relevant information while
squeezing the input data through a narrow channel.

Problem 154: Predictive information is subextensive.
If we observe a stationary stochastic process, x(t), on the interval
t1 < t ≤ t1 + T , the entropy of the distribution P [x(t)] depends
only on T , not t1; let’s call this entropy S(T ).

(a.) Use your intuition from statistical mechanics to explain why
we expect S(T ) to grow extensively, that is S(T ) ∝ T at large T .
More formally, show that at large T

S(T ) → ST + S1(T ), (802)

where

lim
T→∞

S1(T )

T
= 0. (803)

Thus, although S1(T ) can grow with T , it must grow more slowly
than T itself—it is “subextensive.”

(b.) Consider the case where time is discrete, and x is Marko-
vian, so that x(t+1) depends on x(t), but no earlier history. Show
that, in this case, S1(T ) is just a constant.

(c.) Consider the case where Xpast ≡ x(−T < t ≤ 0) and
Xfuture ≡ x(0 < t < T ′). Show how the predictive information
Ipred(T, T ′) ≡ I(Xpast;Xfuture) is related the function S(T ); you
should be able to do this in general, without the Markov assump-
tion. Show further that there a finite limit as the duration of the
future becomes infinite, and that this limit Ipred(T ) is subexten-
sive.

In general, we should consider the mapping Xpast →
Xint to be probabilistic, so we can describe it by some
conditional distribution P (Xint|Xpast). Then the quan-
tity we are trying to maximize becomes
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−F =
∑

Xint,Xpast

P (Xint|Xpast)P (Xpast) log2

[
P (Xint|Xpast)

P (Xint)

]

−λ
∑

Xint,Xfuture

P (Xint|Xfuture)P (Xfuture) log2

[
P (Xint|Xfuture)

P (Xint)

]
. (804)

This is written as if our choice of representation Xint

depends directly on the future, but of course this isn’t
true; any correlation between what we write down and
what happens in the future is inherited from the data
that we collected in the past,

P (Xint|Xfuture) =
∑

Xpast

P (Xint|Xpast)P (Xpast|Xfuture).

(805)
In addition, we have

P (Xint) =
∑

Xpast

P (Xint|Xpast)P (Xpast). (806)

As usual, we have to take the derivative of F with re-
spect to the distribution P (Xint|Xpast), being careful to
add a Lagrange multiplier µ(Xpast) that fixes the nor-
malization for each value of Xpast), and then we set the
derivative to zero to find an extremum. Since the opti-
mization of F is independent of multiplicative factors, we
can make things simpler by taking natural logs instead
of logs base 2. Then the algebra is as follows:

0 =
δ

δP (Xint|Xpast)



−F −
∑

Xpast

µ(Xpast)
∑

Xint

P (Xint|Xpast)



 (807)

= P (Xpast) ln

[
P (Xint|Xpast)

P (Xint)

]
− λ

∑

Xfuture

P (Xpast|Xfuture)P (Xfuture) ln

[
P (Xint|Xfuture)

P (Xint)

]
− µ(Xpast). (808)

To proceed, it would be useful to divide through by a factor of P (Xpast), at which point we have

ln

[
P (Xint|Xpast)

P (Xint)

]
= λ

∑

Xfuture

P (Xfuture|Xpast) ln

[
P (Xint|Xfuture)

P (Xint)

]
+ µ̃(Xpast), (809)

where µ̃(Xpast) = µ(Xpast)/P (Xpast). Further, since on the right we have a conditional distribution of Xfuture given
Xpast, it would be nice to rearrange the ratio inside the logarithm,

P (Xint|Xfuture)

P (Xint)
=

P (Xfuture|Xint)

P (Xfuture)
=

P (Xfuture|Xint)

P (Xfuture|Xpast)
· P (Xfuture|Xpast)

P (Xfuture)
, (810)

so that, when we substitute we find

ln

[
P (Xint|Xpast)

P (Xint)

]
= λ

∑

Xfuture

P (Xfuture|Xpast) ln

[
P (Xfuture|Xint)

P (Xfuture|Xpast)

]

+λ
∑

Xfuture

P (Xfuture|Xpast) ln

[
P (Xfuture|Xpast)

P (Xfuture)

]
+ µ̃(Xpast). (811)

We recognize the first term on the right as being the
(negative) Kullback–Leibler divergence between the dis-
tribution of futures given the past, and the distribution

of futures given our representationXint. Further, the sec-
ond term depends only on Xpast, and so can be absorbed
into µ̃(Xpast). Thus, when the dust settles, we have

P (Xint|Xpast) =
P (Xint)

Z(Xpast;λ)
exp

(
− λDKL [P (Xfuture|Xpast)||Xfuture|Xint)]

)
, (812)

where Z(Xpast;λ) is a normalization constant. This isn’t a solution to our problem, but rather a self–consistent
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equation that the solution has to satisfy. The problem we
are solving is an example of selective compression, and
the particular formulation of trading bits vs. bits has
come to be called the “information bottleneck” problem.

Problem 155: Fill in all the details leading from Eq (807) to
Eq (812).

We should think of Equation (812) as being like the
result in Eq (794), but instead of adjusting an inter-
nal state in relation to the “potential” formed by the
growth rate, here the effective potential is the (negative)
Kullback–Leibler divergence, which measures the simi-
larity between the distributions of futures given the ac-
tual past and given our compressed representation of the
past. This means that if two past histories lead to simi-
lar distributions of futures, they should be mapped into
the same value of Xint. This makes sense, since we are
trying to throw away any information that doesn’t have
predictive power. When λ is very large, differences in
the expected future need to be very small before we are
willing to ignore them, while at small λ it is more impor-
tant that our description be compact, to we are willing
to make coarser categories. As in rate–distortion theory,
there is no single right answer, but rather a curve which
defines the maximum amount of predictive information
we can capture given that we are willing to write down
a certain number of bits about the past, and along this
curve there is a one parameter family of strategies for
mapping our observations on the past into some internal
representation Xint.

Problem 156: Predictive information and optimal filter-
ing. Imagine that we observe a Gaussian stochastic process [x(t)]
that consists of a correlated signal [s(t)] in a background of white
noise [η(t)], that is x(t) = s(t) + η(t), where

〈s(t)s(t′)〉 = σ2 exp
(
−|t− t′|/τc

)
(813)

〈η(t)η(t′)〉 = N0δ(t− t′). (814)

Recall (or see Section A.2) that the full probability distribution for
the function x(t) is

P [x(t)] =
1

Z
exp

[
−
1

2

∫
dt

∫
dt′ x(t)K(t− t′)x(t′)

]
, (815)

where Z is a normalization constant.
(a.) Construct the kernel K(τ) explicitly. Be careful about the

behavior near τ = 0.
(b.) Break the data x(t) into a past Xpast ≡ x(t < 0) and a

future Xfuture ≡ x(t > 0), relative to the time t = 0. Show that

P [x(t)] can be rewritten so that the only term that mixes past and
future is of the form

[∫ 0

−∞
dt g(−t)x(t)

]
×

[∫ ∞

0
dt′ g(t′)x(t′)

]
, (816)

where g(t) = exp(−t/τ0), with τ0 = τc(1 + σ2τc/N0)−1/2. More
formally, if we define

z =

∫ 0

−∞
dt g(−t)x(t), (817)

show that
P (Xfuture|Xpast) = P (Xfuture|z). (818)

Explain why the optimal internal representation of the predictive
information, Xint, can only depend on z.

(c.) Suppose that we are given the past data x(t ≤ 0), and in-
stead of being asked to predict the future, you are asked to make
the best estimate of the underlying signal s(t = 0). [Connect back
to problem in Chapter 1] Show that this optimal estimate is pro-
portional to z.

As you just showed in the last problem, the optimal
representation of predictive information is equivalent, at
least in simple cases, to the separation of signals from

all 64 nouns that appear
as objects of “to fire”

missile
rocket
bullet
gun
...

officer
aide
chief

manager
...

FIG. 146 A precursor of the information bottleneck problem,
from Lee et al (1993). In one year of the Associated Press
news reports, there are 64 nouns (Xnoun) which appear as
the direct object of the verb “to fire,” and these nouns are
paired with 2147 distinct verbs (Xverb). Following the ideas
in the text, imagine compressing the description of the nouns,
Xnoun → Xint, while trying to preserve the information that
the compressed description conveys about the verb which ap-
pears with the noun. That is, maximize I(Xint;Xverb) while
holding I(Xint;Xnoun) fixed. Here we show the solution to
the problem when I(Xint;Xnoun) ≈ 1 bit supports two dis-
tinct values of Xint; what we list are the nouns that map
to the two values of Xint with high probability. We see that
this classifies the nouns by their meaning, separating weapons
(firing a missile) from job titles (firing a manager). Impor-
tantly, this is based only on the co–occurrence of the nouns
with verbs in sentences; there is no supervisory signal which
distinguishes the different senses of the verb.
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noise. In Section IV.D we will see that extracting the
predictive information from other kinds of time series is
equivalent to learning the underlying parameters or rules
that the data obey. In a somewhat more fanciful exam-
ple, we can think of Xpast as a word in a sentence, and
Xfuture as the next word; then the mapping Xpast → Xint

is equivalent to making clusters of words. When λ is
small, there are very few clusters, and they correspond
very closely to parts of speech. As λ becomes larger, we
start to discern categories of words that seem to have
meaning. Indeed the first exercise of this sort was to
choose not two successive words as past and future, but
rather the noun and verb in the same sentence, and then
the impression (still subjective) that the resulting clus-
ters of nouns have similar meanings is even stronger, as
seen in Fig 146. It is tempting to suggest that the opti-
mal representation of predictive information is extracting
“meaning” from the statistics of sentences. [perhaps ex-
plain that some people are horrified by this suggestion?]

[Maybe say something about Tagkopolous et al (2008)?
What about different ideas of predictive coding from
Laughlin, Rao, ... ? Is this the place to show evidence
(depending on how much we have!) that neurons pro-
vide efficient representations of predictive information, or
does this go in the next section? What about a reminder
that the rules of synaptic plasticity seem to know about
causality, and hence might serve to build representations
that favor predictive information?]

Let me try to pull the different arguments of this sec-
tion together, even if imperfectly. What we really care
about is how organisms can maximize some measure
of performance—ultimately, their reproductive success—
given access to some limited set of resources. Within any
broad class of possible biological mechanisms, there is
an optimum that divides the fitness/resources plane into
possible and impossible regions, as in the upper right
quadrant of Fig 147; evolutionary pressure drives organ-
isms toward this boundary. But we have seen that, for
any measure of fitness or adaptive value, achieving some
criterion level of performance always requires some mini-
mum number of bits; this is the content of rate–distortion
theory. Thus there is a plane (in the upper left quadrant
of Fig 147) of fitness vs. information, and again there
is a curve that divides the possible from the impossible.
Importantly, the information that an organism can use to
gain a fitness advantage—even in the simple example of
adjusting gene expression levels to match the availability
of nutrients—is always predictive information, because
the consequences of actions come after they are decided
upon.

We know that bits are not free. In simple examples,
such as the Gaussian channel in Section ??, the infor-
mation that can be transmitted depends on the signal to
noise ratio, and this in turn depends on the resources the
organism can devote, whether we are counting action po-
tentials or molecules. If we think about the bits that will

be used to direct an action, then there are many costs—
the cost of acquiring the information, of representing the
information, and the more obvious physical costs of car-
rying out the resulting actions, but we always can assign
these costs to the symbols at the entrance to the com-
munication channel. The channel capacity separates the
information/resources plane into accessible and inacces-
sible regions, as in the lower right quadrant of Fig 147.
Ideas about metabolically efficient neural codes [perhaps
should be more explicit here?], for example, can be seen
as efforts to calculate this curve in specific models. Of
course the information we are talking about now is in-
formation that we actually collect, and this is informa-
tion about the past. To close the connections among the
different quantities, we need the information bottleneck,
which tells us that—given the structure of the world we
live in—having a certain number of bits of information
about the future requires capturing some minimum num-
ber of bits about the past.
To summarize, if an organism wants to achieve a cer-

tain mean fitness, it needs a minimum number of bits of
predictive power, and this requires collecting a minimum
number of bits about the past, which in turn necessitates
some minimum cost or available resources. Usually we

forbidden

resources 

adaptive value

biologically

optimal 

performance

information

about the past

forbidden
channel coding

limit

forbidden

information

about the future

rate-distortion

 limit

information

bottleneck

FIG. 147 Connecting the different optimization principles
(Bialek et al 2007). Lines indicate curves of optimal perfor-
mance, separating allowed from forbidden (hashed) regions of
each quadrant. In the upper right quadrant is the biologi-
cally relevant notion of optimization, maximizing fitness or
adaptive value at fixed resources. But actions that achieve a
given level of adaptive value require a minimum number of
bits, and since actions occur after plans these are bits about
the future (upper left). On the other hand, the organism
has to “pay” for bits, and hence there is a minimum resource
costs for any representation of information (lower right). Fi-
nally, given some bits (necessarily obtained from observations
on the past), there is some maximum number of bits of pre-
dictive power (lower left). To find a point on the biological
optimum one can try to follow a path through the other three
quadrants, as indicated by the arrows.
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think of evolution as operating in the tradeoff between
resources and fitness, but this has echoes in the other
quadrants of Fig 147, where information theoretic bounds
are at work. These connections provide a path whereby
evolution can select for mechanisms that approach these
bounds, even thought evolution itself doesn’t know about
bits.

The connection between information and gambling goes back to
Kelly (1956). Connections of these ideas to fitness in fluctuating
environments are discussed by Bergstromm & Lachmann (2005),
Kussell & Leibler (2005), and more generally by Rivoire & Leibler
(2011). The specific case of persistence in bacteria has been ex-
plored by Balaban et al (2004) and Kussell et al (2005); for a review
see Gefen & Balaban (2009). The analogy to rate–distortion the-
ory, demonstrating a minimum number of bits required to achieve a
criterion mean growth rate, is from Taylor et al (2007); for a treat-
ment of rate–distortion theory itself, again see Cover & Thomas
(1991), in the refs to Section IV.A. Although they didn’t explic-
itly use the language of rate–distortion theory, Park and Levitt
(1995) explored the compression of protein structures into a small
set of local, discrete states, asking how the complexity of this rep-
resentation related to its accuracy. For a first try at connecting
information flow and embryonic pattern formation, see Tkačik et
al (2008). The beautiful convection patterns in Fig 144 are from
Bodenscahtz et al (1991).
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C. Optimizing information flow

We have seen that organisms should care about bits—
for every criterion level of performance that a system
wants to achieve, there is a minimum number of bits that
it needs. If bits are cheap, or easy to acquire, then this
need for a minimum number of bits is true but not much
of a constraint. On the other hand, if the physical con-
straints under which organisms operate imply severe lim-
its on information transmission, then the minimum num-
ber of bits may approach the maximum number available,
and strategies that maximize efficiency in this sense may
be critical to biological function.
One of the central ideas in thinking about the efficiency

with which bits can be collected and transmitted is that
what we mean by efficient (and, in the extreme, opti-
mal) depends on context, as indicated schematically in
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Fig 148. In the top panel we see a typical sigmoidal in-
put/output relation, which might describe the expression
level of a gene vs. the concentration of a transcription
factor, the probability of spiking in a neuron as a func-
tion of the intensity of the sensory stimulus, ... . In the
bottom panel we see different possibilities for the distri-
butions out of which the input signals might be drawn.
For the two distributions in blue, the input signals are
confined to the saturated regions of the input/output re-
lation, leaving the output almost always in the fully ‘off’
or ‘on’ states. In these situations, the output is always
the same, and is unaffected by the changes in the input
that actually occur with reasonable probability, and the
system is essentially useless. More subtly, for the distri-
bution in green, input signals are in the middle of the
middle of the input/output relation, where the slope of
the input/output relation is maximal, but the dynamic
range of these variations is small, so that the variations
in output are only a small fraction of what is possible,
and these variations might well be obscured by any rea-
sonable level of noise. Finally, for the distribution in red,
the dynamic range of the likely inputs is just big enough
to push the system through the full dynamic range of
the input/output relation, generating large (maximal?)
variations in the output.
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FIG. 148 At top, an example of an input/output relation.
At bottom, different possible probability distributions for the
inputs. As described in the text, the blue and green distribu-
tions are poorly matched to the input/output relation, while
the red distribution seems to be a better match.

While it is easy for everyone to agree that, in Fig
148, the blue and green distributions of inputs are poorly
matched to the input/output relation, and the red dis-

tribution is well matched, it takes a little more courage
(and courts more controversy) to make a precise mathe-
matical statement about what constitutes a good match,
or the “best” match. What we will try out as a defi-
nition of “best” is that outputs should provide as much
information as possible about the inputs.
Let’s start with input x, chosen from a distribution

PX(x), and assume that this is converted into one output
y by a system that has an input/output relation g(x) but
also some added noise,

y = g(x) + ξ. (819)

Notice that when we plot an input/output relation, as
in Fig 148, we (implicitly) are referring to the average
behavior of the system, since realistically there must be
some level of noise and hence the input and output are
related only probabilistically; we now make this explicit
by adding the noise ξ. To keep things simple, let’s assume
that this noise is Gaussian, with some variance σ2 and
as usual zero mean. In principle, the variance of the
output noise could depend upon the value of the input,
and this will be important below, so we’ll write σ2

y(x) to
remind us that we are talking about the variance of the
output (hence the subscript), but this may depend upon
the input.
In order to compute the amount of information that

y provides abut x, we need various probability distribu-
tions. Specifically, we want to evaluate

I(y;x) =

∫
dx

∫
dy P (x, y) log2

[
P (x, y)

PX(x)PY (y)

]
(820)

=

∫
dx

∫
dy P (x, y) log2

[
P (y|x)
PY (y)

]
. (821)

It is the conditional distribution P (y|x) that describes,
in the most general setting, the probabilistic relationship
between input and output. The overall distribution of
outputs is given by

PY (y) =

∫
dxP (y|x)PX(x). (822)

With the hypothesis that the noise ξ is Gaussian, Eq
(819) tells us that

P (y|x) = 1√
2πσ2

y(x)
exp

[
− (y − g(x))2

2σ2
y(x)

]
. (823)

The information can be written (as usual) as the dif-
ference between two entropies,
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I(y;x) =

∫
dx

∫
dy P (x, y) log2

[
P (y|x)
PY (y)

]

= −
∫

dy PY (y) log2 PY (y)−
∫

dxPX(x)

[
−
∫

dy P (y|x) log2 P (y|x)
]
. (824)

But the conditional distribution P (y|x) is Gaussian, with variance σ2
y(x), so we can substitute for the conditional

entropy from Eq (701) to give

I(y;x) = −
∫

dy PY (y) log2 PY (y)−
1

2 ln 2

∫
dxPX(x) ln[2πeσ2

y(x)]. (825)

The distribution of outputs PY (y) is broadened by two effects. First, as x varies, the mean value of y changes.
Second, even with x fixed, noise causes variations in y. But if the noise is small, the first effect should dominate, and
this will simplify our problem. Formally,

PY (y) =

∫
dxPX(x)P (y|x) =

∫
dxPX(x)

1√
2πσ2

y(x)
exp

[
− (y − g(x))2

2σ2
y(x)

]
(826)

=

∫
dz

∣∣∣∣
dz

dx

∣∣∣∣
−1

PX(x = g−1(z))
1√

2πσ2
y(z)

exp

[
− (y − z)2

2σ2
y(z)

]
, (827)

where we have changed variables to z = g(x), which is allowed if the input/output relation is monotonic. But now
we can view the integral as an average over a distribution of z, and we know that if the noise is small we can always
write

∫
dz F (z)

1√
2πσ2

y(z)
exp

[
− (y − z)2

2σ2
y(z)

]
≈ F (z = y) +

1

2
σ2
y(z = y)

d2F (z)

dz2

∣∣∣∣
z=y

+ · · · , (828)

for any function F (z). Keeping just the leading term, at
small noise levels we have

PY (y) ≈
[∣∣∣∣

dz

dx

∣∣∣∣
−1

PX(x = g−1(z))

]

z=y

. (829)

This looks complicated, but it’s not. In fact it is the same
as ignoring the noise all together and saying that there is
some deterministic transformation from x to y, y = g(x),
in which case we must have

PX(x)dx = PY (y)dy. (830)

By the same reasoning, we can also view the variance
σ2
y(x) as being a function not of the input x but rather

of the output y, so we’ll write σ2
y(y).

Problem 157: Details of the small noise approximation,
part one. Show that Eq (830) really is the same as Eq (829).

In the small noise approximation, then, the mutual
information between x and y thus can be written as

I(y;x) ≈ −
∫

dy PY (y) log2 PY (y)

− 1

2 ln 2

∫
dy PY (y) ln[2πeσ

2
y(y)]. (831)

Now it’s clear that, given the noise level, we can maxi-
mize the mutual information by varying the distribution
of outputs PY (y). Notice that we started with the prob-
lem of varying the distribution of inputs, but now things
are formulated in terms of the distribution of outputs; Eq
(830) tells us that these are equivalent in the low noise
limit. To do the optimization correctly, however, we have
to add a Lagrange multiplier that fixes the normalization
of the distribution. Thus we are interested in the func-
tional

Ĩ ≡ I(y;x)− µ

∫
dy PY (y). (832)

As usual, to optimize we set the derivative equal to zero:
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δĨ

δPY (y)

∣∣∣∣∣
PY (y)=Popt(y)

= 0 (833)

⇒ 0 = − 1

ln 2
[lnPopt(y) + 1]− 1

2 ln 2
ln[2πeσ2

y(y)]− µ (834)

lnPopt(y) = −1

2
ln[2πeσ2

y(y)]− (1 + µ ln 2) (835)

Popt(y) =
1√

2πeσ2
y(y)

e−(1+µ ln 2). (836)

We can write this more simply by gathering together the
various constants,

Popt(y) =
1

Z

1

σy
, (837)

where Z must be chosen so that the distribution is nor-
malized, so

Z =

∫
dy

σy
. (838)

With this result for the optimal distribution, the mutual
information is

Iopt = log2

[
Z√
2πe

]
. (839)

Problem 158: Extrema of the mutual information. Once
again we need to check that we have found an optimum, rather
than some other type of extremum, in the dependence of the mu-
tual information on the distribution of outputs, Eq (831). You can
do this explicitly by computing second (functional) derivatives, or
by appealing to general convexity properties of the entropy. Notice
that our ability to write the information so simply as a functional
of the output distribution alone is a feature of the low noise approx-
imation. More generally, we should view the mutual information
as a functional of the input distribution P (x) and the conditional
distribution(s) P (y|x). Show that, in this more general setting,
once P (y|x) is known, the mutual information has a well defined
maximum as a functional of P (x).

Problem 159: Details of the small noise approximation,
part two. Carry out the small noise approximation to the next
leading order in the noise level σ2

y . Step by step, you should find
P (y) and then an expression for the information I(y;x). What can
you say about the problem of optimizing I(y;x) in this case?

The result for the optimal distribution of outputs, Eq
(837), is telling us something sensible: we should use the
different outputs y in inverse proportion to how noisy
they are. Suppose, however, that the noise level is con-
stant. Then what we find is that the distribution of out-
puts should be uniform. How can the system do this?

Recall that in the low noise limit, the relationship be-
tween input and output is nearly deterministic, so we
have Eq (830), PY (y)dy = PX(x)dx. But we also have
that y = g(x), in this approximation. If PY (y) is uni-
form, this means that

PY (y) =
1

ymax − ymin
, (840)

and hence

dy

dx
=

dg(x)

dx
= (ymax − ymin)P (x) (841)

g(x) = (ymax − ymin)

∫ x

xmin

dx′ P (x′). (842)

Thus, in this simple limit, the optimal input/output re-
lation is proportional to the cumulative probability dis-
tribution of the input signals.

Problem 160: How general is Eq (842)? We have derived
Eq (842) by assuming that the noise is additive, Gaussian, small,
and finally has a variance that is constant across the range of inputs
or outputs. Show that you can relax the assumption of Gaussianity
(while keeping the noise small, additive, and independent of inputs)
and still obtain the same result for the optimal input/output rela-
tion.

Equation (842) makes clear that any theory which
involves optimizing information transmission or effi-
ciency of representation inevitably predicts that the in-
put/output relation must be matched to the statistics of
the inputs. Here the matching is simple: in the right
units we could just read off the distribution of inputs by
looking at the (differentiated) input/output relation. Al-
though this is obviously an over–simplified problem, it is
tempting to test the predictions, and this is exactly what
Laughlin did in the context of the fly’s visual system.
Laughlin built an electronic photodetector with aper-

ture and spectral sensitivity matched to those of the fly
retina, and used this to scan natural scenes, sampling the
distribution of input light intensities P (I) as it would
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FIG. 149 Input/output relations of large monopolar cells
compared with the prediction of Eq (842), from Laughlin
(1981). Brief changes in light intensity relative to a mean
background produce transient voltage changes in the LMCs
(inset), and the peaks of these responses are taken as the cell’s
output. Normalized responses are compared to the cumula-
tive probability distribution of light intensities, as described
in the text.

appear at the input to these neurons. In parallel he
characterized the second order neurons of the fly visual
system—the large monopolar cells which receive direct
synaptic input from the photoreceptors, and which we
have seen before in [pointers!]—by measuring the peak
voltage response to flashes of light. The agreement with
Eq (842) was remarkable, as shown in Fig 149, especially
when we remember that there are no free parameters.
While there are obvious open questions, this is a really
beautiful result that inspires us to take these ideas more
seriously.

This simple model automatically carries some predic-
tions about adaptation to overall light levels. If we live
in a world with diffuse light sources that are not directly
visible, then the intensity which reaches us at a point is
the product of the effective brightness of the source and
some local reflectances. As is it gets dark outside the re-
flectances don’t change—these are material properties—
and so we expect that the distribution P (I) will look
the same except for scaling. Equivalently, if we view the
input as the log of the intensity, then to a good approx-
imation P (log I) just shifts linearly along the log I axis
as mean light intensity goes up and down. But then
the optimal input/output relation g(I) would exhibit a
similar invariant shape with shifts along the input axis
when expressed as a function of log I, and this is in rough
agreement with experiments on light/dark adaptation in
a wide variety of visual neurons [show a figure that illus-
trates this!].

As I have emphasized before, the problems of signals,
noise and information flow in the nervous system have

analogs within the biochemical and genetic machinery of
single cells. For the simple problem of one input and
one output, we can move beyond analogy and actually
use the same equations to describe these very different
biological systems.
Suppose that we have a single transcription factor that

controls the expression of one target gene. Now we can
think of the input x as the concentration of the transcrip-
tion factor, and the output y as the expression level of
the gene. As in Laughlin’s discussion of the fly retina,
we are (perhaps dangerously) ignoring dynamics. In the
context of gene regulation this probably is best seen as a
quasi–steady state approximation, in which the changes
in transcription factor concentration are either slow or in-
frequent, so that the resulting gene expression level has
a chance to find its appropriate steady level in response.
We have discussed the problems of noise in the control

of gene expression in Section II.B, and a crucial feature
of that discussion is that the noise levels cannot be con-
stant. In the simplest case, we are counting molecules,
and counting zero molecules allows for no variance, while
counting the maximum number of molecules leaves lots
of room for variation. For the problem at hand, this
means—because of Eq (837)—that the distribution of
outputs that maximizes information transmission can’t
be uniform. To find the form of the optimal distribution
we need to recall some of our earlier discussion about
noise.
We have identified (at least) three noise sources in the

regulation of gene expression. One term is the shot noise
in the synthesis and degradation of the mRNA or protein
(output noise). The second is the randomness in the ar-
rival of transcription factor molecules at their target site
(input noise), and the third is from the kinetics of the
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FIG. 150 Optimal distributions of (output) gene expression
levels. As described in the text, we maximize the transmission
of information from a single transcription factor to a single
target gene. Different curves correspond to relative contribu-
tions from input and output noise, as in Eq (845).
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‘switching’ events that occur on binding of the transcrip-
tion factors. We have argued that cells can reduce the
impact of this last term by proper choice of parameters,
leaving two fundamental sources of noise. The shot noise
generates a variance at the output proportional to the
mean, while the random arrivals are equivalent to a fluc-
tuation in input concentration (δc/c)2 ∝ 1/c. Putting
these together we have [from the discussion leading to
Eq (376)] the variance in the expression level

σ2
g(c) = αḡ(c) +

B

c
·
∣∣∣∣
dḡ(c)

d ln c

∣∣∣∣
2

, (843)

where α and B are constants, and ḡ(c) is the mean ex-
pression level as a function of the input transcription
factor concentration c; as usual we will normalize the
measurements of expression levels so that the maximum
ḡ(c) = 1. Finally, if we can assume that the input/output
relation is well approximated by a Hill function,

ḡ(c) =
cn

cn +Kn
, (844)

then we can write the variance as a function of the mean,
as in Eq (376),

σ2
g(ḡ) = αḡ + βḡ2−1/n(1− ḡ)2+1/n. (845)

The parameter A = β/α measure the relative importance
of input and output noise; large A means that the input
noise is dominant near the midpoint of the input/output
relation.

In Figure 150 we see the results for the optimal dis-
tributions of expression levels, derived using the general
result of Eq (837) with the noise variance from Eq (845).
We hold the cooperatvity fixed (n = 5) and consider
what happens as we change the relative importance of
the input and output noise (A). As long as output noise
is dominant, A < 1, the optimal distribution is mono-
tonically decreasing. If we take the results seriously, the
distribution has a singularity as we approach zero expres-
sion level. There is no physical reason why this can’t hap-
pen, but we also can’t trust our calculation here since at
some point the noise σ ∝

√
ḡ will become larger than the

mean as ḡ → 0. Nonetheless, it’s clear that when output
noise is dominant, the optimal distribution of expression
levels is relatively featureless, biased toward low expres-
sion levels. The strength of this bias is considerable so
that the probability of having more than half–maximal
activation,

∫ 1
1/2 dg P (g), is a bit less than 30%.

At larger values of A, where input noise is more im-
portant, the optimal distribution of expression levels be-
comes bimodal. This is especially interesting, because ex-
treme bimodality corresponds to a simple on/off switch.
Intuitively, true switch–like behavior runs counter to the
idea that information transmission is being maximized:

FIG. 151 Distributions of Hunchback expression levels in the
early fruit fly embryo (Tkačik et al 2008). In red, the distribu-
tion predicted by optimizing information transmission given
the measured input/output relation and noise in the control
of Hb by Bcd. In black, with error bars, the distribution
measured experimentally.

we might expect that maximizing information transmis-
sion involves making extensive use of intermediate ex-
pression levels, while building a reliable switch means ex-
actly the opposite, avoiding intermediate levels. In fact,
few of classic examples of “genetic switches” are perfect,
and here we see that maximizing information transmis-
sion can lead to relatively low probabilities of occupying
intermediate levels, just depending on the structure of
the noise in the system.
We can bring this theoretical discussion down to earth

by considering a real system. As discussed in Section
II.B, there are measurements on the input/output rela-
tion and noise level for the control of the hunchback gene
by the transcription factor Bicoid in the early Drosophila
embryo. If we take the formalism above seriously, we
can use these measurements to predict, with no free pa-
rameters, the distribution of hunchback expression levels,
which can also be extracted from the experiments. To
do this correctly, we should go beyond the small noise
approximation and solve the full optimization problem
numerically; the results are shown in Fig 151.
Figure 151 is the direct analog of Laughlin’s result in

the fly retina. As in that case, the agreement of the-
ory and experiment is very good, and again it should be
emphasized that there are no free parameters—these are
not models we are fitting to data, but quantitative pre-
dictions from theory. One can go further, and show from
the data that the actual amount of information86 being
transmitted from Bicoid to Hunchabck is 0.88 ± 0.09 of

86 This is a good place to remember the technical difficulties in-
volved in estimating information from finite samples of data. See
Appendix A.9.
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FIG. 152 Changes in information transmission from Bcd to
Hb if we scale all noise variances by a factor F , from Tkačik
et al (2008). This is equivalent to scaling all the numbers of
molecules by a factor 1/F . At each noise level we compute
the maximum information transmission, as described in the
text. Limiting behaviors in the small and large noise approx-
imations are shown for reference. The real system (in red,
with error bar) is in an intermediate regime, although close
to the small noise limit.

the limit set by the measured noise levels. Thus, going
back to the remarks in Section 1.5, we can see directly
that the system is operating near its optimum. This op-
timum corresponds to significantly more than one bit,
which means that intermediate expression levels, beyond
an on/off switch, are being used reliably. Finally, since
we understand how the absolute numbers of molecules
influence the noise level in the system (see, again, Sec-
tion II.B), we can compute that more bits would be
very expensive—doubling the information would require
twenty times as many molecules, as shown in Fig 152.

Problem 161: Information flow through calcium bind-
ing proteins. Many biological processes are regulated by calcium.
Typically the regulatory process begins with calcium binding to a
protein. In almost all cases, there are multiple binding sites, and
these sites interact cooperatively. We’d like to understand some-
thing about the signals, noise and information flow in such reg-
ulatory systems; not much has been done in this aream so this
is a deliberately open ended problem. Consider the simple model
shown in Fig 153. This is a dimeric protein with four states, cor-
responding to empty and filled Ca++ binding sites on each of the
two monomers. The sites interact, since the rate of unbinding from
one site depends on the occupancy of the other site.

(a.) Calculate the equilibrium probability of occupying each of
the states in Fig 153. Use these results to plot the fraction of
occupied binding sites as a function of the calcium concentration c.
You should be able to choose units which eliminate all parameters
except for the dimensionless constant F . Show that for F = 1 your
results are equivalent to having two independent binding sites, and
that the fraction of occupied sites becomes more strongly sigmoidal
or switch–like as F becomes larger. Cooperativity means, in this

context, that the free energy change upon binding of a calcium ion
to one site is increased by occupancy of the other site. Relate the
parameter F to this free energy difference or interaction energy.
Can interaction energies of just a few times kBT make a difference
in the shape of the plot of occupancy vs. concentration? See also
the discussion of cooperativity in Appendix A.4.

(b.) Suppose that we have N copies of this protein in the cell,
all experiencing the same calcium concentration. Let the number
of molecules with no bound calcium be n0, the number with one
bound calcium be n1, and the number with two bound calcium
be n2; of course

∑
j nj = N . Use your results from Problem 1

to calculate the mean values of each nj and the covariance matrix
Cjk = 〈δnjδnk〉. Verify that the determinant of the covariance
matrix is zero in this formulation. Why is this true? Notice that
we’re only asking here about the fluctuations that you would see
in a single snapshot of the molecules, not about the dynamics or
spectrum of this noise.

(c.) It is widely assumed that in systems such as this, only the
state with full occupancy of the binding sites is really “active.”
In practice what this means is that the calcium binding protein is
associated with some other protein, such as an enzyme, and the
enzyme becomes active only when both Ca++ are bound. Thus,
the output of the system is something proportional to n2. Calcu-
late the change in the mean 〈n2〉 that results from a small change
in calcium concentration c → c + δc. Compare this with the vari-
ance 〈(δn2)2〉 to compute a signal–to–noise ratio, or the equivalent
noise level δcrms in the calcium concentration itself. Plot your re-
sults. Again, you should be able to put everything into unitless
form, leaving only the parameter F . Does making the system more
switch–like by increasing F makes it more sensitive to small changes
in concentration, as you might expect? Are there competing effects
which could result in better performance at smaller F?

(d.) Suppose that molecules with one bound calcium also are
active. Then the output activity of the system is proportional to
some mixture of n1 and n2, which we can write as A = (1−a)n2+
an1; note that a = 0 brings us back to the case where only doubly–
bound states are active. Compute sensitivity of the mean activity,
∂〈A〉/∂c and the variance 〈(δA)2〉. If the system is operating at
a particular calcium concentration c, can you lower the effective
noise level

δcrms ≡
√

〈(δA)2〉
∣∣∣∣
∂〈A〉
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FIG. 153 Model of calcium binding to a dimeric protein. The
rate at which calcium binds to each site, k+ is assumed to
be the same and independent of the occupancy of the other
site. The unbinding rates, however, are different depending
on whether the other site is empty (k−) or filled (k−/F ).
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by choosing a -= 0? Can you lower the noise level at all calcium
concentrations using the same value of a, or are there tradeoffs?

(e.) One way to think about the effective noise level δcrms is
that it sets a scale for the smallest concentration differences that
can be detected. If we imagine that c can range from zero up to
some maximum cmax, then it seems natural to say that number of
different levels of concentration that can be distinguished is given
by

Nlevels =

∫ cmax

0

dc

δcrms(c)
, (846)

where we note explicitly that the noise level depends on the
background concentration. The number of distinguishable lev-
els should translate into an information transmission (in bits) of
I ∼ log2(Nlevels), and this is almost right in the limit that the
noise is small. Show how a rigorous version of this argument can
be constructed by analogy with the derivation of Eq’s (838) and
(839). Calculate I for the system discussed above. Does think-
ing about the information transmitted, rather than just the noise
level, help you to decide whether there is a uniquely best mixture
of activity from the singly– and doubly–bound states? What is the
impact of the cooperativity (here captured by the parameter F ) on
the information transmission?

(f.) Some things to explore: Your results above suggest that,
at least under some conditions, it would be useful if the system
“reads out” some combination of the singly– and doubly–occupied
states. Can you find hints in the literature of the predicted par-
tial activation? For concreteness, focus on the case of calmodulin.
Our discussion above is for snapshots of the molecules, so ‘noise’
just means the total variance. Suppose that the readout scheme
effectively averages over a time longer than the times required for
transitions among the different states. Then you need to compute
the spectral density of the noise, and follow the path we discussed in
the context of bacterial chemotaxis. Is there anything qualitatively
new here, or just a change in details?

One of many questions left open in Laughlin’s original
discussion is the time scale on which the matching should
occur. One could imagine that there is a well defined
distribution of input signals, stable on very long time
scales, in which case the matching could occur through
evolution. Another possibility is that the distribution is
learned during the lifetime of the individual organism,
perhaps largely during the development of the brain to
adulthood. Finally one could think about mechanisms
of adaptation that would allow neurons to adjust their
input/output relations in real time, tracking changes in
the input distribution. It seems likely that the correct
answer is all of the above. But the last possibility, real
time tracking of the input distribution, is interesting be-
cause it opens the possibility for new experimental tests.

We know that some level of real time matching occurs,
as in the example of light and dark adaptation in the
visual system. We can think of this as neurons adjusting
their input/output relations to match the mean of the
input distribution. The real question, then, is whether
there is adaptation to the distribution, or just to the
mean. Actually, there is also a question abut the world
we live in, which is whether there are other features of
the distribution that change slowly enough to be worth
tracking in this sense.
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FIG. 154 This is a placeholder .. should replace with real
data, e.g. sounds from the songbird colony. Intermittency
in natural sounds. Top trace shows the alternating “loud”
and “soft” period characteristic of natural sounds. Probabil-
ity distribution of the instantaneous signal amplitude is far
from Gaussian, having long, nearly exponential tails. Need to
illustrate more clearly that these tails are removed by local
variance normalization!

As an example, we know that many signals that reach
our sensory systems come from distributions that have
long tails (cf Fig 154). In some cases (e.g., in olfac-
tion, where the signal—odorant concentration—is a pas-
sive tracer of a turbulent flow) there are clear physical
reasons for these tails, and indeed its been an important
theoretical physics problem to understand this behav-
ior quantitatively. In most cases, the tails arise through
some form of intermittency. Thus, we can think of the
distribution of signals as being approximately Gaussian,
but the variance of this Gaussian itself fluctuates; sam-
ples from the tail of the distribution arise in places where
the variance is large. This scenario also holds for images
of the natural world, so that there are regions of high
variance and regions of low variance. The possibility of
such “variance normalization” in images suggests that
the visual system could code more efficiently by adapt-
ing to the local variance, in addition to the local mean
(light and dark adaptation).
Adaptation to local variance, or more generally adap-

tation to input statistics beyond the mean, definitely hap-
pens at many stages of neural processing (Fig 155). The
earliest experiments looked the responses of retinal gan-
glion cells to sudden changes in the variance of their in-
puts, and showed that there is a pattern very similar
to what one sees with sudden changes in mean. More
ambitious experiments on the motion–sensitive neurons
in the fly visual system mapped the input/output rela-
tion when inputs were drawn from different distributions,
and found that the input/output relation scales in pro-
portion to the dynamic range of inputs, which is what
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FIG. 155 At left, adaptation of retinal ganglion cells to sud-
den changes in the variance of light intensity (Smirnakis et al
1997). At right top, input/output relations for the fly motion–
sensitive neuron H1 measured when inputs are drawn from
different distributions (Brenner et al 2000). To be precise one
has to define the input as a filtered version of the velocity,
and the methods for determining these filters are discussed in
Appendix A.7. At right bottom, the input/output relations
collapse when expressed a function of the stimulus in units of
its standard deviation.

one expects from the matching principle if noise levels
are small; it was also checked that the precise propor-
tionality constant in the scaling relation served to maxi-
mize information transmission. Further, if you suddenly
switch from one distribution to another, you can ‘catch’
the system using the wrong code and transmitting less
information, but the adaptation to the new distribution
is very fast, close to the limit set by the need to collect
enough samples that you are sure there was a change.
Related observations have been in many systems, from
low level sensory neurons up to mammalian cortex. [Do
we want to say more here? Maybe work on how such
adaptation is a property of individual neurons, so it is a
building block of neural computation? At least pointers
to the fact that these effects are so fast that calling them
“adaptation” raises some questions.]

I think the adaptation experiments are important be-
cause they give a whole new way of testing the ideas
about matching between the input/output relation and
the distribution of inputs—by changing the input dis-
tribution, if you believe the theory, we should drive
changes in the input/output relation, and it seems that
this works. Can we imagine a similar experiment in the
genetic or biochemical systems? In truth, there are few
cases (aside from embryonic development) where we have
quantitative measurements on the distributions of inputs
under moderately natural conditions. If we change the
distribution, then for the case of gene regulation one
imagines that input/output relations could change in re-

sponse only on evolutionary time scales, but at least for
bacteria such evolutionary experiments are now quite fea-
sible. Certainly there are models for network evolution
that use information theoretic quantities as a surrogate
for fitness, and these models are generating interesting
predictions, as shown in Fig [include a figure from Fran-
cois & Siggia simulations]. It would be exciting to see
laboratory evolution experiments that are the analog of
the neural experiments in Fig 155.
So far the discussion is about one input and one out-

put, in single genes or neurons. Almost all the really
interesting systems, however, involve populations or net-
works of these elements. Indeed, one of the earliest ideas
about optimizing information transmission in neural cod-
ing is that interactions among neighboring neurons in the
retina serve to reduce the redundancy of the signals that
they transmit, thus making better use of their capacity.
To get a feeling for how redundancy reduction works,

consider a system in which there are N receptor cells
that produce signals xi, and these feed into a layer of
N output neurons that take linear combinations of their
inputs and add noise, so that the outputs of the system
are

yi =
∑

j

Wijxj + ηi, (847)

and shown schematically in Fig 847. In the simplest case
the noise will be Gaussian and independent in each out-
put neuron, 〈ηiηj〉 = δijσ2. Let’s also assume, again for
simplicity, that the distribution of the xs is also Gaussian,
with zero mean and a covariance matrix 〈xixj〉 = Cij.
Then following the arguments in Section IV.A, the infor-
mation that the outputs provide about the inputs is

I(6y; 6x) =
1

2
Tr log2

(
1+

1

σ2
WCWT

)
, (848)

where WT denotes the transpose of the matrix W . We
can chose the matrix W , which defines the “receptive
fields” of the output neurons [point back to first discus-
sion of receptive fields; check!] to maximize the infor-
mation, but we need a constraint, since other wise the
answer is always to make W larger so we can overwhelm
the noise. A natural constraint, then, is to fix the overall
dynamic range of the output signal,

∑

i

〈y2i 〉 = Tr
(
WCWT

)
+Nσ2. (849)

But if we go into a basis where WCWT is diagonal, then
the information becomes

I(6y; 6x) =
1

2

∑

µ

log2

(
1 +

Λµ

σ2

)
, (850)

where the Λµ are the eigenvalues of the matrix WCWT ,
and the constraint is that the sum of these eigenvalues
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must be constant. Then it is clear from the convexity of
the logarithm that the best we can do is to have all of
the eigenvalues be equal, which means that WCWT is
proportional to the unit matrix. But (leaving aside the
contribution from the noise), WCWT is the correlation
matrix of the output signals. Thus, in this simple model,
we maximize information transmission by removing all
of the correlations in the input, and making the outputs
independent of one another.

Problem 162: Convexity and equalization. Show explic-
itly that if we want to maximize

I =
1

2

∑

µ

log2(1 + Λ̃µ), (851)

subject to the constraint
∑

µ

Λ̃µ = C, (852)

then the solution is to have all the {Λ̃µ} be equal, that is Λ̃µ = Λ0.
[I’d like to get the students to think more about the implications
of this ...]

In the retina, we expect that correlations, and perhaps
also the transformations from input to output, are trans-
lation invariant. Thus if the receptor cell i is at position
ri, perhaps on a lattice, and the output neurons are on
the same lattice, we should have

Cij = C(ri − rj), (853)

Wij = W (ri − rj). (854)

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

W13 W23 W33 W43 W53 W63

FIG. 156 A schematic network, after Eq (847). The xj pro-
vide inputs to the yi, with weights Wij. All connections are
present, but the connections from x3 are highlighted.

SNR = 10

SNR = 2

SNR = 0.1

FIG. 157 Cross–sections through the optimal matrices Wij

in the problem with noise, from Atick & Redlich (1990).
The correlation function is assumed to be exponential, Cij ∝
exp(−|i − j|/ξ), with ξ = 50, much longer than the range of
interactions shown here. At high SNR, the solution looks like
a differentiator, which decorrelates the signals, while at low
SNR the solution integrates to suppress noise.

Then the condition for independence at the outputs be-
comes

δij ∝
∑

km

WikCkmWjm (855)

=
∑

km

W (ri − rk)C(rk − rm)W (rj − rm). (856)

We approximate the sums as integrals, so that

δij ≈
∫

d2r′
∫

d2r′′ W (ri − r′)C(r′ − r′′)W (rj − r′′)

(857)

=

∫
d2k

(2π)2
|W̃ (k)|2S(k)eik·(ri−rj), (858)

where W̃ (k) is the Fourier transform of W (r), and we
identify the Fourier transform of the correlation function
C(r) as the power spectrum S(k). To satisfy this con-
dition |W̃ (k)|2S(k) must be constant, independent of k,
and if W (r) is symmetric in space this means that

W̃ (k) ∝ 1√
S(k)

. (859)

We expect that the power spectrum of correlations in
the inputs to the retina fall off at high frequencies, which
means that the optimal weights W have the form of a
filter which does the opposite, attenuating the low fre-
quencies and enhancing high frequencies. In fact, exper-
iments show that the power spectrum of contrast in nat-
ural scenes is scale invariant, so that S(k) ∝ |k|−α, with
the exponent α close to 2. Then the optimal weights W
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should actually vanish as k → 0, which means that the
output of the retina should be insensitive to spatially uni-
form illumination; on the other hand, the output should
overemphasize gradients or edges. By including the ef-
fects of noise (as in the problem below), one can see a
crossover to spatial averaging at low SNR; see Fig 157.
Qualitatively this is all correct: at high signal–to–noise
ratios we can see this enhancement of edges not just in the
responses of retinal ganglion cells but also in our percep-
tion, through the phenomenon of Mach bands [figures?],
and this spatial differentiation gives way to integration
as we lower the light levels and hence the SNR.

Problem 163: Redundancy reduction vs noise reduc-
tion. Equation (859) suggests that at large k, where the power
spectrum of input signals should be small, the weight in transfer-
ring these signals to the output should be large. This can’t be
completely right, since we expect that at very high (spatial) fre-
quencies, signals will be lost in a background of noise. Go back
to the start of this analysis and assume that the signals xi already
have a little bit of noise attached to them (as with photon shot
noise in vision) so that

yi =
∑

j

Wij(xj + ξj) + ηi, (860)

where everything is as before but 〈ξiξj〉 = δijσ2
0 . Follow the out-

line above and derive the form of the weights Wij that optimize
information transmission at fixed output variance. Verify that as
σ0 → 0 you recover the simple picture in which the optimal Wij

serve to remove correlations. Show, in contrast, that as σ0 becomes
large, the optimal solution involves averaging over multiple inputs
to beat down the noise.

Problem 164: Information available at the retina. Give
a problem that takes the students through the calculation in Rud-
erman & Bialek (1994), showing that with reasonable assumptions
natural scenes provide only ∼ 1 bit per cone in the fovea.

[Do we want to talk about coding/whitening in the
time domain, maybe the results on filtering at the recep-
tor/LMC synapse? Could argue by analogy with spatial
whitening, give a problem to work out details.]

Maybe a simpler example of these ideas is provided
by color processing. Roughly speaking, at one point in
space our retina takes three samples, corresponding to
the signals in the three different cones. These three sig-
nals are correlated, both because the absorption spectra
of the pigments in the different cones overlap and be-
cause the reflectance spectra of the objects around us
are rather smooth functions of wavelength.87 By anal-
ogy with what we have seen thus far, if the retina is un-
der pressure to maximize information transmission then

87 In fact this is the same effect. The reflectance properties of most
naturally occurring objects in our terrestrial environment are
determined by the absorption spectra of organic pigments, and
these tend to be broad; see Section [**] and Appendix [**].

it should send these signals to the brain in some decor-
related form. Early guesses about the form of the cor-
relations among the different cone signals suggested that
the three decorrelated signals would correspond roughly
to the sum of all the inputs (the total light intensity, ig-
noring color), an approximately “red minus green” signal,
and a “blue minus yellow” signal. In fact it is known that
neurons throughout the visual system follow this pattern
of “opponent” color processing [feels like there should be
something about experiments demonstrating color oppo-
nency, but I don’t know how quantitatively one can make
comparisons, so ...??].
To do a more quantitative analysis one has to get away

from traditional color photography, because (for exam-
ple) the three channels in a CCD camera don’t have wave-
length sensitivities that correspond exactly to that of our
cones. Instead one can take hyperspectral images, essen-
tially measuring the spectrum of light at each point in the
scene, and then construct the expected signals that will
be seen by each cone, known the absorption spectra of the
three cone pigments. This analysis shows, quite remark-
ably, that the rough intuition about opponent processing
is nearly exact, with the decorrelated signals being almost
perfect integer combinations of the cone signals: if the
three cone signals are L, M and S for the long, medium
and short wavelengths, then the decorrelated signals are
& = L+M+ S (light intensity), α = L+M− 2S (blue
minus yellow), and β = L−M (red minus green), where
the coefficients are unity with an accuracy of ∼ 1%. Fur-
ther, this linear transformation serves to generate truly
independent signals, even though the underlying distri-
butions are not Gaussian; see Fig 158. These very clean
results come from a delicate interplay between the sta-
tistical structure of the world and the properties of our
visual pigments. I don’t know how accurately the coeffi-
cients in opponent color processing have been measured,
but this is a striking prediction that certainly captures
the qualitative behavior of the system and deserves to be
tested more quantitatively.
In the example of Fig 157, the optimal weights for

transforming receptor signals into neural output corre-
spond to a “center–surround” structure in which an out-
put neuron at point r gives a positive weight to the
receptor cell at point r, and a negative weight to its
neighbors. Alternatively, we can think that all weights
from receptors to neurons are positive, and the output
neurons inhibit one another before sending their signals
on to the brain. In our retinae things are complicated,
because the transformation from photoreceptors to gan-
glion cells involves several intermediate cells, but in some
simpler creatures such as the horseshoe crab the picture
of “lateral inhibition” seems to be correct, and indeed
the horseshoe crab was the first retina in which recep-
tive fields were measured. Lateral inhibition is thought
to be a general neural mechanism for “sharpening” the
responses to stimuli that vary across an array of neu-
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FIG. 158 Statistical structure of color images, from Ruder-
man et al (1998). Top left shows a color image of one scene
analyzed by hyperspectral imaging. From the raw data, one
constructs the signals L, M and S corresponding to the (log)
photon capture rates by each of the types of cones, and then
rotates into the basis defined by / (upper right), α (lower
left), and β (lower right), as described in the text; images are
shown in these three projections after thresholding for clarity.
The three images are uncorrelated.

rons, and we have seen that this sharpening is essential
in decorrelating signals and enhancing the efficiency of
information transmission. Could there be an analog of
this for the transmission of information through genetic
or biochemical networks? If we go back to the case of
Bicoid regulating the expression of Hunchback, we know
that this is just one piece of a larger network in which
the primary morphogen Bicoid feeds into a collection of
gap genes, which in turn interact with one another. Be-
cause transcription factors tend to be either activators or
repressors, in the absence of any other effects all of the
target genes would have correlated expression levels and
hence provide redundant data about the concentration of
the input. This redundancy can be removed by lateral
inhibition, and that is what we see in the gap gene net-
work (Fig 159). The challenge is to take this quantitative
analogy and turn it into a quantitative theory.

The representations of data constructed by the ner-
vous system might be efficient in the sense we have con-
sidered here, but they have a more obvious feature—
they are built from discrete action potentials or spikes.
If we look with some reasonably fine time resolution,
∆τ < 10ms, then since the average spike rates are less
than 100 spikes/s, at any moment the typical neuron is
silent. In this sense, the code is “sparse.” It is this
sparseness which, among other things, makes it possi-
ble to decode spike trains using linear filters, as in Eq
(729). Spikes are expensive, requiring substantial energy
expenditure, and perhaps it is this cost which drives the
brain toward the construction of sparse representations.

bicoid

caudal

hunchback giantknirpskruppel

FIG. 159 The gap gene network in the Drosophila embryo.
Need to check and see how much of this has been discussed
already, although this is a nice place to put this ... .

If we take the idea of linear reconstruction seriously,
then if the sensory input is s(t)—for example sound pres-
sure as a function of time in the auditory system—we
would like to have a family of neurons labeled by µ that
spike at times {tµi } such that

sest(t) =
∑

µ

∑

i

fµ(t− tµi ) (861)

is as close as possible to the true signal. Notice that in
this system the input is s(t) and the output is the set
of spikes {tµi }. If we imagine adjusting the input/output
relations, the mapping s(t) → {tµi } will change, perhaps
in complicated ways. But suppose we knew the functions
fµ(τ). Then there would be “best times” tµi for each spike
so that the match between sest(t) and s(t) is as close
as possible. We could imagine searching through some
large space of input/output relations to find one that
puts the spikes at these best times, or we could use the
times themselves as our description of the input/outpute
relation. Conversely, if we knew the spike times, we could
adjust the filters fµ(τ), as in our previous discussions.
Can we do both problems, subject to a constraint on
the total number of spikes? This is hard, but by slightly
softening the problem—allowing each term in Eq (861) to
have a varying amplitude—it becomes tractable. [Can we
say something about whether the softening makes much
difference in the end? Need to ask Lewicki for details.]

Figure 160 shows the results of this approach applied
to a small population of neurons “trained” to provide an
efficient representation of natural sounds. There are sev-
eral interesting features in these results. First, the filters
fµ(τ) are localized in time; although they are “tuned” to
particular frequencies, they are more like a wavelet than
a Fourier representation, with support over a window
of time that scales inversely with the characteristic fre-
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quency. The filters also a very asymmetric shape, with a
sharp attack and a slower decay. If we look through mea-
surements of the impulse responses of neurons emerging
from the mammalian ear, we see exactly these structures,
and one can even find cells that overlay the predicted fil-
ters almost perfectly.88 Importantly, these structures are
lost if one tries to build representations of very different
sound ensembles.

By allowing for different total numbers of spikes, or
limiting the time resolution with which the spikes are
placed, one can construct codes of different qualities. For
these different codes it is relatively easy to put an upper
bound on the entropy of the spike trains, and to mea-
sure the errors between sest(t) and the true s(t); putting
these together one obtains the rate–distortion curve for

FIG. 160 Ingredients for an efficient representation of nat-
ural sounds, as in Eq (861), from Smith & Lewicki (2006).
At left, the functions fµ(τ) in red, compared with the im-
pulse responses of single neurons in the cat auditory nerve in
blue; grey scale bars are 5ms long. All these filters are band
pass, so that their Fourier transforms f̃µ(ω) have maximum
magnitude at some characteristic frequency and fall to half
maximal over some bandwidth. At right, a scatter plot of
bandwidths vs characteristic frequencies for the filters (red)
and auditory neurons (small blue dots); filters trained on dif-
ferent ensembles (black circles and green triangles) have very
different behavior.

88 One needs to be careful here. The impulse responses of the neu-
rons are measured by the reverse correlation method (see Ap-
pendix A.7) which, ideally, extracts a filter characteristic of the
encoding of sounds into spikes. In contrast, the filtrs fµ(τ) are
characteristic of the decoding process. One can circumvent this
problem by using reverse correlation to analyze the model code,
with almost identical results. This suggests that the model, at
least, is operating in a regime where the coding and decoding
filters are similar. This happens exactly in the limit where all
spikes are statistically independent from one another, so that
there is no redundancy. Thus, the search for efficient codes may
also drive the emergence of simplicity in decoding.

this family of codes. Applied to ensembles of human
speech, the results are comparable to or better than con-
ventional coding schemes. It does indeed seem that na-
ture has found an efficient class of codes, not just in ab-
stract terms.
Is there more we want to say here? What about predic-

tive information? I’d love to say something about this, if
we know enough ... .

Laughlin’s classic paper on matching input/output relations to the
distribution of inputs still is very much worth reading, thirty years
later (Laughlin 1981). The corresponding analysis for a genetic reg-
ulatory element is by Tkačik et al (2008a), with more theoretical
exploration in Tkačik et al (2008b). The literature on informa-
tion transmission in biochemical and genetic networks is growing
rapidly; for examples see Ziv et al (2007), Mugler et al (2008),
Yu et al (2008) and Tostvein & ten Wolde (2009). For a detailed
model of calcium signaling via the protein calmodulin (of relevance
to Problem **), see Pepke et al (2010).
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The idea of matching input/output relations to the statistics of in-
puts had a big impact on neuroscience, in particular driving the
exploration of input statistics under natural conditions. An early
paper in this direction was by Field (1987), who noted that the
power spectra of natural images were approximately scale invariant.
Natural images are strongly nonGaussian, so we expect that scal-
ing should mean much more than an appropriately shaped power
spectrum, and this is true (Ruderman & Bialek 1994, Ruderman
1994); exploration of these statistical structures beyond the Gaus-
sian approximation led to the ideas of variance normalization, and
the prediction of adaptation to the local variance. Well before
these analyses there was a substantial body of work on “contrast
gain control” at various levels of the visual system; see, for ex-
ample, Shapley & Victor (1981). The work on image statistics
prompted a more explicit search for adaptation to the distribution
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of visual inputs beyond the mean light intensity (Smirnakis et al
1997). Brenner et al (2000) describe experiments mapping the in-
put/output relations of the fly’s motion–sensitive visual neurons
when inputs are drawn from different distributions, demonstrating
that this adaptation served to optimize information transmission,
and Fairhall et al (2001) explored the dynamics of this process,
showing that one could “catch” the system using the wrong code
and transmitting less information.
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D. Gathering information and making models

The world around us, thankfully, is a rather structured
place. Whether we are doing a careful experiment in the
laboratory or taking a walk through the woods, the sig-
nals that arrive at our brains are far from random noise;
there seem to be some underlying regularities or rules.
Surely one task that all organisms must face is the learn-
ing or extraction of these rules and regularities, making
models of the world, either explicitly or implicitly. In this
section, we will explore how learning and making models
is related to the general problem of efficient representa-
tion.

Perhaps the simplest example of learning a rule is fit-
ting a function to data—we believe in advance that the
rule belongs to a class of possible rules that can be pa-
rameterized, and as we collect data we learn the values of
the parameters. This is something we all learned about
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FIG. 161 Fitting to polynomials. We have a collection of data
points (black circles), {xn, yn}, and we try to fit these data
with polynomials of different degree K, with K = 1, 5, 20.
We see that as the degree of the polynomial—what we think
of intuitively as the complexity of our model—increases, we
can get closer to the data points, but at the same time we
are introducing wild fluctuations which seem unlikely to be
correct. In fact, K = 5 is the correct answer, since the data
points were generated by choosing the xn at random, evaluat-
ing some fixed fifth–order polynomial, and then adding noise.
To claim that we understand how to learn, we have to find a
principled way of convincing ourselves that it’s better to keep
the poorer fit with the simpler model.

in our physics lab classes (see Fig 161 for a reminder),
and even this simple example introduces us to many deep
issues. First, data usually come with some level of noise,
and because of this any model really is (at least implic-
itly) a model of the probability distribution out of which
the data are being drawn, rather than just a functional
relationship. Indeed, one could argue that the general
problem is always the problem of learning such distribu-
tions, and any rigid or deterministic rules emerge as a
limit in which the noise becomes small or is beaten down
by a large number of observations. The second point is
that we would like to compare different models, often
with different numbers of parameters. We have an in-
tuition that simpler models are better, and we want to
make this intuition precise—is it just a subjective pref-
erence, or is the search for simplicity something we can
ground in more basic principles? A related point is that
where the classical curve fitting exercises involve mod-
els with a limited number of parameters, we might want
to go beyond this restriction and consider the possibility
that the data are described by functions that are merely
‘smooth’ to some degree. Finally, we would like to quan-
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tify how much we are learning—and how much can be
learned—about the underlying rules given a limited set
of data. If there are limits to how much we can learn,
is it possible that biology has constructed learning ma-
chines which are efficient in some absolute sense, pushing
up against these limits? So, let’s plunge in ...

Imagine that we observe two streams of data x and y,
or equivalently a stream of pairs (x1, y1), (x2, y2), · · · ,
(xN, yN). Assume that we know in advance that the x’s
are drawn independently and at random from a distri-
bution P (x), while the y’s are noisy versions of some
function acting on x,

yn = f(xn;α) + ηn, (862)

where f(x;α) is one function from a class of functions pa-
rameterized by α ≡ {α1, · · · ,αK} and ηn is noise, which
for simplicity we will assume is Gaussian with known
variance σ2. We can even start with a very simple case,
where the function class is just a linear combination of
basis functions, so that

f(x;α) =
K∑

µ=1

αµφµ(x). (863)

The usual problem is to estimate, from N pairs {xi, yi},
the values of the parameters α; in favorable cases such as
this we might even be able to find an effective regression
formula. Probably you were taught that the way to do
this is to compute χ2,

χ2 =
∑

n

∣∣∣∣yn − f(xn;α)

∣∣∣∣
2

, (864)

and then minimize to find the correct parameters α. You
may or may not have been taught why this is the right
thing to do, and this is what we would like to understand
here.

If we assume that our model, Eq (862), is correct,
what is the probability that we observe the data points
{xn, yn}? Let’s start by asking about the locations of the
points xn where we get samples of the functional rela-
tionship between x and y. In the standard examples of
curve fitting, the examples are given to us and there is
nothing more to say; thus, we might as well assume that
the points xn are chosen randomly and independently out
of some distribution P (x), perhaps just the uniform dis-
tribution on some interval. One might ask if there is a
good choice for the next xn+1, perhaps a point that will
give us the maximal information about the underlying
parameters α. This is the problem faced in the design of
experiments—how do we choose what to measure given
what we already know?—but let’s leave this aside for the
moment.
If we assume that the points {xn} are chosen out of

some distribution, then conveniently our model in Eq
(862) is a statement about the conditional probability
distribution of yn given xn. Specifically, yn is a Gaussian
random variable with a mean value of f(xn;α) and a
variance of σ2, so that

P (yn|xn,α) =
1√
2πσ2

exp

[
− (yn − f(xn;α))2

2σ2

]
. (865)

By hypothesis, the noise on every point is independent,
which means that

P ({yn}|{xn},α) =
N∏

n=1

P (yn|xn,α). (866)

Now we can put things together to write the probability
of the data given the parameters of the underlying model,

P ({xn, yn}|α) =

[
N∏

n=1

P (yn|xn,α)

]
×
[
∏

n

P (xn)

]
(867)

=

[
∏

n

P (xn)

]
N∏

n=1

1√
2πσ2

exp

[
− (yn − f(xn;α))2

2σ2

]
(868)

= exp

[
N∑

n=1

lnP (xn)−
N

2
ln(2πσ2)− χ2

2σ2

]
(869)

where we identify χ2 from Eq (864). Notice that the
only place where the parameters appear is in χ2, and
P ∝ e−χ2/2σ2

. Thus, finding parameters which minimize
χ2 also serves to maximize the probability that our model

could have given rise to the data. This sounds like a good
thing to do, and certainly maximizing the probability
of the data (usually called “maximum likelihood”) feels
more fundamental than minimizing χ2. But what are we
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really accomplishing by maximizing P?
We recall from Section IV.A that the entropy is the

expectation value of − logP , and that it is possible to
encode signals so that the amount of “space” required
to specify each signal uniquely is on average equal to
the entropy. In such optimal encodings, each possible
signal s drawn from P (s) can be encoded in a space of
− log2 P (s) bits. Thus, any model probability distribu-
tion implicitly defines a scheme for coding signals that
are drawn from that distribution, so if we make sure that
our data have high probability in the distribution (small
values of − logP ) then we also are making sure that our
code or representation of these data is compact. What
this means is that good old fashioned curve fitting re-
ally is all about finding efficient representations of data,
which is the same principle that we discussed in the pre-
vious section in contexts ranging from the regulation of
gene expression to neural coding. To be clear, in the
earlier discussion we took for granted some physical or
resource constraint (e.g., the noise level or limited num-
ber of molecules) and tried to transmit as much infor-
mation as possible. Here we do the problem the other
way, searching for a representation of the data that will

require the minimum set of resources.
If we follow this notion of efficient representation a

little further we can do better than just maximizing χ2.
The claim that a model provides a code for the data is
not complete, because at some point we have to represent
our knowledge of the model itself. One idea is to do
this explicitly—estimate how accurately you know each
of the parameters, and then count how many bits you’ll
need to write down the parameters to that accuracy and
add this to the length of your code. Another idea is
more implicit—you don’t really know the parameters, all
you do is estimate them from the data, so it’s not so
obvious that you should separate coding the data from
coding the parameters, although this might emerge as
an approximation. In this view what we should do is
to integrate over all possible values of the parameters,
weighted by some prior knowledge, and thus compute
the probability that our data could have arisen from the
class of models we are considering.
To carry out this program of computing the total prob-

ability of the data given the model class we need to do
the integral

P ({xi, yi}|class) =
∫

dKαP (α)P [{xi, yi}|α] (870)

=

∫
dKαP (α) exp

[
−N

2
ln(2πσ2)− 1

2σ2
χ2(α; {xi, yi})

] [∏

n

P (xn)

]
, (871)

where P (α) is the a priori distribution of parameters, maybe just a uniform distribution on some bounded region.
But remember that χ2 as we have defined it is a sum over data points, which means it (typically) will be proportional
to N . Thus, at large N we are doing an integral in which the exponential has terms proportional to N—and so we
should use a saddle point approximation. To implement this approximation let’s write

P ({xi, yi}|class) = exp

[
−N

2
ln(2πσ2)

] [∏

n

P (xn)

]∫
dKα e−Nf(α), (872)

where the effective “energy per data point” is

f(α) =
1

2Nσ2
χ2(α; {xi, yi})−

1

N
lnP (α) (873)

The saddle point approximation is that
∫

dKα e−Nf(α)

≈ e−Nf(α∗)(2π)K/2 exp

[
−1

2
ln det (NH)

]
,(874)

where α∗ is the value of α at which f(α) minimized, and

the Hessian H is the matrix of second derivatives of f at
this point,

Hµν =
∂2f(α)

∂αµ∂αν

∣∣∣∣∣
α=α∗

. (875)

At large N , f(α) is dominated by χ2, so α∗ must be close
to the point where χ2 is minimized. Putting the pieces
together, we have
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− lnP ({xi, yi}|class) ≈
N

2
ln(2πσ2)−

N∑

i=1

lnP (xi) +
χ2
min

2σ2
+ lnP (α∗)− K

2
ln 2πσ2 +

1

2
ln det (NH) . (876)

Note that H is a K×K matrix, and so det(NH) = NK det(H). This allow us to group together terms based on their
N dependence,

− lnP ({xi, yi}|class) ≈ −
N∑

i=1

lnP (xi) +
χ2
min

2σ2
+

N

2
ln(2πσ2) +

K

2
lnN + · · · , (877)

where the first three terms are ∝ N , and the terms · · ·
(including things we have neglected in the saddle point
approximation) are constant or decreasing as N → ∞.
Again, the negative log probability measures the length
of the shortest code for {xi, yi} that can be generated
given the class of models.

In Equation (877), the first term averages to N times
the entropy of the distribution P (x), which makes sense
since by hypothesis the x’s are being chosen at random.
The second and third terms are as before, the length
of the code required to describe the deviations of the
data from the predictions of the best fit model; this also
grows in proportion to N . The fourth term must be re-
lated to coding our knowledge of the model itself, since
it is proportional to the number of parameters. We can
understand the (1/2) lnN because each parameter is de-
termined to an accuracy of ∼ 1/

√
N , as in Fig 162, so

if we start with a parameter space of size ∼ 1 there is
a reduction in volume by a factor of

√
N and hence a

decrease in entropy (gain in information) by (1/2) lnN .
Finally, the terms · · · don’t grow with N .

Problem 165: Deriving the code length in a class of
models. Fill in the details leading to Eq (877). Find an explicit
form for the terms · · · , and show that they do not grow with N .
What assumptions do you need to make about the prior distribu-
tion P (α) in order to make this work?

What is crucial about the term (K/2) lnN is that it de-
pends explicitly on the number of parameters. In general
we expect that by considering models with more parame-
ters we can get a better fit to the data, which means that
χ2 can be reduced by considering more complex model
classes. But we know intuitively that this has to stop—
we don’t want to use arbitrarily complex models, even if
they do provide a good fit to what we have seen. It is at-
tractive, then, that if we look for the shortest code which
can be generated by a class of models, there is an implicit
penalty or coding cost for increased complexity. It is in-
teresting from a physicist’s point of view that this term
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FIG. 162 Confidence limits on the estimation of mean and
variance for a Gaussian distribution. In several independent
experiments, we choose N = 10 (blue), N = 100 (green), or
N = 1000 points out of a Gaussian distribution with zero
mean and unit variance. We estimate the mean and variance
from the data in the usual way, and draw error ellipses on the
parameters that should contain 95% of the weight. We see
that the linear dimensions of these ellipses shrink by ∼ 1/

√
10

as N increase by a factor of 10. The (log) area inside the el-
lipses measures the entropy of our uncertainty in parameters,
and decreases in this area correspond to gains in information.

emerges essentially from consideration of phase space or
volumes in model space. It thus is an entropy–like quan-
tity in its own right, and the selection of the best model
class could be thought of as a tradeoff between this en-
tropy and the “energy” measured by χ2, a view to which
we return below.
Thus Eq (877) tells that we have a natural penalty for

the complexity of our model. While this term is linear
in the number of parameters, it is only logarithmic in
the number of data points. In contrast, χ2

min decreases
with the number of parameters and is linear in the num-
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ber of data point. In this way, the penalty for complex-
ity becomes (relatively) less important the more data we
gather: if we have only a few data points then although
we could lower χ2 by fitting every wiggle, the phase space
factor pushes us away from this solution toward simpler
models; if, however, the wiggles are consistent as we col-
lect more data, then this factor becomes less important
and we can move to the more complex models.

To see that these words really correspond to a quantita-
tive theory, we have to generate a data set and go through
the process of fitting via minimization of the ‘code length’
in Eq (877). For simplicity let’s consider polynomial
functions. We can pick a polynomial by choosing co-
efficients aµ at random, say in the interval −1 < a < 1,
where

f(x) =
Ktrue∑

µ=0

aµx
µ. (878)

We’ll confine our attention to the range −5 < x < 5; in
this range the function f(x) has some overall dynamic
range (measured, for example, by its variance over this
interval), and we’ll assume the noise variance σ2 is one
percent of this ‘signal’ variance. Then we can generate
points according to

yn = f(xn) + ηn, (879)

and try to fit. Fitting to any polynomial of degree K
by minimizing χ2 is a standard exercise, and in this way
we find χ2

min(K). Then we can find the value of K that
minimizes the total code length in Eq (877); this last
step is just a competition between χ2

min(K)/σ2 and (K+
1) lnN . The results of this exercise are shown in Fig 163.

What we see in Fig 163 is that our qualitative descrip-
tion of the competition between complexity and good-
ness of fit really works. First we note that with a large
number of data points, minimizing the code length ze-
roes in on the correct order of the underlying polynomial
(K → Ktrue), despite the presence of noise that one could
‘fit’ using more complex models. Next, we see that for
smaller numbers of data points, the shortest code is bi-
ased toward simpler models. In the limit that we only
have a handful of data points, the shortest code is often
a straight line (K = 1). Put another way, we start with a
bias toward simple models, and only as we uncover more
data can we support the adding of greater complexity.

Problem 166: Fitting and complexity. Generate a version
of Fig 163 for yourself, doing a simulation which follows the steps
outlined in the text. If you do this in MATLAB, you’ll find the
command polyfit to be useful. Some things to keep in mind:

(a.) Start with a small version of the problem, e.g. fitting to
N = 20 data points.

(b.) Plot some of your intermediate results, just to get a feeling
for what is going on. In particular, plot χ2

min as a function of K,
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FIG. 163 Fitting to polynomials, part two. Choose the coef-
ficients of a polynomial with degree 10 at random, and then
choose points at random in the interval −5 < x < 5; there
is added noise [as in Eq (862)] with a standard deviation set
to be 1/10 of the overall dynamic range of the function f(x).
We then try to fit polynomials of order K, and find the value
of K that minimizes the ‘code length’ in Eq (877). Since the
result depends both on the particular value of the polynomial
coefficients and on the particular points xn that we happen to
sample, we choose 500 examples and look at the mean (points)
and standard deviation (error bars) across this ensemble of ex-
amples. Although the optimal order of the polynomial in any
given example is, of course, an integer, fractional values arise
from averaging over many examples.

verifying that higher order polynomials always give “better” fits in
the sense of smaller χ2.

(c.) Notice that χ2
min is a function of K and N , but also a

function of the particular points {xi, yi} you have “observed” in
the experiment and of the particular parameters {aµ} that spec-
ify the real function you are trying to learn. When you choose a
different set of parameters and test points {xi}, from the same dis-
tribution, how different is the minimum “energy per data point”
εmin = χ2

min/(Nσ2) as a function of K? What happens to this
variability as N gets larger?

(d.) Perhaps the most important thing is to verify that mini-
mizing the code length really does control the complexity of the
fit, selecting a nontrivial optimum K. Convince yourself that, as
in Fig 163, the optimal K is small than Ktrue for small data sets,
and approaches Ktrue as you analyze larger data sets.

There are many reasons to prefer simpler models, and
certainly the idea that we entertain more complex models
only as we collect more data is in accord with our sense
of how we understand the world. But all of this can seem
a little soft and squishy. Indeed, given the evident com-
plexity of life and the world around us, one might start
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to suspect that the preference for simple models is not an
objective principle, but rather a subjective choice made
by humans—and more often by scientists than by humans
in general.89 Even some technical discussions leave this
impression of subjectivity, suggesting that while there
must be a tradeoff between goodness of fit and complex-
ity, the structure of this tradeoff is something that we
are free to choose, perhaps inventing a new “penalty for
complexity” tuned to the details of each problem. As
physicists we are raised to be suspicious of overly com-
plex models, but again this preference for simplicity is
often couched in (surprisingly) soft words about the ele-
gance or brevity of the equations that describe the model.
What we have seen here is that all of this can be made
much more precise.

The power of information theory in this context is that,
by consistently measuring code lengths in bits we don’t
have to discuss our ‘preference for simplicity’ as a sepa-
rate principle from goodness of fit. Deviations from the
model (badness of fit) and the complexity of the model
both add bits to the overall code length, and the relative
contributions are calculable with no adjustable constants.
The absence of unknown constants is important, since if
we had to specify weights for the different terms we would
once again inject subjectivity into the discussion of just
how much we care about simplicity. Instead, we have
one principle (search for the most compact description)
and everything else follows. In particular, what follows is
that limited experience (small N) biases us toward sim-
pler models, while as we accumulate more experiences
(ultimately, as N → ∞) we can admit more complex
descriptions of the world.

This is a very satisfying picture, and I am inclined to
say that we can declare victory—we understand what we
are doing when we make models, why simple models are
preferable, and how the support for more complex models
emerges. Nonetheless, there are several loose ends, and
I’m not sure that I know how to tie them all up.

The first and most obvious problem is that our discus-
sion makes sense as long as we specify in advance a class
of models, and more seriously a hierarchy of such classes
with increasing complexity. It’s not at all obvious how
to do this. Worse yet, plausible but wrong ways of do-
ing this can lead to weird results, for example if we have
a function well described by a Fourier series with just
a few terms, but we try fitting polynomials. Simplicity
and complexity have meaning as code lengths only if we
have a defined ensemble of possibilities to choose from, in
much the same way that Shannon’s original discussion of

89 One could add that even among scientists, physicists have a spe-
cial affinity for simple models, often to the point of being the
punchline in jokes, as in “ ... consider the case of the spherical
horse.”

the information gained on hearing the answer to a ques-
tion (Section IV.A) starts with the assumption that we
know the distribution out of which answers will be drawn.
A second, and perhaps related, problem is that we are

discussing models with a finite number of parameters. It
might seem more natural, for example, to imagine that
the relationship between x and y is just some smooth
function, not necessarily describable with a finite num-
ber of parameters; that is, f(x) should live in a func-
tion space and not in a finite dimensional vector space.
Now we have to specify a prior distribution not on the
parameters, as with P (α) above, but on the functions
themselves P [f(x)]. The simplest version of this prob-
lem is not with functional relations but just with prob-
ability distributions: suppose that we observe a set of
points x1, x2, · · · , xN , which we assume are drawn ran-
domly and independently out of a distribution Q(x); how
do we estimate Q? If the distribution we are looking for
belongs to a family with a finite number of parameters,
we proceed as before, but if all we know is that Q(x) is
a smooth function then we have to specify a prior prob-
ability distribution on this space of distributions. From
a physicist’s point of view, probability distributions on
such function spaces are just scalar field theories, and
one can carry a fair bit of technology over to do real com-
putations. The lesson from these computations is that,
with some reasonable priors to implement what we mean
by “smooth,” everything works as it does in the case of
finite parameters, but the prior does matter.

Problem 167: Taming the singularities. The basic problem
in trying to learn a continuous probability distribution is to explain
why, having observed a set of points x1, x2, · · · , xN , we shouldn’t
just guess that the distribution is of the form

Q(x) ∼
1

N

N∑

i=1

δ(x− xi), (880)

which of course generates precisely the data we have observed with
maximal (infinite!) probability density. We all know that this is the
wrong answer, and the role of priors on the space of distributions
is to express this knowledge. A very different approach to taming
the singularities is sometimes called Kernel density estimation, in
which we search for a probability distribution in the form

Q(x) =
1

K

K∑

j=1

1

)
F

(
x− yj

)

)
, (881)

where ) is again a characteristic length scale, F (z) is some ‘blob–
like’ function, and the yj are the centers of the blobs; F is normal-
ized so that

∫
dz F (z) = 1. For concreteness let

F (z) =
1

√
2π

e−z2/2. (882)

If we let K = N (generally not such a good idea), then it should
be clear that the model which generates the data with the highest
probability is one in which the kernel centers are on top of the data
points, yi = xi for all i. It should also be clear that this probability
of the data increases for smaller ), diverging as ) → 0. But we
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know that, to get control over complexity, we should compute the
total probability of generating the data in this class of model. In
this case the parameters of the model are the kernel centers {yi}.
Assume that everything happens in a box, so that 0 < x < L,
and and similarly for {yi}; by translation invariance the prior on
the ys should be flat in this box. Calculate the total probability
that this class of models generates the data in the limit ) → 0. Is
the answer finite? If so, this means that the phase space factors
are just strong enough to compensate for the ‘goodness of fit’ and
prevent anything from diverging in this limit. Can you find any
other approximations that allow you to say anything about the
optimal value of )?

Quite generally, when we compute the total probability

that a model can generate data, we are doing integrals
like

P ({xi}|model class) =

∫
DQP [Q(x)]

N∏

i=1

Q(xi), (883)

where P [Q(x)] is the probability distribution function(al)
on the space of distributions. It embodies all our prior
knowledge, in whatever form—that the distribution can
be described by a few parameters, or merely that it is
smooth in some sense. To understand what is happening
in this integral, it is useful to measure possible distribu-
tions Q(x) relative to the true distribution Qtrue(x),

P ({xi}|model class) =

[
N∏

i=1

Qtrue(xi)

]∫
DQP [Q(x)]

N∏

i=1

[
Q(xi)

Qtrue(xi)

]
. (884)

We can collect the product into an exponential,

P ({xi}|model class) =

[
N∏

i=1

Qtrue(xi)

]∫
DQP [Q(x)] exp

[
N

1

N

N∑

i=1

ln

(
Q(xi)

Qtrue(xi)

)]
, (885)

and we recognize that the average over data points xi approaches, at large N , an average over the true distribution,

P ({xi}|model class) →
[

N∏

i=1

Qtrue(xi)

]∫
DQP [Q(x)] exp

[
N

∫
dxQtrue(x) ln

(
Q(x)

Qtrue(x)

)]
(886)

=

[
N∏

i=1

Qtrue(xi)

]∫
dεN (ε)e−Nε, (887)

where

ε =

∫
dxQtrue(x) ln

(
Qtrue(x)

Q(x)

)
(888)

is the Kullback–Leibler divergence between the distribu-
tion Q(x) and the true distribution, and

N (ε) =

∫
DQP [Q(x)]δ

[
ε−

∫
dxQtrue(x) ln

(
Qtrue(x)

Q(x)

)]
(889)

counts the (weighted) volume in model space that is at
KL divegence ε away from the right answer. Now ε, which
is a “goodness of fit” between the model and the data,
can be thought of as an energy, while the (log) volume in
model space is an entropy, N (ε) = eS(ε). If we imagine
the the model space has a finite but large dimensionality
K, then we expect that the entropy will be extensive,

S(ε) = Ks(ε). So, when the dust settles,

P ({xi}|model class) ∝
∫

dε exp

[
−N

(
ε− K

N
s(ε)

)]
.

(890)
Thus, at large N , the integral is dominated by the min-
imum of the free energy density, f = ε − Ts(ε), where
the role of temperature is played by T = K/N . This
calculation makes explicit the idea that learning really is
statistical mechanics in the space of models, and that see-
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ing more examples is like like lowering the temperature,
‘cooling’ the system into an ordered state around the
right answer. Depending on space of possible models, and
hence the function s(ε), there can be phase transitions—a
sudden jump, as we collect more examples, from wander-
ing around in model space to having a compelling fit to
the data.
What would it mean to have a phase transition in

learning? As we accumulate more examples, we are low-
ering the effective temperature in the equivalent statis-
tical mechanics problem. At first this doesn’t do very
much, in the same way that lowering the temperature of
water from 100 ◦C to 30 ◦C doesn’t do very much much.
But, at some point, a relatively small change in the num-
ber of examples we have seen produces a huge change in
the distribution over models, freezing into a small volume
surrounding the correct answer. This would be some-
thing like the subjective “aha!” experience, where we
suddenly seem understand something or master a skill
after a very period of experience or training. Although
we have all (I hope) experienced this phenomenon, it is
not so easy to study quantitatively, and so I think we
have no idea whether the statistical mechanics approach
to learning provides a useful guide to understanding this
effect.

It is interesting to look at the history of studies in an-
imal learning in the light of these results. Already in the
1920s and 30s it was clear that, at certain tasks, animals
could exhibit “sudden” rather than gradual learning. Al-
though this was well before Hebb, and decades before
the observation of changes in synaptic strength driven
by the correlation between pre– and post–synaptic neu-
rons (see Section [point back to previous chapter; be sure
it’s there!]), there was a general view that learning relied
upon statistical association, and thus should be a contin-
uous process. Thus there was a question whether sudden
learning represents a new mechanism, beyond associa-
tive processes. The mapping of learning onto a statistical
mechanics problem reminds us that when there are many
degrees of freedom, continuous dynamics can have nearly
discontinuous consequences.

Before leaving the image of energy/entropy competi-
tion behind, we should note a caveat. In getting to Eq
(890), we have first allowed N to become very large,
so that averages over samples can be replaced by av-
erages over the underlying distribution, and then used
the resulting formulae with finite N to say something
about how learning proceeds. Evidently this is danger-
ous. It also was controversial when it first emerged, since
the results seemed to conflict with an approach by com-
puter scientists which emphasized bounds on the learning
curve. To explain how all this was resolved would take
us far afield, so I’ll point to the references at the end
of this section. When the dust settles, there is a well
defined approximation that leads to Eq (890), and the
resulting predictions can be made rigorous and shown to

be consistent with known bounds.
It would be good to connect these ideas with exper-

iment. To what extent is our (or other animals’) per-
formance in situations where we learn understandable
in terms of these theoretical structures? A big prob-
lem here is what to measure. In the examples discussed
above, what is being learned is a probability distribu-
tion, or some set of parameters describing the data that
we observe. It’s not so easy to ask even a human subject
to report on their current estimates of these parameters,
and it’s completely unclear how we would do this in sim-
pler organisms. In practice, subjects are usually asked
to make a decision; in classical work on pigeons the deci-
sion is to peck or not to peck at a target, and for humans
subjects are simply asked a yes/no question, or asked to
push one of a small set of buttons. Evidently the band-
width of these experiments is limited—although we may
be continuously updating an internal model with many
parameters, what we report is on the order of one bit,
yes or no.
One context that comes closer to the theoretical discus-

sion, albeit in a simple form, concerns making decisions
when the alternatives come with unequal probabilities.
This harkens back to out earliest topic, a human ob-
server waiting for a dim flash of light in a dark room.
As we discussed in that context, optimal decisions, de-
ciding that a signal is convincingly above the background
of noise, are achieved by setting a threshold that depends
on the probability that the signal is present [need a def-
inite pointer]. If this probability can change over time,
then it must be learned. More prosaically, if we have
to choose between two alternatives even in a limit where
they are fully distinguishable, but the rewards for the
different choices vary probabilistically, then we have to
learn something about the underlying probabilities of re-
ward in order to develop a sensible strategy. These sorts
of experiment have attracted interest because they might
connect to our economic behavior, and because they pro-
vide settings in which we can search for the neural corre-
lates of the subject’s estimate of probability and value.90

There is a classical literature showing that human ob-
servers adjust their criteria for detecting signals to the
probability that the signals occur. The question about
learning is really how long it takes the subject to make
this adjustment. In the simplest case, the probability
changes suddenly, and we look for a change in behavior
in response. If the only behavioral output is a decision
among two alternatives, we as observers also need to go

90 I think it is fair to say that the concept of “value” has attracted
more attention in this context, because it seems more connected
to economics. Indeed, there is now a whole field described as
“neuro–economics.” But perhaps the probabilistic nature of our
inferences, even in the economic context, have been given less
attention than they deserve.
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through an inference process to decide when is the first
sign of a response. In such an experiment, we have a com-
plete probabilistic description of the trajectory taken by
the sensory stimuli or rewards, so at any moment we can
calculate the probability that the signals being shown are
consistent with constant parameters or a recent, sudden
change. Given the responses of the subject, we can also
ask for the moment at which we see the first statisti-
cal sign of a change in behavior. In experiments where
rats experience changing reward probabilities, the change
in behavior occurs at times so soon after the changes
in probability that the best evidence for the change is
modest, corresponding to probabilities in the range 0.1
to 0.9; only rarely (in ∼ 20% of trials) do rats wait to
reach 99% certainty. On these very short time scales, the
rate at which the rat collects rewards changes very little,
suggesting that changes in strategy really are driven by
learning the underlying probabilities, rather than tinker-
ing until rewards accumulate.

In a similar spirit, we can do a longer experiment,
with the probabilities jumping among different levels,
and track the dynamics of the behavior. [Have to decide
how much to say here. Would like to connect with result
from Corrado et al suggesting that filtering of experience
to generate internal model of probability is near–optimal.
Could do the calculation in a simple case, then point to

efficiency

FIG. 164 Tracking the changing probabilities of reward, from
Corrado et al (2005). At top, the local frequencies of choosing
one of two alternatives (solid) and being rewarded (dashed),
when the probability of this choice being rewarded jumps
among different levels as shown (thin line); frequencies are
computed from discrete events by smoothing with the Gaus-
sian kernel shown in the inset. At bottom left, the filter in-
ferred from the relationship between rewards and subsequent
choices. At bottom right, the efficiency of collecting rewards
averaged over the whole session, assuming that the subject
implements a filter with the times constants as shown. The
subjects’ behaviors are best fit by parameters that generate
efficiencies within one percent of the optimum.

also differs greatly between subjects. Fourth, there is little corre-
lation between the two parameters; some records of shallow slope
begin early and some begin late; conversely, some records with
steep slope begin early and some late. Finally, it is not uncommon
for the level of behavior to decrease later on, well below the level
it had when it first appeared, as indicated by downward deflections
in the slope of the cumulative record.

A second way to visualize the acquisition of conditioned respond-
ing is to plot the pecks on each trial (Fig. 3). This plot is the
(discrete) derivative of the cumulative record plot. In some cases,
it is readily intelligible (Fig. 3 Upper), whereas in others, the
trial-to-trial variability in the number of pecks, makes it hard to see
what is going on (Fig. 3 Lower). Other disadvantages of this
visualization are that the parameters of acquisition (latency, abrupt-
ness, and asymptote) are not so readily visible, and, finally, one
cannot make more than one plot per figure, to show differences and
similarities between subjects.

Quantifying Acquisition
In quantifying the appearance of conditioned behavior in individual
subjects, we want to know at least three things: (i) how long it took
for it to appear; (ii) how abruptly it attained its asymptotic level; and
(iii) what the asymptotic level was. We now describe how to obtain
these parameters from each kind of plot, beginning with the second
kind.

Our approach to these questions is descriptive rather than
model-driven. We use two different representations to test whether

the conclusions one draws about acquisition depend on the choice
of a representation.

We summarize the plots of pecks versus trials by fitting a
continuous function to the data. The Weibull function is often used
to summarize psychometric plots. When applied to the pecks-
versus-trial data, the function is

Pecks ! A!1 " 2"#!Trials!L$S%$.

Its parameters, A, L, and S, correspond to the aspects of acquisition
just mentioned: asymptote (A), latency (L), and abruptness of
onset (S).

Different values for the S parameter of the Weibull function
cause it to assume widely different forms so it can approximate most
monotonically increasing data sets. WhenS is close to 1, it approx-
imates the inverse exponential. When S is &1.5, it is sigmoidal;
asymmetrically so for values around 2, and symmetrically for values
of 4 and higher. As S goes to infinity, it becomes a step function.
Roughly speaking, the higher the value of S, the more abrupt the
rise. However, it is important to bear in mind that this measure of
abruptness is normalized to the L of behavioral onset, because S is
the power to which the ratio Trials!L is raised. When the onset L
is short, low values ofS may be found in data that show a rapid initial
rise in the level of performance (for example, see Fig. 7).

Summarizing the Pecks versus Trials plots with Weibull functions
allows one to plot the results from all subjects on a single graph.
Such a plot (Fig. 4) confirms the impression one has from the plot
of the cumulative records: acquisition is generally abrupt, there are
striking between subject differences in both onset latency and
asymptotic level, and these differences do not covary.

The Weibull function is monotonic; it cannot capture multistep
changes in behavior, particularly when these postacquisition steps
are both up and down. For that result, our second approach, based

Fig. 1. Group-average (n ' 20 pigeons) rate of key pecking (the conditioned
response in the pigeon autoshaping paradigm) as a function of number of
sessions (with 50 trials per session). Coordinate frame and jagged data line were
traced from Gamzu and Williams (figure 2 in ref. 10, p. 227). We have superposed
a Weibull function approximation (smooth curve), to show that this function,y '
A {1 " 2ˆ " [(x!L)ˆS]} can capture the kind of prolonged increase seen in these
averages. A is the asymptote and L is the onset latency or location (the value of
x at which y is half of its asymptotic value). Note the value (1.4) of the shape
parameter S, which determines the shape and steepness of the function.

Fig. 2. The cumulative number of pecks versus the number of trials for the
nine birds in Condition CR!CS6!IT9.

Fig. 3. TwoexamplesofPecksversusTrialsplots.Thedashedcurve ineachpanel
is the best-fitting Weibull function. (Upper) The subject did not respond at all for
(40 trials; then, within the space of(10 trials, it transitioned to making between
5 and 15 pecks on each trial. These data are summarized fairly well by the
best-fitting Weibull function. (Lower) The subject did not respond at all for the
first 30 trials; then, it began to make between zero and three pecks per trial. This
pattern of weak and highly intermittent responding persisted for 600 more trials.
Although the plot is visually confusing, the Weibull function again captures the
structure of the data. The asymptote is at 0.5 pecks per trial because the subject
did not peck on substantially more than half the trials. The function rises with
step-like abruptness, because after the first trial on which there was a peck (Trial
30), therewasnofurther increase intheweakandintermittentpeckingtendency.
In fact, there was a modest decrease after Trial 200.
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also differs greatly between subjects. Fourth, there is little corre-
lation between the two parameters; some records of shallow slope
begin early and some begin late; conversely, some records with
steep slope begin early and some late. Finally, it is not uncommon
for the level of behavior to decrease later on, well below the level
it had when it first appeared, as indicated by downward deflections
in the slope of the cumulative record.

A second way to visualize the acquisition of conditioned respond-
ing is to plot the pecks on each trial (Fig. 3). This plot is the
(discrete) derivative of the cumulative record plot. In some cases,
it is readily intelligible (Fig. 3 Upper), whereas in others, the
trial-to-trial variability in the number of pecks, makes it hard to see
what is going on (Fig. 3 Lower). Other disadvantages of this
visualization are that the parameters of acquisition (latency, abrupt-
ness, and asymptote) are not so readily visible, and, finally, one
cannot make more than one plot per figure, to show differences and
similarities between subjects.

Quantifying Acquisition
In quantifying the appearance of conditioned behavior in individual
subjects, we want to know at least three things: (i) how long it took
for it to appear; (ii) how abruptly it attained its asymptotic level; and
(iii) what the asymptotic level was. We now describe how to obtain
these parameters from each kind of plot, beginning with the second
kind.

Our approach to these questions is descriptive rather than
model-driven. We use two different representations to test whether

the conclusions one draws about acquisition depend on the choice
of a representation.

We summarize the plots of pecks versus trials by fitting a
continuous function to the data. The Weibull function is often used
to summarize psychometric plots. When applied to the pecks-
versus-trial data, the function is

Pecks ! A!1 " 2"#!Trials!L$S%$.

Its parameters, A, L, and S, correspond to the aspects of acquisition
just mentioned: asymptote (A), latency (L), and abruptness of
onset (S).

Different values for the S parameter of the Weibull function
cause it to assume widely different forms so it can approximate most
monotonically increasing data sets. WhenS is close to 1, it approx-
imates the inverse exponential. When S is &1.5, it is sigmoidal;
asymmetrically so for values around 2, and symmetrically for values
of 4 and higher. As S goes to infinity, it becomes a step function.
Roughly speaking, the higher the value of S, the more abrupt the
rise. However, it is important to bear in mind that this measure of
abruptness is normalized to the L of behavioral onset, because S is
the power to which the ratio Trials!L is raised. When the onset L
is short, low values ofS may be found in data that show a rapid initial
rise in the level of performance (for example, see Fig. 7).

Summarizing the Pecks versus Trials plots with Weibull functions
allows one to plot the results from all subjects on a single graph.
Such a plot (Fig. 4) confirms the impression one has from the plot
of the cumulative records: acquisition is generally abrupt, there are
striking between subject differences in both onset latency and
asymptotic level, and these differences do not covary.

The Weibull function is monotonic; it cannot capture multistep
changes in behavior, particularly when these postacquisition steps
are both up and down. For that result, our second approach, based

Fig. 1. Group-average (n ' 20 pigeons) rate of key pecking (the conditioned
response in the pigeon autoshaping paradigm) as a function of number of
sessions (with 50 trials per session). Coordinate frame and jagged data line were
traced from Gamzu and Williams (figure 2 in ref. 10, p. 227). We have superposed
a Weibull function approximation (smooth curve), to show that this function,y '
A {1 " 2ˆ " [(x!L)ˆS]} can capture the kind of prolonged increase seen in these
averages. A is the asymptote and L is the onset latency or location (the value of
x at which y is half of its asymptotic value). Note the value (1.4) of the shape
parameter S, which determines the shape and steepness of the function.

Fig. 2. The cumulative number of pecks versus the number of trials for the
nine birds in Condition CR!CS6!IT9.

Fig. 3. TwoexamplesofPecksversusTrialsplots.Thedashedcurve ineachpanel
is the best-fitting Weibull function. (Upper) The subject did not respond at all for
(40 trials; then, within the space of(10 trials, it transitioned to making between
5 and 15 pecks on each trial. These data are summarized fairly well by the
best-fitting Weibull function. (Lower) The subject did not respond at all for the
first 30 trials; then, it began to make between zero and three pecks per trial. This
pattern of weak and highly intermittent responding persisted for 600 more trials.
Although the plot is visually confusing, the Weibull function again captures the
structure of the data. The asymptote is at 0.5 pecks per trial because the subject
did not peck on substantially more than half the trials. The function rises with
step-like abruptness, because after the first trial on which there was a peck (Trial
30), therewasnofurther increase intheweakandintermittentpeckingtendency.
In fact, there was a modest decrease after Trial 200.
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FIG. 165 Learning curves in individuals vs groups (Gallistel
et al 2004). [Need to give a full explanation of the exper-
iment!] At left, average performance in a large population
of birds improves gradually and very slowly, requiring many
hundreds of trials before reaching its half maximal level. At
right, performance measured in one individual bird is noisy
(because we have access only to the number of pecks as a be-
havioral output), but makes a relatively sudden transition to
near saturating performance as the animal experiences ∼ 10
additional examples.

Fig 164 ... Need to digest the paper better, though.]
One approach to adding bandwidth to experiments on

learning is to average over many subjects, so that the
performance after N examples can be measured as a real
number (e.g., the probability of subjects getting the right
answer) even though the data from individuals is dis-
crete (yes/no answers). But, as emphasized in Fig 165,
this can be misleading. Individual subjects seem to learn
simple tasks abruptly, but with transitions after different
numbers of trials, so that average “learning curves” are
smooth and gradual. This is interesting, because more
abrupt learning reminds us of performance as a func-
tion of signal–to–noise ratio in discrimination tasks, and
because theory along the lines described above often pre-
dicts relatively rapid learning when the space of possibil-
ities is small. The variations across individuals may then
reflect differences in how the ‘small problem’ posed by
the particular experimental situation is weighted within
the much larger set of possible behaviors available to the
organism. But much needs to be done to make this pre-
cise.
Another approach to increasing the bandwidth of be-

havioral experiments is to look at continuous motor out-
puts rather than decisions. An example is if we have
to move an object through a medium that generate an
unknown, anisotropic mobility tensor; as we practice, we
learn more about the parameters of our environment and
can move more accurately. Importantly, each trial of such
an experiment generates an entire movement trajectory
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rather than just a single discrete decision. Analysis of
these trajectories can reveal how the errors we make in
one trial influence the change of our internal model on the
next trial. [Should have a figure—maybe combine some-
thing from Shadmehr et al plus saccadic latency vs proba-
bility?] Although this emphasizes learning of parameters
that influence the movement itself, the fact that some
movements are made in extraordinary precise relations
to sensory inputs (e.g., as we follow a moving target with
our eyes), and that we can learn to anticipate the need
for such movements (e.g., as targets follow predictable
trajectories), suggests that analysis of continuous move-
ments should more generally provide us with a path to
examine more details of the brain’s internal model of the
world. A simple version of this idea is that the latency for
us to move our eyes toward one of two suddenly appear-
ing targets depends on the relative probabilities of the
targets—we move more quickly toward targets of higher
probability, as shown in Fig 166, and it is tempting to
think that the latency of movement gives us a readout of
the brain’s estimate of this probability. Again, there is
much to do here.

Thus far our examples of learning have been “passive.”
That is, the learner experiences a data stream from which
inferences can be drawn, but there is no way for the
learner to shape the data stream, selecting observations
which might be especially informative. [Give a discussion
of infotaxis. This is interesting both as an active learning
problem and as an example where gathering information
substitutes effectively for “goal–directed behavior.]

Finally, a theoretical point. We have emphasized that

FIG. 166 Latency for saccadic eye movements to targets of
varying probability, from Carpenter & Williams (1995). Sub-
jects are asked to move their eyes to a target which appears
at a random time after they fixate on a small spot. The tar-
get is either to the left or right, with varying probabilities
in blocks of trials. For two subjects (filled and empty sym-
bols), one collects all the trials in which the subject move to
a target of probability p, and computes the mean latency of
the eye movement. Do we want to say anything about the
distribution of latencies?

learning a model amounts to building an efficient repre-
sentation of the data we have observed, and hence the
“goal” of learning is no different than the goals proposed
in the previous section for the transmission of informa-
tion through neural or genetic networks. This theoret-
ical unity is attractive. But one might worry—why do
we care about representing what we have observed in the
past? What matters, to follow the discussion at the end
of Section IV.B, is what is of use in guiding our actions in
the future. Thus, presumably we learn models that de-
scribe data collected in the past because we expect these
models to still be true in the future, and this allows us
to make successful predictions. How does this connect to
our ideas about efficient representation?
We recall from Section IV.B that the predictive infor-

mation in a time series, that is the information which ob-
servations on the past provide about the future, is equal
to the subextensive component of the entropy. In the
course of evaluating the probability of data given a class
of models, in Eq (877), we have implicitly calculated this
subextensive entropy. Specifically, we found that the neg-
ative log probability of a set of data at N time points
had a term proportional to N (the extensive piece), and
a term that grows only logarithmically with N (the lead-
ing subextensive piece), as in Eq [**]. Thus, when we are
observing a time series from which we can learn a model
with K parameters, there is a subextensive entropy and
hence predictive information ∼ (K/2) log2 N bits. The
“meaning” of this predictive information is precisely that
we know something about the parameters underlying the
data, and on the hypothesis that these parameters are
constant we can predict something about the future.

Problem 168: Predictive information in learning. [One
more problem with the details.]

When we observe N data points, the total amount of
information we have collected is a number of bits propor-
tional to N . But in the case we are considering, there are
just ∼ (K/2) log2 N bits of information about the future.
If we can separate these predictive bits from the nonpre-
dictive background, we will have learned the parameters
of the underlying model. Thus, compressing the data
while preserving the predictive information is exactly the
same problem as learning. Interestingly, if we live in a
world described by a complex model (large K), then the
amount of predictive information is much larger than the
information needed to describe the present.
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I think that our modern understanding of the preference for simple
models, as explained here, is quite important, well known in certain
circles, but less widely appreciated than it should be. Part of the
difficulty is the presence of many independent threads in the liter-
ature. Rissanen had a very clear point of view which is essentially
that presented here, although in different language; sources go back
at least to Rissanen (1978), with a summary in Rissanen (1989).
The problem became more urgent with the emergence of neural
networks, which could be viewed as models with very large num-
bers of parameters. In this context, MacKay (1992) understood
the critical role of ‘Occam factors,’ the integrals over parameter
values that favor simpler models; see also his marvelous textbook
(MacKay 2003). Balasubramanian (1997) generalized these ideas
and translated them into physicists’ language, showing how the
Occam factors can be thought of as entropy in the space of mod-
els. Certainly I learned a lot from talking to Balasubramanian,
and from working out these ideas in the context of a field theoretic
approach to learning distributions (Bialek et al 1996). For the case
of the spherical horse, see Devine & Cohen (1992).
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E. Perspectives

Optimizing information transmission, or maximizing
the efficiency with which information is represented, is
the sort of abstract, general principle that physicists find
appealing. At the same time, this abstraction makes us
suspicious about its relevance to the nitty–gritty of life.
Thus, while information is essential for survival, surely
much of what organisms do is bound up in the fact that
some bits are more useful than others, and in the chal-
lenges of acting rather than just collecting data. In this
Chapter I have tried to show both how interesting pre-
dictions flow from the abstract principles, and how these
principles connect, sometimes surprisingly, to the more
quotidian facts of life. It is surely too early, in this as
in any other section of the course, to decide if some can-
didate theoretical principles are “right,” and in any case
I am not a disinterested observer. What I would like to
emphasize here is that thinking about the optimization of
information transmission has been productive, not least
because it suggests genuinely new kinds of experiments.
In many systems, these experiments have generated in-
teresting results, independent of the theoretical motiva-
tion. In many other systems, even the first generation of
experiments remains to be done.

Perhaps the most important point about information
theoretic optimization principles is that they force us
to think about biological systems in context. Whereas
classical biology routinely considered organisms in their
natural setting, as biology has modernized and become
more mechanistic, we see more and more work on sys-
tems shorn of their context. To give an example, it may
be that the best studied example of the regulation of gene
expression is the lac operon in E. coli. But how much do
we know about the distribution of lactose concentrations
encountered by these cells in their natural environments?
We know that, under many conditions, the total number
of lac repressor proteins in the cell is small, but what
is the dynamic range of this number over the lifetime of
the organism? Vastly more is known about the details
of the DNA sequences that are targeted by transcription
factors involved in the regulation of metabolic genes than
is known about the real world variations in nutrient con-
ditions that create the need for metabolic regulation.

In the case of neural information processing, the
ethologists—who often study systems specialized for the
processing of particular sense data, such as bird song or
bat echolocation—provided a persistent reminder about
the importance of the natural context in understanding
biological function. Perhaps our human abilities to deal
with a seemingly much wider range of data and tasks
generated some resistance to thinking that lessons from

a barn owl or an electric fish could be of relevance to how
we explore higher brain function. The claim that at least
some aspects of neural circuitry are arranged to generate
efficient representations of incoming sense data provided
a counterpoint, suggesting that even for a “general pur-
pose” sensory system, context matters. By now there
is a whole subfield of neuroscience focused on the struc-
ture and processing of natural signals, a field which we
might think of as a modern, quantitative development of
the early work in ethology. Because our sense organs are
such high quality devices, there are substantial experi-
mental challenges in characterizing their natural inputs
and in delivering controlled versions of these natural sig-
nals in the laboratory. Precisely because natural signals
are rich and complex, analyzing neural responses to these
signals poses significant theoretical challenges (see, for
example, Appendix A.7). Progress on these experimen-
tal and theoretical problems is giving us more powerful
tools with which to explore the brain, again independent
of the sometimes distant motivation from optimization
principles.
Thinking about information flow encourages us to ask

about the structure of natural behavioral outputs, as well
as natural sensory inputs. In the attempt to quantify
animal (and human) behavior in the laboratory, there
has been a tradition of constraining this behavior to a
small, discrete set of alternatives, and this has been enor-
mously powerful, not least because such constrained ex-
periments are amenable to analyses in terms of signals
and noise as in our initial discussion of photon count-
ing in vision. Similarly, experiments on the control of
gene expression in single celled organisms often have fo-
cused on the “switch” in expression patterns associated
with a sudden transition from one nutrient source to an-
other. Even the ethologists tended to categorize, col-
lapsing whole ranges of behavior onto a limited space of
discrete choices. But behavior, from single cells to entire
humans, is vastly richer than choosing among discrete
alternatives. As the technology for monitoring behavior
improves, it becomes possible to ask if the continuous
variations in natural behaviors are just noise, or are re-
lated systematically to the goals and context. Even if
behavior really is composed of choice among a small set
of stereotyped possibilities—such as running and tum-
bling in E. coli—the timing of these choices can convey
information about the sensory inputs that drive them.
We have the impression that we are bombarded by

complex data, and that our behaviors are relatively lim-
ited. But the inputs to our sensory system are highly
structured, presumably because they derive from a lim-
ited set of causes and effects in the environment, and
hence carry much less information about what is re-
ally “out there” than one might guess from the available
bandwidth; our receptors provide limited, noisy views of
these inputs, reducing the information still further (see,
for example, Problem [info in cone array]). At the other
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end, our motor outputs in fact are quire rich, even if we
tend to coarse grain and categorize these behaviors into
limited classes. Could it be that motor outputs are so
carefully shaped and timed in relation to sensory inputs
from the environment that we (and other organisms) are
making use of a large fraction of the information available
about this environment? There is a huge experimental
challenge in tracking information flow all the way from
sensory input to motor output, even in simple cases, and
in more complex cases there is a substantial theoretical
challenge in providing a framework for the analysis of
such data.

One of the most important aspects of information the-
ory is the fact that bits have value. This is why, for
example, there is a minimum number of bits we need to
send over a telephone connection to be sure that speech
is intelligible and speakers identifiable. For living organ-
isms, the value of bits depends on many details, perhaps
more detail than, as physicists, we would like to think
about. What we can say, however, is that bits which
have no predictive power are valueless, and that most of
the bits we have collected over our lifetime are in this
valueless category. Thus, separating predictive informa-
tion from the background of non–predictive clutter is a
formidable, and biologically relevant, challenge. Impor-
tantly, this very general task seems to contain within it,
as special cases, problems ranging from signal processing
to learning, problems that we usually think of as belong-
ing to different levels of biological organization with very
different mechanisms. Perhaps this is, after all, a path
to the sort of general principle we are seeking.
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V. OUTLOOK

This remains to be written. Evidently it requires a
little distance from the details of the text, which I just
haven’t achieved yet! In broad terms, I want to sum-
marize what we have seen, and point toward where we
might be going. Return to some of Helmholtz’ soaring
ambition ... .
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Appendix A: Appendix

In these sections I collect things which are off the to
side, or in the background, of the main arguments made
in the text. Some readers will find the background essen-
tial, others will find the asides more interesting than what
I thought were the main points. I hope, however, that
everyone finds something useful here. As with the main
text, I try not to skip steps, and problems are embedded
in the narrative. To a large extent, the Appendices are
unedited as of September 18, 2011; for some of the newer
ones, especially, much work is needed.

1. Poisson processes

Photons from a conventional light source arrive at a
detector as a random process, specifically a Poisson pro-
cess. The defining feature of the Poisson process is that
each event (photon arrival) is independent of all the oth-
ers, given that we know the rate r(t) at which the events
occur. In these notes we’ll go through the detailed conse-
quences of this simple assumption of independence; hope-
fully some of the results are familiar. Note that many
textbook presentations make a big deal out of the dis-
tinction between a “homogeneous” Poission process, in
which the rate is a constant, r(t) = r̄, and an “inhomo-
geneous” Poisson process in which it can depend on time.
The general case isn’t that hard, so I prefer to start there.

One should perhaps note at the outset that most light
sources are not exactly Poisson, but the approximation
is very good. There are many more systems for which
the Poisson model is a decent if not excellent approxima-
tion, and so we’ll discuss all this without further reference
to photons: we are describing the statistics of arbitrary
point events which occur at times t1, t2, · · · , tN .
The rate r(t) can be thought of either as the mean

rate of events that we would observe in the neighborhood
of time t if we did the same experiment many times,

or equivalently as the probability per unit time that we
observe an event at t. Recall that there is the same dual
definition for the concentration c(x) of moelcules—either
the mean number of molecule per unit volume that we
find in the neighborhood of a point x, or the probability
per unit volume that we observe a single molecule at x.
Since the events are independent, the probability den-

sity for observing events at times t1, t2, · · · , tN must be
proportional to a product of the rates evaluated at these
times,

P [{ti}|r(τ)] ∝ r(t1)r(t2) · · · r(tN ) ≡
N∏

i=1

r(ti). (A1)

But to get the exact form of the distribution we must in-
clude a factor that measures the probability of no events
occurring at any other times. The probability of an event
occurring in a small bin of size ∆τ surrounding time t is,
by the original definition of the rate, p(t) = r(t)∆τ , so
the probability of no event must be 1 − p(t). Thus we
need to form a product of factors 1−p(t) for all times not
equal to the special ti where we observed events. Let’s
call this factor F ,

F =
∏

n -=i

[1− p(tn)]. (A2)

Then the probability of observing events in bins sur-
rounding the ti is

P [{ti}|r(τ)](∆τ)N =
1

N !
F

N∏

i=1

[r(ti)∆τ ] , (A3)

where the N ! corrects for all the different ways of assign-
ing labels 1, 2, · · · , N to the events we observe.
To proceed we pull out all the factors related to the ti

and isolate the terms independent of these times:

P [{ti}|r(τ)](∆τ)N =
1

N !
F

N∏

i=1

[r(ti)∆τ ]

=
1

N !

∏

n -=i

[1− r(tn)∆τ ]
N∏

i=1

[r(ti)∆τ ] (A4)

=
1

N !

∏

n

[1− r(tn)∆τ ]
N∏

i=1

[
r(ti)∆τ

1− r(ti)∆τ

]
; (A5)

keep in mind that
∏

n denotes a product over all possible times tn.
To simplify Eq (A5) we remember that products can be turned into sums by taking logarithms, so that

∏

n

[1− r(tn)∆τ ] = exp

(
∑

n

ln [1− r(tn)∆τ ]

)
. (A6)



264

Now when we substitute back into Eq (A5) we find

P [{ti}|r(τ)](∆τ)N =
1

N !

∏

n

[1− r(tn)∆τ ]
N∏

i=1

[
r(ti)∆τ

1− r(ti)∆τ

]

=
1

N !
exp

(
∑

n

ln [1− r(tn)∆τ ]

)
N∏

i=1

[
r(ti)∆τ

1− r(ti)∆τ

]
. (A7)

We are interested in the case where the time bin ∆τ is
very small (we introduced these artificially, remember),
which means that we need to take the logarithm of num-
bers that are almost equal to one. We recall that the
Taylor series of the logarithm is

ln(1 + x) = x− 1

2
x2 +

1

3
x3 − · · · . (A8)

In this case we apply this expansion to

ln [1− r(tn)∆τ ] = −r(tn)∆τ− 1

2
[r(tn)∆τ ]2+ · · · , (A9)

so our expression for the probability can be written as

P [{ti}|r(τ)](∆τ)N =
1

N !
exp

(
∑

n

ln [1− r(tn)∆τ ]

)
N∏

i=1

[
r(ti)∆τ

1− r(ti)∆τ

]

=
1

N !
exp

(
∑

n

[−r(tn)∆τ ]− 1

2

∑

n

[−r(tn)∆τ ]2 + · · ·
)

N∏

i=1

[
r(ti)∆τ

1− r(ti)∆τ

]
. (A10)

This expression involves a sum over bins, with factors of the bin width ∆τ . We recall that this converges, as the bins
become small, to an integral:

lim
∆τ→0

∑

n

f(tn)∆τ =

∫
dt f(t), (A11)

for any smooth function f(t). In the present case this means that

lim
∆τ→0

exp

(
∑

n

[−r(tn)∆τ ]− 1

2

∑

n

[−r(tn)∆τ ]2 + · · ·
)

= exp

[
−
∫

dt r(t)− 1

2
∆τ

∫
dt r2(t) + · · ·

]
. (A12)

Now we notice that the second integral in the exponential
has an extra factor of ∆τ , which comes from the (∆τ)2

in the previous expression, but if we really let ∆τ go to
zero this must be negligible as long as the rate doesn’t
become infinite.

Similarly, we have in Eq (A10) factors like

r(ti)∆τ

1− r(ti)∆τ
,

and again as ∆τ → 0 we can expand this in powers of
∆τ and drop all but the first term. This is equivalent to
replacing the denominator of the fraction by 1. So, when
the dust clears, the expression for the probability density

of the event times becomes

P [{ti}|r(τ)] =
1

N !
exp

[
−
∫ T

0
dt r(t)

]
N∏

i=1

r(ti), (A13)

where we have set the limits on the integral to refer to the
whole duration of our observations, from t = 0 to t = T .
Note that this is a probability density for the N arrival
times t1, t2, · · · , tN and hence has units (time)−N .
It is a useful exercise to check the normalization of

the probability distribution in Eq. (A13). We want to
calculate the total probability, which involves taking the
term with N events and integrating over all N arrival
times, then summing on N . Let’s call this sum Z,
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Z ≡
∞∑

N=0

∫ T

0
dt1

∫ T

0
dt2 · · ·

∫ T

0
dtNP [{ti}|r(t)] (A14)

=
∞∑

N=0

∫ T

0
dt1

∫ T

0
dt2 · · ·

∫ T

0
dtN

1

N !
exp

[
−
∫ T

0
dt r(t)

]
N∏

i=1

r(ti). (A15)

Notice that the exponential does not depend on the {ti}
or on N , so we can take it outside the sum and integral.
Furthermore, although we have to integrate over all the
N different ti together (an N dimensional integral), the

integrand is just a product of terms that depend on each
individual ti. This means that really we have a product
of N one dimensional integrals:

Z = exp

[
−
∫ T

0
dt r(t)

] ∞∑

N=0

1

N !

∫ T

0
dt1 · · ·

∫ T

0
dtN r(t1) · · · r(tN ) (A16)

= exp

[
−
∫ T

0
dt r(t)

] ∞∑

N=0

1

N !

∫ T

0
dt1 r(t1)

∫ T

0
dt2 r(t2) · · ·

∫ T

0
dtN r(tN ) (A17)

= exp

[
−
∫ T

0
dt r(t)

] ∞∑

N=0

1

N !

[∫ T

0
dt r(t)

]N

. (A18)

Recall that the series expansion of the exponential function is

exp(x) =
∞∑

N=0

1

N !
xN , (A19)

so we can actually do the sum in Eq. (A18):

exp

[
−
∫ T

0
dt r(t)

] ∞∑

N=0

1

N !

[∫ T

0
dt r(t)

]N

= exp

[
−
∫ T

0
dt r(t)

]
× exp

[
+

∫ T

0
dt r(t)

]
(A20)

= 1, (A21)

which completes our check on the normalization of the distribution.
Next we would like to derive an expression for the distribution of counts, which we write as P (N |〈N〉) to remind us

that the shape of the distribution depends (as we will see) only on its mean. To do this we take the full probability
distribution P [{ti}|r(τ)], pick out the term involving N events, and then integrate over all the possible arrival times
of these events:

P (N |〈N〉) =
∫ T

0
dt1 · · ·

∫ T

0
dtNP [{ti}|r(τ)] (A22)

=

∫ T

0
dt1 · · ·

∫ T

0
dtN

1

N !
exp

[
−
∫ T

0
dt r(t)

]
N∏

i=1

r(ti).

(A23)

As in the discussion leading to Eq. (A18) we notice that the exponential factor can be taken outside the integral, and
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that we have a product of N one dimensional integrals rather than a full N dimensional integral:

P (N |〈N〉) =
∫ T

0
dt1 · · ·

∫ T

0
dtN

1

N !
exp

[
−
∫ T

0
dt r(t)

]
N∏

i=1

r(ti)

=
1

N !
exp

[
−
∫ T

0
dt r(t)

]∫ T

0
dt1 · · ·

∫ T

0
dtN

N∏

i=1

r(ti)

=
1

N !
exp

[
−
∫ T

0
dt r(t)

][∫ T

0
dt r(t)

]N

(A24)

≡ 1

N !
exp(−Q)QN , (A25)

where we have defined

Q =

∫ T

0
dt r(t). (A26)

In particular, the probability that no events occur in the
time from t = 0 to t = T is P (0) = exp(−Q), or

P (0|〈N〉) = exp

[
−
∫ T

0
dt r(t)

]
. (A27)

With the probability distribution of counts from Eq.
(A25), we can compute the mean and the variance of the
count. To obtain the mean we compute

〈N〉 ≡
∞∑

N=0

P (N)N (A28)

=
∞∑

N=0

1

N !
exp(−Q)QNN (A29)

= exp(−Q)
∞∑

N=0

1

N !
QNN. (A30)

Now we have already made use of the series expansion for
the exponential, Eq. (A19), and to sum this last series
we notice that

QNN = Q
∂

∂Q
QN , (A31)

so that

〈N〉 = exp(−Q)
∞∑

N=0

1

N !
QNN

= exp(−Q)
∞∑

N=0

1

N !
Q

∂

∂Q
QN (A32)

= exp(−Q)Q
∂

∂Q

∞∑

N=0

1

N !
QN (A33)

= exp(−Q)Q
∂

∂Q
exp(+Q), (A34)

where in the last step we recognize the series for the ex-
ponential. Now the derivative of the exponential is just
the exponential itself,

∂

∂Q
exp(+Q) = exp(+Q), (A35)

so that

〈N〉 = exp(−Q)Q
∂

∂Q
exp(+Q)

= exp(−Q)Q exp(+Q) = Q. (A36)

We see that the mean count is what we have called Q,
the integral of the rate.
Now we can write the count distribution directly in

terms of its mean:

P (N |〈N〉) = exp(−〈N〉) 〈N〉N

N !
, (A37)

which is what we need to start the discussion of photon
counting in vision, Eq (??).
We can do a very similar calculation to find the vari-

ance of the count distribution. We start by computing
the average of N2,

〈N2〉 =
∞∑

N=0

N2P (N). (A38)

Substituting for P (N) from Eq. (A25) and rearranging,
we have

〈N2〉 =
∞∑

N=0

N2P (N)

=
∞∑

N=0

N2 exp(−Q)
1

N !
QN (A39)

= exp(−Q)
∞∑

N=0

1

N !
N2QN . (A40)

The trick is once again to write the extra factors of N
(here N2) in terms of derivatives with respect to Q. Now
we know that

∂2

∂Q2
QN = N(N − 1)QN−2, (A41)
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so we can write

Q2 ∂2

∂Q2
QN = (N2 −N)QN , (A42)

which is almost what we want. But we can use the for-
mula in Eq. (A31) to finish the job, obtaining

N2QN = Q2 ∂2

∂Q2
QN +Q

∂

∂Q
QN . (A43)

Now we can substitute into Eq. (A40) and follow the
steps corresponding to Eq’s (A32) through (A36):

〈N2〉 = exp(−Q)
∞∑

N=0

1

N !
N2QN

= exp(−Q)
∞∑

N=0

1

N !

[
Q2 ∂2

∂Q2
QN +Q

∂

∂Q
QN

]
(A44)

= exp(−Q)Q2 ∂2

∂Q2

∞∑

N=0

1

N !
QN + exp(−Q)Q

∂

∂Q

∞∑

N=0

1

N !
QN (A45)

= exp(−Q)Q2 ∂2

∂Q2
exp(+Q) + exp(−Q)Q

∂

∂Q
exp(+Q) (A46)

= exp(−Q)Q2 exp(+Q) + exp(−Q)Q exp(+Q) (A47)

= Q2 +Q. (A48)

Now since we have already identified Q as equal to the
mean count, this means that the mean square count can
be written as

〈N2〉 = 〈N〉2 + 〈N〉. (A49)

But the variance of the count is defined by

〈(δN)2〉 ≡ 〈N2〉 − 〈N〉2 (A50)

= [〈N〉2 + 〈N〉]− 〈N〉2 = 〈N〉. (A51)

Thus the variance of the count for a Poisson process is
equal to the mean count.

The next characteristic of the Poisson process is the
interval between events. The probability per unit time
that we observe an event at time t is given by the rate,
r(t). The probability that we observe no events in the
interval [t, t+ τ) is given by

P (0) = exp

[
−
∫ t+τ

t
dt′ r(t′)

]
. (A52)

The probability per unit time that this interval is closed
by an event is again the rate, now at time t + τ . Thus
the probability per unit time that we see events at t and
t+ τ , with no events in between is given by

P (t, t+ τ) = r(t) exp

[
−
∫ t+τ

t
dt′ r(t′)

]
r(t+ τ). (A53)

In the simple case that the rate is constant, this is just
P (t, t + τ) = r2e−rτ . On the other hand, if the rate

varies, the average probability for observing two events
separated by an empty interval of duration τ is

P2(τ) =

〈
r(t) exp

[
−
∫ t+τ

t
dt′ r(t′)

]
r(t+ τ)

〉
, (A54)

where 〈· · · 〉 is an average over these variations in rate.
If we ask for the probability density of intervals, this

is really the conditional probability that the next event
will be at t + τ given that there was an event at t. To
form this conditional probability we need to divide by the
probability of an event at t, but this is just the average
rate. Again, in the simple case of constant rate, this
yields the probability density of inter–event intervals,

p(τ) = re−rτ . (A55)

This exponential form is one of the classic signatures of
a Poission process. We can think of it as arising because
the moment at which the interval closes has no memory of
the moment at which it opened, and so the probability
that there has not ben an event must be a product of
terms for the absence of an event in each small time slice
∆τ , as in the derivation above, and this product becomes
an exponential.
Our last task is to evaluate averages over Poisson pro-

cesses, such as the one in Eq (33),
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〈
∑

i

V0(t− ti)

〉
=

∞∑

N=0

∫ T

0
dt1 · · ·

∫ T

0
dtNP [{ti}|r(t)]

∑

i

V0(t− ti). (A56)

We proceed simply and systematically, looking at one
term in our sum and doing the integrals one at a time.

One term in the sum means that we choose, for ex-

ample i = 1 and one particular value of N . This term
is

∫ T

0
dt1 · · ·

∫ T

0
dtNP [{ti}|r(t)]V0(t− t1) =

∫ T

0
dt1 · · ·

∫ T

0
dtN exp

[
−
∫ T

0
dτ r(τ)

]
1

N !
r(t1)r(t2) · · · r(tN )V0(t− t1).

(A57)
Notice that the exponential factor (along the the 1/N !) is constant and comes outside the integral. Now we rearrange
the order of the integrals:

∫ T

0
dt1

∫ T

0
dt2 · · ·

∫ T

0
dtNr(t1)r(t2) · · · r(tN )V0(t− t1) =

∫ T

0
dt1 r(t1)V0(t− t1)

∫ T

0
dt2 r(t2) · · ·

∫ T

0
dtN r(tN )

(A58)

=

[∫ T

0
dt1 r(t1)V0(t− t1)

][∫ T

0
dτr(τ)

]N−1

. (A59)

But the fact that we chose i = 1 was arbitrary; we would have gotten the same answer for any i = 1, 2, · · · , N . Thus
summing over i is the same as multiplying by N . This leaves us with the sum on N , so we put everything back
together to find

〈
∑

i

V0(t− ti)

〉
= exp

[
−
∫ T

0
dτ r(τ)

][∫ T

0
dt1 r(t1)V0(t− t1)

] ∞∑

N=0

N

N !

[∫ T

0
dτ r(τ)

]N−1

(A60)

= exp

[
−
∫ T

0
dτ r(τ)

]∫ T

0
dt1 r(t1)V0(t− t1)

∞∑

N=0

1

N !

[∫ T

0
dτ r(τ)

]N

(A61)

= exp

[
−
∫ T

0
dτ r(τ)

]∫ T

0
dt1 r(t1)V0(t− t1) exp

[
+

∫ T

0
dτ r(τ)

]
(A62)

=

∫ T

0
dt1 r(t1)V0(t− t1). (A63)

Thus what we have shown is that our simple model of
summing pulses from single photons generates a voltage
that responds linearly to the light intensity,

〈V (t)〉 = VDC +

∫
dt′V0(t− t′)r(t′), (A64)

which is Eq (34) in the main text.
Actually, we have shown something more general,

which will be useful below. The expectation value we
have computed is of the form

〈∑

i

f(ti)

〉
. (A65)

What we have seen is that summing over arrival times is,

on average, equivalent to integrating over the rate,

〈∑

i

f(ti)

〉
=

∫
dτ r(τ)f(τ). (A66)

Intuitively, this makes sense: the sum over arrival times
approximates a density along the time axis, and this den-
sity is the rate, with units of (events)/(time).
Now we need to do the same calculation, but for the

correlation function of the voltage. Again we have

V (t) =
∑

i

V0(t− ti), (A67)

and we want to compute 〈V (t)V (t′)〉. Intuitively, the ar-
rival times of photons are independent of one another—
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this is the essence of the Poisson process—and so we should have

〈V (t)V (t′)〉 =
〈∑

i

V0(t− ti)
∑

j

V0(t
′ − tj)

〉
(A68)

=
∑

ij

〈V0(t− ti)V0(t
′ − tj)〉 (A69)

=
∑

i -=j

〈V0(t− ti)V0(t
′ − tj)〉+

∑

i

〈V0(t− ti)V0(t
′ − ti)〉 (A70)

=
∑

i -=j

〈V0(t− ti)〉〈V0(t
′ − tj)〉+

∑

i

〈V0(t− ti)V0(t
′ − ti)〉, (A71)

where we use the independence of ti and tj for i 0= j in the last step. It’s useful to add and subtract the “diagonal”
i = j term from the sum, so that

〈V (t)V (t′)〉 =
∑

i -=j

〈V0(t− ti)〉〈V0(t
′ − tj)〉+

∑

i

〈V0(t− ti)〉〈V0(t
′ − ti)〉

+
∑

i

〈V0(t− ti)V0(t
′ − ti)〉 −

∑

i

〈V0(t− ti)〉〈V0(t
′ − ti)〉 (A72)

=
∑

ij

〈V0(t− ti)〉〈V0(t
′ − tj)〉+

∑

i

[〈V0(t− ti)V0(t
′ − ti)〉 − 〈V0(t− ti)〉〈V0(t

′ − ti)〉] . (A73)

The key step now is to notice that we can rearrange the sums and expectation values in the first term,
∑

ij

〈V0(t− ti)〉〈V0(t
′ − tj)〉 =

∑

i

〈V0(t− ti)〉
∑

j

〈V0(t
′ − tj)〉 (A74)

=

〈∑

i

V0(t− ti)

〉〈∑

j

V0(t
′ − tj)

〉
(A75)

= 〈V (t)〉〈V (t′)〉, (A76)

where in the last step we recognize the voltage itself, from Eq (A67). Thus Eq (A73) can be rewritten as an equation
for the covariance of the voltage fluctuations,

〈δV (t)δV (t′)〉 ≡ 〈V (t)V (t′)〉 − 〈V (t)〉〈V (t′)〉 =
∑

i

[〈V0(t− ti)V0(t
′ − ti)〉 − 〈V0(t− ti)〉〈V0(t

′ − ti)〉] . (A77)

If we confine our attention to the simple case where the
rate is constant, r(t) = r̄, then the second term in brack-
ets must be a constant, since 〈V0(t − ti)〉 involves aver-
aging over all possible times ti, and with constant rate
all these times are equally likely. So, if we don’t worry
about constants, we can write

〈δV (t)δV (t′)〉 ∼
∑

i

〈V0(t− ti)V0(t
′ − ti)〉 (A78)

=

〈∑

i

V0(t− ti)V0(t
′ − ti)

〉
, (A79)

and now we can use Eq (A66) to give

〈δV (t)δV (t′)〉 = r̄

∫
dτ V0(t− τ)V0(t

′ − τ), (A80)

where again we are neglecting a constant.
It is especially useful to convert the correlation func-

tion of voltage fluctuations into the corresponding power
spectrum, since then any uncertainties about constants
will go away.More precisely, if we had a constant term
in the correlation function it would show up as a term
∼ δ(ω) in the power spectrum, and all we need to do is
to be sure that we drop any such terms. In general, the
power spectrum is

SV (ω) =

∫
dτ e+iωτ 〈δV (t+ τ)δV (t)〉, (A81)

and so in this case we have
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SV (ω) =

∫
dτ e+iωτ r̄

∫
dτ ′ V0(t+ τ − τ ′)V0(t− τ ′) (A82)

= r̄

∫
dτ

∫
dτ ′ e+iωτe+iω(t−τ ′)V0(t+ τ − τ ′)e−iω(t−τ ′)V0(t− τ ′) (A83)

= r̄

[∫
dτ e+iω(τ+t−τ ′)V0(τ + t− τ ′)

] [∫
dτ ′e−iω(t−τ ′)V0(t− τ ′)

]
(A84)

= r̄

∣∣∣∣Ṽ0(ω)

∣∣∣∣
2

, (A85)

where in the last step we recognize the Fourier transform
of the pulse shape V0(t). This is what we need for Eq
(58) of the main text.

Problem 169: More carefully. Fill in the details of the
calculation above, being sure to keep track of the floating constants.
Verify that, when you are careful, there is no term ∼ δ(ω) in the
power spectrum. Can you generalize this discussion to the case of
time varying rates?

Portions of this section were adapted from Rieke et al (1997).
The connection between power spectra and the shape of single pho-
ton (or more general Poisson) events is sometimes called Campell’s
theorem, and there is a classic discussion by Rice (1944–45),
reprinted in the marvelous book edited by Wax (1954); the other
articles in this book (by Chandrasekar and others) also are very
much worth reading! Feynman & Hibbs (1965) give a beautiful
discussion of how a Poisson stream of pulses comes to approximate
continuous, Gaussian noise; of course there is much more in this
book as well. For a more complete discussion of photon statistics,
and the role of coherent states, one can look to yet another classic
paper, Glauber (1963).

Feynman & Hibbs 1965: Quantum Mechanics and Path Inte-
grals. RP Feynman & AR Hibbs (McGraw–Hill, New York,
1965).

Glauber 1963: Coherent and incoherent states of the radiation
field. RJ Glauber, Phys Rev 131, 2766–2788 (1963).

Rice 1944–45: Mathematical analysis of random noise. SO Rice,
Bell Sys Tech J 23, 282–332 (1944) & 24, 46–156 (1945).

Rieke et al 1997: Spikes: Exploring the Neural Code. F Rieke,
D Warland, RR de Ruyter van Steveninck & W Bialek (MIT
Press, Cambridge, 1997).

Wax 1954: Selected Papers on Noise and Stochastic Processes.
N Wax, ed (Dover Publications, New York, 1954).

2. Correlations, power spectra and all that

Consider a function x(t) that varies in time. We would
like to describe a situation in which these variations are
random, drawn out of some distribution. But now we
need a distribution for a function, rather than for a fi-
nite set of variables. This shouldn’t bother us, since such
constructions are central to much of modern physics, for
example in the path integral approach to quantum me-
chanics. We refer to distributions of functions as “distri-
bution functionals” when we need to be precise.
One strategy for constructing distribution functionals

is to start by discretizing time, so that we have at most
a countable infinity of variables x(t1), x(t2), x(t3), · · · .
Let’s assume for simplicity that the mean value of x is
zero. Then the first nontrivial characterization of the
statistics of x is the covariance matrix,

Cij = 〈x(ti)x(tj)〉. (A86)

We recall that if a single variable y is drawn from a Gaus-
sian distribution with zero mean, then we have

P (y) =
1√
2πσ2

exp

[
− y2

2σ2

]
. (A87)

The generalization to multiple variables is

P ({xi}) =
1√

(2π)N detC
exp



−1

2

N∑

i,j=1

xi(C
−1)ijxj



 ,

(A88)
where as usual det is the determinant and (C−1)ij is the
ij element of the matrix inverse to C; if we think of the
{xi} as a vector x, then we can write, more compactly,

P ({xi}) =
1√

(2π)N detC
exp

[
−1

2
xT ·C−1·x

]
, (A89)

where xT is the transpose of the vector x. Just to be
clear, this describes a Gaussian distribution, but we have
no guarantee that x will be Gaussian.

Problem 170: Gaussian integrals. If you haven’t done these
before, now is a good time to check that the probability distribution
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FIG. 167 Covariance matrix and its inverse. At left, the co-
variance matrix in Eq (A94), with ∆t/τc = 0.1. At right,
the inverse matrix, with inset showing a 10 × 10 submatrix
surrounding the diagonal.

in Eq (A89) is normalized. This requires you to show that
∫

dNx exp

[
−
1

2
xT ·C−1·x

]
=

√
(2π)N detC. (A90)

While you’re at it, you should also show that

ln detC = Tr lnC. (A91)

This should be straightforward for the case which matters here,
where C must have well defined, positive eigenvalues.

In general the covariance matrix Cij can have an arbi-
trary structure, constrained only by symmetry and pos-
itivity of its eigenvalues. But when the index i refers to
discrete time points, we have an extra constraint that
comes from invariance under translations in time. Be-
cause there is no clock, we must have that

〈x(t)x(t′)〉 = Cx(t− t′), (A92)

with no dependence on the absolute time t or t′. As an
example, if

Cx(t− t′) = e−|t−t′|/τc , (A93)

and tn = n∆t, then

Cij = exp

[
−
(
∆t

τc

)
|i− j|

]
. (A94)

This is shown in Fig 167 for ∆t/τc = 0.1.
It is useful to look directly at the inverse matrix, also

shown in Fig 167. We see that this inverse matrix con-
sists almost entirely of zeros, except in the immediate
neighborhood of the diagonal. This tell us that the in-
verse matrix actually is the discretization of a differen-
tial operator. Reflexively, seeing that we have to com-
pute inverses and determinants of matrices, we should
think about diagonalizing C. We recall from quantum
mechanics that the eigenfunctions of an operator have to
provide a representation of the underlying symmetries.
In this case, the relevant symmetry is time translation,
so we know to look at the Fourier functions, e−iωt. In
fact, once we have the hint that we should use a Fourier
representation, we don’t need the crutch of discrete time
points any more. Let’s see how this works.
We define the Fourier transform with the conventions

x̃(ω) =

∫ ∞

−∞
dt e+iωtx(t), (A95)

x(t) =

∫ ∞

−∞

dω

2π
e−ωtx̃(ω). (A96)

Now if we compute the covariance of two frequency com-
ponents, we have

〈x̃(ω)x̃(ω′)〉 =
〈∫ ∞

−∞
dt e+iωtx(t)

∫ ∞

−∞
dt′ e+iω′t′x(t′)

〉
(A97)

=

∫ ∞

−∞
dt e+iωt

∫ ∞

−∞
dt′ e+iω′t′〈x(t)x(t′)〉 (A98)

=

∫ ∞

−∞
dt e+iωt

∫ ∞

−∞
dt′ e+iω′t′

∫ ∞

−∞

dΩ

2π
e−iΩ(t−t′)Sx(Ω),

(A99)

where we introduce the Fourier transform of the correlation function,

Sx(Ω) =

∫ ∞

−∞
dτ e+iΩτCx(τ) (A100)

Cx(t− t′) =

∫ ∞

−∞

dΩ

2π
e−iΩ(t−t′)Sx(Ω). (A101)
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Now we can rearrange the integrals in Eq (A99):

〈x̃(ω)x̃(ω′)〉 =
∫ ∞

−∞
dt e+iωt

∫ ∞

−∞
dt′ e+iω′t′

∫ ∞

−∞

dΩ

2π
e−iΩ(t−t′)Sx(Ω),

=

∫ ∞

−∞

dΩ

2π
Sx(Ω)

[∫ ∞

−∞
dt ei(ω−Ω)t

] [∫ ∞

−∞
dt′ ei(ω

′+Ω)t′
]
.

(A102)

This is moment to recall the Fourier representation
of the Dirac delta function. The delta function has the
property that

δ(z) = 0 z 0= 0, (A103)∫
dz δ(z) = 1, (A104)

if the domain of the integral includes z = 0. Then

δ(z) =

∫ ∞

−∞

dq

2π
e−iqz. (A105)

Thus we recognize, in Eq (A102),
∫ ∞

−∞
dt ei(ω−Ω)t = 2πδ(ω − Ω), (A106)

∫ ∞

−∞
dt′ ei(ω

′+Ω)t′ = 2πδ(ω′ + Ω). (A107)

Substituting back into Eq (A102), we have

〈x̃(ω)x̃(ω′)〉 =
∫ ∞

−∞

dΩ

2π
Sx(Ω)

[∫ ∞

−∞
dt ei(ω−Ω)t

] [∫ ∞

−∞
dt′ ei(ω

′+Ω)t′
]
.

=

∫ ∞

−∞

dΩ

2π
Sx(Ω)2πδ(ω − Ω)2πδ(ω′ + Ω) (A108)

= Sx(ω)2πδ(ω
′ + ω). (A109)

We see that, while different time points can be correlated
with one another in complicated ways, the covariance
of frequency components has a much simpler structure:
x̃(ω) is correlated only with x̃(−ω).
This covariance structure, which couples positive and

negative frequency components, makes sense when we
realize that we are using a complex representation for
real variables. To make a real variable x(t), the Fourier
transform must obey

x̃(−ω) = x̃∗(ω), (A110)

so positive and negative frequency components are not
independent—in fact they are redundant. It might be
more natural to write Eq (A109) as

〈x̃(ω)x̃∗(ω′)〉 = Sx(ω)2πδ(ω
′ − ω), (A111)

making clear that frequency components are correlated
with themselves, not with other frequencies.
We could instead think about the real and imaginary

parts of the positive frequency components, which can be
written as

x̃Re(ω) =
1

2
[x̃(ω) + x̃(−ω)] , (A112)

and

x̃Im(ω) =
1

2i
[x̃(ω)− x̃(−ω)] . (A113)

With this representation, we can use the result in Eq
(A109):

〈x̃Re(ω)x̃Re(ω
′)〉 =

〈
1

2
[x̃(ω) + x̃(−ω)]

1

2
[x̃(ω′) + x̃(−ω′)]

〉
(A114)

=
1

4
[〈x̃(ω)x̃(ω′)〉+ 〈x̃(ω)x̃(−ω′)〉+ 〈x̃(−ω)x̃(ω′)〉+ 〈x̃(−ω)x̃(−ω′)〉] (A115)

=
Sx(ω)

4
2π [δ(ω + ω′) + δ(ω − ω′) + δ(−ω + ω′) + δ(−ω − ω′)] . (A116)
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Because we are looking only at positive frequencies, ω+ω′

can never be zero, and hence the first and last delta func-
tions can be dropped. The remaining two are actually the
same, so we have

〈x̃Re(ω)x̃Re(ω
′)〉 = 1

2
Sx(ω)2πδ(ω − ω′). (A117)

Similar calculations show that the imaginary parts of
x̃(ω) have the same variance,

〈x̃Im(ω)x̃Im(ω
′)〉 = 〈x̃Re(ω)x̃Re(ω

′)〉 (A118)

=
1

2
Sx(ω)2πδ(ω − ω′), (A119)

while real and imaginary parts are uncorrelated,

〈x̃Re(ω)x̃Im(ω
′)〉 = 0. (A120)

Problem 171: The other phase. Derive Eq’s (A119) and
(A120).

What does all this mean? We think of the random
function of time x(t) as being built out of frequency com-
ponents, and each component has a real and imaginary
part. The structure of the covariance matrix is such that
different frequency components do not covary, and this
makes sense—if we have covariation of different frequency
components then we can beat them against each other to
make a clock running at the difference frequency, and
this would violate time translation invariance. Similarly,
the fact that real and imaginary components do not co-
vary means that there is no preferred phase, which again
is consistent with (indeed, required by) time translation
invariance.
We should be able to put these results on the covari-

ance matrix together to describe the distribution func-
tional for a Gaussian function of time. Since the real and
imaginary parts are independent, let’s start with just the
real parts. We should have

P [{x̃Re(ω)}] ∝ exp

[
−1

2

∫ ∞

0

dω

2π

∫ ∞

0

dω′

2π
x̃Re(ω)A(ω,ω′)x̃Re(ω

′)

]
, (A121)

where A is the inverse of the covariance,

∫
dω′

2π
A(ω,ω′)〈x̃Re(ω

′)x̃Re(ω
′′)〉 = 2πδ(ω − ω′′).

(A122)
We can find A by substituting the explicit expression for
the covariance and doing the integrals:

2πδ(ω − ω′′) =

∫
dω′

2π
A(ω,ω′)〈x̃Re(ω

′)x̃Re(ω
′′)〉

=

∫
dω′

2π
A(ω,ω′)

1

2
Sx(ω

′)2πδ(ω′ − ω′′)

(A123)

=
1

2
A(ω,ω′′)Sx(ω

′′). (A124)

Thus, we have

A(ω,ω′′) =
1

Sx(ω′′)
4πδ(ω − ω′′). (A125)

Substituting back into Eq (A121) for the probability dis-
tribution, we have

P [{x̃Re(ω)}] ∝ exp

[
−1

2

∫ ∞

0

dω

2π

∫ ∞

0

dω′

2π
x̃Re(ω)A(ω,ω′)x̃Re(ω

′)

]
, (A126)

= exp

[
−1

2

∫ ∞

0

dω

2π

∫ ∞

0

dω′

2π
x̃Re(ω)

4πδ(ω − ω′′)

Sx(ω′′)
x̃Re(ω

′)

]
(A127)

= exp

[
−
∫ ∞

0

dω

2π

x̃2
Re(ω)

Sx(ω)

]
. (A128)

Exactly the same argument applies to the imaginary parts of the Fourier components, and these are indepen-
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dent of the real parts, so we have

P [x(t)] = P [{x̃Re(ω), x̃Im(ω)}] (A129)

∝ exp

[
−
∫ ∞

0

dω

2π

x̃2
Re(ω) + x̃2

Im(ω)

Sx(ω)

]
(A130)

=
1

Z
exp

[
−
∫ ∞

0

dω

2π

|x̃(ω)|2

Sx(ω)

]
(A131)

=
1

Z
exp

[
−1

2

∫ ∞

−∞

dω

2π

|x̃(ω)|2

Sx(ω)

]
, (A132)

where we have introduced the normalization constant Z.
It’s useful to look at the example illustrated in Fig

167. Here we have Cx(τ) = exp(−|τ |/τc), so the power
spectrum is

Sx(ω) =

∫ ∞

−∞
dτ e+iωτe−|τ |/τc (A133)

=

∫ 0

−∞
dτ e(+iω+1/τc)τ +

∫ ∞

0
dτ e(+iω−1/τc)τ

(A134)

=
1

(+iω + 1/τc)
+

1

−(+iω − 1/τc)
(A135)

=
τc

1 + iωτc
+

τc
1− iωτc

(A136)

=
2τc

1 + (ωτc)2
. (A137)

This means that the probability distribution functional
has the form

P [x(t)] =
1

Z
exp

[
−1

2

∫ ∞

−∞

dω

2π

|x̃(ω)|2

Sx(ω)

]

=
1

Z
exp

[
− 1

4τc

∫ ∞

−∞

dω

2π
[1 + (ωτc)

2]|x̃(ω)|2
]
.

(A138)

We recall that
∫ ∞

−∞

dω

2π
|x̃(ω)|2 =

∫
dt x2(t). (A139)

More subtly,
∫ ∞

−∞

dω

2π
(ωτc)

2|x̃(ω)|2 = τ2c

∫ ∞

−∞

dω

2π
|− iωx̃(ω)|2

(A140)

= τ2c

∫
dt

[
dx(t)

dt

]2
, (A141)

where we recognize −iωx̃(ω) as the Fourier transform of
dx(t)/dt. Thus we can write

P [x(t)] =
1

Z
exp

[
− 1

4τc

∫ ∞

−∞

dω

2π
[1 + (ωτc)

2]|x̃(ω)|2
]

=
1

Z
exp

[
− 1

4τc

∫
dt

(
τ2c ẋ

2(t) + x2(t)
)]

.(A142)

This shows explicitly, as promised above, that inverting
the covariance matrix gives rise to differential operators.
This example also is nice because it produces a prob-
ability distribution functional for trajectories x(t) that
reminds us of a (Euclidean) path integral in quantum
mechanics, in this case for the harmonic oscillator.
Let’s push a little further and see if we can evaluate

the normalization constant Z. By definition, we have

Z =

∫
Dx exp

[
− 1

4τc

∫
dt

(
τ2c ẋ

2(t) + x2(t)
)]

, (A143)

where
∫
Dx denotes an integral over all the functions

x(t). We have the general result for an N dimensional
Gaussian integral,

∫
dNx exp

[
−1

2
xT ·Â·x

]
=

√
(2π)N

det Â
(A144)

=
√
(2π)N exp

[
−1

2
Tr ln Â

]
,

(A145)

where Â is a matrix. Here we need to let the number
of dimensions become infinite, since we are integrating
over functions. As you may recall from discussions of
the path integral in quantum mechanics, there is some
arbitrariness about how we do this, or, more formally,
in how we define the measure Dx. A fairly standard
choice is to absorb the

√
2π, so that, in the time window

0 < t < T ,

Dx = lim
dt→0

T/dt∏

n=0

dx(tn)√
2π

, tn = n · dt. (A146)

Notice that before we send dt → 0, we have an integral
over a finite number of points, so we should be able to
carry over the results we know, and just interpret the
limits correctly.
The Gaussian functional integrals that we want to do

have the general form

∫
Dx exp

[
−1

2

∫
dt

∫
dt′x(t)K̂(t, t′)x(t′)

]
,

where K̂ is an operator. Carrying over what we know
from the case of finite matrices [Eq (A145)], we have
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∫
Dx exp

[
−1

2

∫
dt

∫
dt′x(t)K̂(t, t′)x(t′)

]
= exp

[
−1

2
Tr ln K̂

]
. (A147)

Our only problem is to say what we mean by Tr ln K̂.
Since K̂ is an operator, we can ask for its spectrum, that
is the eigenvalues and eigenfunctions. This means that
we need to solve the equations

∫ T

0
dt′K̂(t, t′)uµ(t

′) = Λµuµ(t), (A148)

where we are careful here to note that we are working in
window 0 < t < T . In the basis formed by the eigenfunc-
tions, of course K̂ is diagonal. As with matrices, when
an operator is diagonal we can take the log element by el-
ement, and then computing the trace requires us to sum
over these diagonal elements; recall that traces and de-
terminants are invariant, se we can use this convenient

basis and not worry about generality. Thus,

Tr ln K̂ =
∑

µ

lnΛµ. (A149)

How does this work for our case? First, we need to
identify the operator K̂. In the exponential of P [x(t)] we
have

∫
dt

[
τc
2

(
dx(t)

dt

)2

+
1

2τc
x2(t)

]
.

To get this into a more standard form we need to inte-
grate by parts,

∫
dt

[
τc
2

(
dx(t)

dt

)2

+
1

2τc
x2(t)

]
=

∫
dt x(t)

[
−τc

2

d2

dt2
+

1

2τc

]
x(t). (A150)

This allows us to identify We now see that our integral for Z in Eq (A143) can we written

K̂(t′, t) = δ(t′ − t)

[
−τc

2

d2

dt2
+

1

2τc

]
. (A151)

This is a linear operator, and also time translation invariant (again). So we know that the eigenfunctions are e−iωt,
and since we are in a finite window of duration T we should use only those frequency components that ‘fit’ into the
window, ωn = 2πn/T for integer n. We have

∫ T

0
dt δ(t′ − t)

[
−τc

2

d2

dt2
+

1

2τc

]
e−iωnt =

(
τcω2

n

2
+

1

2τc

)
e−iωnt

′
, (A152)

so that the eigenvalues are

Λ(ωn) =

(
τcω2

n

2
+

1

2τc

)
=

1 + (ωnτc)2

2τc
. (A153)

Notice that these are just the inverses of the power spec-
trum,

Λ(ωn) =
1

Sx(ωn)
. (A154)

This makes sense, of course, when we look back at Eq
(A132).

To finish the calculation, we have

Z = exp

[
−1

2

∑

µ

Λµ

]
(A155)

= exp

[
−1

2

∑

n

ln

(
1

Sx(ωn)

)]
(A156)

= exp

[
1

2

∑

n

lnSx(ωn)

]
. (A157)

Finally, we need to do the sum. As the time window
T becomes large, the spacing between frequency compo-
nents, ∆ω = 2π/T , become small, and we expect that the
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sum approaches an integral.91 Thus, for any function of
ωn,

∑

n

f(ωn) =
1

∆ω

∑

n

∆ωf(ωn) (A159)

→ 1

∆ω

∫
dω f(ω) (A160)

= T

∫
dω

2π
f(ω). (A161)

At last, this gives us

Z = exp

[
T

2

∫
dω

2π
lnSx(ω)

]
. (A162)

Putting the pieces together, we have the probability dis-
tribution functional for a Gaussian x(t),

P [x(t)] = exp

[
+
T

2

∫ ∞

−∞
lnSx(ω)−

1

2

∫ ∞

−∞

dω

2π

|x̃(ω)|2

Sx(ω)

]
.

(A163)
Not every case we look at will be Gaussian, but this helps
to get us started.

Problem 172: Generality. We made an effort to evaluate Z
in the specific case where Cx(τ) = e−|τ |/τc , but we wrote the final
result in a very general form, Eq (A163). Show that this slide into
generality was justified.

Problem 173: Nonzero means and signal to noise ratios.
We should be able to carry everything through in the case where
the mean x(t) is not zero. For example, if we just have background
noise described by some spectrum N (ω), then

Pnoise[x(t)] = exp

[
+
T

2

∫ ∞

−∞
lnN (ω)−

1

2

∫ ∞

−∞

dω

2π

|x̃(ω)|2

N (ω)

]
.

(A164)
If there is an added signal x0(t), the distribution functional be-
comes

Psignal[x(t)] = exp

[
+
T

2

∫ ∞

−∞
lnN (ω)−

1

2

∫ ∞

−∞

dω

2π

|x̃(ω)− x̃0(ω)|2

N (ω)

]
.

(A165)
Suppose that you observe some particular x(t), and you have to
decide whether this came from the signal or noise distribution, that
is, you have to decide whether the signal was present; for simplicity
assume that the two possibilities are equally likely a priori. As
discussed in Chapter 1, to make such decisions optimally you should
use the relative probabilities that the signal or noise could give rise
to your data. In particular, consider computing the “log likelihood
ratio,”

λ[x(t)] ≡ ln

(
Psignal[x(t)]

Pnoise[x(t)]

)
(A166)

91 There is an analogous result for summing over the states of par-
ticles in a box in quantum systems; recall that the states are
labelled by their wavevector k, and in three dimensions we have

∑

k

→ V

∫
d3k

(2π)3
, (A158)

where V is the volume of the box.

(a.) Give a simple expression for λ[x(t)]. Show that it is a linear
functional of x(t).

(b.) Show that, when the x(t) are drawn at random out of either
Psignal or Pnoise, λ[x(t)] is a Gaussian random variable. Find the
means, 〈λ〉noise and 〈λ〉signal, and the variances 〈(δλ)2〉noise and
〈(δλ)2〉signal, in the two distributions. Hint: you should see that
〈(δλ)2〉noise = 〈(δλ)2〉signal.

(c.) Sketch the distributions Pnoise(λ) and Psignal(λ). Show that
your ability to make reliable discriminations is determined only by
the signal to noise ratio,

SNR =

(
〈λ〉signal − 〈λ〉noise

)2

〈(δλ)2〉
, (A167)

and that we can write

SNR =

∫ ∞

−∞

dω

2π

|x̃0(ω)|2

N (ω)
. (A168)

(d.) In rod cells, a single photon produces a current pulse with
the approximate form x0(t) = I1(t/τ)3e−t/τ . The power spectrum
of continuous background noise is approximately N (ω) = A/[1 +
(ωτ)2]2, with the same value of τ . Evaluate the peak current, Ipeak,
and total variance of the background noise, σ2

I . A naive estimate
of the signal to noise ratio is just SNRnaive = (Ipeak/σI)2. Show
that the optimal signal to noise ratio, computed from Eq (A168),
is larger. Why?

Is there anything more to say here? Maybe some dis-
cussion of “states” of molecules and correlation func-
tions? Perhaps some references.

3. Electronic transition in large molecules

In this section we’ll outline an honest calculation that
reproduces the intuition of Figs 19 and 20. We have a
system with two electronic states, which we can represent
as a spin one–half; let spin down be the ground state and
spin up be the excited state. The Born–Oppenheimer
approximation tells us that we can think of the atoms in
a molecule as moving in a potential determined by the
electronic state,92 which we denote by V↑(q) and V↓(q)
in the excited and ground states, respectively; q stands
for all the atomic coordinates (not just the one in the
sketches above). Since we are observing photon absorp-
tion, there must be a matrix element that connects the
two electronic states and couples to the electromagnetic
field; we’ll assume that, absent symmetries, this coupling
is dominated by an electric dipole term. In principle the
dipole matrix element 6d could depend upon the atomic
coordinates, but we’ll neglect this effect.93 Putting the
pieces together, we have the Hamiltonian for the molecule

H = K+
1

2
(1+σz)V↑(q)+

1

2
(1−σz)V↓(q)+ 6d· 6E(σ++σ−),

(A169)

92 As in the main text, I’ll use “atoms” and “nuclei” interchange-
ably.

93 In practice, this is a small effect. You should think about why
this is true.
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where K is the kinetic energy of the atoms. To this we
should of course add the usual Hamiltonian for the elec-
tromagnetic field.

We are interested in computing the rate at which pho-
tons of energy !Ω are absorbed, and of course we will do
this as a perturbation expansion in the term ∼ 6d. The re-
sult of such a calculation can be presented as the ‘Golden
rule’ for transition rates, but this formulation hides the
underlying dynamics. So, at the risk of being pedantic,
I’ll go through the steps that usually lead to the Golden
rule and take a detour that leads us to a formula in which
the dynamics of atomic motions are more explicit.94

We start our system in the ground state of the elec-
trons (| ↓〉), in some initial state (|i〉) of the atomic coor-
dinates, and in the presence of one photon of wavevector
6k and frequency Ω = c|6k| (polarization is an unneces-
sary complication here). As the system evolves under
the Hamiltonian H, at some time t we want to measure
the probability of finding the system in the excited state
| ↑〉, in some other state of the atoms |f〉, and absent the
photon. The general statement is that quantum states
evolve as

|ψ(0)〉 → |ψ(t)〉 = T exp

[
− i

!

∫ t

0
dτH(τ)

]
|ψ(0)〉,

(A170)

where T is the time ordering operator. Thus, for our
particular problem, the probability of starting in state
| ↓, i,6k〉 and ending in state | ↑, f, ∅〉 is given by

pi→f (t) =

∣∣∣∣∣〈∅, f, ↑ |T exp

[
− i

!

∫ t

0
dτH(τ)

]
| ↓, i,6k〉

∣∣∣∣∣

2

.

(A171)
In fact, we don’t care about the final state of the atoms,
and we can’t select their initial state—this comes out of
the Boltzmann distribution. So we really should compute

P (t) =
∑

i,f

∣∣∣∣∣〈∅, f, ↑ |T exp

[
− i

!

∫ t

0
dτH(τ)

]
| ↓, i,6k〉

∣∣∣∣∣

2

pi,

(A172)
where pi is the probability of being in the initial atomic
state i.
As usual, we will break the Hamiltonian into two

pieces, H = H0 + H1, and do perturbation theory in
H1. We choose H1 = 6d· 6E(σ+ + σ−), which is the only
term that connects the states | ↓〉 and | ↑〉. The leading
term in the perturbation series thus becomes

P (t) ≈ 1

!2
∑

i,f

∣∣∣∣∣〈∅, f, ↑ |Te−
i
!
∫ t
0 dτH0(τ)

∫ t

0
dτ ′H1(τ

′)| ↓, i,6k〉

∣∣∣∣∣

2

pi. (A173)

If we look more carefully at the amplitude, we have

〈∅, f, ↑ |Te−
i
!
∫ t
0 dτH0(τ)

∫ t

0
dτ ′H1(τ

′)| ↓, i,6k〉 =
∫ t

0
dτ ′〈f |T

(
e−

i
!
∫ t
τ′ dτH↑(τ)

)
6d·〈∅| 6E|6k〉T

(
e−

i
!
∫ τ′
0 dτH↓(τ)

)
|i〉e−iΩτ ′

,

(A174)

where τ ′ is the moment at which the term H1 ∼ σ+ acts
to flip the state from | ↓〉 to | ↑〉; the terms H↓,↑ are
defined by

H↓ = K+ V↓(q), (A175)

and similarly for H↑. The key point is that when we
square this amplitude and sum over final states, we can
identify this as a sum over a complete set of states, and
we recall that

∑

f

|f〉〈f | = 1, (A176)

the unit operator. Further, to keep things simple, let’s
assume that motion of the atoms is approximately clas-
sical. Because the terms H↑,↓ depend only on the atomic
coordinates and momenta, the classical approximation
means that we don’t have to worry about the non–
commutativity of these operators at different times, and
we can drop the formalities of time ordering. Putting
all of the terms together, we can rewrite P (t) from Eq
(A173):
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P (t) ≈ (6d·〈∅| 6E|6k〉)2

!2

∫ t

0
dτ1

∫ t

0
dτ2 e

+iΩ(τ1−τ2)
∑

i

pi〈i|e+
i
!
∫ τ1
0 dτH↓(τ)e+

i
!
∫ t
τ1

dτH↑(τ)e−
i
!
∫ t
τ2

dτH↑(τ)e−
i
!
∫ τ2
0 dτH↓(τ)|i〉

(A177)

=
(6d·〈∅| 6E|6k〉)2

!2

∫ t

0
dτ1

∫ t

0
dτ2 e

+iΩ(τ1−τ2)
∑

i

pi〈i| exp
(
+
i

!

∫ τ2

τ1

dτ [H↑(τ)−H↓(τ)]

)
|i〉 (A178)

∝
∫ t

0
dτ1

∫ t

0
dτ2e

+iΩ(τ1−τ2)

〈
exp

[
+
i

!

∫ τ2

τ1

dτ ε[q(τ)]

]〉
, (A179)

where ε = H↑−H↓ = V↑−V↓ is the instantaneous energy
difference between the ground and excited states, which
fluctuates as the atomic coordinates fluctuate, and 〈· · · 〉
denotes and average over these fluctuations.

Problem 174: Missing steps. Fill in the steps leading to Eq
(A179). If you are more ambitious, try the case where the atomic
motions are fully quantum mechanical.

Notice that the integrand in Eq (A179) depends only
on the time difference τ2 − τ1. Thus, we are doing an
integral of the form

∫ t

0
dτ1

∫ t

0
dτ2 F (τ2 − τ1). (A180)

It seems natural to rewrite this integral over the (τ1, τ2)
plane in terms of an integral over the time difference and
the mean. In the limit that t is large, this yields

∫ t

0
dτ1

∫ t

0
dτ2 F (τ2 − τ1) → t

∫ ∞

−∞
dτ F (τ). (A181)

Thus, we have

P (t) ∝ t

∫ ∞

−∞
dτ e+iΩτ

〈
exp

[
− i

!

∫ τ

0
dτ ′ ε[q(τ ′)]

]〉
,

(A182)
so that the transition rate or absorption cross–section for
photons of frequency Ω becomes

σ(Ω) ∝
〈∫ ∞

−∞
dτ exp

[
+iΩτ − i

!

∫ τ

0
dτ ′ ε[q(τ ′)]

]〉
.

(A183)
Now we can recover the intuition of Fig 19 as a saddle

point approximation to the integral in Eq (A183). We
recall that the saddle point approximation is

∫
dt exp [+iφ(t)] ≈

√
2π

|φ′′(t∗)|
exp [+iφ(t∗)] , (A184)

where the time t∗ is defined by

dφ(t)

dt

∣∣∣∣∣
t=t∗

= 0. (A185)

The condition for validity of the approximation is that
the time scale

δt ∼ 1/
√
|φ′′(t∗)| (A186)

be small compared with the intrinsic time scales for vari-
ation of φ(t). As applied to Eq (A183), the saddle point
condition is

0 =
d

dτ

[
+iΩτ − i

!

∫ τ

0
dτ ′ ε[q(τ ′)]

] ∣∣∣∣∣
τ=τ∗

(A187)

= iΩ− i

!ε[q(τ∗)] (A188)

!Ω = ε[q(τ∗)]. (A189)

Thus, the saddle point condition states that the integral
defining the cross–section is dominated by moments when
the instantaneous difference between the ground and ex-
cited state energies matches the photon energy. But this
instantaneous difference ε[q] is exactly the ‘vertical’ en-
ergy difference in Fig 19. Since this integral is inside
an expectation value over the fluctuations in atomic co-
ordinates, the cross–section will be proportional to the
probability that this matching condition is obeyed.
If the sketch in Fig 19 is equivalent to a saddle point

approximation, we have to consider conditions for valid-
ity of this approximation. The time scale defined by Eq
(A186) becomes

δt ∼

∣∣∣∣∣
1

!
dε[q(τ)]

dτ

∣∣∣∣∣

−1/2

∼
√

!
ε′v

, (A190)

where ε′ is the slope of the energy difference as a func-
tion of atomic coordinates, and v is a typical velocity
for motion along these coordinates. Thus large slopes
result in smaller values of δt, and of course this time
scales as

√
!. The natural time scale of motion along

the atomic coordinates is given by vibrational periods,
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or ω−1
vib = τvib ∼ ∆/v, where Q is a typical displacement

from equilibrium. This lets us write

δt ∼
√

!
ε′v

∼

√
!ωvib

ε′Q
· Q

vωvib
∼ τvib

√
!ωvib

ε′Q
. (A191)

We see that δt , τvib if the energy ε′Q is much larger
than the energy of vibrational quanta !ωvib. But ε′Q
is the range of energy differences between the ground
and excited states that the molecule can access as it
fluctuates—and this is the width of the absorption spec-
trum. Thus, self–consistently, if we find that the width of
the spectrum is large compared to the vibrational quanta,
then our saddle point approximation is accurate.

We can go a bit further if we specialize to the case
where, as in Fig 20, the different potential surfaces are
exactly Hookean springs, that is when the dynamics of
atomic motions are harmonic oscillators. In the general
case there are many normal modes, so we would write

V↑(q) =
1

2

∑

i

ω2
i q

2
i (A192)

V↑(q) = ε0 +
1

2

∑

i

ω2
i (qi −∆i)

2. (A193)

In this case,

ε[q(t)] ≡ V↑[q(t)]− V↑[q(t)] (A194)

= ε0 +
1

2

∑

i

ω2
i ∆

2
i −

∑

i

ω2
i ∆iqi(t) (A195)

= !Ωpeak −X(t), (A196)

where the generalized coordinate X(t) is given by a
weighted combination of all the modes,

X(t) =
∑

i

ω2
i ∆iqi(t). (A197)

Equation (A183) for the absorption cross–section thus
becomes

σ(Ω) ∝
〈∫ ∞

−∞
dτ exp

[
+iΩτ − i

!

∫ τ

0
dτ ′ ε[q(τ ′)]

]〉

=

〈∫ ∞

−∞
dτ exp

[
+iΩτ − i

!

∫ τ

0
dτ ′ (!Ωpeak −X(τ ′))

]〉

=

∫ ∞

−∞
dτ e+i(Ω−Ωpeak)τ

〈
exp

[
+
i

!

∫ τ

0
dτ ′X(τ ′)

]〉
. (A198)

The key point is that, because X(t) is a sum of harmonic
oscillator coordinates, its fluctuations are drawn from a
Gaussian distribution when we compute the average 〈· · · 〉
over the equilibrium ensemble.

Problem 175: Gaussian averages. Derive Eq (A199).

We recall that, if y is a Gaussian random variable, then

〈ey〉 = exp

[
〈y〉+ 1

2
〈(δy)2〉

]
. (A199)

In the present case, the role of y is played by an integral
over the trajectory of X(t), but this shouldn’t bother us:
〈
exp

[
+
i

!

∫ τ

0
dτ ′X(τ ′)

]〉

= exp

[
1

2

〈(
i

!

∫ τ

0
dτ ′X(τ ′)

)2
〉]

(A200)

= exp

[
− 1

2!2

∫ τ

0
dτ1

∫ τ

0
dτ2〈X(τ1)X(τ2)〉

]
,

(A201)

where we start by making use of the fact that 〈X〉 = 0.
We see from Eq (A201) that the shape of the absorp-

tion spectrum is determined by the correlation function
of the modes to which the electronic transition are cou-
pled, that is CX(τ1 − τ2) = 〈X(τ1)X(τ2)〉 If these modes
have relatively slow dynamics, then the time scales τ that
enter the integral we need to do will be much shorter than
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the time scales over which this correlation function varies.
In this limit we can approximate
∫ τ

0
dτ1

∫ τ

0
dτ2〈X(τ1)X(τ2)〉 ≈

∫ τ

0
dτ1

∫ τ

0
dτ2〈X(0)X(0)〉

= 〈X2〉τ2. (A202)

Notice also that

〈X2〉 =
〈(

∑

i

ω2
i ∆iqi

)2 〉
=

∑

i

ω4
i ∆

2
i 〈q2i 〉; (A203)

in the classical limit we have 〈q2i 〉 = kBT/ω2
i , and hence

〈X2〉 = kBT
∑

i

ω2
i ∆

2
i = 2kBTλ, (A204)

where λ generalizes the reorganization energy or Stokes’
shift to the case of many modes. Finally, putting these
pieces together, we have

σ(Ω) ∝
∫ ∞

−∞
dτ exp [+i(Ω− Ωpeak)τ ]

× exp

[
− 1

2!2

∫ τ

0
dτ1

∫ τ

0
dτ2〈X(τ1)X(τ2)〉

]

(A205)

≈
∫ ∞

−∞
dτ exp

[
+i(Ω− Ωpeak)τ − τ2λkBT

!2

]
(A206)

=

√
π!2
λkBT

exp

[
− (!Ω− !Ωpeak)2

4λkBT

]
. (A207)

This result should look familiar from Eq (66).

The calculation we have done here also allows us to
look more precisely at the limits to our approximation.
The integral in Eq (A206) is a Gaussian integral over τ ,
which means that it is done exactly by the saddle point
method. The characteristic time which emerges from this
is

δt ∼ !√
λkBT

. (A208)

If the typical vibrational time scales that enter into
CX(τ) are τvib ∼ !/kBT , then the condition for valid-
ity of our approximation becomes λ ' kBT . Tracing the
factors through, our approximate result should be valid
if the predicted width of the absorption spectrum is (in
energy units) larger than kBT , or roughly one percent
of !Ωpeak. This is a rather gentle condition, suggesting
that whenever the model of harmonic normal modes is
correct, something like the saddle point approximation
ought to work.
In fact, this calculation also gives us insight into an-

other way that our semi–classical intuition from Fig 19
can fail. If, for example, there was just a single normal
mode, we would have X = gq(t), where g = ω2∆. But
if there is just this one mode, and no other degrees of
freedom to suck energy out of this mode, we must have

〈q(t)q(t′)〉 = kBT

ω2
cos[ω(t− t′)], (A209)

so the integral [Eq (A205)] which defines the cross–
section becomes

σ(Ω) ∝
∫ ∞

−∞
dτ exp

[
+i(Ω− Ωpeak)τ − ∆2ω2kBT

2!2

∫ τ

0
dτ1

∫ τ

0
dτ2 cos(ω(τ1 − τ2))

]
(A210)

=

∫ ∞

−∞
dτ exp

[
+i(Ω− Ωpeak)τ − ∆2kBT

!2 (1− cos(ωτ))

]
. (A211)

Now we notice that the term exp[−(∆2kBT/!2) cos(ωτ)]
is periodic, and thus has a discrete Fourier expansion;
the only frequencies which appear are integer multiples
of the vibrational frequency ω. As a result,

σ(Ω) =
∑

n

Anδ(Ω− Ωpeak − nω). (A212)

Thus, in this limit of a single undamped mode, the ab-
sorption spectrum does consist of a set of sharp lines,
spaced by the vibrational quanta. In order to recover the
semi–classical picture, these resonances must be washed
out by a combination of multiple modes (so that the dis-
crete absorption lines become a dense forest) and some

dissipation corresponding to a lifetime or dephasing of
each individual mode.

Problem 176: Washing out resonances. Suppose that we
have just a single mode, but this mode is damped so that

〈q(t)q(t′)〉 =
kBT

ω2
cos[ω(t− t′)] exp

[
−γ|t− t′|

]
. (A213)

If γ % ω, the integral in Eq (A205) which defines the absorption
cross–section is almost the integral of a period function. Thus there
will be multiple saddle points, the first (the one we have considered
in our semi–classical approximation) being close to τ = 0, and all
the others close to τ = 2πn/ω for integer n. Carry out this expan-
sion, and analyze your results. Can you see how, as γ → 0, this sum
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over saddle points gives back the discrete spectral lines? At large
γ, what enforces the smooth dependence of the cross–section on
Ω? How big does γ need to be in order that we wouldn’t see much
hint of the vibrational resonances in the absorption spectrum? Is
it possible that the vibrations are weakly damped (γ % ω), but
there are no visible resonances in the absorption spectrum?

Say something about the quantum treatment of the
coordinate q(t), and the zero–phonon lines. Maybe a
word about the relation to the Moössbauer effect?

I think there is still more to say here. Notice that
to make things consistent we need a quantum mechani-
cal treatment of damping, which was a big puzzle some
time back. This is also related to discussions of decoher-
ence in more modern times. At the very least we need
pointers to references. One could also note that what en-
ters these computations are certain correlation functions
of the “relevant” coordinates, and so if these correlation
functions are damped (however this happens!) all will
be well. Still ... an opportunity to teach some physics
shouldn’t be missed.

Need refs to standard text on molecular spectra; maybe old refs
to solid state problem of electron–phonon couplings in impurity
spectra. The idea that coupling to a bath of oscillators could
describe dissipation in quantum mechanics goes back, at least,
to Feynman & Vernon (1963). These ideas were revitalized by
Caldeira & Leggett (1981, 1983), who were especially interested in
the impact of dissipation on quantum tunneling.

Caldeira & Leggett 1981: Influence of dissipation on quantum
tunnelling in macroscopic systems. AO Caldeira & AJ
Leggett, Phys Rev Lett 46, 211–214 (1981).

Caldeira & Leggett 1983: Quantum tunnelling in a dissipative
system. AO Caldeira & AJ Leggett, Ann Phys (NY) 149,
374–456 (1983).

Feynman & Vernon 1963: The theory of a general quantum
system interacting with a linear dissipative system. RP
Feynman & FL Vernon Jr, Ann Phys (NY) 24, 118–173
(1963).

4. Cooperativity

[Be sure to talk about the specific case of hemoglobin,
so we can point from Section II.A.]

To understand the statistical mechanics of cooperative
interactions in the binding of multiple ligands, it is useful
to start at the beginning, with the binding of a single
ligand, especially since many physics students don’t have
much experience with problems that get categorized as
“chemistry.” Suppose that we have a receptor molecule

R to which some smaller ligand molecule L can bind.
For simplicity let there just be the two states, R with its
binding site empty, and RL with the binding site filled
by an L molecule, and let us assume that every binding
event is independent, so the different receptor molecules
don’t interact. To study the dynamics of this system we
keep track of the number of receptors in the state R and
the number in state RL; these numbers, nR and nRL,
respectively, must add up to give the total number of
receptors, N .
The rate at which empty sites get filled (R → RL)

must be proportional to the number of empty sites and
to the concentration c of the ligand. The rate at which
filled sites become empty should just be proportional to
the number of filled sites. Thus

dnRL

dt
= k+cnR − k−nRL, (A214)

where k+ is the rate constant for binding and k− is the
rate constant for unbinding; note that these have differ-
ent units. Since nR + nRL = N , this becomes

dnRL

dt
= k+cN − (k− + k+c)nRL. (A215)

The equilibrium state is reached when

nRL = N
k+c

k− + k+c
. (A216)

The fraction nRL/N can also be interpreted microscopi-
cally as the probability that one receptor will be the state
RL,

PRL =
k+c

k− + k+c
=

c

K + c
, (A217)

where the equilibrium constant (or “dissociation con-
stant”) K = k−/k+.
From statistical mechanics, if we have a molecule that

can be in two states, we should calculate the probabil-
ity of being in these states by knowing the energy of
each state and using the Boltzmann distribution. Impor-
tantly, what we mean by “state,” especially when dis-
cussing large molecules, often is a large group of micro-
scopic configurations. Thus saying that there are two
states R and RL really means that we can partition the
phase space of the system into two regions, and these re-
gions are what we label as R and RL. Then, as should be
familiar, what matters is not the energy of each state but
the free energy. The free energy of the state R has one
component from the receptor molecule itself, FR, plus
a component from the ligand molecules in solution. In
the transition R → RL, the free energy of the recep-
tor changes to FRL, and the free energy of the solution
changes because one molecule of the ligand is removed.
The change in free energy when we add one molecule to
the solution defines the chemical potential µ(c). Thus,
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up to an arbitrary zero of energy, we can consider the
free energy of the two states to be FR and FRL − µ(c).
Then the probability of being in the state RL is given by
the Boltzmann distirbution,

PRL =
1

Z
exp

(
−FRL − µ(c)

kBT

)
, (A218)

where the partition function Z is given by the sum of the
Boltzmann factors over both available states,

Z = exp

(
− FR

kBT

)
+ exp

(
−FRL − µ(c)

kBT

)
. (A219)

Putting the terms together, we have

PRL =
exp [−(FRL − µ(c))/kBT ]

exp [−FR/kBT ] + exp [−(FRL − µ(c))/kBT ]

(A220)

=
eµ(c))/kBT

exp [−(FR − FRL)/kBT ] + eµ(c))/kBT
. (A221)

Notice that the only place where the ligand concentration
appears is in the chemical potential µ(c). In order for this
result to be consistent with the result from analysis of
the kinetics in Eq (A217), we must have eµ(c))/kBT ∝ c,
and you may recall that when concentrations are low—as

in ideal gases, and also ideal solutions—it is a standard
result that

µ(c) = kBT ln(c/c0), (A222)

where c0 is some reference concentration. Then we can
also identify the equilibrium constant as

K = c0 exp

(
−Fbind

kBT

)
, (A223)

where Fbind = FR − FRL is the change in free energy
when the ligand binds to the receptor.
Now suppose we have a receptor to which two ligands

can bind. There are now four states, which we can think
of as 00, 10, 01, and 11. If the each binding event is
identical and independent, then the free energies of these
states are

F00 = FR (A224)

F01 = F10 = FR − Fbind − µ(c) (A225)

F11 = FR − 2Fbind − 2µ(c). (A226)

If we calculate, for example, the probability that both
binding sites are occupied—i.e., that the molecule is in
the state 11—we have

P11 =
1

Z
e−F11/kBT (A227)

=
exp

[
−FR−2Fbind−2µ(c)

kBT

]

exp
[
− FR

kBT

]
+ 2 exp

[
−FR−Fbind−µ(c)

kBT

]
+ exp

[
−FR−2Fbind−2µ(c)

kBT

] (A228)

=
(c/K)2

1 + 2(c/K) + (c/K)2
=

(
c

c+K

)2

. (A229)

Thus, the probability of both sites being occupied is just
the square of the probability that a single binding site
will be occupied, as in Eq (A217). This makes sense,
because we assumed that binding to the two sites were
independent events.

Problem 177: Counting bound molecules. Rather than
counting the fraction of molecules in the doubly bound state, count
the number of ligands bound. Show that this is just 2× c/(c+K),
and explain why.

In fact, in many cases we see that binding of multiple
ligands to a protein molecule are not independent events.
As a start, let’s suppose that we again have two binding
sites, but the doubly bound state is stabilized (for as yet
unspecified reasons) by an extra energy ∆. Then if we
calculate the fraction of binding sites occupied, we have
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f =
1

2
[P01 + P10 + 2P11] (A230)

=
1

2

2 exp
[
−FR−Fbind−µ(c)

kBT

]
+ 2 exp

[
−FR−2Fbind−2µ(c)−∆

kBT

]

exp
[
− FR

kBT

]
+ 2 exp

[
−FR−Fbind−µ(c)

kBT

]
+ exp

[
−FR−2Fbind−2µ(c)−∆

kBT

] (A231)

=
c/K + J(c/K)2

1 + 2(c/K) + J(c/K)2
, (A232)

where J = exp(∆/kBT ). Results are shown in Fig
168. We see that, as the interaction energy increases,
the binding sites can be occupied at lower concentration,
but more importantly the steepness of the “switch” from
empty to full sites is more abrupt. This abruptness is the
signature of cooperativity.
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FIG. 168 Cooperative binding, with two binding sites that
interact. Lines show the predicted fraction of binding sites vs.
concentration, for different values of the interaction energy ∆;
from Eq (A232).

The classic example is the oxygen binding protein
hemoglobin in our blood. We now know that hemoglobin
has four protein subunits, each of which has an iron atom
which can bind one oxygen molecule. [Might be good to
show some figures from Hb!] As Hill recognized in the
early part of the twentieth century, the fraction of sites
with bound oxygen behaves more nearly as if all four
molecules had to bind together, so that

f =
cn

cn +Kn
, (A233)

with n = 4; this is still called a “Hill function” in many
contexts. As shown in Fig 169, the binding is now sig-
moidal, or more nearly switch like at larger n. Because
the natural quantity in statistical mechanics is the chemi-
cal potential and not the concentration, things look sim-
pler on a logarithmic concentration axis. Cooperative
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FIG. 169 Cooperative binding, in the Hill model. Blue lines
show the predicted fraction of binding sites vs. concentration
when binding to each site in independent. Green lines show
the case of cooperative binding to four sites, as described by
the Hill model in Eq (A233), with n = 4. At left, a linear
concentration scale; at right, a logarithmic scale.

binding corresponds to a steeper slope on these logarith-
mic plots. This is clear for the Hill function, where we
can see that

dF

dc
=

n

c
F (1− F ), (A234)

and hence

dF

d ln c

∣∣∣∣∣
F=1/2

=
n

4
, (A235)

so the slope is a direct measure of the number of
molecules forced to bind simultaneously. Few real sys-
tems are described exactly by the Hill model, but it’s
a good approximation. We should also appreciate the
power of Hill’s intuition, in seeing the connection of the
sigmoidal binding curves to the number of protein sub-
units even before much was known about these molecules.
The Hill model suggests that there is some direct in-

teraction between binding events that causes all of the
ligands to bind (or not to bind) simultaneously, which
we can think of as a limiting case of the model above,
with ∆ → ∞. In some cases, including hemoglobin,
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there is little evidence for such a direct interaction. An
alternative is to imagine that the whole system can be
in two states. In the case of hemoglobin these came to
be called ‘relaxed’ (R) and ‘tense’ (T), but in other sys-
tems there natural choices; for example, in the case of the
ion channels in rod cells that open in response to bind-
ing of cGMP, the two states might simply be the open
and closed states of the channel, as in Fig 170. To con-
tinue with this example, the channel can bind one, two
or three molecules of cGMP. If all the binding sites are
empty, the free energies of the two states are Fopen and
Fclosed. Given that the channel is closed, the binding of
a single cGMP molecule lowers the energy by an amount
F bind
closed, but in addition this takes one molecule out of

the solution and hence the free energy of the system also
goes down by µ, the chemical potential. So the total
free energy of the state with the channel closed and one
molecule bound is

Fclosed(1) = Fclosed − F bind
closed − µ (A236)

= Fclosed − F bind
closed − kBT ln(c/c0)(A237)

= Fclosed − kBT ln

(
c

Kclosed

)
, (A238)

and similarly for the open state,

Fopen(1) = Fopen − kBT ln

(
c

Kopen

)
. (A239)

The important point is that the binding energies to the
open and closed states are different. By detailed bal-
ance, this means that, as the cGMP molecules bind, they
will shift the equilibrium between open and closed. The
two state model was proposed by Monod, Wyman and
Changeaux. They made the simplifying assumption that
the only source of cooperativity among the binding events
was this shifting of equilibria, so that if the target protein
is in one state, each binding event remains independent,
and then the free energies work out as in Fig 170.

Problem 178: Cooperativity in the MWC model. Show
that the model in Fig 170 is equivalent to the statement that the
free energy difference between open and closed states has a term
proportional to the number of cGMP molecules bound. What is
this proportionality constant in terms of the other parameters?
Can you explain the connection between these two points of view
on the model?

It’s a useful exercise to work out the statistical me-
chanics of the MWC model. The partition function has
two classes of terms, coming from the two states of the
protein. In each state, we have to sum over the occupied
and unoccupied states of each binding site, but this is
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(

c

Kclosed

)

Fclosed − 3kBT ln

(

c

Kclosed

)

Fclosed − 3kBT ln

(
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(

c
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)

Fopen − kBT ln

(
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)

FIG. 170 A model for binding of cGMP to the channels in
rod cells. Cooperativity arises not from direct interactions
among the cGMP molecules but rather because binding of
each molecule contributes to stabilizing a different structure
of the channel protein. In this case the two structures are just
the open and closed states.

relatively easy because the sites are independent. In the
notation of Fig 170, we find

Z = Zopen + Zclosed (A240)

Zopen = exp

(
−Fopen

kBT

)(
1 +

c

Kopen

)n

(A241)

Zclosed = exp

(
−Fclosed

kBT

)(
1 +

c

Kclosed

)n

,(A242)

where in the case of the cGMP–gated channels, n = 3.
The probability of being in the open state is then

Popen =
Zopen

Zopen + Zclosed
(A243)

=
(1 + c/Kopen)

n

(1 + c/Kopen)
n + L (1 + c/Kclosed)

n ,(A244)

where kBT lnL = Fopen−Fclosed is the free energy differ-
ence between open and closed states in absence of ligand
binding. In the limit that binding is much stronger to
the open state, Kopen , Kclosed, this simplifies,

Popen =
(1 + c/Kopen)

n

L+ (1 + c/Kopen)
n (A245)

=
1

1 + exp [θ − n ln(1 + c/Kopen)]
, (A246)

where θ = lnL. This is similar to the Hill model, but a
little different in detail. Distinguishing the models from
the equilibrium data alone is difficult, but clearly the
MWC model predicts that binding has an extra kinetic
step in which the protein makes the transition between
its two states; if we are lucky we can “catch” the system
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after the first ligand molecules have bound but before
this change in protein structure. Indeed, such experi-
ments were critical in understanding the mechanism of
cooperativity in hemoglobin.

Problem 179: Details of the MWC model. Fill in the
steps to Eqs (A240–A242). Then, compare the Hill model with
MWC. Show that for c " Kopen, Eq (A246) reduces to Eq (A233).
What about at c % Kopen? The MWC model, even in the limit
Kopen % Kclosed, has one more parameter than the Hill model;
what does this freedom mean for the class of functions that the
MWC model can realize?

In many systems, it is not just a single class of lig-
ands that binds. For hemoglobin itself, changes in pH,
which presumably result in binding and unbinding of
protons, change the way in which oxygen binds.95 For
enzymes—proteins that catalyze a chemical reaction—it
is not just the substrate which binds and is chemically
altered, but other molecules bind as well and alter the
activity of the enzyme. It is important that these ‘other
molecules’ are binding at other sites, not directly interfer-
ing with substrate binding in enzymes or oxygen binding
in hemoglobin. From the Greek for “other site,” these
effects are called “allosteric,” and the MWC model gives
a framework for a much more general view of allostery.
In this view, all binding events are independent, but with
binding energies that depend on the overall state of the
target protein. In this way, all binding events can shift
the R/T equilibrium.

Maybe another problem? There should be a figure
with data! Tell the story about Perutz? Need to flesh
out the text to match references. Put something about
protein/DNA interactions here?

The classic paper on “Hill functions” for cooperative binding is
Hill (1910). There is some suggestion that Hill might have been the
first to derive the simpler description of independent binding, often
called the “Langmuir” isotherm; for this and more related history as
seen through the lens of drug–receptor interactions, see Colquhoun
(2006). The MWC model is due to Monod et al (1965), and a con-
temporary, competing model is due to Koshland et al (1966). Late
in his life, Perutz (1990) provided some perspective on his long ad-
venture with hemoglobin. A key step in understanding was to show,
convincingly, that there really is no direct interaction between the
binding sites, and the cooperativity was mediated entirely by the
shifting equilibrium between the R and T states (Shulman et al
1975). The MWC model leaves open the question of where the
energy for cooperativity is stored in the molecule; for a hypothesis
very much ahead of its time, see Hopfield (1973).

95 This is the “Bohr effect,” after Christian Bohr, Niels’ father.
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5. X–ray diffraction and biomolecular structure

The first detailed experimental information about the
structure of biological molecules came from X–ray diffrac-
tion measurements. We recall that if a particle scatters
from a sample, shifting its energy by !ω and its mo-
mentum by !6q, then the amplitude for this scattering
event must be proportional to the (6q,ω) spatiotemporal
Fourier component of the relevant density in the sample.
For an electromagnetic wave what matters is (roughly)
the charge density. Thus, the cross–section for elastic
(ω = 0) scattering is

σ(6q) ∝
∣∣∣∣
∫

d3x ei.q·.xρ(6x)

∣∣∣∣
2

. (A247)

It is useful to have in mind the geometry [ref to a Fig!]. If
the X–ray photons approach the sample collimated along
the x̂ axis, they have an initial wavevector 6k0 = kx̂,
where as usual k = 2π/λ, with λ the wavelength. If they

emerge with a final wavevector 6kf at an angle θ relative
to the x̂ axis, then 6q ≡ 6kf − 6k0, and the magnitude of
the scattering vector (or, up to a factor !, momentum
transfer) is

|6q| = |6kf − 6k0| (A248)

=
√

|6kf − 6k0|2 (A249)

=
√
|6kf |2 − 26kf ·6k0 + |6k0|2 (A250)

=
√
k2 − 2k2 cos θ + k2 (A251)

=
√
2k2(1− cos θ) = 2k sin(θ/2). (A252)

Thus scattering by a small angle corresponds to a small
momentum transfer. The classic results about X–ray
diffraction concern the case where the density profile is
periodic, as in a crystal. If the periodicity corresponds
to displacement by d (let’s think along one dimension,
for the moment), then the density can be expressed as
a discrete Fourier series, which means [from Eq (A247)]
that σ(6q) will have delta functions at |6q| = 2πn/d, with
n an integer. Combining this with Eq (A252), we find
the angles which satisfy the “Bragg condition,”

2πn/d = (4π/λ) sin(θ/2) ⇒ sin(θ/2) = nλ/2d. (A253)

[I think this is a bit off the usual way of stating the
condition (2’s in the wrong places); check!]

The first great triumph of X–ray diffraction in eluci-
dating the structure of biological molecules came with
the structure of DNA. This is an often told, and often
distorted, piece of scientific history. Watson and Crick
predicted the structure of DNA by arguing that a few
key facts about the molecule, when combined with the
rules of chemical bonding, where enough to suggest an in-
teresting structure that would have consequences for the
mechanisms of genetic inheritance. It was known that

DNA was composed of four different kinds of nucleotide
bases: adenine (A), thymine (A), guanine (G) and cyto-
sine (C). Importantly, Chargaff had surveyed the DNA
of many organisms and shown that while the ratios of A
to G, for example, vary enormously, the ratios A/T and
C/G do not. Watson and Crick realized that the molec-
ular structures of the bases are such that A and T can
form favorable hydrogen bonds, as can C and G; further,
the resulting hydrogen bonded base pairs are the same
size, and thus could fit comfortably into a long polymer,
as shown in Fig 171. Piling on top of one another, the
base pairs would also experience a favorable “stacking”
interaction among the π–bonded electrons in their rings.
Finally, if one looks carefully at all the bond angles where
the planar bases connect to the sugars and phosphate
backbone, each successive base pair must rotate relative
to its neighbor, and although there is some flexibility the
favored angle was predicted to be 2π/10 radians, or 36◦.

Adenine Thymine

Guanine Cytosine

FIG. 171 The structure of DNA, from Watson and Crick
(1953b). At left, the polymeric pattern of bases, sugars and
phosphates, and the famous double helix. At right, the pair-
ings A/T and G/C, illustrating the similar sizes of the cor-
rect pairs. Note that the donor/acceptor pattern of hydrogen
bonds discriminates against the incorrect A/C and G/T pair-
ings.

Quite independently of his collaboration with Wat-
son, Crick has been interested in the structure of heli-
cal molecules, and in the X–ray diffraction patterns that
they should produce. Thus, when Watson and Crick re-
alized that the structure of DNA might be a helix, they
were in a position to calculate what the diffraction pat-
terns should look like, and thus compare with the data
emerging from the work of Franklin, Wilkins and collab-
orators. So, let’s look at the theory of diffraction from a
helix.
It’s best to describe a helix in cylindrical coordinates:

z along the axis of the helix, r outward from its center,
and an angle φ around the axis. Helical symmetry is
the statement that translations along z are equivalent
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to rotations of the angle φ. Thus, a continuous helical
structure would have the property that

ρ(z, r,φ) = ρ(z + d, r,φ+ 2πd/&), (A254)

for any displacement d, where & is the displacement cor-
responding to a complete rotation. For a discrete helical
structure, the same equation is true, but only for values
of d that are integer multiples of a fundamental spacing
d0.

For the continuous helix, the dependence on the two
variables z and φ really collapses to a dependence on one
combined variable,

ρ(z, r,φ) = g(r,φ− 2πz/&). (A255)

We know that any function of angle can be expanded as
a discrete Fourier series,

f(φ) =
∞∑

n=−∞
f̃ne

−inφ, (A256)

so in this case we have

ρ(z, r,φ) =
∞∑

n=−∞
g̃n(r)e

−in(φ−2πz/)). (A257)

Our task is to compute
∫

d3x ei.q·.xρ(6x). (A258)

In cylindrical coordinates, we can write 6q = (qz ẑ,6q⊥), so
that 6q·6x = qzz+ q⊥r cosφ, where we choose the origin of
the angle φ to make things simple and q⊥ = |6q⊥|. Thus
we have

ei.q·.x = eiqzzeiq⊥r cosφ (A259)

= eiqzz
∞∑

n=−∞
Jn(q⊥r)e

inφ, (A260)

where [check the conventions for the definition of the
Bessel function!]

Jn(u) =

∫ 2π

0

dφ

2π
e−inφeiu cosφ (A261)

are Bessel functions. Putting Eq (A260) together with
the consequences of helical symmetry in Eq (A257), we
have

∫
d3x ei.q·.xρ(6x) =

∫ ∞

−∞
dz

∫ ∞

0
drr

∫ 2π

0
dφeiqzz

∞∑

n=−∞
Jn(q⊥r)e

inφ
∞∑

m=−∞
g̃m(r)e−im(φ−2πz/)) (A262)

=
∞∑

n,m−∞

∫ ∞

−∞
dz eiqzze−i2πmz/)

∫ ∞

0
drr Jn(q⊥r)g̃m(r)

∫ 2π

0
einφe−imφ. (A263)

We see that the integral over φ forces m = n, and the
integral over z generates delta functions at qz = 2πn/&.
Thus, for a continuous helix we expect that the X–ray
scattering cross section will behave as

σ(qz, q⊥) ∝
∞∑

n−∞
δ(qz − 2πn/&)

∣∣∣∣
∫ ∞

0
drr Jn(q⊥r)g̃n(r)

∣∣∣∣
2

.

(A264)
In particular, if most of the density sits at a distance R
from the center of the helix (which is not a bad approxi-
mation for DNA, since the phosphate groups have much
more electron density than the rest of the molecule), then

σ(qz, q⊥) ∼
∞∑

n−∞
δ(qz − 2πn/&)

∣∣∣∣Jn(q⊥R)

∣∣∣∣
2

. (A265)

Equation (A265) is telling us that diffraction from a
helix generates a series of “layer lines” at qz = 2πn/&,
and from their spacing we should be able to read off the
“pitch” of the helix, the distance & along the ẑ axis cor-
responding to a complete turn. Further, if we look along

a single layer line, we should see an intensity varying as

qz

q⊥

FIG. 172 Diffraction from continuous (left) and discrete
(right) helices; Holmes (1998).
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FIG. 173 The justly famous photograph 51, showing the
diffraction from DNA molecules pulled into a fiber, from
Franklin & Gosling (1953).

∼ |Jn(q⊥R)|2. What is important here about the Bessel
functions is that for small q⊥ we have Jn(q⊥R) ∝ (q⊥R)n,
and the first peak of the nth Bessel function occurs at a

point roughly proportional to n. The resulting pattern is
shown schematically in Fig 172.

Problem 180: Bessel functions. Verify the statements about
Bessel functions made above, in enough detail to understand the
diffraction patterns shown in Fig 172.

Let’s see what happens when we move from the contin-
uous to the discrete helix. To keep things simple, suppose
that all the density indeed is concentrated at a distance
R from the center of the helix, so that

ρ(6x) =
1

R
δ(r −R)

∑

n

δ(z − nd0)δ(φ− nφ0), (A266)

where the rotation from one element to the next φ0 =
2πd0/&; notice that we don’t really require &/d0 to be an
integer. Now we have

∫
d3x ei.q·.xρ(6x) =

∫ ∞

−∞
dz

∫ ∞

0
drr

∫ 2π

0
dφeiqzz

∞∑

n=−∞
Jn(q⊥r)e

inφ 1

R
δ(r −R)

∞∑

m=−∞
δ(z −md0)δ(φ−mφ0)(A267)

=
∞∑

n=−∞
Jn(q⊥R)

∞∑

m=−∞

∫ ∞

−∞
dz δ(z −md0)e

iqzz ×
∫ 2π

0
dφ δ(φ−mφ0)e

inφ (A268)

=
∞∑

n=−∞
Jn(q⊥R)

∞∑

m=−∞
eim(nφ0+qzd0) (A269)

=
∞∑

n=−∞
Jn(q⊥R)

∞∑

m=−∞
δ(nφ0 + qzd0 − 2πm) (A270)

∝
∞∑

m=−∞

∞∑

n=−∞
Jn(q⊥R)δ(qz + 2πn/&− 2πm/d0). (A271)

Thus the discrete helix involves a double sum of terms. If
we set m = 0 we have the results for the continuous helix.
But the sum over m 0= 0 causes the whole “X” pattern
of the continuous helix to be repeated with centers at
(qz = 2πm/d0, q⊥ = 0); the line q⊥ = 0 is often called
the meridian, and so the extra peaks centered on (qz =
2πm/d0, q⊥ = 0) are called meridional refections. All
of this is shown in Fig 172. Just as the spacing of the
layer lines allows us to measure the helical pitch &, the
spacing of the meridional reflections allows us to measure
the spacing d0 between discrete elements along the helix.
At this point you know what Watson and Crick knew

[maybe put in the precise dates of these events, fromWat-
son’s memoir]. They had a theory of what the structure

should be, and almost certainly they had already real-
ized the implications of this structure, as they remarked
in their first paper “It has not escaped our notice that
the specific pairing we have postulated immediately sug-
gests a possible copying mechanism for the genetic ma-
terial.” They also knew that if the structure was as they
had theorized, then the diffraction pattern should display
a number of key signatures—the regularly spaced layer
lines, the “X” arrangement of their intensities, and the
meridional reflections—that would provide both qualita-
tive and quantitative confirmation of the theory. Thus
you should be able to imagine their excitement when
they saw the clean X–ray diffraction pattern from hy-
drated DNA, the famous photograph 51 taken by Ros-
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alind Franklin, Fig 173. As far as one could tell, the
proposed structure was right.

Problem 181: Discrete helices, more generally. Show that
most of what was said above can be generalized to an arbitrary
discrete helix, without assuming that the density is concentrated
at r = R. That is, use only the symmetry defined by Eq (A254)
for d = nd0.

Problem 182: Fibers vs. crystals. We have discussed the
diffraction from a helix as if there were just one molecule, and we
have not been very precise about the different between amplitudes
and intensities. Show that if there are many helices, all with their
ẑ axes aligned but with random positions and orientations in the
x̂ − ŷ plane, then the diffraction intensity from the ensemble of
molecules depends only on the structure of the individual helices,
and that all directions for the vector 2q⊥ are equivalent.

It is crucial to appreciate that, contrary to what is of-
ten said in textbooks, it was not possible to “determine”
the structure of DNA by looking at diffraction patterns
like those in Fig 173. On the other hand, if you thought
you knew the structure, you could predict the diffraction
pattern—in the regime where it could be measured—and
see if you got things right. This difference between ex-
periments that support a theory, or which find something
that a theory tells us must exist, and experiments that
“discover” something unexpected or genuinely unknown
is an incredibly important distinction, often elided.

So much has been written about this moment in scien-
tific history that it would be irresponsible not to pause
and reflect. On the other hand, I am not a historian.
So let me make make just a few observations. Most im-
portantly, I think, the story of the DNA structure com-
bines so many themes in our understanding of science and
society (separately and together) that is has an almost
mythical quality, and as with the ancient myths everyone
can see something that connects to their own concerns.
There is the enormous issue of gender in the scientific
community, something for which we hardly even had a
vocabulary until decades after the event. There are the
personalities of all the individuals, both as they were in
1953 and as they developed in response to the world–
changing discovery in which they participated. There is
the tragedy of Franklin’s early death. There is the com-
petition between Cambridge and London, and the impact
of an American interloper on these very British social
structures. Finally, there are issues that are more purely
about the science, such as the interaction between theory
and experiment, physics and biology. We could wander
in this part of history for a long time. I need to come
back and see what is essential, and what can be skipped.
For now, let’s move on.

In order to actually determine the structure of a large
molecule by X–ray diffraction, we need to form crystals

of those molecules. Crystals of a protein are not like
crystals of salt or even small molecules. They are quite
soft, and contain quite a lot of water. The bonds between
proteins, for example, in a crystal are much weaker than
the bonds that hold each protein together. On the one
hand this makes growing and handling the crystals quite
difficult. On the other hand, it means that the internal
structures of the protein in the crystal is more likely to
be typical of its structure when free in solution.
We recall that being a crystal in three dimensions

means that there are vectors 6a, 6b, and 6c such that the
density is the same if we translate by integer combina-
tions of these vectors,

ρ(x) = ρ(x+ n6a+m6b+ k6c). (A272)

This means that the density can be expanded into a
Fourier series,

ρ(x) =
∑

knm

ρ̃knm exp
[
i(k 6Ga + n6Gb +m6Gc)·6x

]
,

(A273)
where the 6Gi are the “reciprocal lattice vectors.” As a
result, the X–ray scattering cross–section is a set of delta
functions or “Bragg peaks,”

σ(6q) ∝
∑

knm

|ρ̃knm|2δ(6q− k 6Ga − n6Gb −m6Gc). (A274)

Problem 183: Details of diffraction. Fill in the details lead-
ing to Eq (??), including the relationship between the reciprocal

lattice vectors 2Gi and the real lattice vectors 2a, 2b, and 2c.

Even if we can make a perfect measurement of σ(6q),
we only learn about the magnitudes of the Fourier coef-
ficients, |ρ̃knm|2, and this isn’t sufficient to reconstruct
the density ρ(6x). This is called the phase problem. For
small structures it is not such a serious problem, since the
constraint that ρ(6x) has to built out of discrete atoms al-
lows us to determine the positions of the atoms from the
diffraction pattern. But for a protein, with thousands of
atoms in each unit cell of the crystal, this is hopeless.
The phase problem was solved experimentally through

the idea of “isomorphous replacement.” Suppose that we
could attach to the each molecule in the crystal one or
more very heavy atoms, in well defined (but unknown)
positions. If we can do this without disrupting the pack-
ing of the molecules into the crystal, then the positions
of the Bragg peaks will not change, but their intensities
will. If we can approximate the density profiles of the
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heavy atoms as delta functions (which should be right
unless we look at very large |6q|), then

|ρ̃knm|2 →
∣∣∣∣ρknm +

∑

µ

Zµe
i.qknm·.xµ

∣∣∣∣
2

, (A275)

where 6qknm = k 6Ga − n6Gb − m6Gc, Zµ is the charge of
the µth heavy atom and 6xµ is its position. In the simple
case of one added heavy atom, we can choose coordinates
so that its position is at the origin, and then it should
be clear that the change in intensity on adding the heavy
atom is directly sensitive to the value of cosφknm, where
φknm is the phase of the complex number ρknm. Thus,
one needs at least two different examples of adding heavy
atoms to determine the phases unambiguously.

Do we need to say more here? Show in detail how two
replacements determines the phase? Give a problem? I
honestly don’t know if one has to rely on absolute mea-
surements, as one might think naively from the equations
... check!! Say something about other approaches to the
phase problem.

The density really consists of discrete blobs corre-
sponding to atoms, and—if we can look at sufficiently
high resolution—additional density in the bonds between
atoms. For the moment let’s think just about the atoms.
Then the density has the form

ρ(6x) ≈
∑

µ

fµδ(6x− 6xµ), (A276)

where 6xµ is the position of the µth atom and fµ is an
effective charge or scattering density associated with that
atom. Thus the scattering cross–section behaves as

σ(6q) ∼
∑

µν

fµfνe
i.q·(.xµ−.xν). (A277)

Importantly, the positions of atoms fluctuate. The time
scale of these fluctuations typically is much shorter than
the time scale of the experiment, so we will see an aver-
age,

σ(6q) ∼
〈∑

µν

fµfνe
i.q·(.xµ−.xν)

〉
. (A278)

If we assume that the fluctuations in position are Gaus-
sian around some mean, then

σ(6q) ∼
〈∑

µν

fµfνe
i.q·(.xµ−.xν)

〉

≡
∑

µν

fµfν

〈
ei.q·.rµν

〉
(A279)

∼
∑

µν

fµfνe
i.q·.rµνe−

1
2 |.q|

2〈(δ.rµν)
2〉, (A280)

where 6rµν = 6xµ − 6xν , and for simplicity we assume
that the fluctuations are isotropic. What we see is that

the scattering intensity at 6q is attenuated relative to
what we expect from a fixed structure, by an amount
e−

1
2 |.q|

2〈(δ.rµν)
2〉. These are called the Debye–Waller fac-

tors. Thus, although X–ray diffraction is a static method,
it is sensitive to dynamical fluctuations in structure, al-
though it can’t really distinguish between dynamics and
static disorder in the crystal.
Need to come back and see what else needs to be said,

given what we need in the main text. Is it worth talking
about other methods, such as EM and NMR? The motifs
of protein structure? ... not sure what we need or want.

You should read the classic trio of papers on DNA structure,
which appeared one after the other in the April 25, 1953 issues of
Nature: Watson & Crick (1953a), Wilkins et al (1953) and Franklin
& Gosling (1953). The foundations of helical diffraction theory had
been given just a year before by Cohcran et al (1952); a brief ac-
count is given by Holmes (1998). The astonishing realization that
the structure of DNA implies a mechanism for the transmission of
information from generation to generation was presented by Wat-
son & Crick (1953b). It is especially interesting to read their ac-
count of the questions raised by their proposal, and to see how their
brief list became the agenda for the emerging field of molecular bi-
ology over the next two decades. The rest is history, as the saying
goes, so you should read at least one history book (Judson 1979).

Cochran et al 1952: The structure of synthetic polypeptides. I.
The transform of atoms on a helix. W Cochran, FHC Crick
& V Vand, Acta Cryst 5, 581–586 (1952).

Franklin & Gosling 1953: Molecular configuration in sodium
thymonucleate. RE Franklin & RG Gosling. Nature 171,
740–741 (1953).

Holmes 1998: Fiber diffraction. KC Holmes,
http://www.mpimf-heidelberg.mpg.de/∼holmes/fibre/branden.html
(1998).

Judson 1979: The Eighth Day of Creation HF Judson (Simon
and Schuster, New York, 1979).

Watson & Crick 1953a: A structure for deoxyribose nucleic
acid. JDWatson & FHC Crick, Nature 171, 737–739 (1953).

Watson & Crick 1953b: Genetical implications of the structure
of deoxyribonucleic acid. JD Watson & FHC Crick, Nature
171, 964–967 (1953).

Wilkins et al 1953: Molecular structure of deoxypentose nucleic
acids. MHF Wilkins, AR Stokes & HR Wilson, Nature 171,
738–740 (1953).

Need classic refs about protein structure and crystallography;
more if we do more.

6. Berg and Purcell, revisited

In the spirit of Berg and Purcell’s original discussion,
the simplest example of noise in a chemical system is just
to consider the fluctuations in concentration as seen in
a small volume. To treat this rigorously, let’s remember
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that diffusion in and out of the volume keeps the system
at equilibrium. Thus, fluctuations in the concentration
should be just like Brownian motion or Johnson noise.
What’s a little odd is that while the strength of John-
son noise is proportional to the absolute temperature,
our intuition about counting molecules and the

√
N rule

doesn’t seem to have a place for T . So, let’s see how this
works.96

If we measure the current flowing across a resistor in
thermal equilibrium at temperature T , we will find a
noise in the current that has a spectral density SI =
2kBT/R, where R is the resistance. More generally, if
we measure between two points in a circuit, and find a
frequency dependent, complex impedance Z̃(ω), then the
spectral density of current noise will be

SI(ω) = 2kBTRe

[
1

Z̃(ω)

]
, (A281)

where Re denotes the real part. In a mechanical system it
is more natural to talk about positions and forces instead
of currents and voltages. Now if we measure the position
and apply a force, we have a “mechanical response func-
tion” α̃(ω) analogous to the (inverse) impedance,

x̃(ω) = α̃(ω)F̃ (ω), (A282)

where x̃(ω) is the Fourier component97 of x(t),

x(t) =

∫ ∞

−∞

dω

2π
e−iωtx̃(ω), (A283)

and similarly for the force F̃ (ω). The analog of Eq (A281)
for Johnson noise is that the fluctuations in position x
have a spectral density

Sx(ω) =
2kBT

ω
Im [α̃(ω)] . (A284)

[It’s possible that this Appendix should also contain a
derivation of the FDT.]

Problem 184: Some details about noise spectra. You
may remember the formula for Johnson noise as SI = 4kBT/R,
rather than the factor of 2 given above. Also, there are a few
obvious differences between Eqs (A281) and (A284). Be sure you
understand all these differences. The key ingredients are that all
our integrals run over positive and negative frequencies, and that

96 In what follows I make free use of the concepts of correlation
functions, power spectra, and all that. See Appendix A.2 for a
review of these ideas.

97 Here, more than in other sections, our conventions in defining
the Fourier transform are important. Be careful about the sign
of i in the exponential!

while voltage is analogous to force, current is analogous to velocity,
not position. Check carefully that all the details work out.

In any system at thermal equilibrium, if we apply a
small force we can observe a proportionally small dis-
placement, and this is described by a linear response
function. In a mechanical system we have the function
α̃(ω), sometimes called a “complex compliance.” In mag-
netic systems, the force is an applied magnetic field and
the analog of position is the magnetization; the response
function is called the susceptibility. Electrical systems
are a bit odd because we usually discuss the current re-
sponse to voltage, but we can also think about charge
movements (see problem above). In all these cases, once
we know the linear response function we can predict the
spectral density of fluctuations in the relevant position–
like variable using Eq (A284). This is called the fluctua-
tion dissipation theorem. [Should there be an appendix
with more details, and a proof? Advice welcome.]

Problem 185: Recovering equipartition. If we go to zero
frequency, we have x̃ = α̃(0)F̃ , but this means that α̃(0) = 1/κ,
where κ is the stiffness of the system. We know from the equipar-
tition theorem that the variance in position must be related to the
stiffness,

1

2
κ〈x2〉 =

1

2
kBT. (A285)

But we can also write the variance in position as an integral over
the spectral density,

〈x2〉 =
∫ ∞

−∞

dω

2π
Sx(ω). (A286)

For these equations to be consistent, we must have

2

∫ ∞

−∞

dω

2π

1

ω
Im [α̃(ω)] = α̃(0), (A287)

which looks quite remarkable.
(a.) The frequency domain Eq (A282) is equivalent to

x(t) =

∫ ∞

−∞
dτα(τ)F (t− τ), (A288)

where

α(τ) =

∫ ∞

−∞

dω

2π
e−iωτ α̃(ω). (A289)

Causality means that α(τ < 0) = 0. What does this imply about
the analytic properties of the α̃(ω) in the complex ω plane?

(b.) Use your result in (a.) to verify Eq (A287).

Position and force, magnetization and magnetic field,
charge and voltage; all of these are “thermodynamically
conjugate” pairs of variables. More precisely, if we con-
sider an ensemble in which the force is held fixed, then
the derivative of the free energy with respect to the force
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is the mean position, and conversely. The fluctuation
dissipation theorem always refers to these pairs of vari-
ables. So, to describe fluctuations in chemical systems,
we need to know the “force” that is conjugate to the con-
centration (or the number of molecules), and this is the
chemical potential µ. To compute the response of the
concentration to changes in chemical potential, we con-
sider the diffusion equation for the concentration c(6x, t)
in the presence of a varying chemical potential µ(6x, t),

∂c(6x, t)

∂t
= D∇·

[
∇c(6x, t)− ∇µ(6x)

kBT
c(6x, t)

]
. (A290)

Problem 186: Connecting back. Explain how Eq (A290)
relates to the equation for diffusion in the presence of an external
potential, Eq (240). Be sure you understand the signs.

Linearizing Equation (A290) around a mean concen-
tration c̄, we have

∂c(6x, t)

∂t
= D∇2c(6x, t)− Dc̄

kBT
∇2µ(6x). (A291)

We can solve by Fourier transforming in both space and
time,

c(6x, t) =

∫
d3k

(2π)3

∫
dω

2π
e−iωte+i.k·.xc̃(6k,ω), (A292)

to find

c̃(6k,ω) =
Dc̄

kBT

k2

−iω +Dk2
µ̃(6k,ω). (A293)

Thus there is a 6k–dependent response function,

α̃(6k,ω) =
Dc̄

kBT

k2

−iω +Dk2
(A294)

from which we can use the fluctuation dissipation theo-
rem to calculate the spatiotemporal power spectrum of
concentration fluctuations,

Sc(6k,ω) =
2kBT

ω
Im

[
α̃(6k,ω)

]
= 2c̄

Dk2

ω2 + (Dk2)2
.

(A295)
Notice that the factors of kBT cancel: the fluctua-
tions are proportional to the temperature, but the re-
sponse function—the susceptibility of the concentration
to changes in chemical potential—is inversely propor-
tional to the temperature.
How does the result in Eq (A295) relate to our intu-

ition about the
√
N rule? Let’s think about measuring

the average concentration in a small volume, which cor-
responds to the heuristic calculation by Berg and Purcell.
To do this we construct a variable

C(t) =

∫
d3xW (6x)c(6x, t), (A296)

where the weighting function W (6x) is 1/V inside a vol-
ume V , and zero outside. Then the correlation function
of C is given by

〈C(t)C(t′)〉 =
∫

d3xW (6x)

∫
d3x′W (6x′)〈c(6x, t)c(6x′, t)〉 (A297)

=

∫
d3xW (6x)

∫
d3x′W (6x′)

∫
d3k

(2π)3
ei

.k·(.x−.x′)

∫
dω

2π
e−iω(t−t′)Sc(6k,ω) (A298)

=

∫
dω

2π
e−iω(t−t′)

∫
d3k

(2π)3
|W̃ (6k)|2Sc(6k,ω), (A299)

where as usual W̃ denotes the Fourier transform of W .
If we want to identify integration with a weight W as
equivalent to computing an average over the volume V ,
then we must have W̃ (0) = 1, and W̃ (6k) must decay
to zero for k ' 1/&, where & is the characteristic linear
dimension of the region over which we are averaging.

Equation (A299) allows us to identify the power spec-
trum of fluctuations in C,

SC(ω) =

∫
d3k

(2π)3
|W̃ (6k)|2Sc(6k,ω). (A300)

To make progress let’s assume that the region we are
averaging over is spherically symmetric, so that

SC(ω) =

∫
d3k

(2π)3
|W̃ (6k)|2Sc(6k,ω)

= c̄

∫
d3k

(2π)3
|W̃ (6k)|2 2Dk2

ω2 + (Dk2)2
(A301)

= c̄
1

(2π)3

∫ ∞

0
dk 4πk2|W̃ (k)|2 2Dk2

ω2 + (Dk2)2
.

(A302)
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Now if we want the compute the variance in C, we have

〈(δC)2〉 ≡
∫

dω

2π
SC(ω) (A303)

= c̄
1

(2π)3

∫ ∞

0
dk 4πk2|W̃ (k)|2

∫
dω

2π

2Dk2

ω2 + (Dk2)2

(A304)

= c̄
1

2π2

∫ ∞

0
dk k2|W̃ (k)|2. (A305)

As an approximation, we can say that the effect of
|W̃ (k)|2 is to cut the k integral off at k ∼ 2π/&, in which
case we have

〈(δC)2〉 = c̄
1

2π2

∫ ∞

0
dk k2|W̃ (k)|2

∼ c̄
1

2π2

∫ 2π/)

0
dk k2 (A306)

∼ c̄

&3
. (A307)

Since C̄ = c̄, we can also write this as

〈(δC)2〉
C̄2

∼ 1

c̄&3
, (A308)

and we recognize N = c̄&3 as the mean number of
molecules in the sampling volume. Thus, the rigorous
calculation from the fluctuation dissipation theorem gives
us back our intuition about the fractional variance in con-
centration being 1/N .
To get the rest of the Berg–Purcell result, let’s go back

to Eq (A302) and finish computing the power spectrum
of C, in the same approximations:

SC(ω) = 2c̄
1

(2π)3

∫ ∞

0
dk 4πk2|W̃ (k)|2 Dk2

ω2 + (Dk2)2

∼ c̄

π2

∫ 2π/)

0
dk

Dk4

ω2 + (Dk2)2
. (A309)

If & is small, then the characteristic time for diffusion
across the averaging volume, τ ∼ &2/D, is also small, and
hence any frequencies that are likely to be relevant for the
cell’s measurements of concentration are low compared
with the scales on which SC(ω) has structure. Thus we
can confine our attention to the low frequency limit,

SC(ω → 0) ∼ c̄

π2

∫ 2π/)

0
dk

Dk4

(Dk2)2
=

2c̄

πD&
. (A310)

So we see that the concentration, averaged over a sam-
pling volume of linear dimension & has white noise in
time. If we average over a time τavg, then we are sensi-
tive to a bandwidth 1/τavg, and we will see a variance

〈(δC)2〉τavg ∼ 2c̄

πD&τavg
. (A311)

Rewriting this as a fractional standard deviation, we have

δCrms

C̄
=

1

C̄

√
〈(δC)2〉τavg ∼

(
2

π

)1/2 1√
D&c̄τavg

,

(A312)
which is (except for the trivial factor

√
2/π) exactly the

Berg–Purcell result.

Problem 187: Concentration fluctuations in one dimen-
sion. Repeat the analysis we have just done, but in one dimension.
Before going through a detailed calculation, you should try to an-
ticipate the answer. We still expect (from the

√
N intuition) that

〈(δC)2〉 ∝ c̄, but since concentration has units of molecules per
length in 1D, the other factors must be different. Try, for example,

〈(δC)2〉 ∼
c̄

(Dτavg)n)m
. (A313)

How are n and m constrained by dimensional analysis? Can you
argue, qualitatively, for particular values of these exponents? Fi-
nally, do the real calculation and get the analog of Eq (A311) in
one dimension. Are you surprised by the role of ) (that is, by the
value of m)? Can you explain why things come out this way?

Problem 188: Correlations seen by a moving observer.
Generalize the discussion above to the case where the volume in
which we measure the concentration is moving at speed v0 in some
direction. Provide a formula for the correlations across time in
the observed noise. Show, in particular, that there is a correlation
time τc ∼ D/v20 . How does this relate to the qualitative argument,
discussed above, that bacteria must integrate for a minimum time
∼ D/v20 if they are to “outrun” diffusion?

So the Berg–Purcell argument certainly gives the right
answer for the concentration fluctuations in a small vol-
ume. But biological systems don’t actually count the
molecules in a volume. Instead, the molecules bind to
specific sites, and it is this binding which is detected, e.g.
by activating an enzymatic reaction. The Berg–Purcell
formula suggests that there is a limit to the accuracy of
sensing or signaling that comes from the physics of dif-
fusion alone, independent of these details. To see how
this can happen, we need to analyze fluctuations in the
binding of molecules to receptor sites, coupled to their
diffusion. Let’s start just with the binding events.
Consider a binding site for signaling molecules, and let

the fractional occupancy of the site be n. If we do not
worry about the discreteness of this one site, or about the
fluctuations in concentration c of the signaling molecule,
we can write a kinetic equation

dn(t)

dt
= k+c[1− n(t)]− k−n(t). (A314)

This describes the kinetics whereby the system comes
to equilibrium, and the free energy F associated with
binding is determined by detailed balance,

k+c

k−
= exp

(
F

kBT

)
. (A315)
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If we imagine that thermal fluctuations can lead to
small changes in the rate constants, we can linearize Eq.
(A314) to obtain

dδn

dt
= −(k+c+ k−)δn+ c(1− n̄)δk+ − n̄δk−. (A316)

But from Eq. (A315) we have

δk+
k+

− δk−
k−

=
δF

kBT
. (A317)

Applying this constraint to Eq. (A316) we find that the
individual rate constant fluctuations cancel and all that
remains is the fluctuation in the thermodynamic binding
energy δF :

dδn

dt
= −(k+c+ k−)δn+ k+c(1− n̄)

δF

kBT
. (A318)

Fourier transforming, we can solve Eq. (A318) to find
the frequency dependent susceptibility of the coordinate
n to its conjugate force F ,

α̃(ω) ≡ δñ(ω)

δF̃ (ω)
=

1

kBT

k+c(1− n̄)

−iω + (k+c+ k−)
. (A319)

Now we can compute the power spectrum of fluctuations
in the occupancy n using the fluctuation dissipation the-
orem,

Sn(ω) =
2kBT

ω
Im

[
δñ(ω)

δF̃ (ω)

]
(A320)

=
2k+c(1− n̄)

ω2 + (k+c+ k−)2
. (A321)

It is convenient to rewrite this as

Sn(ω) = 〈(δn)2〉 2τc
1 + (ωτc)2

, (A322)

where the total variance is

〈(δn)2〉 =
∫

dω

2π
Sn(ω) = kBT

δñ(ω)

δF̃ (ω)

∣∣∣∣∣
ω=0

(A323)

=
k+c(1− n̄)

k+c+ k−
(A324)

= n̄(1− n̄), (A325)

and the correlation time is given by

τc =
1

k+c+ k−
. (A326)

To make sense out of these results, remember what hap-
pens if we flip a coin that is biased to produce heads a
fraction f of the time. On each trial we count either
one or zero heads, so the mean count is f and the mean
square count is also f ; the variance is f(1 − f), exactly
as in Eq (A325): when we check the occupancy of the

receptor, the outcome is determined by the equivalent of
flipping a biased coin, where the bias is determined by
the Boltzmann distribution.
The Lorentzian form of the power spectrum in Eq

(A322) is equivalent to an exponential decay of corre-
lations,

〈δn(t)δn(t′)〉 =
∫

dω

2π
e−iω(t−t′)Sn(ω) (A327)

= 〈(δn)2〉
∫

dω

2π
e−iω(t−t′) 2τc

1 + (ωτc)2
(A328)

= 〈(δn)2〉e−|t−t′|/τc . (A329)

The exponential decay of correlations is what we expect
when the transitions between the available states have no
memory. To be precise about this, if we imagine that a
system is in one state at time t = 0, and there is some
constant probability per unit time k of transitions out of
this state (with, in the simplest case, no returns to the
initial state), then the probability p(t) of still being in
the initial state at time t must obey

dp(t)

dt
= −kp(t), (A330)

and hence p(t) = e−kt. This intuition about the connec-
tion of exponential decays to the lack of memory is very
general, and should remind you of the exponential distri-
bution of times between transitions in the calculation of
chemical reaction rates (Section II.A), and of the expo-
nential distribution of times between events in a Poission
process (see Appendix A.1). In the present context, the
exponential decay of correlations tell us that the sponta-
neous transitions between the occupied and unoccupied
states of the receptor occur with constant probability per
unit time, or as Markovian jumps. The jumping rates
are just the rates k+ and k−, which means that when
we write chemical kinetic models for a whole ensemble of
molecules, we also can interpret these as Markov models
for transitions among the states of individual molecules
in the ensemble.
It is interesting that we recover the results for Marko-

vian jumping between two states without making this
microscopic model explicit. All we assume is the macro-
scopic kinetics and that the system is in thermal equi-
librium so that we can apply the fluctuation dissipation
theorem. In principle many different microscopic mod-
els can describe the molecular phenomena that are at
the basis of some observed macroscopic behavior, and we
know that many aspects of behavior in thermal equilib-
rium are independent of these details. The statistics of
fluctuations in a chemical kinetic system are an example
of this, at least near equilibrium.
The good news, then, is that fluctuations in receptor

occupancy are an inevitable consequence of the macro-
scopic, average behavior of receptor–ligand interactions,
independent of hypothesis about molecular details. The
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bad news is that the form of the results doesn’t seem
very related to the ideas of Berg and Purcell about the
precision of concentration measurements. To make these
connections clear we need to couple the dynamics of re-
ceptor occupancy to the diffusion of the ligand.

When the concentration is allowed to fluctuate we
write

dn(t)

dt
= k+c(6x0, t)[1− n(t)]− k−n(t), (A331)

where the receptor is located at 6x0, and

∂c(6x, t)

∂t
= D∇2c(6x, t)− δ(6x− 6x0)

dn(t)

dt
. (A332)

The first equation is as before, but with notation to re-
mind us that the concentration c is dynamic. The sec-
ond equation states that the ligand diffuses with diffu-
sion constant D, and when the receptor located at 6x0

increases its occupancy it removes exactly one molecule
from solution at that point.

Problem 189: Coupling diffusion and binding. In this
problem you’ll fill the details needed for the analysis of Eq’s (A331)
and (A332).

(a.) Begin by noticing that Eq (A332) is linear, so you should
be able to solve it exactly. Use Fourier transforms, both in space
and time, and then transform back to give a formal expression for

c̃(2x,ω) =

∫
dt e+iωtc(2x, t). (A333)

(b.) Linearize Eq (A331), in the same way that we did in the
preceding derivation, leading from Eq (A314) to (A319). Along

the way you will need an expression for c̃(2x0,ω), which you can
take from (a.). When the dust settles, you should find Eq’s (A334,
A335)

Following the same steps as above, we find the linear
response function

δñ(ω)

δF̃ (ω)
=

k+c(1− n̄)

kBT

1

−iω[1 + Σ(ω)] + (k+c̄+ k−)

(A334)

Σ(ω) = k+(1− n̄)

∫
d3k

(2π)3
1

−iω +Dk2
(A335)

The “self–energy” Σ(ω) is ultraviolet divergent, which
can be traced to the delta function in Eq (A332); we
have assumed that the receptor is infinitely small. A
more realistic treatment would give the receptor a finite
size, which is equivalent to cutting off the k integrals at
some (large) Λ ∼ π/a, with a the linear dimension of the
receptor. If we imagine mechanisms which read out the
receptor occupancy average over a time τ long compared
to the correlation time τc of the noise, then the relevant
quantity is the low frequency limit of the noise spectrum.
Hence,

Σ(ω , D/a2) ≈ Σ(0) =
k+(1− n̄)

2πDa
, (A336)

and

δñ(ω)

δF̃ (ω)
=

k+c̄(1− n̄)

kBT

[
−iω

(
1 +

k+(1− n̄)

2πDa

)
+ (k+c̄+ k−)

]−1

, (A337)

where c̄ is the mean concentration. Applying the
fluctuation–dissipation theorem once again we find the
spectral density of occupancy fluctuations,

Sn(ω) ≈ 2k+c̄(1− n̄)
1 + Σ(0)

ω2(1 + Σ(0))2 + (k+c̄+ k−)2
.

(A338)
The total variance in occupancy is unchanged, since this
is an equilibrium property of the system, while coupling
to concentration fluctuations serves only to change the
kinetics.

Problem 190: Reading off the results. You should be able
to verify the statements in the last sentence without detailed cal-

culation. Explain how to “read” Eq (A338) and identify the total
variance and correlation time.

Coupling to concentration fluctuations does serve to
renormalize the correlation time of the noise,

τc → τc[1 + Σ(0)]. (A339)

The new τc can be written as

τc =
1− n̄

k−
+

n̄(1− n̄)

2πDac̄
, (A340)
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so there is a lower bound on τc, independent of the kinetic
parameters k±,

τc >
n̄(1− n̄)

2πDac̄
. (A341)

As discussed previously, the relevant quantity is the
low frequency limit of the noise spectrum,

Sn(ω = 0) = 2k+c̄(1− n̄) · 1 + Σ(0)

(k+c̄+ k−)2
(A342)

=
2n̄(1− n̄)

k+c̄+ k−
+

[n̄(1− n̄)]2

πDac̄
. (A343)

If we average for a time τ , then the root-mean-square
error in our estimate of n will be

δnrms =

√
Sn(0) ·

1

τ
, (A344)

and we see that this noise level has a minimum value
independent of the kinetic parameters k±,

δnrms >
n̄(1− n̄)√
πDac̄τ

. (A345)

To relate these results back to the discussion by Berg
and Purcell, we note that the ω = 0 response of the mean
occupancy to changes in concentration can be written as

dn̄

d ln c
= n̄(1− n̄). (A346)

Thus, the fluctuations in n are equivalent to fluctuations
in c:

δceff
c̄

= (δ ln c)eff = δnrms

(
dn̄

d ln c

)−1

=
1√

πDac̄τ
.

(A347)
Except for the factor of

√
π, this is the Berg–Purcell re-

sult once again.
A startling feature of the Berg–Purcell argument is

that (it seems) it can be used both when a is the size of
a single receptor molecule and when a is the size of the
entire bacterium. Naively, we might expect that if there
areN receptors on the surface of the cell, then the signal–
to–noise ratio for concentration measurements should be
N times better, and correspondingly the threshold for
reliable detection should be

√
N times smaller,

δceff
c̄

∼ 1√
DNac̄τ

. (A348)

On the other hand, if we use the Berg–Purcell limit and
take the linear dimensions of the detector to be the radius
R of the bacterium, we should obtain

δceff
c̄

∼ 1√
DRc̄τ

. (A349)

What is going on? Does something special happen when
N ∼ R/a, so there is a crossover between the two results?

If we imagine a very large cell, and place N = 2 two re-
ceptors on opposite sides of the cell surface, it is hard to
imagine that there is anything wrong with the argument
leading to Eq (A348). More generally, if the receptors
are far apart, it is very plausible that they report inde-
pendent measurements of the concentration, and so Eq
(A348) should be correct. On the other hand, if we imag-
ine bringing two receptors closer and closer together, at
some point they will start to interact—a molecule re-
leased from one receptor can diffuse over and bind to the
other receptor—and this interaction might lead to corre-
lations in the noise, and a break down of the simple

√
N

improvement in the threshold for reliable detection.

FIG. 174 Correlated Brownian motion, from Meiners &
Quake (1999). At left, a schematic of the experiment. The
laser beams from the bottom of the figure create two op-
tical traps, which hold the microspheres in approximately
harmonic potential wells. The optics at the top allow for
measurements of the spheres’ positions with nanometer pre-
cision. At right, measurements of the auto– and cross–
correlations of the spheres’ positions; different curves for the
cross–correlation correspond to different mean separations of
the particles, which is expected to modulate the coupling be-
tween them through the fluid.

To understand how diffusive interactions lead to cor-
relations among receptors, it is useful to think about a
simpler problem. Suppose that we have two balls in a
fluid. If they are very far apart, each one experiences
a drag force and undergoes Brownian motion, and the
Brownian fluctuations in the position of each ball are in-
dependent of those in the other. If we bring the two balls
together, however, we know that they can influence each
other through the fluid: If one ball moves at velocity v1 it
not only experiences a drag force −γv1, it also applies a
“coupling” force γc(v1−v2) to the other ball (which may
be moving at velocity v2; clearly if v1 = v2 there should
be no coupling force). If the balls are close enough that
γc is significant, then in fact the Brownian motions of
the two balls become correlated. This correlation can be
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derived from the fluctuation–dissipation theorem, and it
also makes intuitive sense since a random Brownian step
of one object applies a force to the other. We can also
see this effect experimentally, as in Fig 174.

Problem 191: Correlated Brownian motion. To make the
situation in the previous paragraph precise, consider the case where
the particles are bound by springs (so they can’t diffuse away from
each other and reduce the coupling). Then, in the overdamped
case, the equations of motion are

γ
dx1

dt
= −κx1 − γc

(
dx1

dt
−

dx2

dt

)
+ F1(t) (A350)

γ
dx2

dt
= −κx2 − γc

(
dx2

dt
−

dx1

dt

)
+ F1(t) (A351)

where κ is the stiffness of the springs (assumed identical, for sim-
plicity), and Fi(t) is an external force applied to each particle i.

(a.) Derive the linear response function matrix, α̃ij(ω) such that

x̃i(ω) =
∑

j

α̃ij(ω)F̃j(ω). (A352)

(b.) The generalization of the fluctuation dissipation theorem
to many degrees of freedom states that the “cross–spectrum” of
variables i and j, defined by

〈xi(t)xj(t
′)〉 =

∫
dω

2π
e−iω(t−t′)Sij(ω), (A353)

is given by

Sij(ω) =
2kBT

ω
Im

[
α̃ij(ω)

]
. (A354)

Use this to derive the cross–spectrum of the position fluctuations
for the two particles.

(c.) Despite the viscous coupling, the potential energy is just the
sum of contributions from the two particles. From the Boltzmann
distribution, then, the positions should be independent variables.
Use your results in (b) to show that 〈xixj〉 = δijkBT/κ. Notice that
this corresponds to the instantaneous positions of the particles, as
we would measure by taking a snapshot (with a fast camera).

(d.) Suppose that instead of taking snapshots of the positions,
we average (as in the discussion above) for a long time, so what is
relevant is the low frequency limit of the power spectra. Show that
now the correlations are nonzero, and give an explicit formula for
the covariance matrix of fluctuations in the temporally averaged
positions.

If we imagine that positions of the Brownian particles
are like receptor occupancies, and an applied force on
all the particles is like a change in concentration of the
relevant ligand, then diffusion of the ligand serves the
same coupling effect as the viscosity of the fluid and will
generate correlations among the occupancy fluctuations
of nearby receptors. These correlations mean that using
the positions or velocities of N Brownian particles to
infer the applied force is not

√
N more accurate than

using one particle, and similarly using N receptors will
not generate a concentration measurement that is

√
N

times more accurate than is obtained with one receptor.

If we have N receptors, each of size a arrayed on a
structure of linear dimension R such as a ring or a sphere,
then as N becomes large the receptors are coming closer
and closer together, and we expect that correlations be-
come stronger. If we have two detectors making measure-
ments with noise that becomes more and more strongly
correlated, at some point they start to act like one big
detector. If we work through the details of the calcula-
tions for the case of multiple receptors,98 indeed we find
that as N become large, the correlations among the dif-
ferent receptors become limiting, and the threshold for
reliable detection approaches Eq (A349): the N → ∞
receptors packed into a structure with linear dimension
R acts like one receptor of size R. If we go back to the in-
tuitive Berg–Purcell argument about counting molecules
in a volume and getting a fresh count each time the vol-
ume clears from diffusion, what this means is that pack-
ing many receptor sites into a region of size R eventually
means that we get to count the molecules in a volume
∼ R3. There are geometrical factors for different spa-
tial arrangements of the receptors, but like the

√
π in Eq

(A347) these aren’t a big deal.

Almost all of PhD students in physics have seen some cases of the
fluctuation dissipation theorem, somewhere in their statistical me-
chanics courses. Whether you have seen the general formulation
depends a bit on who taught the course, and how far you went. As
usual, an excellent discussion can be found in Landau & Lifshitz
(1977). A later volume in the Landau and Lifshitz series (Lifshitz
& Pitaevskii 1980) provides a clear discussion of concentration fluc-
tuations, in Section 89. Many people find the idea of correlations
between Brownian particles to be surprising, so it’s worth look-
ing at real experiments that measure these correlations (Meiners &
Quake 1999). [should add refs to measurements on concentration
fluctuations—Feher and Weissman?]

Landau & Lifshitz 1977: Statistical Physics. LD Landau & EM
Lifshitz (Pergamon, Oxford, 1977).

Lifshitz & Pitaevskii 1980: Statistical Physics, Part 2. EM
Lifshitz & LP Pitaevskii (Pergamon, Oxford, 1980).

Meiners & Quake 1999: Direct measurement of hydrodynamic
cross correlations between two particles in an external poten-
tial. JC Meiners & SR Quake, Phys Rev Lett 82, 2211–2214
(1999).

The idea that fluctuations in certain chemical systems could be
described using the fluctuation dissipation theorem must have oc-
curred to many people, and I remember discussing it long ago
(Bialek 1987). The emergence of experiments on noise in the con-
trol of gene expression made it more interesting to get everything
straight, so my colleagues and I did this in a series of papers (Bialek
& Setayeshgar 2005, 2008; Tkačik & Bialek 2009).

Bialek 1987: Physical limits to sensation and perception. W
Bialek, Ann Rev Biophys Biophys Chem 16, 455–478 (1987).

98 See the references at the end of this section for details.
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Bialek & Setayeshgar 2005: Physical limits to biochemical sig-
naling. W Bialek & S Setayeshgar, Proc Nat’l Acad Sci
(USA) 102, 10040–10045 (2005).

Bialek & Setayeshgar 2008: Cooperativity, sensitivity and
noise in biochemical signaling. W Bialek & S Setayeshgar,
Phys Rev Lett 100, 258101 (2008).

Tkačik & Bialek 2009: Diffusion, dimensionality and noise in
transcriptional regulation. G Tkačik & W Bialek, Phys Rev
E 79, 051901 (2009).

7. Dimensionality reduction

I am leaving this unwritten for now, in the interests of
getting something readable out more quickly. I think it
is straightforward to write. To give a sense of what goes
here, I have started to compile the references. Evidently
papers by my colleagues and myself are over–represented;
of course a full account will look at a broader literature.

Problem 192: Analysis of a sensory neuron. [Get a big
data set from Rob on H1, and use it to take the students through
reverse correlation, spike triggered covariance and (maybe) maxi-
mally informative dimensions. Have repeats so one can compare
reduced models with the real information per spike.]

Problem 193: Analysis of DNA sequences. [Get data from
Justin and take the students through a small version of the problem
(maybe the RNAP site).]

d’Avella & Bizzi 1998: Low dimensionality of surpaspinally in-
duced force fields. A d’Avella & E Bizzi, Proc Nat’l Acad
Sci (USA) 95, 7711–7714 (1998).

Bialek & de Ruyter van Steveninck 2005: Features and di-
mensions: Motion estimation in fly vision. W Bialek & R
de Ruyter van Steveninck, arXiv:q–bio/0505003 (2005).

de Boer & Kuyper 1968: Triggered correlation. E de Boer &
P Kuyper, IEEE Trans Biomed Eng 15, 169–179 (1968).

Chigirev & Bialek 2004: Optimal manifold representation of
data: An information theoretic perspective. DV Chigirev
& W Bialek, in Advances in Neural Information Processing
16, S Thrun, L Saul & B Schölkopf, eds, pp 161–168 (MIT
Press, Cambridge, 2004).

Fairhall et al 2006: Selectivity for multiple stimulus features in
retinal ganglion cells. AL Fairhall, CA Burlingame, R
Narasimhan, RA Harris, JL Puchalla & MJ Berry II, J Neu-
rophysiol 96, 2724–2738 (2006).

Kinney et al 2007: Precise physical models of protein–DNA in-
teraction from high-throughput data. JB Kinney, G Tkačik
& CG Callan Jr, Proc Natl Acad Sci (USA) 104, 501–506
(2007).

Kinney et al 2010: Using deep sequencing to characterize the
biophysical mechanism of a transcriptional regulatory se-
quence. JB Kinney, A Murugan, CG Callan Jr & EC Cox,
Proc Nat’l Acad Sci (USA) 107, 9158–9163 (2010).

Osborne et al 2005: A sensory source for motor variation. LC
Osborne, SG Lisberger & W Bialek, Nature 437, 412–416
(2005).

Rust et al 2005: Spatiotemporal elements of macaque V1 recep-
tive fields. NC Rust , O Schwartz, JA Movshon & EP Si-
moncelli, Neuron 46, 945–956 (2005).

de Ruyter van Steveninck & Bialek 1988: Real–time perfor-
mance of a movement sensitive neuron in the blowfly visual
system: Coding and information transfer in short spike se-
quences. R de Ruyter van Steveninck & W Bialek, Proc R.
Soc London Ser. B 234, 379–414 (1988).

Sanger 2000: Human arm movements described by a low–
dimensional superposition of principal components. TD
Sanger, J Neurosci 20, 1066–1072 (2000).

Sharpee et al 2004: Analyzing neural responses to natural sig-
nals: Maximally informative dimensions. T Sharpee, NC
Rust & W Bialek, Neural Comp 16, 223–250 (2004);
arXiv:physics/0212110 (2002).

Stephens et al 2008: Dimensionality and dynamics in the be-
havior of C. elegans. GJ Stephens, B Johnson–Kerner, W
Bialek & WS Ryu, PLoS Comp Bio 4, e1000028 (2008);
arXiv:0705.1548 [q–bio.OT] (2007).

Stephens et al 2011: Searching for simplicity in the analysis
of neurons and behavior. GJ Stephens, LC Osborne &
W Bialek, Proc Nat’l Acad Sci (USA) in press (2011);
arXiv.org:1012.3896 [q–bio.NC] (2010).

8. Maximum entropy

This section is a bit old. It needs to be revised in light
of what happens in Sections III.A and III.D. Be sure that
we go into RESULTS on these methods, as promised for
neurons, at least.
The problem of finding the maximum entropy given

some constraint again is familiar from statistical mechan-
ics: the Boltzmann distribution is the distribution that
has the largest possible entropy given the mean energy.
More generally, imagine that we have knowledge not of
the whole probability distribution P (D) but only of some
expectation values,

〈fi〉 =
∑

D

P (D)fi(D), (A355)

where we allow that there may be several expectation val-
ues known (i = 1, 2, ...,K). Actually there is one more
expectation value that we always know, and this is that
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the average value of one is one; the distribution is nor-
malized:

〈f0〉 =
∑

D

P (D) = 1. (A356)

Given the set of numbers {〈f0〉, 〈f1〉, · · · , 〈fK〉} as con-
straints on the probability distribution P (D), we would
like to know the largest possible value for the entropy,

and we would like to find explicitly the distribution that
provides this maximum.
The problem of maximizing a quantity subject to con-

straints is formulated using Lagrange multipliers. In this
case, we want to maximize S = −

∑
P (D) log2 P (D), so

we introduce a function S̃, with one Lagrange multiplier
λ̃i for each constraint:

S̃[P (D)] = −
∑

D

P (D) log2 P (D)−
K∑

i=0

λ̃i〈fi〉 (A357)

= − 1

ln 2

∑

D

P (D) lnP (D)−
K∑

i=0

λi

∑

D

P (D)fi(D). (A358)

Our problem, then, is to find the maximum of the function S̃, but this is easy because the probability for each value
of D appears independently. As usual, we differentiate and set the result to zero:

0 =
∂S̃

∂P (D)
= − 1

ln 2
[lnP (D) + 1]−

K∑

i=0

λ̃ifi(D). (A359)

Rearranging, we have

lnP (D) = −1−
K∑

i=0

(ln 2)λ̃ifi(D) (A360)

P (D) =
1

Z
exp

[
−

K∑

i=1

λifi(D)

]
, (A361)

where λi = (ln 2)λ̃i, and Z = exp(1 + λ0) is a normal-
ization constant. Notice that this gives us the form of
the maximum entropy distribution, but we still have to
adjust the constants {λi} so that the distribution P (D)
predicts the measured values of the expectation values in
Eq (A355).

There are several things worth saying about maximum
entropy distributions. First, we recall that if the value
of D indexes the states n of a physical system, and we
know only the expectation value of the energy,

〈E〉 =
∑

n

PnEn, (A362)

then the maximum entropy distribution is

Pn =
1

Z
exp(−λEn), (A363)

which is the Boltzmann distribution (as promised).
In this case the Lagrange multiplier λ has physical
meaning—it is the inverse temperature. Further, the
function S̃ that we introduced for convenience is the dif-
ference between the entropy and λ times the energy; if

we divide through by λ and flip the sign, then we have
the energy minus the temperature times the entropy, or
the free energy. Thus the distribution which maximizes
entropy at fixed average energy is also the distribution
which minimizes the free energy.
If we are looking at a magnetic system, for example,

and we know not just the average energy but also the
average magnetization, then a new term appears in the
exponential of the probability distribution, and we can
interpret this term as the magnetic field multiplied by
the magnetization. More generally, for every order pa-
rameter which we assume is known, the probability dis-
tribution acquires a term that adds to the energy and
can be thought of as a product of the order parameter
with its conjugate force. Again, all these remarks should
be familiar from a statistical mechanics course.
Consider the situation in which the data D are real

numbers x. Suppose that we know the mean value of x
and its variance. This is equivalent to knowledge of two
expectation values,

f̄1 = 〈x〉 =
∫

dxP (x)x, and (A364)

f̄2 = 〈x2〉 =
∫

dxP (x)x2, (A365)

so we have f1(x) = x and f2(x) = x2. Thus, from Eq.
(A361), the maximum entropy distribution is of the form

P (x) =
1

Z
exp(−λ1x− λ2x

2). (A366)
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This is a funny way of writing a more familiar ob-
ject. If we identify the parameters λ2 = 1/(2σ2) and
λ1 = −〈x〉/σ2, then we can rewrite the maximum en-
tropy distribution as the usual Gaussian,

P (x) =
1√
2πσ2

exp

[
− 1

2σ2
(x− 〈x〉)2

]
. (A367)

We recall that Gaussian distributions usually arise
through the central limit theorem: if the random vari-
ables of interest can be thought of as sums of many inde-
pendent events, then the distributions of the observable
variables converge to Gaussians. This provides us with a
‘mechanistic’ or reductionist view of why Gaussians are
so important. A very different view comes from infor-
mation theory: if all we know about a variable is the
mean and the variance, then the Gaussian distribution is
the maximum entropy distribution consistent with this
knowledge. Since the entropy measures (returning to our
physical intuition) the randomness or disorder of the sys-
tem, the Gaussian distribution describes the ‘most ran-
dom’ or ‘least structured’ distribution that can generate
the known mean and variance.

Problem 194: Less than maximum entropy. Many nat-
ural signals are strongly nonGaussian. In particular exponential
(or nearly exponential) distribution are common in studies on the
statistics of natural images and natural sounds. With the same
mean (which you can call zero) and variance, what is the differ-
ence in entropy between the exponential [P (x) ∝ exp(−λ|x|)] and
Gaussian distributions? If we imagine that this difference is rele-
vant to every pixel (or to every Fourier component) in an image, is
this significant compared to the 8 bits/pixel of a standard digital
image? What if P (x) ∝ exp(−λ|x|µ), with µ < 1?

[maybe we should put the start of networks here?]

[maybe this should be connections, more generally (in-
cluding what we have to say about counting), and that
would leave a section to address the experimental situa-
tion more specifically?]
Probability distributions that have the maximum en-

tropy form of Eq. (A361) are special not only because
of their connection to statistical mechanics, but because
they form what the statisticians call an ‘exponential fam-
ily,’ which seems like an obvious name. The important
point is that exponential families of distributions are
(almost) unique in having sufficient statistics. To un-
derstand what this means, consider the following prob-
lem: we observe a set of samples D1, D2, · · · , DN , each
of which is drawn independently and at random from a
distribution P (D|{λi}). Assume that we know the form
of this distribution but not the values of the parameters
{λi}. How can we estimate these parameters from the
set of observations {Dn}? Notice that our data set {Dn}
consists of N numbers, and N can be very large; on the
other hand there typically are a small number K , N
of parameters λi that we want to estimate. Even in this
limit, no finite amount of data will tell us the exact val-
ues of the parameters, and so we need a probabilistic
formulation: we want to compute the distribution of pa-
rameters given the data, P ({λi}|{Dn}). We do this using
Bayes’ rule,

P ({λi}|{Dn}) =
1

P ({Dn})
· P ({Dn}|{λi})P ({λi}),

(A368)
where P ({λi}) is the distribution from which the param-
eter values themselves are drawn. Then since each datum
Dn is drawn independently, we have

P ({Dn}|{λi}) =
N∏

n=1

P (Dn|{λi}). (A369)

For probability distributions of the maximum entropy
form we can proceed further, using Eq. (A361):

P ({λi}|{Dn}) =
1

P ({Dn})
· P ({Dn}|{λi})P ({λi})

=
P ({λi})
P ({Dn})

N∏

n=1

P (Dn|{λi}) (A370)

=
P ({λi})

ZNP ({Dn})

N∏

n=1

exp

[
−

K∑

i=1

λifi(Dn)

]
(A371)

=
P ({λi})

ZNP ({Dn})
exp

[
−N

K∑

i=1

λi
1

N

N∑

n=1

fi(Dn)

]
. (A372)

We see that all of the information that the data points {Dn} can give about the parameters λi is contained in
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the average values of the functions fi over the data set,
or the ‘empirical means’ f̄i,

f̄i =
1

N

N∑

n=1

fi(Dn). (A373)

More precisely, the distribution of possible parameter val-
ues consistent with the data depends not on all details of
the data, but rather only on the empirical means {f̄i},

P ({λi}|D1, D2, · · · , DN ) = P ({λi}|{f̄j}), (A374)

and a consequence of this is the information theoretic
statement

I(D1, D2, · · · , DN → {λi}) = I({f̄j} →{ λi}). (A375)

This situation is described by saying that the reduced set
of variables {f̄j} constitute sufficient statistics for learn-
ing the distribution. Thus, for distributions of this form,
the problem of compressing N data points into K << N
variables that are relevant for parameter estimation can
be solved explicitly: if we keep track of the running aver-
ages f̄i we can compress our data as we go along, and we
are guaranteed that we will never need to go back and
examine the data in more detail. A clear example is that
if we know data are drawn from a Gaussian distribution,
running estimates of the mean and variance contain all
the information available about the underlying parame-
ter values.

The Gaussian example makes it seem that the con-
cept of sufficient statistics is trivial: of course if we know
that data are chosen from a Gaussian distribution, then
to identify the distribution all we need to do is to keep
track of two moments. Far from trivial, this situation is
quite unusual. Most of the distributions that we might
write down do not have this property—even if they are
described by a finite number of parameters, we cannot
guarantee that a comparably small set of empirical ex-
pectation values captures all the information about the
parameter values. If we insist further that the sufficient
statistics be additive and permutation symmetric, then it
is a theorem that only exponential families have sufficient
statistics.

[say more about this!]
[where do we put connection of matching expectation

values to maximum likelihood?]
The generic problem of information processing, by the

brain or by a machine, is that we are faced with a huge
quantity of data and must extract those pieces that are
of interest to us. The idea of sufficient statistics is in-
triguing in part because it provides an example where
this problem of ‘extracting interesting information’ can
be solved completely: if the points D1, D2, · · · , DN are
chosen independently and at random from some distribu-
tion, the only thing which could possibly be ‘interesting’
is the structure of the distribution itself (everything else

is random, by construction), this structure is described
by a finite number of parameters, and there is an explicit
algorithm for compressing theN data points {Dn} intoK
numbers that preserve all of the interesting information.
The crucial point is that this procedure cannot exist in
general, but only for certain classes of probability distri-
butions. This is an introduction to the idea some kinds
of structure in data are learnable from random examples,
while other structures are not.
Consider the (Boltzmann) probability distribution for

the states of a system in thermal equilibrium. If we ex-
pand the Hamiltonian as a sum of terms (operators) then
the family of possible probability distributions is an ex-
ponential family in which the coupling constants for each
operator are the parameters analogous to the λi above.
In principle there could be an infinite number of these
operators, but for a given class of systems we usually
find that only a finite set are “relevant” in the renormal-
ization group sense: if we write an effective Hamiltonian
for coarse grained degrees of freedom, then only a finite
number of terms will survive the coarse graining proce-
dure. If we have only a finite number of terms in the
Hamiltonian, then the family of Boltzmann distributions
has sufficient statistics, which are just the expectation
values of the relevant operators. This means that the
expectation values of the relevant operators carry all the
information that the (coarse grained) configuration of the
system can provide about the coupling constants, which
in turn is information about the identity or microscopic
structure of the system. Thus the statement that there
are only a finite number of relevant operators is also the
statement that a finite number of expectation values car-
ries all the information about the microscopic dynamics.
The ‘if’ part of this statement is obvious: if there are
only a finite number of relevant operators, then the ex-
pectation values of these operators carry all the informa-
tion about the identity of the system. The statisticians,
through the theorem about the uniqueness of exponen-
tial families, give us the ‘only if’: a finite number of
expectation values (or correlation functions) can provide
all the information about the system only if the effective
Hamiltonian has a finite number of relevant operators. I
suspect that there is more to say along these lines.
An important example of the maximum entropy idea

arises when the data D are generated by counting. Then
the relevant variable is an integer n = 0, 1, 2, · · · , and
it is natural to imagine that what we know is the mean
count 〈n〉. One way this problem can arise is that we
are trying to communicate and are restricted to sending
discrete or quantized units. An obvious case is in opti-
cal communication, where the quanta are photons. In
the brain, quantization abounds: most neurons do not
generate continuous analog voltages but rather commu-
nicate with one another through stereotyped pulses or
spikes, and even if the voltages vary continuously trans-
mission across a synapse involves the release of a chem-
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ical transmitter which is packaged into discrete vesicles.
It can be relatively easy to measure the mean rate at
which discrete events are counted, and we might want to
know what bounds this mean rate places on the ability
of the cells to convey information. Alternatively, there is
an energetic cost associated with these discrete events—
generating the electrical currents that underlie the spike,
constructing and filling the vesicles, ... —and we might
want to characterize the mechanisms by their cost per
bit rather than their cost per event [Laughlin et al 1998,
Sarpeshkar 1998].

If we know the mean count, there is (as for the Boltz-
mann distribution) only one function f1(n) = n that can
appear in the exponential of the distribution, so that

P (n) =
1

Z
exp(−λn). (A376)

Of course we have to choose the Lagrange multiplier to fix
the mean count, and it turns out that λ = ln(1 + 1/〈n〉)
[do the calculation of λ!]; further we can find the entropy

Smax(counting) = log2(1 + 〈n〉) + 〈n〉 log2(1 + 1/〈n〉).
(A377)

The information conveyed by counting something can
never exceed the entropy of the distribution of counts,
and if we know the mean count then the entropy can
never exceed the bound in Eq. (A377). Thus, if we have a
system in which information is conveyed by counting dis-
crete events, the simple fact that we count only a limited
number of events (on average) sets a bound on how much
information can be transmitted. We will see that real
neurons and synapses approach this fundamental limit.

One might suppose that if information is coded in the
counting of discrete events, then each event carries a cer-
tain amount of information. In fact this is not quite right.

In particular, if we count a large number of events then
the maximum counting entropy becomes

Smax(counting; 〈n〉 → ∞) ∼ log2(〈n〉e), (A378)

and so we are guaranteed that the entropy (and hence
the information) per event goes to zero, although the
approach is slow. On the other hand, if events are very
rare, so that the mean count is much less than one, we
find the maximum entropy per event

1

〈n〉Smax(counting; 〈n〉 << 1) ∼ log2

(
e

〈n〉

)
, (A379)

which is arbitrarily large for small mean count. This
makes sense: rare events have an arbitrarily large ca-
pacity to surprise us and hence to convey information.
It is important to note, though, that the maximum en-
tropy per event is a monotonically decreasing function of
the mean count. Thus if we are counting spikes from a
neuron, counting in larger windows (hence larger mean
counts) is always less efficient in terms of bits per spike.
If it is more efficient to count in small time windows,

perhaps we should think not about counting but about
measuring the arrival times of the discrete events. If we
look at a total (large) time interval 0 < t < T , then we
will observe arrival times t1, t2, · · · , tN in this interval;
note that the number of events N is also a random vari-
able. We want to find the distribution P (t1, t2, · · · , tN )
that maximizes the entropy while holding fixed the aver-
age event rate. We can write the entropy of the distribu-
tion as a sum of two terms, one from the entropy of the
arrival times given the count and one from the entropy
of the counting distribution:

S = −
∞∑

N=0

∫
dN tnP (t1, t2, · · · , tN ) log2 P (t1, t2, · · · , tN ) (A380)

=
∞∑

N=0

P (N)Stime(N)−
∞∑

N=0

P (N) log2 P (N), (A381)

where we have made use of

P (t1, t2, · · · , tN ) = P (t1, t2, · · · , tN |N)P (N), (A382)

and the (conditional) entropy of the arrival times in given by

Stime(N) = −
∫

dN tnP (t1, t2, · · · , tN |N) log2 P (t1, t2, · · · , tN |N). (A383)

If all we fix is the mean count, 〈N〉 =
∑

N P (N)N ,
then the conditional distributions for the locations

of the events given the total number of events,
P (t1, t2, · · · , tN |N), are unconstrained. We can maxi-
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mize the contribution of each of these terms to the en-
tropy [the terms in the first sum of Eq. (A381)] by mak-
ing the distributions P (t1, t2, · · · , tN |N) uniform, but it
is important to be careful about normalization. When
we integrate over all the times t1, t2, · · · , tN , we are for-
getting that the events are all identical, and hence that
permutations of the times describe the same events. Thus
the normalization condition is not

∫ T

0
dt1

∫ T

0
dt2 · · ·

∫ T

0
dtNP (t1, t2, · · · , tN |N) = 1,

(A384)
but rather

1

N !

∫ T

0
dt1

∫ T

0
dt2 · · ·

∫ T

0
dtNP (t1, t2, · · · , tN |N) = 1.

(A385)
This means that the uniform distribution must be

P (t1, t2, · · · , tN |N) =
N !

TN
, (A386)

and hence that the entropy [substituting into Eq. (A381)]
becomes

S = −
∞∑

N=0

P (N)

[
log2

(
N !

TN

)
+ log2 P (N)

]
. (A387)

Now to find the maximum entropy we proceed as before.
We introduce Lagrange multipliers to constrain the mean
count and the normalization of the distribution P (N),
which leads to the function

S̃ = −
∞∑

N=0

P (N)

[
log2

(
N !

TN

)
+ log2 P (N) + λ0 + λ1N

]
,

(A388)
and then we maximize this function by varying P (N).
As before the different Ns are not coupled, so the opti-
mization conditions are simple:

0 =
∂S̃

∂P (N)
(A389)

= − 1

ln 2

[
ln

(
N !

TN

)
+ lnP (N) + 1

]
− λ0 − λ1N,

(A390)

lnP (N) = − ln

(
N !

TN

)
− (λ1 ln 2)N − (1 + λ0 ln 2).(A391)

Combining terms and simplifying, we have

P (N) =
1

Z

(λT )N

N !
, (A392)

Z =
∞∑

N=0

(λT )N

N !
= exp(λT ). (A393)

This is the Poisson distribution.
The Poisson distribution usually is derived (as in our

discussion of photon counting) by assuming that the

probability of occurrence of an event in any small time
bin of size ∆τ is independent of events in any other bin,
and then we let ∆τ → 0 to obtain a distribution in the
continuum. This is not surprising: we have found that
the maximum entropy distribution of events given the
mean number of events (or their density 〈N〉/T ) is given
by the Poisson distribution, which corresponds to the
events being thrown down at random with some proba-
bility per unit time (again, 〈N〉/T ) and no interactions
among the events. This describes an ‘ideal gas’ of events
along a line (time). More generally, the ideal gas is the
gas with maximum entropy given its density; interactions
among the gas molecules always reduce the entropy if we
hold the density fixed.
If we have multiple variables, x1, x2, · · · , xN , then we

can go through all of the same analyses as before. In
particular, if these are continuous variables and we are
told the means and covariances among the variables, then
the maximum entropy distribution is again a Gaussian
distribution, this time the appropriate multidimensional
Gaussian. This example, like the other examples so far,
is simple in that we can give not only the form of the
distribution but we can find the values of the parameters
that will satisfy the constraints. In general this is not
so easy: think of the Boltzmann distribution, where we
would have to adjust the temperature to obtain a given
value of the average energy, but if we can give an explicit
relation between the temperature and average energy for
any system then we have solved almost all of statistical
mechanics!
[obviously this needs to be much better!] One impor-

tant example is provided by binary strings. If we label
1s by spin up and 0s by spin down, the binary string is
equivalent to an Ising chain {σi}. Fixing the probability
of a 1 is the same as fixing the mean magnetization 〈σi〉.
If, in addition, we specify the joint probability of two 1s
occurring in bins separated by n steps (for all n), this
is equivalent to fixing the spin–spin correlation function
〈σiσj〉. For simplicity, consider the case where the system
is translation invariant, so the average magnetization is
the same at all sites and the correlation function 〈σiσj〉
depends only on i−j. The maximum entropy distribution
consistent with these constraints is an Ising model,

P [{σi}] =
1

Z
exp



−h
∑

i

σi −
∑

ij

J(i− j)σiσj



 ;

(A394)
note that the interactions are pairwise (because we fix
only a two–point function) but not limited to near neigh-
bors. Obviously the problem of finding the exchange in-
teractions which match the correlation function is not so
simple.
Another interesting feature of the Ising or binary string

problem concerns higher order correlation functions. If
we have continuous variables and constrain the two–point
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correlation functions, then the maximum entropy distri-
bution is Gaussian and there are no nontrivial higher
order correlations. But if the signals we observe are dis-
crete, as in the sequence of spikes from a neuron, then the
maximum entropy distribution is an Ising model and this
model makes nontrivial predictions about the multipoint
correlations. In particular, if we record the spike trains
from K separate neurons and measure all of the pairwise
correlation functions, then the corresponding Ising model
predicts that there will be irreducible correlations among
triplets of neurons, and higher order correlations as well
[Schneidman et al 2006].

[Where did this come from?] Before closing the dis-
cussion of maximum entropy distributions, note that our
simple solution to the problem, Eq. (A361), might not
work. Taking derivatives and setting them to zero works
only if the solution to our problem is in the interior of the
domain allowed by the constraints. It is also possible that
the solution lies at the boundary of this allowed region.
This seems especially likely when we combine different
kinds of constraints, such as trying to find the maximum
entropy distribution of images consistent both with the
two–point correlation function and with the histogram of
intensity values at one point. The relevant distribution
is a 2D field theory with a (generally nonlocal) quadratic
‘kinetic energy’ and some arbitrary local potential; it is
not clear that all combinations of correlations and his-
tograms can be realized, nor that the resulting field the-
ory will be stable under renormalization; the empirical
histograms of local quantities in natural images are sta-
ble under renormalization [Ruderman and Bialek 1994].
There are many open questions here.

[why?]

9. Measuring information transmission

When we study classical mechanics, we can make a di-
rect connection between the positions and momenta that
appear in the equations of motion and the positions and
momenta of the particles that we “see,” as in the plan-
etary orbits. This connection is a little bit subtle, since
we don’t actually measure particle positions; more likely
we count the photons arriving at some detector, forming
an image, or we measure the delay in propagation of a
pulse used in radar, or ... . But one can think of classical
mechanics, in contrast to quantum mechanics, as being
the domain of physics in which these subtleties are not
important. When we move to statistical physics the con-
nection between what we write in equations and what
we observe in the world becomes more abstract. The
fundamental objects in statistical physics are probability
distributions, and as a matter of definition one cannot
measure a distribution. Instead, Nature (or even a con-
trolled experiment) provides us with samples taken out of
these distributions. This has very serious consequences

for any attempt to “measure” information flow.
In thermodynamics, entropy changes are connected to

heat flow, and so we can at least measure the difference
in entropy between two states by tracking these heat
flows. Indeed, there is a long tradition of integrating
these changes from some convenient reference to “mea-
sure” the entropy of states at intermediate temperatures.
As far as I know, there is no analog of this in the informa-
tion theoretic context. Thus, although Shannon tells us
that the entropy is a fundamental property of the distri-
bution out which signals are drawn, there is no universal
entropy meter.
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FIG. 175 The sampling problem in entropy estimation. At
left, the frequency of occurrence found from five examples
of N = 100 samples drawn out of K = 10 bins; the true
probability distribution is flat, pi = 0.1 for all i. At right,
we estimate the entropy of the distribution by identifying the
observed frequencies with probabilities. The distribution of
entropies obtained in this way, from many “experiments” with
N = 100 and K = 10, is shown as a solid line, and should be
compared with the true entropy, shown by a dashed line at
Strue = log2(10).

To get a feeling for the problem, consider Fig 175. Here
we have a variable that can take on ten possible values
(i = 1, 2, · · · , 10), all equally likely (pi = 0.1 for all i), and
we draw N = 100 samples. If we look at the frequency
with which each possibility occurs, of course we don’t see
an exactly flat distribution. Since with 10 bins and 100
samples we expect 10 samples per bin, it’s not surprising
that the fluctuations are on the scale of 1/

√
10 ∼ 30%.

These fluctuations, however, are random—they average
to zero if we do the same experiment many times. The
problem is that if we identify the frequencies of occur-
rence as our best estimates of the underlying probabili-
ties, and use these estimates to compute the entropy, we
make a systematic error, as is clear from the results in
the right panel of Fig 175.
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Problem 195: Experiment with sampling. Generate the
analog of Fig 175 but with different values for the number of pos-
sible values K, where i = 1, 2, · · · ,K. You should also try different
probability distributions (e.g., pi ∝ 1/i, Zipf’s law). Experiment.
Convince yourself that, by identifying probabilities with the ob-
served frequencies of occurrence, you always underestimate the en-
tropy.

The problem illustrated in Fig 175 might seem very
specific to the conditions of that simulation (e.g., that the
true distribution is flat, and hence the entropy is maxi-
mal, so perhaps all errors have to be biased downward?),
but in fact is very general. Let’s consider drawing sam-
ples out of a discrete set of possibilities, i = 1, 2, · · · ,K,
with probabilities p ≡ {p1, p2, · · · , pK}. If we draw N
samples all together, we will find ni examples of the out-
come i, and of course on average 〈ni〉 = Npi. Since we’re

counting random events, we expect that the variance of
the number of events of type i will be equal to the mean,
〈(δni)2〉 = 〈ni〉 = Npi. If we define the frequency of
events in the usual way as fi = ni/N , then we have

〈fi〉 = pi and 〈(δfi)2〉 =
pi
N

. (A395)

But if we identify frequencies as our best estimate of
probabilities (and we’ll see below in what sense this fa-
miliar identification is correct), we can construct a ‘naive’
estimate of the entropy,

Snaive = −
K∑

i=1

fi log2 fi. (A396)

Since the frequencies are close to the true probabilities
when the number of samples is large, we can do a Taylor
expansion around the point fi = 〈fi〉 = pi:

Snaive = −
K∑

i=1

fi log2 fi

= −
K∑

i=1

(pi + δfi) log2(pi + δfi) (A397)

= −
K∑

i=1

pi log2 pi −
K∑

i=1

[
log2 pi +

1

ln 2

]
δfi −

1

2

K∑

i=1

[
1

(ln 2)pi

]
(δfi)

2 + · · · . (A398)

The first term in the series is the true entropy. The sec-
ond term is a random error which averages to zero. The
third term, however, has a nonzero mean, since it de-
pends on the square of the fluctuations δfi. Thus when
we compute the average of our naive entropy estimate we
find

〈Snaive〉 = Strue −
1

2 ln 2

K∑

i=1

〈(δfi)2〉
pi

+ · · · (A399)

= Strue −
1

2 ln 2

K∑

i=1

pi
Npi

+ · · · (A400)

= Strue −
K

2 ln 2N
+ · · · . (A401)

Thus, no matter what the underlying true distribution,
identifying frequencies with probabilities leads to a sys-
tematic (not random!) underestimate of the entropy, and
the size of this systematic error is proportional to the
number of accessible states (K) and inversely propor-
tional to the number of samples (N).

The fact that the systematic errors have a very definite
structure suggests that we should be able to correct them.
Let us see what happens to our entropy estimates in the

“experiment” of Fig 175 as we change the number of
samples N . More precisely, suppose we have only the
N = 100 samples, but we choose n < 100 points out
of these samples, and estimate the entropy based only
on this more limited data. Equation (A401) suggests
that if we plot our entropy estimate vs. 1/n, we should
see a straight line; a higher order version of the same
calculation shows that there are quadratic corrections.
Indeed, as shown in Fig 176, this works. It is important
to note that, for all the accessible range of sample sizes,
the entropy estimate is smaller than the true entropy, and
this error is larger than our best estimate of the error
bar; this really is dangerous. On the other hand, once
we recognize the systematic dependence of the entropy
estimate on the number of samples, we can extrapolate
to recover an estimate that is correct within error bars.
What we have seen here about entropy is also true about
information, which is a difference between entropies.
It is also important to show that this extrapolation

procedure works also for real data, not just for the ide-
alized case where we choose samples independently out
of a known distribution. Decide what examples to use.
One from neurons, one from genes, one from sequences?
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FIG. 176 Entropy vs. number of samples. Starting with
N = 100 samples, as in Fig 175, we draw smaller numbers of
samples at random, compute the entropy, and search for the
systematic behavior predicted in Eq (A401). Green points
are from different subsamplings, blue circles show means and
standard deviations. Red line is a linear fit for n > N/2, and
red dashed line is a quadratic fit to all of the data shown.
Red square is the extrapolation, with an error bar

√
2 smaller

than the standard deviation found empirically at n = N/2,
and the dashed black line is Strue = log2(10).

So far one figure from neurons, Fig 177.
One might worry that entropy estimates based on ex-

trapolations are a bit heuristic. If we can really convince
ourselves that we see a clean linear dependence on 1/N ,
things are likely to be fine, but this leaves room for con-
siderable murkiness. Also, since the expansion of the
entropy estimate in powers of 1/N obviously is not fully
convergent, there is always the problem of choosing the
regime over which the asymptotic behavior is observed,
a widespread problem in fitting to such asymptotic se-
ries. While for many purposes these problems can be
dismissed, it would be nice to do better. It also is an
interesting mathematical challenge to ask if we can esti-
mate the entropy of a probability distribution even when
the number of samples we have seen is small, perhaps
even smaller than the number of possible states for the
system.

Whenever we do a Monte Carlo simulation of a physical
system in thermal equilibrium, we are in the “undersam-
pled” limit, where the number of samples we collect must
be much smaller than the number of possible states. Usu-
ally if we want to estimate entropy from Monte Carlo, we
use the identity which relates entropy to an integral of
the heat capacity, since heat capacity is related to en-

ergy fluctuations and these are easy to compute at each
temperature. Of course, if you just have samples of the
state of the system, and don’t actually know the Hamil-
tonian, you can’t compute the energy and so this doesn’t
work. Ma suggested another approach, asking how often
the system revisits the same state. In the simple case
(relevant for the microcanonical ensemble) where all K
possible states are equally likely, the probability that two
independent samples are in the same state is 1/K. But
if we have N samples, we have ∼ N2 pairs that we can
test. Thus we can get a good estimate of the probability
of occupying the same state once we observe N ∼

√
K

independent samples, far less than the number of states.
As an illustration, Fig 178 shows the frequency of coinci-
dences when we draw N samples from a uniform distri-
bution with K = 100 states.
We recall the classic problem of how many people need

to be in the room before there is a good chance of two
people have the same birthday. The answer is not 365,
but more nearly

√
365. Put another way, if we didn’t

know the length of the year, we could estimate this by
polling people about their birthdays, and keeping track
of coincidences. Long before we have sampled all pos-
sible birthdays, Fig 178 shows us that our estimate of
this coincidence probability will stabilize—which birth-
days are represented will vary from sample to sample,
but the fraction of coincidences will vary much less.
In these simple examples, the probability distribution

is uniform, and so the entropy is just the log of the num-
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FIG. 1. (a) Raw voltage records from a tungsten microelec-
trode near the cell H1 are filtered to isolate the action potentials.
The expanded scale shows a superposition of several spikes to
illustrate their stereotyped form. (b) Angular velocity of a pat-
tern moving across the fly’s visual field produces a sequence
of spikes in H1, indicated by dots. Repeated presentations pro-
duce slightly different spike sequences. For experimental meth-
ods, see Ref. [8].

Third, we are interested in the extensive component of the

entropy, and we find that a clean approach to extensivity

is visible before sampling problems set in. Finally, for

the neuron studied—the motion sensitive neuron H1 in the

fly’s visual system—we can actually collect many hours

of data.

H1 responds to motion across the entire visual field,

producing more spikes for an inward horizontal motion

and fewer spikes for an outward motion; vertical motions

are coded by other neurons [13]. These cells provide vi-

sual feedback for flight control. In the experiments an-

alyzed here, the fly is immobilized and views computer

generated images on a display oscilloscope. For simplic-

ity these images consist of vertical stripes with randomly

chosen grey levels, and this pattern takes a random walk

in the horizontal direction [14].

We begin our analysis with time bins of size Dt !
3 ms. For a window of T ! 30 ms—corresponding to

the behavioral response time of the fly [15]—Fig. 2

shows the histogram !p̃i", and the naive entropy esti-
mates. We see that there are very small finite data set

corrections (,1023), well fit by [11]

Snaive#T , Dt; size$ ! S#T , Dt$ 1
S1#T , Dt$
size

1
S2#T , Dt$
size2 . (3)

Under these conditions we feel confident that the extrapo-

lated S#T , Dt$ is the correct entropy. For sufficiently

large T , finite size corrections are larger, the contribution
of the second correction is significant, and the extrapola-

tion to infinite size is unreliable.

Ma [12] discussed the problem of entropy estimation in

the undersampled limit. For probability distributions that

are uniform on a set of N bins (as in the microcanonical

ensemble), the entropy is log2 N and the problem is to

estimate N . Ma noted that this could be done by counting

FIG. 2. The frequency of occurrence for different words in
the spike train, with Dt ! 3 ms and T ! 30 ms. Words
are placed in order so that the histogram is monotonically
decreasing; at this value of T the most likely word corresponds
to no spikes. Inset shows the dependence of the entropy,
computed from this histogram according to Eq. (1), on the
fraction of data included in the analysis. Also plotted is a least
squares fit to the form S ! S0 1 S1%size 1 S2%size2. The
intercept S0 is our extrapolation to the true value of the entropy
with infinite data [11].

198

FIG. 177 Entropy extrapolation with real neural data, from
Strong et al (1998a). From the experiment on fly motion–
sensitive neurons discussed in Figs 132 and 133, we look at
10–letter words with time resolution ∆τ = 3ms. The main
figure shows the “Zipf plot” of frequency vs. rank from the
full data set. Note that since there are sometimes (but rarely)
two spike in one 3ms bin, there are more than 1024 words.
The inset shows the estimated entropy as a function of the
(inverse) fraction of the full data set used. The line through
the data is from Eq (A401).
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FIG. 178 Estimating coincidence probability. Samples are
drawn from a distribution that is uniform over K = 100 pos-
sible states. Green dots show examples, blue circles the mean
and standard deviation across many draws of N samples, and
black dashed line is the exact answer. We see that the esti-
mate is quite good even when N ∼

√
K + K.

ber of possible states, and this in turn is inversely pro-
portional to the probability of a coincidence. So, being
able to estimate this probability is equivalent to being
able to estimate the entropy. Thus we should be able
to generate reliable entropy estimates even in the under-
sampled regime, just by counting coincidences. This is a
beautiful idea. The challenge is to generalize this idea to
non–uniform distributions.

A better understanding of the entropy estimation prob-
lem has come through a Bayesian approach. Rather
than identifying frequencies with probabilities, we imag-
ine that the distribution itself is drawn from a distribu-
tion. To be formal, let the possible states of the system
be i = 1, 2, · · · ,K, and let the probability distribution
over these states be p1, p2, · · · , pK ≡ p. This distribu-
tion itself is drawn from some distribution function P(p).
The distribution has to be normalized, but it is tempting
to think that, other than normalization, all distributons
should be equally likely, so that

P(p) =
1

Z
δ

(
K∑

i=1

pi − 1

)
. (A402)

If we observe n1 samples in the first state, n2 samples in
the second state, and so on, then the probability of this

occurring assuming some distribution p is

P ({ni}|p) ∝
K∏

i=1

pni
i , (A403)

and so by Bayes’ rule we have

P(p|{ni}) =
P ({ni}|p)P(p)

P ({ni})
(A404)

∝ 1

Z

(
K∏

i=1

pni
i

)
δ

(
K∑

i=1

pi − 1

)
. (A405)

If we want to compute our best estimate of the distribu-
tion, we have to do the integral

p̂i =
1

Z

∫
dKp pni+1

i




∏

j -=i

p
nj

j



 δ




K∑

j=1

pj − 1



 ,

(A406)
where the normalization Z is given by

Z =

∫
dKp




K∏

j=1

p
nj

j



 δ




K∑

j=1

pj − 1



 . (A407)

To make progress we introduce the Fourier representation
of the delta function, so that, for example,

Z =

∫
dKp




K∏

j=1

p
nj

j




∫

dλ

2π
exp



+iλ
K∑

j=1

pj − iλ





(A408)

=

∫
dλ

2π
e−iλ

K∏

j=1

∫
dpj p

nj

j eiλpj . (A409)

Since we have the delta function, we are free to let the
integrals over pj run from 0 to ∞; the delta function will
enforce the constraint that pi ≤ 1 for all i. Then the key
ingredient of the calculation, then, is the integral

f(n;λ) =

∫ ∞

0
dp pneiλp. (A410)

At the end of our calculation we will have to integrate
over λ. Let’s assume that we will be able to deform the
contour of this integral into the complex λ plane in such
a way that the p integral in Eq (A410) is well behaved.
Then we can write

f(n;λ) =

∫ ∞

0
dp pneiλp (A411)

=

∫ ∞

0
dp pne−(−iλ)p =

n!

(−iλ)n+1
. (A412)
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Putting these pieces together, we have

Z =

∫
dλ

2π
e−iλ

K∏

j=1

nj!

(−iλ)nj+1
(A413)

=




K∏

j=1

nj!




∫

dλ

2π

e−iλ

(−iλ)
∑K

j=1(nj+1)
(A414)

=




K∏

j=1

nj!




∫

dλ

2π

e−iλ

(−iλ)N+K
, (A415)

where N =
∑

j nj is the total number of samples, and
as before K is the number of possible states. A similar
argument gives

p̂i =
1

Z (ni + 1)!




∏

j -=i

nj!




∫

dλ

2π

e−iλ

(−iλ)N+K+1
(A416)

=
(ni + 1)!

(∏
j -=i nj!

)

∏K
j=1 nj!

×
∫

dλ
2π

e−iλ

(−iλ)N+K+1

∫
dλ
2π

e−iλ

(−iλ)N+K

(A417)

= (ni + 1)

∫
dλ
2π

e−iλ

(−iλ)N+K+1

∫
dλ
2π

e−iλ

(−iλ)N+K

. (A418)

Thus, p̂i ∝ ni + 1, so to get the normalization right we
must have

p̂i =
ni + 1

N +K
. (A419)

This should be contrasted with the naive estimate of
probabilities based on counting frequencies, p̂i = ni/N .
The Bayesian estimate, with a ‘flat’ prior on the space
of distributions, is equivalent to the naive approach but
with one extra count in every bin. This estimate never
predicts probability zero, even in states never observed
to occur, and is in some sense ‘smoother’ than the fre-
quencies. The trick of adding such pseudocounts to the
data goes back, it seems, to Laplace, although I don’t
think he had the full Bayesian justification.

Problem 196: Normalization. Derive Eq (A419) directly by
doing the integrals in Eq (A418).

What does this have to do with entropy estimation?
Somewhat heuristically, it has been suggested that by us-
ing different numbers of pseudocounts one can improve
the quality of entropy estimation. More deeply, I think,
the Bayesian estimate gives us a very different view of
why we make systematic errors when we try to compute
entropies from data. Recall that when we use the naive

identification of frequencies with probabilities, we under-
estimate the entropy, as in Eq (A401). It is tempting
to think that we are underestimating the entropy simply
because, in a finite sample, we have not seen all the pos-
sibilities. With the Bayesian approach and a flat prior,
however, the probability distributions that we estimate
are smoother than the true distribution, and correspond-
ingly we expect that the entropy will be overestimated.
In fact this is true, but the problem really is more serious
than this.
Suppose that we don’t yet have any data. Then all we

know is that the probability distribution p will be cho-
sen out of the distribution P(p). This seems innocuous,
since this distribution is flat and hence presumably un-
biased. But we can calculate the average entropy in this
distribution,

〈S〉prior ≡
∫

dKp

(
−

K∑

i=1

pi log2 pi

)
P(p), (A420)

using the same tricks that we used above, and we find

〈S〉prior = ψ0(K + 1)− ψ0(1), (A421)

where ψ0(x) is a polygamma function,

ψm(x) =

(
d

dx

)m+1

Γ(x). (A422)

The details of the special functions are not so important.
What is important is that, when the number of states K
is large,

〈S〉prior = log2 K −O(1). (A423)

Thus, although we are choosing distributions from a flat
prior, the entropies of these distributions are biased to-
ward the maximum possible value. This bias is actually
very strong. The entropy is the average of many terms,
and although these terms can’t be completely indepen-
dent (the probabilities must sum to one), one might ex-
pect the central limit theorem to apply here, in which
case the fluctuations in the entropy will be σS ∼ 1/

√
K,

which for large K is very small indeed. What this means
is that the distributions chosen out of P(p) are over-
whelmingly biased toward having nearly maximal en-
tropy. While the prior on the distributions is flat, the
prior on entropies is narrowly concentrated around an
average entropy which, for large K, is almost log2 K.

Problem 197: Entropies in a flat prior. Derive the mean
and standard deviation of the entropy in the flat prior, P(p) from
Eq (A402). Verify Eq (A423).
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Just to make the problem clear, suppose that our sys-
tem has only two states, as with heads and tails for a coin.
Let the probability of heads be q, so that the entropy is

S(q) = −q log2(q)− (1− q) log2(1− q). (A424)

If we assume that q is chosen from some distribution
P(q), then the distribution of entropies can be found from

P (S)dS = P(q)dq (A425)

Since dS/dq = 0 at the point where S = 1bit, the dis-
tribution P (S) must be singular there unless the prior
on q itself has a compensating singularity. Thus, a prior
which is flat in q is strongly biased in S. The situation
is even worse for systems with many states, because of
phase space considerations: if we want to have low a
low entropy distribution, then many of the pi must be
confined to very small values, and this means that the
volume in p space associated with low entropy is small.
While only one distribution has precisely the maximum
entropy, there are many distributions that are close.

Problem 198: A flat prior on S. Show that, for the problem
of coin flips, having a flat prior on the entropy S is equivalent to a
prior

P(q) =

∣∣∣∣∣ log2
(

q

1− q

) ∣∣∣∣∣. (A426)

If we flip a coin N times and observe n heads, then Bayes’ rule tell
us that

PN (q|n) ∝ P(q)qn(1− q)N−n, (A427)

and we can use this to estimate the entropy

Ŝ(n,N) =

∫ 1

0
dqPN (q|n) [−q log2(q)− (1− q) log2(1− q)] .

(A428)
(a.) For N = 10, plot Ŝ(n,N) vs. n. Compare your results with

the naive estimate,

Snaive(n,N) = −
n

N
log2

( n

N

)
−
(
1−

n

N

)
log2

(
1−

n

N

)
. (A429)

(b). Suppose that you are actually flipping a coin in which the
probability of heads is qtrue -= 1/2. Simulate N such flips, and
use your results to estimate the entropy according to both Eq’s
(A428) and (A429). How do these estimators evolve as a function
of N? Hints: Remember that we have seen the results for the naive
estimator already, and that since this is a small system (only two
states) the interesting behavior is at smaller N .

[Add figure on entropy estimation for binary variables,
with flat priors on entropy or probability.] All of this
suggests that we could do a much better job of entropy
estimation in a Bayesian framework where the P(p) is
chosen to be flat is S. I don’t know of anyone who has
given a complete solution to this problem. A partial so-
lution has been proposed by noticing that there is a well

known generalization of the flat prior, the Dirichlet fam-
ily of priors

Pβ(p) =
1

Z(β)

(
K∏

i−1

pβ−1
i

)
δ

(
K∑

i=1

pi − 1

)
. (A430)

Evidently the flat prior corresponds to β = 1, and this
is biased toward large entropies, as we have seen. As β
gets smaller, the average entropy S̄(β) of a distribution
drawn out of Pβ(p) gets smaller, but for each value of β
the distribution of entropies remains quite narrow. This
suggests that if we form the prior

P(p) =

∫ 1

0
dβ

∣∣∣∣∣
dS̄(β)

dβ

∣∣∣∣∣

−1

Pβ(p), (A431)

it will be approximately flat in entropy. This seems to
work, although it is computationally intensive. As far as
I know it gives the best results of any estimation proce-
dure so far in, for example, the analysis of neural spike
trains. If we dig into the integrals that define the entropy
estimate, it turns out that the key pieces of data are co-
incidences, in which more than one sample falls into the
same bin, and in this sense we seem to have found a gen-
eralization of Ma’s ideas to non–uniform distributions.

Problem 199: One more problem about entropy estima-
tion. [make up one more?]

Again it is important to ask whether these ideas actu-
ally work with real data. In experiments on the motion–
sensitive neuron H1 in the fly visual system, we can in
many cases collect enough data to sample the underly-
ing distributions of neural responses, so we have ground
truth. At the same time, we can look only at a small
fraction of these data and ask how well our estimation
procedure works. An example is shown in Fig 179.
Is there more to say? Or need more details in things

already said?

The idea that naive counting leads to systematic errors in entropy
estimation goes back, at least, to Miller (1955). The importance
of this for the analysis of information transmission in neurons was
emphasized by Treves and Panzeri (1995), who also brought more
sophistication to the calculation of the series expansion that we
have started here. Shortly after this, Strong et al (1998a) showed
how these extrapolation methods could be used to estimate entropy
and information in neural responses to complex, dynamic sensory
inputs. An important technical point is that Strong et al took se-
riously the 1/N behavior of the entropy estimate, but didn’t use
an analytic calculation of the slope of Sest vs 1/N ; the reason is
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FIG. 179 Estimating entropies at one slice of time in the
neural response to naturalistic stimuli, from Nemenman et al
(2004). Neural responses are discretized with ∆τ = 2ms reso-
lution, and we look at 8–letter words. The stimulus is motion
outdoors, and the motion is repeated many times; here we fo-
cus on the distribution of responses at one moment relative to
this repeat, for which we can collect up to 196 samples from
the repetitions. The open symbols show the “naive” or max-
imum likelihood estimate in which we identify the observed
frequencies with probabilities and plug in to the computation
of entropy. As expected, this estimate has a significant depen-
dence on the number of samples, but extrapolates smoothly
according to Eq (A401). In contrast, the NSB estimator based
on the prior in Eq (A431) remains constant within error bars,
always agreeing with the extrapolation.

that some seemingly possible neural responses are expected to have
probability zero, because there is a hard core repulsion (“refractori-
ness”) between spikes, but we don’t know in advance exactly how
big this effect will be. As a result, the actual number of possible
states K is uncertain, and in addition it is not true that all the sam-
ples collected in the experiment will be independent. Both these
effects leave the 1/N behavior intact, but change the slope.
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