An integrated, quantitative introduction to the natural sciences

Problem Set 4
Due Friday, 12 October 2007

Problem 1: The enzyme lysozyme helps to break down complex molecules built out of sugars. As a first step, these molecules (which we will call S) must bind to the enzyme. In the simplest model, this binding occurs in one step, a second order reaction between the enzyme E and the substrate S to form the complex $E S$:

$$
\begin{equation*}
E+S \xrightarrow{k_{+}} E S, \tag{1}
\end{equation*}
$$

where k_{+}is the second order rate constant. The binding is reversible, so there is also a first order process whereby the complex decays into its component parts:

$$
\begin{equation*}
E S \xrightarrow{k_{-}} E+S, \tag{2}
\end{equation*}
$$

where k_{-}is a first order rate constant. Let's assume that everything else which happens is slow, so we can analyze just this binding/unbinding reaction.
a. Write out the differential equations that describe the concentrations of $[S],[E]$ and $[E S]$. Remember that there are contributions from both reactions (1) and (2).
b. Show that if we start with an initial concentration of enzyme $[E]_{0}$ and zero concentration of the complex $\left([E S]_{0}=0\right)$, then there is a conservation law: $[E]+[E S]=[E]_{0}$ at all times.
c. Assume that the initial concentration of substrate $[S]_{0}$ is in vast excess, so that we can always approximate $[S] \approx[S]_{0}$. Show that there is a steady state at which the concentration of the complex is no longer changing, and that at this steady state

$$
\begin{equation*}
[E S]_{\mathrm{ss}}=[E]_{0} \cdot \frac{[S]}{[S]+K} \tag{3}
\end{equation*}
$$

where K is a constant. How is K related to the rate constants k_{+}and k_{-}?
d. When the substrate is (N -acetylglucosamine $)_{2}$, experiments near neutral pH and at body temperature show that the rate constants are $k_{+}=4 \times 10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and $k_{-}=1 \times 10^{5} \mathrm{~s}^{-1}$. What is the value of the constant K [in Eq (3)] for this substrate? At a substrate concentration of $[S]=1 \mathrm{mM}$, what fraction of the initial enzyme concentration will be in the the complex [$E S]$ once we reach steady state?
e. Show that the concentration of the complex $[E S]$ approaches its steady state exponentially: $[E S](t)=[E S]_{\mathrm{ss}}[1-\exp (-t / \tau)]$. Remember that we start with $[E S]_{0}=0$. How is the time constant τ related to the rate constants k_{+}and k_{-}and to the substrate concentration $[S]$? For (N -acetylglucosamine $)_{2}$, what is the longest time τ that we will find for the approach to steady state?

Problem 2: Consider the carbon monoxide molecule CO. To a good approximation, the bond between the atoms acts like a Hooke's law spring of stiffness κ and equilibrium length ℓ_{0}. For the purposes of this problem, neglect rotations of the molecule, so that motion is only in one dimension, parallel to the bond.
a. Write the differential equations corresponding to $F=m a$ for the positions x_{C} and x_{O} of the two atoms. Remember that the two atoms have different masses m_{C} and m_{O}.
b. Look for solutions of the form

$$
\begin{align*}
& x_{C}(t)=x_{C}^{0}+A \exp (-i \omega t) \tag{4}\\
& x_{O}(t)=x_{O}^{0}+B \exp (-i \omega t) . \tag{5}
\end{align*}
$$

where the resting positions x_{C}^{0} and x_{O}^{0} are chosen to match the equilibrium length of the bond. Show that solutions of this form exist, and find the natural frequency ω for these oscillations.

