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A spiking neuron “computes” by transforming a complex dynamical in-
put into a train of action potentials, or spikes. The computation per-
formed by the neuron can be formulated as dimensional reduction, or
feature detection, followed by a nonlinear decision function over the low-
dimensional space. Generalizations of the reverse correlation technique
with white noise input provide a numerical strategy for extracting the
relevant low-dimensional features from experimental data, and informa-
tion theory can be used to evaluate the quality of the low–dimensional
approximation. We apply these methods to analyze the simplest biophysi-
cally realistic model neuron, the Hodgkin–Huxley (HH)model, using this
system to illustrate the general methodological issues. We focus on the
features in the stimulus that trigger a spike, explicitly eliminating the
effects of interactions between spikes. One can approximate this trigger-
ing “feature space” as a two-dimensional linear subspace in the high-
dimensional space of input histories, capturing in this way a substantial
fraction of the mutual information between inputs and spike time. We
�nd that an even better approximation, however, is to describe the rele-
vant subspace as two dimensional but curved; in this way, we can capture
90% of the mutual information even at high time resolution. Our analysis
provides a new understanding of the computational properties of the HH
model. While it is common to approximate neural behavior as “integrate
and �re,” the HH model is not an integrator nor is it well described by a
single threshold.
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1 Introduction

On short timescales, one can conceive of a single neuron as a computational
device that maps inputs at its synapses into a sequence of action poten-
tials or spikes. To a good approximation, the dynamics of this mapping are
determined by the kinetic properties of ion channels in the neuron’s mem-
brane. In the 50 years since the pioneering work of Hodgkin and Huxley,
we have seen the evolution of an ever more detailed description of chan-
nel kinetics, making it plausible that the short time dynamics of almost
any neuron we encounter will be understandable in terms of interactions
among a mixture of diverse but known channel types (Hille, 1992; Koch,
1999). The existence of so nearly complete a microscopic picture of single-
neuron dynamics brings into focus a very different question: What does the
neuron compute? Although models in the Hodgkin–Huxley (HH) tradition
de�ne a dynamical system that will reproduce the behavior of the neuron,
this description in terms of differential equations is far from our intuition
about—or the formal description of—computation.

The problem of what neurons compute is one instance of a more general
problem in modern quantitative biology and biophysics: Given a progres-
sively more complete microscopic description of proteins and their inter-
actions, how do we understand the emergence of function? In the case of
neurons, the proteins are the ion channels, and the interactions are very
simple: current �ows through open channels, charging the cell’s capaci-
tance, and all channels experience the resulting voltage. Arguably, there is
no other network of interacting proteins for which the relevant equations
are known in such detail; indeed, some efforts to understand function and
computation in other networks of proteins make use of analogies to neural
systems (Bray, 1995). Despite the relative completeness of our microscopic
picture for neurons, there remains a huge gap between the description of
molecular kinetics and the understanding of function. Given some complex
dynamic input to a neuron, we might be able to simulate the spike train
that will result, but we are hard pressed to look at the equations for channel
kinetics and say that this transformation from inputs to spikes is equivalent
to some simple (or perhaps not so simple) computation such as �ltering,
thresholding, coincidence detection, or feature extraction.

Perhaps the problem of understanding computational function in a
model of ion channel dynamics is a symptom of a much deeper mathemati-
cal dif�culty. Despite the fact that all computers are dynamical systems, the
natural mathematical objects in dynamical systems theory are very different
from those in the theory of computation, and it is not clear how to connect
these different formal schemes. Finding a general mapping from dynamical
systems to their equivalent computational functions is a grand challenge,
but we will take a more modest approach.

We believe that a key intuition for understanding neural computation is
the concept of feature selectivity: while the space of inputs to a neuron—



Computation in a Single Neuron 1717

whether we think of inputs as arriving at the synapses or being driven by
sensory signals outside the brain—is vast, individual neurons are sensitive
only to some restricted set of features in this vast space. The most gen-
eral way to formalize this intuition is to say that we can compress (in the
information-theoretic sense) our description of the inputs without losing
any information about the neural output (Tishby, Pereira, & Bialek, 1999).
We might hope that this selective compression of the input data has a simple
geometric description, so that the relevant bits about the input correspond
to coordinates along some restricted set of relevant dimensions in the space
of inputs. If this is the case, feature selectivity should be formalized as a
reduction of dimensionality (de Ruyter van Steveninck & Bialek, 1988), and
this is the approach we follow here. Closely related work on the use of
dimensionality reduction to analyze neural feature selectivity has been de-
scribed in recent work (Bialek & de Ruyter van Steveninck, 2003; Sharpee,
Rust, & Bialek, in press).

Here, we develop the idea of dimensionality reduction as a tool for anal-
ysis of neural computation and apply these tools to the HH model. While
our initial goal was to test new analysis methods in the context of a presum-
ably simple and well-understood model, we have found that the HH neu-
ron performs a computation of surprising richness. Preliminary accounts of
these results have already appeared (Agüera y Arcas, 1998; Agüera y Arcas,
Bialek, & Fairhall, 2001).

2 Dimensionality Reduction

Neurons take input signals at their synapses and give as output sequences
of spikes. To characterize a neuron completely is to identify the mapping
between neuronal input and the spike train the neuron produces inresponse.
In the absence of any simplifying assumptions, this requires probing the
system with every possible input. Most often, these inputs are spikes from
other neurons; each neuron typically has of order N » 103 presynaptic
connections. If the system operates at 1 msec resolutionand the timewindow
of relevant inputs is 40 msec, then we can think of a single neuron as having
an input described by a » 4 £ 104 bit word—the presence or absence of a
spike in each 1 msec bin for each presynaptic cell—which is then mapped to
a one (spike) or zero (no spike). More realistically, if average spike rates are
» 10 s¡1, the input words can be compressed by a factor of 10. In this picture,
a neuron computes a Boolean function over roughly 4000 variables. Clearly
one cannot sample every one of the » 24000 inputs to identify the neural
computation. Progress requires making some simplifyingassumption about
the function computed by the neuron so that we can vastly reduce the space
of possibilities over which to search. We use the idea of dimensionality
reduction in this spirit, as a simplifying assumption that allows us to make
progress but that also must be tested directly.
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The ideas of feature selectivity and dimensionality reduction have a long
history in neurobiology. The idea of receptive �elds as formulated by Hart-
line, Kuf�er, and Barlow for the visual system gave a picture of neurons
as having a template against which images would be correlated (Hartline,
1940; Kuf�er, 1953; Barlow, 1953). If we think of images as vectors in a
high-dimensional space, with coordinates determined by the intensities of
each pixel, then the simplest receptive �eld models describe the neuron
as sensitive to only one direction or projection in this high-dimensional
space. This picture of projection followed by thresholding or some other
nonlinearity to determine the probability of spike generation was formal-
ized in the linear perceptron (Rosenblatt, 1958, 1962). In subsequent work,
Barlow, Hill, and Levick (1964) characterized neurons in which the recep-
tive �eld has subregions in space and time such that summation is at least
approximately linear in each subregion but these summed signals inter-
act nonlinearly, for example, to generate direction selectivity and motion
sensitivity. We can think of Hubel and Wiesel’s description of complex
and hypercomplex cells (Hubel & Wiesel, 1962) again as a picture of ap-
proximately linear summation within subregions followed by nonlinear
operations on these multiple summed signals. More formally, the proper
combination of linear summation and nonlinear or logical operations may
provide a useful bridge from receptive �eld properties to proper geometric
primitives in visual computation (Iverson & Zucker, 1995). In the same way
that a single receptive �eld or perceptron model has one relevant dimen-
sion in the space of visual stimuli, these more complex cells have as many
relevant dimensions as there are independent subregions of the receptive
�eld. Although this number is larger than one, it still is much smaller than
the full dimensionality of the possible spatiotemporal variations in visual
inputs.

The idea that neurons in the auditory system might be described by a
�lter followed by a nonlinear transformation to determine the probability
of spike generation was the inspiration for de Boer’s development (de Boer
& Kuyper, 1968) of triggered or reverse correlation. Modern uses of reverse
correlation to characterize the �ltering or receptive �eld properties of a neu-
ron often emphasize that this approach provides a “linear approximation”
to the input-output properties of the cell, but the original idea was almost
the opposite: neurons clearly are nonlinear devices, but this is separate from
the question of whether the probability of generating a spike is determined
by a simple projection of the sensory input onto a single �lter or template. In
fact, as explained by Rieke, Warland, Bialek, and de Ruyter van Steveninck
(1997), linearity is seldom a good approximation for the neural input-output
relation, but if there is one relevant dimension, then (provided that input
signals are chosen with suitable statistics) the reverse correlation method is
guaranteed to �nd this one special direction in the space of inputs to which
the neuron is sensitive. While the reverse correlation method is guaranteed
to �nd the one relevant dimension if it exists, the method does not include
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any way of testing for other relevant dimensions, or more generally for
measuring the dimensionality of the relevant subspace.

The idea of characterizing neural responses directly as the reduction of
dimensionality emerged from studies (de Ruyter van Steveninck & Bialek,
1988) of a motion-sensitive neuron in the �y visual system. In particular,
this work suggested that it is possible to estimate the dimensionality of the
relevant subspace rather than just assuming that it is small (or equal to one).
More recent work on the �y visual system has exploited the idea of dimen-
sionality reduction to probe both the structure and adaptation of the neural
code (Brenner, Bialek, & de Ruyter van Steveninck, 2000; Fairhall, Lewen,
Bialek, & de Ruyter van Steveninck, 2001) and the nature of the computation
that extracts the motion signal from the spatiotemporal array of photore-
ceptor inputs (Bialek & de Ruyter van Steveninck, 2003). Here we review
the ideas of dimensionality reduction from previous work; extensions of
these ideas begin in section 3.

In the spirit of neural network models, we will simplify away the spatial
structure of neurons and consider time-dependent currents I.t/ injected into
a point–like neuron. While this misses much of the complexity of real cells,
we will �nd that even this system is highly nontrivial. If the input is an
injected current, then the neuron maps the history of this current, I.t < t0/,
into the presence or absence of a spike at time t0. More generally, we might
imagine that the cell (or our description) isnoisy, so that there is a probability
of spiking P[spike at t0 j I.t < t0/] that depends on the current history. The
dependence on the history of the current means that the input signal still
is high dimensional, even without spatial dependence. Working at time
resolution 1t and assuming that currents in a window of size T are relevant
to the decision to spike, the input space is of dimension D D T=1t, where
D is often of order 100.

The idea of dimensionality reduction is that the probability of spike gen-
eration is sensitive only to some limited number of dimensions K within
the D-dimensional space of inputs. We begin our analysis by searching for
linear subspaces, that is, a set of signals s1; s2; : : : ; sK that can be constructed
by �ltering the current,

s¹ D
Z 1

0
dt f¹.t/I.t0 ¡ t/; (2.1)

so that the probability of spiking depends on only this small set of signals,

P[spike at t0 j I.t < t0/] D P[spike at t0]g.s1; s2; : : : ; sK/; (2.2)

where the inclusion of the average probability of spiking, P[spike at t0],
leaves g dimensionless. If we think of the current I.t0 ¡ T < t < t0/ as
a D-dimensional vector, with one dimension for each discrete sample at
spacing 1t, then the �ltered signals si are linear projections of this vector. In
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this formulation, characterizing the computation done by a neuron involves
three steps:

1. Estimate the number of relevant stimulus dimensions K, with the hope
that there will be many fewer than the original dimensionality D.

2. Identify a set of �lters that project into this relevant subspace.

3. Characterize the nonlinear function g.Es/.

The classical perceptron–like cell of neural network theory would have only
one relevant dimension, given by the vector of weights, and a simple form
for g, typically a sigmoid.

Rather than trying to lookdirectly at the distribution of spikes given stim-
uli, we follow de Ruyter van Steveninck and Bialek (1988) and consider the
distribution of signals conditional on the response, P[I.t < t0/ j spike at t0],
also called the response conditional ensemble (RCE); these are related by
Bayes’ rule,

P[spike at t0 j I.t < t0/]
P[spike at t0]

D P[I.t < t0/ j spike at t0]
P[I.t < t0/]

: (2.3)

We can now compute various moments of the RCE. The �rst moment is the
spike-triggered average stimulus (STA),

STA.¿ / D
Z

[dI]P[I.t < t0/ j spike at t0]I.t0 ¡ ¿ /; (2.4)

which is the object that one computes in reverse correlation (de Boer &
Kuyper, 1968; Rieke et al., 1997). If we choose the distribution of input
stimuli P[I.t < t0/] to be gaussian white noise, then for a perceptron–like
neuron sensitive to only one direction in stimulus space, it can be shown
that the STA or �rst moment of the RCE is proportional to the vector or �lter
f .¿ / that de�nes this direction (Rieke et al., 1997).

Although it is a theorem that the STA is proportional to the relevant �l-
ter f .¿ /, in principle it is possible that the proportionality constant is zero,
most plausibly if the neuron’s response has some symmetry, such as phase
invariance in the response of high-frequency auditory neurons. It also is
worth noting that what is really important in this analysis is the gaussian
distribution of the stimuli, not the “whiteness” of the spectrum. For non-
white but gaussian inputs, the STA measures the relevant �lter blurred by
the correlation function of the inputs, and hence the true �lter can be recov-
ered (at least in principle) by deconvolution. For nongaussian signals and
nonlinear neurons, there is no corresponding guarantee that the selectivity
of the neuron can be separated from correlations in the stimulus (Sharpee
et al., in press).

To obtain more than one relevant direction (or to reveal relevant direc-
tions when symmetries cause the STA to vanish), we proceed to second
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order and compute the covariance matrix of �uctuations around the spike-
triggered average,

Cspike.¿; ¿ 0/ D
Z

[dI]P[I.t < t0/ j spike at t0]I.t0 ¡ ¿ /I.t0 ¡ ¿ 0/

¡ STA.¿ /STA.¿ 0/: (2.5)

In the same way that we compare the spike-triggered average to some con-
stant average level of the signal in the whole experiment, we compare the
covariance matrix Cspike with the covariance of the signal averaged over the
whole experiment,

Cprior.¿; ¿ 0/ D
Z

[dI]P[I.t < t0/]I.t0 ¡ ¿ /I.t0 ¡ ¿ 0/; (2.6)

to construct the change in the covariance matrix,

1C D Cspike ¡ Cprior: (2.7)

With time resolution 1t in a window of duration T as above, all of these
covariances are D£D matrices. In the same way that the spike-triggered av-
erage has the clearest interpretation when we choose inputs from a gaussian
distribution, 1C also has the clearest interpretation in this case. Speci�cally,
if inputs are drawn from a gaussian distribution, then it can be shown that
(Bialek & de Ruyter van Steveninck, 2003):

1. If the neuron is sensitive to a limited set of K-input dimensions as in
equation 2.2, then 1C will have only K nonzero eigenvalues.1 In this
way, we can measure directly the dimensionality K of the relevant
subspace.

2. If the distribution of inputs is both gaussian and white, then the eigen-
vectors associated with the nonzero eigenvalues span the same space
as that spanned by the �lters f f¹.¿ /g.

3. For nonwhite (correlated) but still gaussian inputs, the eigenvectors
span the space of the �lters f f¹.¿ /g blurred by convolution with the
correlation function of the inputs.

Thus, the analysis of 1C for neurons responding to gaussian inputs should
allow us to identify the subspace of inputs of relevance and test speci�cally
the hypothesis that this subspace is of low dimension.

1 As with the STA, it is in principle possible that symmetries or accidental features
of the function g.Es/ would cause some of the K eigenvalues to vanish, but this is very
unlikely.
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Several points are worth noting. First, except in special cases, the eigen-
vectors of 1C and the �lters f f¹.¿ /g are not the principal components of the
RCE, and hence this analysis of 1C is not a principal component analysis.
Second, the nonzero eigenvalues of 1C can be either positive or negative,
depending on whether the variance of inputs along that particular direc-
tion is larger or smaller in the neighborhood of a spike. Third, although the
eigenvectors span the relevant subspace, these eigenvectors do not form a
preferred coordinate system within this subspace. Finally, we emphasize
that dimensionality reduction—identi�cation of the relevant subspace—is
only the �rst step in our analysis of the computation done by a neuron.

3 Measuring the Success of Dimensionality Reduction

The claim that certain stimulus features are most relevant is in effect a model
for the neuron, so the next question is how to measure the effectiveness or
accuracy of this model. Several different ideas have been suggested in the
literature as ways of testing models based on linear receptive �elds in the
visual system (Stanley, Lei, & Dan, 1999; Keat, Reinagel, Reid, & Meister,
2001) or linear spectrotemporal receptive �elds in the auditory system (The-
unissen, Sen, & Doupe, 2000). These methods have in common that they in-
troduce a metric to measure performance—for example, mean square error
in predicting the �ring rate as averaged over some window of time. Ideally,
we would like to have a performance measure that avoids any arbitrari-
ness in the choice of metric, and such metric-free measures are provided
uniquely by information theory (Shannon, 1948; Cover & Thomas, 1991).

Observing the arrival time t0 of a single spikeprovidesa certainamount of
informationabout the input signals. Since information ismutual, we can also
say that knowing the input signal trajectory I.t < t0/ provides information
about the arrival time of the spike. If “details are irrelevant,” then we should
be able to discard these details from our description of the stimulus and yet
preserve the mutual information between the stimulus and spike arrival
times (for an abstract discussion of such selective compression, see Tishby
et al., 1999). In constructing our low-dimensional model, we represent the
complete (D-dimensional) stimulus I.t < t0/ by a smaller number (K < D)
of dimensions Es D .s1; s2; : : : ; sK/.

The mutual information I[I.t < t0/I t0] is a property of the neuron itself,
while the mutual information I[EsI t0] characterizes how much our reduced
description of the stimulus can tell us about when spikes will occur. Nec-
essarily, our reduction of dimensionality causes a loss of information, so
that

I[EsI t0] · I[I.t < t0/I t0]; (3.1)

but if our reduced description really captures the computation done by the
neuron, then the two information measures will be very close. In particular,
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if the neuron were described exactly by a lower-dimensional model—as for
a linear perceptron or for an integrate-and-�re neuron (Agüera y Arcas &
Fairhall, 2003)—then the two information measures would be equal. More
generally, the ratio I[EsI t0]=I[I.t < t0/I t0] quanti�es the ef�ciency of the
low-dimensional model, measuring the fraction of information about spike
arrival times that our K dimensions capture from the full signal I.t < t0/.

As shown by Brenner, Strong, Koberle, Bialek, and de Ruyter van Steven-
inck (2000), the arrival time of a single spike provides an information,

I[I.t < t0/I t0] ´ Ione spike D 1
T

Z T

0
dt

r.t/
Nr

log2

µ
r.t/

Nr

¶
; (3.2)

where r.t/ is the time-dependent spike rate, Nr is the average spike rate,
and h¢ ¢ ¢i denotes an average over time. In principle, information should be
calculated as an average over the distribution of stimuli, but the ergodicity
of the stimulus justi�es replacing this ensemble average with a time average.
For a deterministic system like the HH equations, the spike rate is a singular
function of time: given the inputs I.t/, spikes occur at de�nite times with no
randomness or irreproducibility. If we observe these responses with a time
resolution 1t, then for 1t suf�ciently small, the rate r.t/ at any time t either
is zero or corresponds to a single spike occurring in one bin of size 1t, that
is, r D 1=1t. Thus, the information carried by a single spike is

Ione spike D ¡ log2 Nr1t: (3.3)

On the other hand, if the probability of spiking really depends on only the
stimulus dimensions s1; s2; : : : ; sK, we can substitute

r.t/
Nr

! P.Es j spike at t/
P.Es/

: (3.4)

Replacing the time averages in equation 3.2 with ensemble averages, we
�nd

I[EsI t0]´ IEs
one spike D

Z
dKsP.Es j spike at t/ log2

µ
P.Es j spike at t/

P.Es/

¶
(3.5)

(for details of these arguments, see Brenner, Strong, et al., 2000). This al-
lows us to compare the information captured by the K-dimensional reduced
model with the true information carried by single spikes in the spike train.

For reasons that we will discuss in the following section, and as was
pointed out in Agüera y Arcas et al. (2001) and Agüera y Arcas and Fairhall
(2003), we will be considering isolated spikes—those separated from pre-
vious spikes by a period of silence. This has important consequences for
our analysis. Most signi�cantly, as we will be considering spikes that occur
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on a background of silence, the relevant stimulus ensemble, conditioned
on the silence, is no longer gaussian. Further, we will need to re�ne our
information estimate.

The derivation of equation 3.2 makes clear that a similar formula must
determine the information carried by the occurrence time of any event, not
just single spikes; we can de�ne an event rate in place of the spike rate and
then calculate the information carried by these events (Brenner, Strong, et
al., 2000). In the case here, we wish to compute the information obtained
by observing an isolated spike, or equivalently by the event silence+spike.
This is straightforward: we replace the spike rate by the rate of isolated
spikes, and equation 3.2 will give us the information carried by the arrival
time of a single isolated spike. The problem is that this information includes
both the information carried by the occurrence of the spike and the infor-
mation conveyed in the condition that there were no spikes in the preceding
tsilence msec (for an early discussion of the information carried by silence,
see de Ruyter van Steveninck & Bialek, 1988). We would like to separate
these contributions, since our idea of dimensionality reduction applies only
to the triggering of a spike, not to the temporally extended condition of
nonspiking.

To separate the information carried by the isolated spike itself, we have
to ask how much information we gain by seeing an isolated spike given that
the condition for isolation has already been met. As discussed by Brenner,
Strong, et al. (2000), we can compute this information by thinking about the
distribution of times at which the isolated spike can occur. Given that we
know the input stimulus, the distribution of times at which a single isolated
spike will be observed is proportional to riso.t/, the time-dependent rate or
peristimulus time histogram for isolated spikes. With propernormalization,
we have

Piso.t j inputs/ D
1
T

¢
1

Nriso
riso.t/; (3.6)

where T is duration of the (long) window in which we can look for the
spike and Nriso is the average rate of isolated spikes. This distribution has an
entropy,

Siso.t j inputs/ D ¡
Z T

0
dt Piso.t j inputs/ log2 Piso.t j inputs/ (3.7)

D ¡
1
T

Z T

0
dt

riso.t/
Nriso

log2

µ
1
T

¢ riso.t/
Nriso

¶
(3.8)

D log2.TNriso1t/ bits, (3.9)

where again we use the fact that for a deterministic system, the time-
dependent rate must be either zero or the maximum allowed by our time
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resolution 1t. To compute the information carried by a single spike, we
need to compare this entropy with the total entropy possible when we do
not know the inputs.

It is tempting to think that without knowledge of the inputs, an isolated
spike is equally likely to occur anywhere in the window of size T, which
leads us back to equation 3.3 with Nr replaced by Nriso. In this case, however,
we are assuming that the condition for isolation has already been met. Thus,
even without observing the inputs, we know that isolated spikes can occur
only in windows of time whose total length is Tsilence D T ¢ Psilence, where
Psilence is the probability that any moment in time is at least tsilence after the
most recent spike. Thus, the total entropy of isolated spike arrival times
(given that the condition for silence has been met) is reduced from log2 T to

Siso.t j silence/ D log2.T ¢ Psilence/; (3.10)

and the information that the spike carries beyond what we know from the
silence itself is

1Iiso spike D Siso.t j silence/ ¡ Siso.t j inputs/ (3.11)

D
1
T

Z T

0
dt

riso.t/
Nriso

log2

µ
riso.t/

Nriso
¢ Psilence

¶
(3.12)

D ¡ log2.Nriso1t/ C log2 Psilence bits. (3.13)

This information, which is de�ned independent of any model for the fea-
ture selectivity of the neuron, provides the benchmark against which our
reduction of dimensionality will be measured. To make the comparison,
however, we need the analog of equation 3.5.

Equation 3.12 provides us with an expression for the information con-
veyed by isolated spikes in terms of the probability that these spikes occur
at particular times; this is analogous to equation 3.2 for single (nonisolated)
spikes. If we follow a path analogous to that which leads from equation 3.2
to equation 3.5, we �nd an expression for the information that an isolated
spike provides about the K stimulus dimensions Es:

1IEs
iso spike D

Z
dEs P.Es j iso spike at t/ log2

µ
P.Es j iso spike at t/

P.Es j silence/

¶

C hlog2 P.silence j Es/i; (3.14)

where the prior is now also conditioned on silence: P.Es j silence/ is the
distribution of Es given that Es is preceded by a silence of at least tsilence. Notice
that this silence-conditioned distribution is not knowable a priori, and in
particular it is not gaussian; P.Es j silence/ must be sampled from data.

The last term in equation 3.14 is the entropy of a binary variable that
indicates whether particular moments in time are silent given knowledge
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of the stimulus. Again, since the HH model is deterministic, this conditional
entropy should be zero if we keep a complete description of the stimulus.
In fact, we are not interested in describing those features of the stimulus
that lead to silence, and it is not fair (as we will see) to judge the success of
dimensionality reduction by looking at the prediction of silence, which nec-
essarily involves multiple dimensions. To make a meaningful comparison,
then, we will assume that there is a perfect description of the stimulus con-
ditions leading to silence and focus on the stimulus features that trigger the
isolated spike. When we approximate these features by the K-dimensional
space Es, we capture an amount of information,

1IEs
iso spike D

Z
dEs P.Es j iso spike at t/ log2

µ
P.Es j iso spike at t/

P.Es j silence/

¶
: (3.15)

This is the information that we can compare with 1Iiso spike in equation 3.13
to determine the ef�ciency of our dimensionality reduction.

4 Characterizing the Hodgkin-Huxley Neuron

For completeness, we begin with a brief review of the dynamics of the
space-clamped HHneuron (Hodgkin & Huxley, 1952). Hodgkin and Huxley
modeled the dynamics of the current through a patch of membrane with
ion-speci�c conductances:

C
dV
dt

D I.t/ ¡ NgKn4.V ¡ VK/ ¡ NgNam3h.V ¡ VNa/ ¡ Ngl.V ¡ Vl/; (4.1)

where I.t/ is injected current, K and Na subscripts denote potassium– and
sodium–related variables, respectively, and l (for “leakage”) terms include
all other ion conductances with slower dynamics. C is the membrane ca-
pacitance. VK and VNa are ion-speci�c reversal potentials, and Vl is de�ned
such that the total voltage V is exactly zero when the membrane is at rest.
NgK, NgNa, and Ngl are empirically determined maximal conductances for the
different ion species, and the gating variables n, m, and h (on the interval
[0; 1]) have their own voltage-dependent dynamics:

dn=dt D .0:01V C 0:1/.1 ¡ n/ exp.¡0:1V/ ¡ 0:125n exp.V=80/;

dm=dt D .0:1V C 2:5/.1 ¡ m/ exp.¡0:1V ¡ 1:5/ ¡ 4m exp.V=18/;

dh=dt D 0:07.1 ¡ h/ exp.0:05V/ ¡ h exp.¡0:1V ¡ 4/: (4.2)

We have used the original values for these parameters, except for changing
the signs of the voltages to correspond to the modern sign convention: C D 1
¹F/cm2, NgK D 36 mS/cm2, NgNa D 120 mS/cm2, Ngl D 0:3 mS/cm2, VK D ¡12
mV, VNa D C115 mV, Vl D C10:613 mV. We have taken our system to be
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a ¼ £ 302 ¹m2 patch of membrane. We solve these equations numerically
using fourth-order Runge–Kutta integration.

The system is driven with a gaussian random noise current I.t/, gener-
ated by smoothing a gaussian random number stream with an exponential
�lter to generate a correlation time ¿ . It is convenient to choose ¿ to be longer
than the time steps of numerical integration, since this guarantees that all
functions are smooth on the scale of single time steps. Here, we will always
use ¿ D 0:2 msec, a value that is both less than the timescale over which
we discretize the stimulus for analysis and far less than the neuron’s ca-
pacitative smoothing timescale RC » 3 msec. I.t/ has a standard deviation
¾ , but since the correlation time is short, the relevant parameter usually is
the spectral density S D ¾ 2¿ ; we also add a DC offset I0. In the following,
we will consider two parameter regimes, I0 D 0 and I0 a �nite value, which
leads to more periodic �ring.

The integration step size is �xed at 0:05 msec. The key numerical exper-
iments were repeated at a step size of 0:01 msec with identical results. The
time of a spike is de�ned as the moment of maximum voltage, for voltages
exceeding a threshold (see Figure 1), estimated to subsample precision by
quadratic interpolation. As spikes are both very stereotyped and very large
compared to subspiking �uctuations, the precise value of this threshold is
unimportant; we have used C20 mV.

4.1 Qualitative Description of Spiking. The �rst step in our analysis is
to use reverse correlation, equation 2.4, to determine the average stimulus
feature preceding a spike, the STA. In Figure 1(top), we display the STA
in a regime where the spectral density of the input current is 6:5 £ 10¡4

nA2 msec. The spike-triggered averages of the gating terms n4 (proportion
of open potassium channels) and m3h (proportion of open sodium chan-
nels) and the membrane voltage V are plotted in Figure 1 (middle and bot-
tom). The error bars mark the standard deviation of the trajectories of these
variables.

As expected, the voltage and gating variables follow highly stereotyped
trajectories during the »5 msec surrounding a spike. First, the rapid open-
ing of the sodium channels causes a sharp membrane depolarization (or
rise in V); the slower potassium channels then open and repolarize the
membrane, leaving it at a slightly lower potential than rest. The potassium
channels close gradually, but meanwhile the membrane remains hyperpo-
larized and, due to its increased permeability to potassium ions, at lower
resistance. These effects make it dif�cult to induce a second spike during
this »15 msec “refractory period.” Away from spikes, the resting levels and
�uctuations of the voltage and gating variables are quite small. The larger
values evident in Figure 1(middle and bottom) by §15 msec are due to the
summed contributions of nearby spikes.

The spike-triggered average current has a largely transient form, so that
spikes are on average preceded by an upward swing in current. On the
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Figure 1: Spike-triggered averages with standard deviations for (top) the input
current I, (middle) the fraction of open KC and NaC channels, and (bottom) the
membrane voltage V, for the parameter regime I0 D 0 and S D 6:50 £ 10¡4 nA2

sec.

other hand, there is no obvious bottleneck in the current trajectories, so
that the current variance is almost constant throughout the spike. This is
qualitatively consistent with the idea of dimensionality reduction: if the
neuron ignores most of the dimensions along which the current can vary,
then the variance, which is shared almost equally among all dimensions for
this near white noise, can change by only a small amount.
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4.2 Interspike Interaction. Although the STA has the form of a differ-
entiating kernel, suggesting that the neuron detects edge-like events in the
current versus time, there must be a DC component to the cell’s response. We
recall that for constant inputs, the HH model undergoes a bifurcation to con-
stant frequency spiking, where the frequency is a function of the value of the
input above onset. Correspondingly, the STA does not sum precisely to zero;
one might think of it as having a small integrating component that allows
the system to spike under DC stimulation, albeit only above a threshold.

The system’s tendency to periodic spiking under DC current input also
is felt under dynamic stimulus conditions and can be thought of as a strong
interaction between successive spikes. We illustrate this by considering a
different parameter regime with a small DC current and some added noise
(I0 D 0:11 nA and S D 0:8£10¡4 nA2 sec). Note that the DC component puts
the neuron in the metastable region of its f ¡ I curve (see Figure 2). In this
regime, the neuron tends to �re quasi-regular trains of spikes intermittently,
as shown in Figure 3. We will refer to these quasi-regular spike sequences
as “bursts” (note that this term is often used to refer to compound spikes
in neurons with additional channels; such events do not occur in the HH
model).

Spikes can be classi�ed into three types: those initiating a spike burst,
those within a burst, and those ending a burst. The minimum length of

Figure 2: Firing rate of the HH neuron as a function of injected DC current.
The empty circles at moderate currents denote the metastable region, where the
neuron may be either spiking or silent.
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Figure 3: Segment of a typical spike train in a “bursting” regime.

Figure 4: Spike-triggered averages, derived from spikes leading (“on”), inside
(“burst”), and ending (“off”) a burst. The parameters of this bursting regime
are I0 D 0:11 nA and S D 0:8 £ 10¡4 nA2 sec. Note that the burst-ending spike
average is, by construction, identical to that of any other within-burst spike for
t < 0.

the silence between bursts is taken in this case to be 70 msec. Taking these
three categories of spike as different “symbols” (de Ruyter van Steveninck
& Bialek, 1988), we can determine the average stimulus for each. These are
shown in Figure 4 with the spike at t D 0.

In this regime, the initial spike of a burst is preceded by a rapid oscillation
in the current. Spikes within a burst are affected much less by the current;
the feature immediately preceding such spikes is similar in shape to a single
“wavelength” of the leading spike feature, but is of much smaller amplitude
and is temporally compressed into the interspike interval. Hence, although
it is clear that the timing of a spike within a burst is determined largely by
the timing of the previous spike, the current plays some role in affecting the
precise placement. This also demonstrates that the shape of the STA is not
the same for all spikes; it depends strongly and nontrivially on the time to
the previous spike, and this is related to the observation that subtly different
patterns of two or three spikes correspond to very different average stimuli
(de Ruyter van Steveninck & Bialek, 1988). For a reader of the spike code,
a spike within a burst conveys a different message about the input than
the spike at the onset of the burst. Finally, the feature ending a burst has a
very similar form to the onset feature, but reversed in time. Thus, to a good
approximation, the absence of a spike at the end of a burst can be read as
the opposite of the onset of the burst.

In summary, this regime of the HH neuron is similar to a “�ip-�op,” or
1-bit memory. Like its electronic analog, the neuron’s memory is preserved
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Figure 5: Overall spike-triggered average in the bursty regime, showing the
ringing due to the tendency to periodic �ring. Plotted in gray is the spike auto-
correlation, showing the same oscillations.

by a feedback loop, here implemented by the interspike interaction. Large
�uctuations in the input current at a certain frequency “�ip” or “�op” the
neuron between its silent and spiking states. However, while the neuron is
spiking, further details of the input signal are transmitted by precise spike
timing within a burst. If we calculate the spike-triggered average of all
spikes for this regime, without regard to their position within a burst, then
as shown in Figure 5, the relatively well-localized leading spike oscillation
of Figure 4 is replaced by a long-lived oscillating function resulting from the
spike periodicity.This is shown explicitlyby comparingthe overall STAwith
the spike autocorrelation, also shown in Figure 5. This same effect is seen
in the STA of the burst spikes, which in fact dominates the overall average.
Prediction of spike timing using such an STA would be computationally
dif�cult due to its extension in time, but, more seriously, unsuccessful, as
most of the function is an artifact of the spike history rather than the effect
of the stimulus.

While the effects of spike interaction are interesting and should be in-
cluded in a complete model for spike generation, we wish here to consider
only the current’s role in initiating spikes. Therefore, as we have argued
elsewhere, we limit ourselves initially to the cases in which interspike inter-
action plays no role (Agüera y Arcas et al., 2001; Agüera & Fairhall, 2003).
These “isolated” spikes can be de�ned as spikes preceded by a silent period
tsilence long enough to ensure decoupling from the timing of the previous
spike. A reasonable choice for tsilence can be inferred directly from the inter-
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Figure 6: Hodgkin-Huxley interspike interval histogram for the parameters I0 D
0 and S D 6:5 £ 10¡4 nA2 sec, showing a peak at a preferred �ring frequency
and the long Poisson tail. The total number of spikes is N D 5:18 £ 106. The plot
to the right is a closeup in linear scale.

spike interval distribution P.1t/, illustrated in Figure 6. For the HH model,
as in simpler models and many real neurons (Brenner, Agam, Bialek, & de
Ruyter van Steveninck, 1998), the form of P.1t/ has three noteworthy fea-
tures: a refractory “hole” during which another spike is unlikely to occur, a
strong mode at the preferred �ring frequency, and an exponentially decay-
ing, or Poisson, tail. The details of all three of these features are functions of
the parameters of the stimulus (Tiesinga, José, & Sejnowski, 2000), and cer-
tain regimes may be dominated by only one or two features. The emergence
of Poisson statistics in the tail of the distribution implies that these events
are independent, so we can infer that the system has lost memory of the
previous spike. We will therefore take isolated spikes to be those preceded
by a silent interval 1t ¸ tsilence, where tsilence is well into the Poisson regime.
The burst-onset spikes of Figure 4 are isolated spikes by this de�nition.

Note that the bursty behavior evident in Figure 3 is characteristic of “type
II” neurons, which begin �ring at a well-de�ned frequency under DC stimu-
lus; “type I” neurons, by contrast, can �re at arbitrarily low frequency under
constant input. Nonetheless the analysis that follows is equally applicable
to either type of neuron: spikes still interact at close range and become inde-
pendent at suf�cient separation. In what follows, we will be probing the HH
neuron with current noise that remains below the DC threshold for periodic
�ring.

5 Isolated Spike Analysis

Focusing now on isolated spikes, we proceed to a second-order analysis
of the current �uctuations around the isolated spike triggered average (see
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Figure 7: Spike-triggered average stimulus for isolated spikes.

Figure 7). We consider the response of the HH neuron to currents I.t/ with
mean I0 D 0 and spectral density of S D 6:5 £ 10¡4 nA2 sec. Isolated spikes
in this regime are de�ned by tsilence D 60 msec.

5.1 How Many Dimensions? As explained in section 2, our path to di-
mensionality reduction begins with the computation of covariance matrices
for stimulus �uctuations surrounding a spike. The matrices are accumulated
from stimulus segments 200 samples in length, roughly corresponding to
sampling at the timescale suf�ciently long to capture the relevant features.
Thus, we begin in a 200-dimensional space. We emphasize that the theorem
that connects eigenvalues of the matrix 1C to the number of relevant di-
mensions is valid only for truly gaussian distributions of inputs and that by
focusing on isolated spikes, we are essentially creating a nongaussian stim-
ulus ensemble—namely, those stimuli that generate the silence out of which
the isolated spike can appear. Thus, we expect that the covariance matrix
approach will give us a heuristic guide to our search for lower-dimensional
descriptions, but we should proceed with caution.

The “raw” isolated spike-triggered covariance Ciso spike and the corre-
sponding covariance difference 1C, equation 2.7, are shown in Figure 8. The
matrix shows the effect of the silence as an approximately translationally
invariant band preceding the spike, the second-order analog of the constant
negative bias in the isolated spike STA (see Figure 7). The spike itself is
associated with features localized to §15 msec. In Figure 9, we show the
spectrum of eigenvalues of 1C computed using a sample of 80,000 spikes.
Before calculating the spectrum, we multiply 1C by C¡1

prior. This has the ef-
fect of giving us eigenvalues scaled in units of the input standard deviation
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Figure 8: The isolated spike-triggered covariance Ciso (left) and covariance dif-
ference 1C (right) for times ¡30 < t < 5 msec. The plots are in units of nA2.

Figure 9: The leading 64 eigenvalues of the isolated spike-triggered covariance
after accumulating 80,000 spikes.

along each dimension. Because the correlation time is short, Cprior is nearly
diagonal.

While the eigenvalues decay rapidly, there is no obvious set of outstand-
ing eigenvalues. To verify that this is not an effect of �nite sampling, Fig-
ure 10 shows the spectrum of eigenvalue magnitudes as a function of sample
size N. Eigenvalues that are truly zero up to the noise �oor determined by
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Figure 10: Convergence of the leading 64 eigenvalues of the isolated spike-
triggered covariance with increasing sample size. The log slope of the diagonal
is 1=

p
nspikes. Positive eigenvalues are indicated by crosses and negative by dots.

The spike-associated modes are labeled with an asterisk.

sampling decrease like
p

N. We �nd that a sequence of eigenvalues emerges
stably from the noise.

These results do not, however, imply that a low-dimensional approxima-
tion cannot be identi�ed. The extended structure in the covariance matrix
induced by the silence requirement is responsible for the apparent high di-
mensionality. In fact, as has been shown in Agüera y Arcas and Fairhall
(2003), the covariance eigensystem includes modes that are local and spike
associated, and others that are extended and silence associated, and thus
irrelevant to a causal model of spike timing prediction. Fortunately, because
extended silences and spikes are (by de�nition) statistically independent,
there is no mixing between the two types of modes. To identify the spike-
associated modes, we follow the diagnostic of Agüera y Arcas and Fairhall
(2003), computing the fraction of the energy of each mode concentrated
in the period of silence, which we take to be ¡60 · t · ¡40 msec. The
energy of a spike-associated mode in the silent period is due entirely to
noise and will therefore decrease like 1=nspikes with increasing sample size,
while this energy remains of order unity for silence modes. Carrying out
the test on the covariance modes, we obtain Figure 11, which shows that
the �rst and fourth modes rapidly emerge as spike associated. Two further
spike-associated modes appear over the sample shown, with the suggestion
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Figure 11: For the leading 64 modes, fraction of the mode energy over the in-
terval ¡40 < t < ¡30 msec as a function of increasing sample size. Modes
emerging with low energy are spike associated. The symbols indicate the sign
of the eigenvalue.

of other, weaker modes yet to emerge. The two leading silence modes are
shown in Figure 12. Those shown are typical; most modes resemble Fourier
modes, as the silence condition is close to time translationally invariant.

Examining the eigenvectors corresponding to the two leading spike-
associated eigenvalues, which for convenience we will denote s1 and s2
(although they are not the leading modes of the matrix), we �nd (see Fig-
ure 13) that the �rst mode closely resembles the isolated spike STA and the
second is close to the derivative of the �rst. Both modes approximate dif-
ferentiating operators; there is no linear combination of these modes that
would produce an integrator.

If the neuron �ltered its input and generated a spike when the output
of the �lter crosses threshold, we would �nd two signi�cant dimensions
associated with a spike. The �rst dimension would correspond simply to
the �lter, as the variance in this dimension is reduced to zero (for a noiseless
system) at the occurrence of a spike. As the threshold is always crossed from
below, the stimulus projection onto the �lter’s derivative must be positive,
again resulting in a reduced variance. It is tempting to suggest, then, that
�ltered threshold crossing is a good approximation to the HH model, but
we will see that this is not correct.
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Figure 12: Modes 2 and 3 of the spike-triggered covariance (silence associated).

Figure 13: Modes 1 and 4 of the spike-triggered covariance, which are the lead-
ing spike-associated modes.

5.2 Evaluating the Nonlinearity. At each instant of time, we can �nd
the projections of the stimulus along the leading spike-associated dimen-
sions s1 and s2. By construction, the distribution of these signals over the
whole experiment, P.s1; s2/, is gaussian. The appropriate prior for the iso-
lation condition, P.s1; s2 j silence/, differs only subtly from the gaussian
prior. On the other hand, for each spike, we obtain a sample from the dis-
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Figure 14: 104 spike-conditional stimuli (or “spike histories”) projected along
the �rst two covariance modes. The axes are in units of standard deviation on
the prior gaussian distribution. The circles, from the inside out, enclose all but
10¡1; 10¡2; : : : ; 10¡8 of the prior.

tribution P.s1; s2 j iso spike at t0/, leading to the picture in Figure 14. The
prior and spike-conditional distributions are clearly better separated in two
dimensions than in one, which means that the two-dimensional description
captures more information than projection onto the spike-triggered aver-
age alone. Surprisingly, the spike-conditional distribution is curved, unlike
what we would expect for a simple thresholding device. Furthermore, the
eigenvalue of 1C, which we associate with the direction of threshold cross-
ing (plotted on the y-axis in Figure 14), is positive, indicating increased
rather than decreased variance in this direction. As we see, projections onto
this mode are almost equally likely to be positive or negative, ruling out the
threshold crossing interpretation.
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Combining equations 2.2 and 2.3 for isolated spikes, we have

g.s1; s2/ D P.s1; s2 j iso spike at t0/

P.s1; s2 j silence/
; (5.1)

so that these two distributions determine the input-output relation of the
neuron in this 2D space (Brenner, Bialek, et al., 2000). Recall that although
the subspace is linear, g can have arbitrary nonlinearity. Figure 14 shows that
this input-output relation has clear structure, but also some fuzziness. As the
HH model is deterministic, the input-output relation should be a singular
function in the continuous space of inputs—spikes occur only when certain
exact conditions are met. Of course, �nite time resolution introduces some
blurring, and so we need to understand whether the blurring of the input-
output relation in Figure 14 is an effect of �nite time resolution or a real
limitation of the 2D description.

5.3 Information Captured in Two Dimensions. We will measure the
effectiveness of our description by computing the information in the 2D
approximation, according to the methods described in section 3. If the
two-dimensional approximation were exact, we would �nd that Is1;s2

isospike D
Iiso spike; more generally, one �nds Is1 ;s2

isospike · Iisospike, and the fraction of
the information captured measures the quality of the approximation. This
fraction is plotted in Figure 15 as a function of time resolution. For compar-
ison, we also show the information captured in the one-dimensional case,
considering only the stimulus projection along the STA.

We �nd that our low-dimensional model captures a substantial fraction
of the total information available in spike timing in an HH neuron over
a range of time resolutions. The approximation is best near 1t D 3 msec,

Figure 15: Bits per spike (left) and fraction of the theoretical limit (right) of
timing information in a single spike at a given temporal resolution captured
by projection onto the STA alone (triangles) and projection onto 1C covariance
modes 1 and 2 (circles).
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reaching 75%. Thus, the complex nonlinear dynamics of the HH model can
be approximated by saying that the neuron is sensitive to a 2D linear sub-
space in the high-dimensional space of input signals, and this approximate
description captures up to 75% of the mutual information between input
currents and (isolated) spike arrival times.

The dependence of information on time resolution (see Figure 15) shows
that the absolute information captured saturates for both the 1D and 2D
cases, at ¼ 3:2 and 4:1 bits respectively. Hence, for smaller 1t, the informa-
tion fraction captured drops. The model provides, at its best, a time resolu-
tionof 3 msec, so that informationcarried by moreprecisespike timingis lost
in our low-dimensional projection. Might this missing information be im-
portant for a real neuron? Stochastic HH simulations with realistic channel
densities suggest that the timing of spikes in response to white noise stim-
uli is reproducible to within 1 to 2 msec (Schneidman, Freedman, & Segev,
1998), a �gure that is comparable to what is observed for pyramidal cells in
vitro (Mainen & Sejnowski, 1995), as well in vivo in the �y’s visual system
(de Ruyter van Steveninck, Lewen, Strong, Koberle, & Bialek, 1997; Lewen,
Bialek, & de Ruyter van Steveninck, 2001), the vertebrate retina (Berry, War-
land, & Meister, 1997), the cat lateral geniculate nucleus (LGN) (Reinagel &
Reid, 2000), and the bat auditory cortex (Dear, Simmons, & Fritz, 1993). This
suggests that such timing details may indeed be important. We must there-
fore ask why our approximation seems to carry an inherent time resolution
limitation and why, even at its optimal resolution, the full information in
the spike is not recovered.

For many purposes, recovering 75% of the information at » 3 msec
resolution might be considered a resounding success. On the other hand,
with such a simpleunderlying model, we would hope for a morecompelling
conclusion. From a methodological point of view, it behooves us to ask
what we are missing in our 2D model, and perhaps the methods we use in
�nding the missing information in the present case will prove applicable
more generally.

6 What Is Missing?

The obvious �rst approach to improving the 2D approximation is to add
more dimensions. Let us consider the neglected modes. We recall from Fig-
ure 11 that in simulations with very large numbers of spikes, we can isolate
at least two more modes that have signi�cant eigenvalues and are asso-
ciated with the isolated spike rather than the preceding silence; these are
shown in Figure 16. We see that these modes look like higher-order deriva-
tives, which makes some sense since we are missing information at high
time resolution. On the other hand, if all we are doing is expanding in a
basis of higher-order derivatives it is not clear that we will do qualitatively
better by including one or two more terms, particularly given that sampling
higher-dimensional distributions becomes very dif�cult.
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Figure 16: The two next spike-associated modes. These resemble higher-order
derivatives.

Our original model attempted to approximate the set of relevant fea-
tures as lying within a K-dimensional linear subspace of the original D-
dimensional input space. The covariance spectrum indicates that additional
dimensions play a small but signi�cant role. We suggest that a reasonable
next step is to consider the relevant feature space to be low dimensional but
not �at. The �rst two covariance modes de�ne a plane; we will consider
next a 2D geometric construction that curves into additional dimensions.

Several methods have been proposed for the general problem of iden-
tifying low-dimensional nonlinear manifolds (Cottrell, Munro, & Zipser,
1988; Boser, Guyon, & Vapnik, 1992; Guyon, Boser, & Vapnik, 1993; Oja &
Karhunen, 1995; Roweis & Saul, 2000), but these various approaches share
the disadvantage that the manifold or, equivalently, the relevant set of fea-
tures remains implicit. Our hope is to understand the behavior of the neu-
ron explicitly; we therefore wish to obtain an explicit representation of this
curved feature space in terms of the basis vectors (features) that span it.

A �rst approach to determining the curved subspace is to approximate
it as a set of locally linear “tiles.” At any place on the surface, we wish to
�nd two orthogonal directions that form the surface’s local linear approx-
imation. Curvature of the subspace means that these two dimensions will
vary across the surface. We apply a simple algorithm to construct a locally
linear tiling with the advantage that it requires only �rst-order statistics.
First, we take one of the directions to be globally de�ned; it is natural to
take this direction to be the overall spike-triggered average. Allowing for
curvature in the feature subspace means that along the direction of the STA,
we allow the second, orthogonal direction to vary. In principle, this vari-
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Figure 17: The orthonormal components of spike-triggered averages from
80,000 spikes conditioned on their projection onto the overall spike-triggered
average (eight conditional averages shown).

ation is continuous, but we will not be able to sample suf�ciently to �nd
the complete description of the second direction, so we sort the stimulus
histories according to their projection along this direction and bin the sorted
histories into a small number of bins. This de�nes the number of tiles used
to cover the surface. We determine the conditional average of the stimulus
histories in each bin and compute the (normalized) component orthogonal
to the overall STA. This provides a second locally meaningful basis vector
for the subspace in that bin. The resulting family of curves orthogonal to the
STA is shown in Figure 17. Applying singular value decomposition to the
family of curves shows that there are at least four signi�cant independent
directions in stimulus space apart from the STA. This gives us an estimate
of the embedding dimension of the feature subspace.

Geometrically, this construction is equivalent to approximating the sur-
face as a twisting ribbon, with the leading direction that of the STA, but
where the surface is allowed to rotate about the STA axis. Further, we have
discretized the twisting direction into a small number of tiles. The discretiza-
tion is �xed by the size of the data. There is a trade-off between the precision
of estimating the conditional average and the �delitywith whichone follows
the twist. Here we have restricted ourselves to an experimentally realistic
number of isolated spikes (80,000), using an equal number of spikes per
bin. Varying over the number of bins, we found that eight bins gave the
best result. Note that our model is discontinuous; it might be possible to
improve it by interpolating smoothly between successive tiles.

Computing the information as a function of 1t using this locally linear
model, we obtain the curve shown in Figure 18, where the results can be
compared against the information found from the STA alone and from the
covariance modes. The information from the new model captures a maxi-
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Figure 18: Bits per spike (left) and fraction of the theoretical limit (right) of
timing information in a single spike at a given temporal resolution captured by
the locally linear tiling “twist” model (diamonds), compared to models using
the STA alone (triangles), and projection onto 1C covariance modes 1 and 2
(circles).

mum of 4.8 bits, recovering » 90% of the information at a time resolution
of approximately 1 msec.

One of the main strengths of this simple approach is that we have suc-
ceeded in extracting additional geometrical information about the feature
subspace using very limited data, as we compute only averages. Note that
a similar number of spikes cannot resolve more than two spike-associated
covariance modes in the covariance matrix analysis.

7 Discussion

The HH equations describe the dynamics of four degrees of freedom, and
almost since these equations were �rst written down, there have been at-
tempts to �nd simpli�cations or reductions. FitzHugh and Nagumo pro-
posed a 2D system of equations that approximate the HH model (Fitzhugh,
1961; Nagumo, Arimoto, & Yoshikawa, 1962), and this has the advantage
that one can visualize the trajectories directly in the plane and thus achieve
an intuitive graphical understanding of the dynamics and its dependence
on parameters. The need for reduction in the sense pioneered by FitzHugh
and by Nagumo et al. has become only more urgent with the growing use of
increasingly complexHH-style model neurons with many different channel
types. With this problem in mind, Kepler, Abbott, and Marder have intro-
duced reduction methods that are more systematic, making use of the dif-
ference in timescales among the gating variables (Kepler, Abbott, & Marder,
1992; Abbott & Kepler, 1990).

In the presence of constant current inputs, it makes sense to describe
the HH equations as a 4D autonomous dynamical system; by well-known
methods in dynamical systems theory, one could consider periodic input
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currents by adding an extra dimension. The question asked by FitzHugh
and Nagumo was whether this 4D or 5D description could be reduced to
two or three dimensions.

Closer in spirit to our approach is the work by Kistler, Gerstner, and
van Hemmen (1997), who focused in particular on the interaction among
successive action potentials. They argued that one could approximate the
HH model by a nearly linear dynamical system with a threshold, identi-
fying threshold crossing with spiking, provided that each spike generated
either a change in threshold or an effective input current that in�uences the
generation of subsequent spikes.

The notion of model dimensionality considered here is distinct from the
dynamical systems perspective in which one simply counts the system’s
degrees of freedom. Here we are attempting to �nd a description of the dy-
namics, which is essentially functional or computational. We have identi�ed
the output of the system as spike times, and our aim is to construct as com-
plete a description as possible of the mapping between input and output.
The dimensionality of our model is that of the space of inputs relevant for
this mapping. There is no necessary relationship between these two notions
of dimensionality. For example, in a neural network with two attractors, a
system described by a potentially large number of variables, there might be
a simple rule (perhaps even a linear �lter) that allows us to look at the in-
puts to the network and determine the times at which the switching events
will occur. Conversely, once we leave the simpli�ed world of constant or
periodic inputs, even the small number of differential equations describ-
ing a neuron’s channel dynamics could in principle be equivalent to a very
complicated set of rules for mapping inputs into spike times.

In our context, simplicity is (roughly) feature selectivity: the mapping is
simple if spiking is determined by a small number of features in the com-
plex history of inputs. Following the ideas that emerged in the analysis of
motion-sensitive neurons in the �y (de Ruyter van Steveninck & Bialek,
1988; Bialek & de Ruyter van Steveninck, 2003), we have identi�ed “fea-
tures” with “dimensions” and searched for low-dimensional descriptions
of the input history that preserve the mutual information between inputs
and outputs (spike times). We have considered only the generation of iso-
lated spikes, leaving aside the question of how spikes interact with one
another, as considered by Kistler et al. (1997). For these isolated spikes, we
began by searching for projections onto a low-dimensional linear subspace
of the originally » 200-dimensional stimulus space, and we found that a
substantial fraction of the mutual informationcould be preserved in a model
with just two dimensions. Searching for the information that is missing from
this model, we found that rather than adding more (Euclidean) dimensions,
we could capture approximately 90% of the information at high time reso-
lution by keeping a 2D description but allowing these dimensions to vary
over the surface, so that the neuron is sensitive to stimulus features that lie
in a curved 2D subspace.
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The geometrical picture of neurons as being sensitive to features that are
de�ned by a low-dimensional stimulus subspace is attractive and, as noted
in section 1, corresponds to a widely shared intuition about the nature of
neuronal feature selectivity. While curved subspaces often appear as the
targets for learning in complexneural computations such as invariant object
recognition, the idea that such subspaces appear already in the description
of single-neuron computation we believe to be novel.

While we have exploited the fact that long simulations of the HH model
are quite tractable to generate large amounts of “data” for our analysis, it is
important that, in the end, our construction of a curved, relevant, stimulus
subspace involves a series of computations that are just simple general-
izations of the conventional reverse correlation or spike-triggered average.
This suggests that our approach can be applied to real neurons without
requiring qualitatively larger data sets than might have been needed for
a careful reverse correlation analysis. In the same spirit, recent work has
shown how covariance matrix analysis of the �y’s motion-sensitive neu-
rons can reveal nonlinear computations in a 4D subspace using data sets
of fewer than 104 spikes (Bialek & de Ruyter van Steveninck, 2003). Low-
dimensional linear subspaces can be found even in the response of model
neurons to naturalistic inputs if one searches directly for dimensions that
capture the largest fraction of the mutual information between inputs and
spikes (Sharpee et al., in press), and again the errors involved in identifying
the relevant dimensions are comparable to the errors in reverse correla-
tion (Sharpee, Rust, & Bialek, 2003). All of these results point to the prac-
tical feasibility of describing real neurons in terms of nonlinear computa-
tion on low-dimensional relevant subspaces in a high-dimensional stimulus
space.

Our reduced model of the HH neuron both illustrates a novel approach
to dimensional reduction and gives new insight into the computation per-
formed by the neuron. The reduced model is essentially that of an edge
detector for current trajectories but is sensitive to a further stimulus pa-
rameter, producing a curved manifold. An interpretation of this curva-
ture will be presented in a forthcoming manuscript. This curved repre-
sentation is able to capture almost all information that isolated spikes con-
vey about the stimulus, or conversely, allow us to predict isolated spike
times with high temporal precision from the stimulus. The emergence of
a low-dimensional curved manifold in a model as simple as the HH neu-
ron suggests that such a description may also be appropriate for biological
neurons.

Our approach is limited in that we address only isolated spikes. This re-
stricted class of spikes nonetheless has biological relevance; for example, in
vertebrate retinal ganglion cells (Berry & Meister, 1999), in rat somatosen-
sory cortex (Panzeri, Petersen, Schultz, Lebedev, & Diamond, 2001), and in
LGN (Reinagel, Godwin, Sherman, & Koch, 1999), the �rst spike of a burst
has been shown to convey distinct (and the majority of the) information.
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However, a clear next step in this program is to extend our formalism to take
into account interspike interaction. For neurons or models with explicit long
timescales, adaptation induces very long-range history dependence, which
complicates the issue of spike interactions considerably. A full understand-
ing of the interaction between stimulus and spike history will therefore in
general involve understanding the meanings of spike patterns (de Ruyter
van Steveninck & Bialek, 1988; Brenner, Strong, et al., 2000) and the in�u-
ence of the larger statistical context (Fairhall et al., 2001). Our results point
to the need for a more parsimonious description of self-excitation, even for
the simple case of dependence on only the last spike time.

We close by reminding readers of the more ambitious goal of building
bridges between the burgeoning molecular-level description of neurons and
the functional or computational level. Armed with a description of spike
generation as a nonlinear operation on a low-dimensional, curved manifold
in the space of inputs, it is natural to ask how the details of this computa-
tional picture are related to molecular mechanisms. Are neurons with more
different types of ion channels sensitive to more stimulus dimensions, or do
they implement more complex nonlinearities in a low-dimensional space?
Are adaptation and modulation mechanisms that change the nonlinearity
separable from those that change the dimensions to which the cell is sensi-
tive? Finally, while we have shown how a low-dimensional description can
be constructed numerically from observations of the input-output proper-
ties of the neuron, one would like to understand analytically why such a
description emerges and whether it emerges universally from the combina-
tions of channel dynamics selected by real neurons.
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1748 B. Agüera y Arcas, A. Fairhall, and W. Bialek

Hartline, H. K. (1940).The receptive �elds of optic nerve �bres. Amer. J. Physiol.,
130, 690–699.

Hille, B. (1992). Ionic channels of excitable membranes. Sunderland, MA: Sinauer.
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane

current and its application to conduction and excitation in nerve. J. Physiol.,
463, 391–407.

Hubel, D. H., & Wiesel, T. N. (1962). Receptive �elds, binocular interaction
and functional architecture in the cat’s visual cortex. J. Physiol. (Lond.), 160,
106–154.

Iverson, L., & Zucker, S. W. (1995). Logical=linear operators for image curves.
IEEE Trans. Pattern Analysis and Machine Intelligence, 17, 982–996.

Keat, J., Reinagel, P., Reid, R. C., & Meister, M. (2001). Predicting every spike: A
model for the responses of visual neurons. Neuron, 30(3), 803–817.

Kepler, T., Abbott, L. F., & Marder, E. (1992). Reduction of conductance-based
neuron models. Biological Cybernetics, 66, 381–387.

Kistler, W., Gerstner, W., & van Hemmen, J. L. (1997).Reduction of the Hodgkin-
Huxley equations to a single-variable threshold model. Neural Computation,
9, 1015–1045.

Koch, C. (1999).Biophysics of computation: Information processing in single neurons.
New York: Oxford University Press.

Kuf�er, S. W. (1953). Discharge patterns and functional organization of mam-
malian retina. J. Neurophysiol., 16, 37–68.

Lewen, G. D., Bialek, W., & de Ruyter van Steveninck, R. R. (2001).Neural coding
of naturalistic motion stimuli. Network, 12, 317–329.

Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical
neurons. Science, 268, 1503–1506.

Nagumo, J., Arimoto, S., & Yoshikawa, Z. (1962). An active pulse transmission
line simulating nerve axon. Proc. IRE, 50, 2061–2071.

Oja, E., & Karhunen, J. (1995). Signal separation by nonlinear Hebbian learning.
In M. Palaniswami, Y. Attikiouzel, R. J. Marks II, D. Fogel, & T. Fukuda (Eds.),
Computational intelligence—a dynamicsystemperspective(pp. 83–97).New York:
IEEE Press.

Panzeri, S., Petersen, R., Schultz, S., Lebedev, M., & Diamond, M. (2001). The
role of spike timing in the coding of stimulus location in rat somatosensory
cortex. Neuron, 29, 769–777.

Reinagel, P., Godwin, D., Sherman, S. M., & Koch, C. (1999). Encoding of visual
information by LGN bursts. J. Neurophys., 81, 2558–2569.

Reinagel, P., & Reid, R. C. (2000). Temporal coding of visual information in the
thalamus. J. Neuroscience, 20(14), 5392–5400.

Rieke, F., Warland, D., Bialek, W., & de Ruyter van Steveninck, R. R. (1997).
Spikes: Exploring the neural code. Cambridge, MA: MIT Press.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65, 386–408.

Rosenblatt, F. (1962). Principles of neurodynamics. New York: Spartan Books.
Roweis, S., & Saul, L. (2000). Nonlinear dimensionality reduction by locally

linear embedding. Science, 290, 2323–2326.

http://ernesto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-3751^28^29463L.391[aid=217175]
http://ernesto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-3751^28^29160L.106[aid=214565]
http://ernesto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0162-8828^28^2917L.982[aid=5055308]
http://ernesto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0896-6273^28^2930:3L.803[aid=5055309]
http://ernesto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0340-1200^28^2966L.381[aid=214622]
http://ernesto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^299L.1015[aid=214566]
http://ernesto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0036-8075^28^29268L.1503[aid=214626]
http://ernesto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0896-6273^28^2929L.769[aid=2460016]
http://ernesto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-3077^28^2981L.2558[aid=885206]
http://ernesto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0270-6474^28^2920:14L.5392[aid=2715298]
http://ernesto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0033-295X^28^2965L.386[aid=216354]
http://ernesto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0036-8075^28^29290L.2323[aid=4927983]
http://ernesto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-3751^28^29463L.391[aid=217175]
http://ernesto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-3751^28^29160L.106[aid=214565]
http://ernesto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^299L.1015[aid=214566]


Computation in a Single Neuron 1749

Schneidman, E., Freedman, B., & Segev, I. (1998). Ion channel stochasticity may
be critical in determining the reliability and precision of spike timing. Neural
Comp., 10, 1679–1703.

Shannon, C. E. (1948). A mathematical theory of communication. Bell Sys. Tech.
Journal, 27, 379–423, 623–656.

Sharpee, T., Rust, N. C., & Bialek, W. (in press). Maximally informative di-
mensions: analysing neural responses to natural signals. Neural Information
Processing Systems 2002. Available on-line: http:==xxx.lanl.gov=abs=physics=

0208057.
Sharpee, T., Rust, N. C., & Bialek, W. (2003). Maximally informative dimensions:

Analysing neural responses to natural signals. Unpublished manuscript.
Stanley, G. B., Lei, F. F., & Dan, Y. (1999). Reconstruction of natural scenes

from ensemble responses in the lateral geniculate nucleus. J. Neurosci., 19(18),
8036–8042.

Theunissen, F., Sen, K., & Doupe, A. (2000).Spectral-temporal receptive �elds of
nonlinear auditory neurons obtained using natural sounds. J. Neurosci., 20,
2315–2331.
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