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Does the brain construct an efficient representation of the sensory world? We review progress
on this question, focusing on a series of experiments in the last decade which use fly vision as
a model system in which theory and experiment can confront each other. Although the idea of
efficient representation has been productive, clearly it is incomplete since it doesn’t tell us which
bits of sensory information are most valuable to the organism. We suggest that an organism which
maximizes the (biologically meaningful) adaptive value of its actions given fixed resources should
have internal representations of the outside world that are optimal in a very specific information
theoretic sense: they maximize the information about the future of sensory inputs at a fixed value
of the information about their past. This principle contains as special cases computations which
the brain seems to carry out, and it should be possible to test this optimization directly. We return
to the fly visual system and report the results of preliminary experiments that are in encouraging
agreement with theory.

I. INTRODUCTION

Since Shannon’s original work [1] there has been the
hope that information theory would provide not only
a guide to the design of engineered communication sys-
tems but also a framework for understanding information
processing in biological systems. One of the most con-
crete implementations of this idea is the proposal that
computations in the brain serve to construct an efficient
(perhaps even maximally efficient) representation of in-
coming sensory data [2, 3, 4]. Since efficient coding
schemes are matched, at least implicitly, to the distri-
bution of input signals, this means that what the brain
computes—perhaps down to the properties of individ-
ual neurons—should be predictable from the statistical
structure of the sensory world. This is a very attractive
picture, and points toward general theoretical principles
rather than just a set of small models for different small
pieces of the brain. More precisely, this picture suggests
a research program that could lead to an experimentally
testable theory.

Our research efforts, over several years, have been in-
fluenced by these ideas of efficient representation. On
the one hand, we have found evidence for this sort of
optimization in the responses of single neurons in the fly
visual system, especially once we developed tools for ex-
ploring the responses to more naturalistic sensory inputs.
On the other hand, we have been concerned that simple
implementations of information theoretic optimization
principles must be wrong, because they implicitly at-
tach equal value to all possible bits of information about
the world. In response to these concerns, we have been
trying to develop alternative approaches, still grounded
in information theory but not completely agnostic about
the value of information. Guided by our earlier results,

we also want to phrase these theoretical ideas in a way
that suggests new experiments.

What we have outlined here is an ambitious program,
and certainly we have not reached anything like com-
pletion. The invitation to speak at the International
Symposium on Information Theory in 2006 seemed like
a good occasion for a progress report, so that is what
we present here. It is much easier to convey the sense
of ‘work in progress’ when speaking than when writing,
and we hope that the necessary formalities of text do not
obscure the fact that we are still groping for the correct
formulation of our ideas. We also hope that, incomplete
as it is, others will find the current state of our under-
standing useful and perhaps even provocative.

II. SOME RESULTS FROM THE FLY VISUAL
SYSTEM

The idea of efficient representation in the brain has
motivated a considerable amount of work over several
decades. We begin by reviewing some of what has been
done along these lines, focusing on one experimental test-
ing ground, the motion sensitive neurons in the fly visual
system.

Many animals, in particular those that fly, rely on vi-
sual motion estimation to navigate through the world.
The sensory–motor system responsible for this task,
loosely referred to as the optomotor control loop, has
been the subject of intense investigation in the fly, both
in behavioral [5] and in electrophysiological studies. In
particular, Bishop and Keehn [6] described wide field
motion sensitive cells in the fly’s lobula plate, and some
neurons of this class have been directly implicated in
optomotor control [7]. The fly’s motion sensitive vi-
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sual neurons thus are critical for behavior, and one can
record the action potentials or spikes generated by indi-
vidual motion sensitive cells (e.g., the cell H1, a lobula
plate neuron selective for horizontal inward motion) us-
ing an extracellular tungsten microelectrode, and stan-
dard electrophysiological methods [8]; unlike most such
recordings, in the fly one can record stably and continu-
ously for days.

The extreme stability of the H1 recordings has made
this system an attractive testing ground for a wide vari-
ety of issues in neural coding and computaton. In par-
ticular, for H1 it has been possible to show that:

1. Sequences of action potentials provide large
amounts of information about visual inputs, within
a factor of two of the limit set by the entropy of
these sequences even when we distinguish spike ar-
rival times with millisecond resolution [9].

2. This efficiency of coding has significant contribu-
tions from temporal patterns of spikes that provide
more information than expected by adding up the
information carried by individual spikes [10].

3. Although many aspects of the neural response vary
among individual flies, the efficiency of coding is
nearly constant [11].

4. Information rates and coding efficiencies are
higher, and the high efficiency extends to even
higher time resolution, when we deliver stimulus
ensembles that more closely approximate the stim-
uli which flies encounter in nature [12, 13].

5. The apparent input/output relation of these neu-
rons changes in response to changes in the in-
put distribution. For the simple case where we
change the dynamic range of velocity signals, the
input/output relation rescales so that the signal
is encoded in relative units; the magnitude of
the rescaling factor maximizes information transfer
[16].

6. In order to adjust the input/output relation reli-
ably, the system has to collect enough samples to
be sure that the input distribution has changed. In
fact the speed of adaptation is close to this theo-
retical limit [17].

All of these results point toward the utility of efficient
representation as a hypothesis guiding the design of new
experiments, and perhaps even as a real theory of the
neural code. So much for the good news.

III. ON THE OTHER HAND ...

Despite the successes of information theoretic ap-
proaches to the neural code in fly vision and in other
systems, we must be honest and consider the funda-
mental stumbling blocks in any effort to use informa-
tion theoretic ideas in the analysis of biological systems.

First, Shannon’s formulation of information theory has
no place for the value or meaning of the information.
This is not an accident. On the first page of his 1948
paper [1], Shannon remarked (italics in the original):

Frequently the messages have meaning; that
is they refer to or are correlated according
to some system with certain physical or con-
ceptual entities. These semantic aspects of
the communication are irrelevant to the en-
gineering problem.

Yet surely organisms find some bits more valuable than
others, and any theory that renders meaning irrelevant
must miss something fundamental about how organisms
work. Second, it is difficult to imagine that evolution can
select for abstract quantities such as the number of bits
that the brain extracts from its sensory inputs. Both of
these problems point away from general mathematical
structures toward biological details such as the fitness or
adaptive value of particular actions, the costs of particu-
lar errors, and the resources needed to carry out specific
computations. It would be attractive to have a theoret-
ical framework that is faithful to these biological details
but nonetheless derives predictions from more general
principles.

To develop a biologically meaningful notion of opti-
mization, we should start with the idea that there is
some metric (‘adaptive value’ in Fig 1) for the quality
or utility of the actions taken by an organism, and that
there are resources that the organism needs to spend in
order to take these actions and to maintain the appara-
tus that collects and processes the relevant sensory in-
formation. The ultimate metric is evolutionary fitness,
but in more limited contexts one can think about the
frequency or value of rewards and punishments, and in
experiments one can manipulate these metrics directly.
Costs often are measured in metabolic terms, but one
also can measure the volume of neural circuitry devoted
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FIG. 1: Optimization from a biological point of view.
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to a task. Presumably there also are costs associated
with the development of complex structures, although
these are difficult to quantify.

Given precise definitions of utility and cost for dif-
ferent strategies (whether represented by neurons or by
genomes), the biologically meaningful optimum is to
maximize utility at fixed cost: While there may be no
global answer to the question of how much an organism
should spend, there is a notion that it should receive
the maximum return on this investment. Thus within a
given setting there is a curve that describes the maxi-
mum possible utility as a function of the cost, and this
curve divides the utility/cost plane into regions that are
possible and impossible for organisms to achieve, as in
Fig 1. This curve defines a notion of optimal perfor-
mance that seems well grounded in the facts of life, even
if we can’t compute it. The question is whether we can
map this biological notion of optimization into some-
thing that has the generality and power of information
theory.

IV. COSTS AND BENEFITS ARE RELATED
TO INFORMATION

To begin, we note that taking actions which achieve a
criterion level of fitness requires a minimum number of
bits of information, as schematized in the upper left of
Fig 2. Consider an experiment in which human subjects
point at a target, and the reward or utility is depen-
dent upon the positional error of the pointing. We can
think of the motor neurons, muscles and kinematics of
the arm together as a communication channel that trans-
forms some central neural representation into mechanical
displacements. If we had an accurate model of this com-
munication channel we could calculate its rate–distortion
function, which determines the minimum number of bits
required in specifying the command to insure displace-
ments of specified accuracy across a range of possible tar-
get locations. The rate–distortion function divides the
utility/information plane into accessible and inaccessible
regions.

It also is true that bits are not free. In the classical ex-
amples of communication channels, the signal–to–noise
ratio (SNR) with which data can be transmitted is re-
lated directly to the power dissipation, and the SNR in
turn sets the maximum number of bits that can be trans-
mitted in a given amount of time; this is (almost) the
concept of channel capacity. If we think about the bits
that will be used to direct an action, then there are many
costs—the cost of acquiring the information, of repre-
senting the information, and the more obvious physical
costs of carrying out the resulting actions. Continuing
with the example of motor control, we always can assign
these costs to the symbols at the entrance to the commu-
nication channel formed by the motor neurons, muscles
and arm kinematics. The channel capacity separates the
information/cost plane into accessible and inaccessible
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measures the same?

FIG. 2: Biological costs and benefits are connected to bits.
The upper right quadrant redraws the biologically motivated
notion of optimization from Fig 1, trading resources for adap-
tive value. In the upper left, we show schematically that
achieving a given quality of performance requires a minimum
number of bits, in the spirit of rate–distortion theory. In the
lower right, we show that a given resource expenditure will
suffice only to collect a certain maximal number of bits, in
the spirit of channel coding. Through these connections, the
quantities that govern biological optimization are translated
into bits. But are these the same bits?

regions, as in the lower right quadrant of Fig 2. Ideas
about metabolically efficient neural codes [18, 19] can be
seen as efforts to calculate this curve in specific models.

V. CAN WE CLOSE THE LOOP?

To complete the link between biological optimization
and information theoretic ideas, we need to remem-
ber that there is a causal path from information about
the outside world to internal representations to actions.
Thus the adaptive value of actions always depends on the
state of the world after the internal representation has
been formed, simply because it takes time to transform
representations into actions; the only bits that can con-
tribute to fitness are those which have predictive power
regarding the future state of the world. In contrast, be-
cause of causality, any internal representation necessarily
is built out of information about the past.

The fact that representations are built from data
about the past but are useful only to the extent that
they provide information about the future means that,
for the organism, the bits in the rate–distortion tradeoff
are bits about the future, while the bits in the channel
capacity tradeoff are bits about the past. Thus the differ-
ent tradeoffs we have been discussing—the biologically
relevant trade between resources and adaptive value, the
rate–distortion relation between adaptive value and bits,
and the channel capacity trading of resources for bits—
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FIG. 3: Connecting the different optimization principles.
Lines indicate curves of optimal performance, separating al-
lowed from forbidden (hashed) regions of each quadrant. In
the upper right quadrant is the biological principle, maximiz-
ing fitness or adaptive value at fixed resources. But actions
that achieve a given level of adaptive value require a minimum
number of bits, and since actions occur after plans these are
bits about the future (upper left). On the other hand, the or-
ganism has to “pay” for bits, and hence there is a minimum
resource costs for any representation of information (lower
right). Finally, given some bits (necessarily obtained from
observations on the past), there is some maximum number of
bits of predictive power (lower left). To find a point on the
biological optimum one can try to follow a path through the
other three quadrants, as indicated by the arrows.

form three quadrants in a plane (Fig 3). The fourth
quadrant, which completes the picture, is a purely in-
formation theoretic tradeoff between bits about the past
and bits about the future.

Assuming that the organism lives in a statistically
stationary world, predictions ultimately are limited by
the statistical structure of the data that the organism
collects. More concretely, if we observe a time series
through a window of duration T (that is, for times
−T < t ≤ 0), then to represent the data Xpast we
have collected requires S(T ) bits, where S is the entropy,
but the information that these data provide about the
future Xfuture (i.e., at times t > 0) is given by some
I(Xpast;Xfuture) ≡ Ipred(T ) � S(T ). In particular,
while for large T the entropy S(T ) is expected to be-
come extensive, the predictive information Ipred(T ) al-
ways is subextensive [20]. Thus we expect that the data
Xpast can be compressed significantly into some internal
representation Xint without losing too much of the rele-
vant information aboutXfuture. This problem—mapping
Xpast → Xint to minimize the information I(Xint;Xpast)
that we keep about the past while maintaining informa-
tion I(Xint;Xfuture) about the future—is an example of
the “information bottleneck” problem [21]. Again there
is a curve of optimal performance, separating the plane

into allowed and forbidden regions. Formally, we can
construct this optimum by solving

max
Xpast→Xint

[I(Xint;Xfuture)− λI(Xint;Xpast)] , (1)

where Xpast → Xint is the rule for creating the internal
representation and λ is a Lagrange multiplier.

We see that there are several different optimization
principles, all connected, as schematized in Fig 3. The
biologically relevant principle is to maximum the fitness
F given some resource cost C. But in order to take ac-
tions that achieve some mean fitness F in a potentially
fluctuating environment, the organism must have an in-
ternal representation Xint that provides some minimum
amount of information I(Xint;Xfuture) about the future
states of that environment; the curve I(Xint;Xfuture) vs.
F is a version of the rate–distortion curve. Building and
acting upon this internal representation, however, en-
tails various costs, and these can all be assigned to the
construction of the representation out of the (past) data
as they are collected; the curve of I(Xint;Xpast) vs. C
is an example of the channel capacity. Finally, the in-
formation bottleneck principle tells us that there is an
optimum choice of internal representation which maxi-
mizes I(Xint;Xfuture) at fixed I(Xint;Xpast).

The four interconnected optimization principles cer-
tainly have to be consistent with one another. Thus, if
an organism wants to achieve a certain mean fitness, it
needs a minimum number of bits of predictive power, and
this requires collecting a minimum number of bits about
the past, which in turn necessitates some minimum cost.
The possible combinations of cost and fitness—the ac-
cessible region of the biologically meaningful tradeoff in
Fig 1—thus have a reflection in the “information plane”
(the lower left quadrant of Fig 3) where we trade bits
about the future against bits about the past.

The consistency of the different optimization princi-
ples means that the purely information theoretic tradeoff
between bits about the future and bits about the past
must constrain the biologically optimal tradeoff between
resources and fitness. We would like to make “constrain”
more precise, and conjecture that under reasonable con-
ditions organisms which operate at the biological opti-
mum (that is, along the bounding curve in the upper
right quadrant of Fig 3) also operate along the informa-
tion theoretic optimum (the bounding curve in the lower
left quadrant of Fig 3). At the moment this is only a
conjecture, but we hope that the relationships in Fig 3
open a path to some more rigorous connections between
information theoretic and biological quantities.

VI. A UNIFYING PRINCIPLE?

The optimization principle in Eq (1) is very abstract;
here we consider two concrete examples. First imagine
that we observe a Gaussian stochastic process [x(t)] that
consists of a correlated signal [s(t)] in a background of
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white noise [η(t)]. For simplicity, let’s understand ‘cor-
related’ to mean that s(t) has an exponentially decaying
correlation function with a correlation time τc. Thus,
x(t) = s(t) + η(t), where

〈s(t)s(t′)〉 = σ2 exp (−|t− t′|/τc) (2)
〈η(t)η(t′)〉 = N0δ(t− t′), (3)

and hence the power spectrum of x(t) is given by

〈x(t)x(t′)〉 ≡
∫
dω

2π
Sx(ω) exp [−iω(t− t′)] (4)

Sx(ω) =
2σ2τc

1 + (ωτc)2
+N0. (5)

The full probability distribution for the function x(t) is

P [x(t)] =
1
Z

exp
[
−1

2

∫
dt

∫
dt′ x(t)K(t− t′)x(t′)

]
,

(6)
where Z is a normalization constant and the kernel

K(τ) =
∫
dω

2π
1

Sx(ω)
exp(−iωτ). (7)

If we sit at t = 0, then Xpast ≡ x(t < 0) and Xfuture ≡
x(t > 0). In the exponential of Eq (6), mixing between
Xpast and Xfuture is confined to a term which can be
written as[∫ 0

−∞
dt g(−t)x(t)

]
×
[∫ ∞

0

dt′ g(t′)x(t′)
]
, (8)

where g(t) = exp(−t/τ0), with τ0 = τc(1+σ2τc/N0)−1/2.
This means that the probability distribution of Xfuture

given Xpast depends only on x(t) as seen through the
linear filter g(τ), and hence only this filtered version of
the past can contribute to Xint [22].

The filter g(t) is exactly the filter that provides op-
timal separation between the signal s(t) and the noise
η(t); more precisely, given the data Xpast, if we ask for
the best estimate of the signal s(t), where “best” means
minimizing the mean–square error, then this optimal es-
timate is just y(t) [24]. Solving the problem of optimally
representing the predictive information in this time series
thus is identical to the problem of optimally separating
signal from noise.

In contrast to these results for Gaussian time series
with finite correlation times, consider what happens we
look at a time series that has essentially infinitely long
correlations. Specifically, consider an ensemble of possi-
ble experiments in which points xn are drawn indepen-
dently and at random from the probability distribution
P (x|~α), where ~α is a K–dimensional vector of param-
eters specifying the distribution. At the start of each
experiment these parameters are drawn from the distri-
bution P (~α) and then fixed for all n. Thus the joint
distribution for many successive observations on x on

one experiment is given by

P (x1, x2, · · · , xM ) =
∫
dKαP (~α)

M∏
n=1

P (xn|~α). (9)

Now we can define Xpast ≡ {x1, x2, · · · , xN} and
Xfuture ≡ {xN+1, xN+2, · · · , xM}, and we can (optimisti-
cally) imagine an unbounded future, M → ∞. To find
the optimal representation of predictive information in
this case we need a bit more of the apparatus of the
information bottleneck [21].

It was shown in Ref [21] that an optimization problem
of the form in Eq (1) can be solved by probabilistic map-
pings Xpast → Xint provided that the distribution which
describes this mapping obeys a self–consistent equation,

P (Xint|Xpast) =
1

Z(Xpast;λ)
exp

[
− 1
λ
DKL(Xpast;Xint)

]
,

(10)
where Z is a normalization constant and
DKL(Xpast;Xint) is the Kullback–Leibler divergence
between the distributions of Xfuture conditional on Xpast

and Xint, respectively,

DKL(Xpast;Xint) =
∫
DXfutureP (Xfuture|Xpast)

× ln
[
P (Xfuture|Xpast)
P (Xfuture|Xint)

]
. (11)

Since the future depends on our internal representation
only because this internal representation is built from
observations on the past, we can write

P (Xfuture|Xint) =
∫
DXpastP (Xfuture|Xpast)

×P (Xpast|Xint) (12)

P (Xpast|Xint) = P (Xint|Xpast)
P (Xpast)
P (Xint)

, (13)

which shows that Eq (10) really is a self–consistent equa-
tion for P (Xint|Xpast). To solve these equations it is
helpful to realize that they involve integrals over many
variables, since Xpast is N dimensional and Xfuture is M
dimensional. In the limit that these numbers are very
large and the temperature–like parameter λ is very small,
it is plausible that the relevant integrals are dominated
by their saddle points.

In the saddle point approximation one can find so-
lutions for P (Xint|Xpast) that have the following sug-
gestive form. The variable Xint can be thought of as
a point in a K–dimensional space, and then the distri-
butions P (Xint|Xpast) are Gaussian, centered on loca-
tions ~αest(Xpast), which are the maximum a posteriori
Bayesian estimates of the parameters ~α given the obser-
vations {x1, x2, · · · , xN}. The covariance of the Gaussian
is proportional to the inverse Fisher information ma-
trix, reflecting our certainty about ~α given the past data.
Thus, in this case, if we solve the problem of efficiently
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representing predictive information, then we have solved
the problem of learning the parameters of the probabilis-
tic model that underlies the data we observe.

Signal processing and learning usually are seen as very
different problems, especially from a biological point of
view. Building an optimal filter to separate signal from
noise is a “low–level” task, presumably solved in the very
first layers of sensory processing. Learning is a higher
level problem, especially if the model we are learning
starts to describe objects far removed from raw sense
data, and presumably happens in the cerebral cortex.
Returning to the problem of placing value on informa-
tion, separating signal from noise by filtering and learn-
ing the parameters of a probabilistic model seem to be
very different goals. In the conventional biological view,
organisms carry out these tasks at different times and
with different mechanisms because the kinds of infor-
mation that one extracts in the two cases have different
value to the organism. What we have shown is that there
is an alternative, and more unfiied, view.

There is a single principle—efficient representation of
predictive information—that values all (predictive) bits
equally but in some instances corresponds to filtering
and in others to learning. In this view, what determines
whether we should filter or learn is not an arbitrary “bio-
logical” choice of goal or assignment of value, but rather
the structure of the data stream to which we have access.

VII. NEURAL CODING OF PREDICTIVE
INFORMATION

It would be attractive to have a direct test of these
ideas. We recall that neurons respond to sensory stimuli
with sequences of identical action potentials or “spikes,”
and hence the brain’s internal representation of the world
is constructed from these spikes [8]. More narrowly, if
we record from a single neuron, then this internal rep-
resentation Xint can be identified with a short segment
of the spike train from that neuron, while Xpast and
Xfuture are the past and future sensory inputs, respec-
tively. The conventional analysis of neural responses
focuses on the relationship between Xpast and Xint—
trying to understand what features of the recent sensory
stimuli are responsible for shaping the neural response.
In contrast, the framework proposed here suggests that
we try to quantify the information I(Xint;Xfuture) that
neural responses provide about the future sensory in-
puts [25]. More specifically, to test the hypothesis that
the brain generates maximally efficient representations
of predictive information, we need to measure directly
both I(Xint;Xfuture) and I(Xint;Xpast), and see whether
in a given sensory environment the neural representation
Xint lies near the optimal curve predicted from Eq (1).

It would seem that to measure I(Xint;Xfuture) we
would have to understand the structure of the code by
which spike trains represent the future; the same prob-
lem arises even with I(Xint;Xpast). In fact there is a

more direct strategy [9]. The essential idea behind di-
rect measurements of neural information transmission [9]
is to use the (ir)reproducibility of the neural response to
repeated presentations of the same dynamic sensory sig-
nal. If we think of the sensory stimulus as a movie that
runs from time t = 0 to t = T , we can run the movie
repeatedly in a continuous loop. Then at each moment
t we can look at the response R ≡ Xint of the neuron,
and if there are enough repetitions of the movie we can
estimate the conditional distribution P (Xint|t); the en-
tropy Sn(t) of this distribution measures the “noise” in
the neural response. On the other hand, if we average
over the time t we can estimate P (Xint), and the en-
tropy Stotal of this distribution measures the capacity of
the neural responses to convey information. In the limit
of large T ergodicity allows us to identify averages over
time with averages over the distribution out of which the
stimulus movies are being drawn, and then

I = Stotal −
1
T

∫ T

0

Sn(t) (14)

is the mutual information between sensory inputs and
neural responses. Since the neuron responds causally to
its sensory inputs, the information that it carries about
these inputs necessarily is information about the past,
I(Xint;Xpast) [26]. Note that this computation does not
require us to understand how to read out the encoded in-
formation, or even to know which features of the sensory
inputs are encoded by the brain.

More careful analysis makes clear that the strategy
in Ref [9] measures the information which Xint provides
about whatever aspects of the sensory stimulus are being
repeated. For example, if we have a movie with sound
and we repeat the video but randomize the audio, then
following the analysis of Ref [9] we would measure the
information that neurons carry about their visual and
not auditory inputs. Thus to measure I(Xint;Xfuture)
we need to generate sensory stimuli that are all drawn
independently from the same distribution but are con-
strained to lead to the same future, and then repro-
ducible neural responses to these stimuli will reflect in-
formation about the future. This can be done by a vari-
ety of methods.

Consider a time dependent signal sk(t) generated on
repeat k as

τc
dsk(t)
dt

+ sk(t) = ξk(t), (15)

where ξk(t < 0) = ξ0(t) for all k, while each ξk(t > 0)
is drawn independently; in the simplest case ξ(t) has no
correlations in time (white noise). Then the correlation
function of the signal becomes

〈sk(t)sk(t′)〉 ∝ exp(−|t− t′|/τc), (16)

and all sk(t < 0) are identical. Now take the trajecto-
ries and reverse the direction of time. The result is an
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FIG. 4: Trajectories with a common future and their neural representation. Top left: Sample trajectories sk(t) designed to
converge on a common future at t = 0, as explained in the text. Units are angular velocity, since these signals will be used to
drive the motion–sensitive visual neuron H1. The correlation time τc = 0.05 s and the variance 〈s2〉 = (200◦/s)2. Bottom left:
Responses of the blowfly H1 neuron to ninety different trajectories of angular velocity vs. time sk(t) converge on a common
future at t = 0; each dot represents a single spike generated by H1 in response to these individual signals. Stimulus delivery
and recordings as described in Ref [12]. Top right: Probability per unit time of observing a spike in response to trajectories
that converge on three different common futures. At times long before the convergence, all responses are drawn from the same
distribution and hence have same spike probability within errors. Divergences among responses begin at a time ∼ τc prior to
common future. This divergence means that the neural responses carry information about the particular common future, as
explained in the text. Error bars are standard errors of the mean, estimated by bootstrapping. Bottom right: Information in
single time bins about the identity of the future, normalized as an information rate. Blue points are from the real data, and
green points are from shuffled data that should have zero information.

ensemble of trajectories that lead to the same future but
are otherwise statistically independent, as in upper left
panel in Fig 4.

We have used the strategy outlined above to explore
the coding of predictive information in the fly visual sys-
tem, returning to the neuron H1. The extreme stability
of recordings from H1 has been exploited in experiments
where we deliver motion stimuli by physically rotating
the fly outdoors in a natural environment rather than
showing movies to a fixed fly [12], and this is the path
that we follow here.

We have generated angular velocity trajectories s(t)
with a variance 〈s2〉 = (200 ◦/s)2 and a correlation time
τc = 0.05 s by numerical solution of Eq (15). We choose
nine such segments at random to be the common futures,
and then follow the construction leading to the upper left
panel in Fig 4 to generate ninety independent trajecto-
ries for each of these common futures. These trajectories

are used as angular velocity signals to drive rotation of
a blowfly Calliphora vicina mounted on a motor drive as
in Ref [12] while we record the spikes generated by the
H1 neuron.

The lower left panel in Figure 4 shows examples of
the spike trains generated by H1 in response to indepen-
dent stimuli that converge on a common future. Long
before the convergence, stimuli are completely different
on every trial, and hence the neural responses are highly
variable. As we approach the convergence time, stim-
uli on different trials start to share features which are
predictive of the common future, and hence the neural
responses become more reproducible. Importantly, stim-
ulus trajectories that converge on different common fu-
tures generate responses that are not only reproducible
but also distinct from one another, as seen in the upper
right of Fig 4. Our task now is to quantify this distin-
guishability by estimating I(Xint;Xfuture).
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FIG. 5: Information about the future carried by spikes in a
window that ends at the time of convergence onto a common
future. Essentially this is the integral of the information rate
shown in at the lower right in Fig 4, but error bars must be
evaluated carefully. Shown in green are the results for shuffled
data, which should be zero within errors if our estimates are
reliable.

Imagine dividing time into small bins of duration ∆τ .
For small ∆τ , we observe either one spike or no spikes, so
the neural response is a binary variable. If we sit at one
moment in time relative to the convergence on a common
future, we observe this binary variable, and it is associ-
ated with one of the nine possible futures. Thus there is
a 2× 9 table of futures and responses, and it is straight-
forward to use the experiments to fill in the frequencies
with which each of these response/future combinations
occurs. With 810 samples to fill in the frequencies of 18
possible events, we have reasonably good sampling and
can make reliable estimates of the mutual information,
with error bars, following the methods of Refs [9, 27].
In each time bin, then, we can estimate the information
that the neural response provides about the future, and
we can normalize this by the duration of the bin ∆τ to
obtain an information rate, as shown at the lower right
in Fig 4. We see that information about sensory signals
in the future (t > 0) is negligible in the distant past, as
it must be, with the scale of the decay set by the corre-
lation time τc. The local information rate builds up as
we approach t = 0, peaking for this stimulus ensemble
at ∼ 30 bits/s.

The results in Fig 4 provide a moment by moment view
of the predictive information in the neural response, but
we would like a slightly more integrated view: if we sit at
t = 0 and look back across a window of duration T , how
much predictive information can we extract from the re-
sponses in this window? The complication in answering

this question is that the neural response across this win-
dow is a T/∆τ–letter binary word, and the space of these
words is difficult to sample for large T . The problem
could be enormously simpler, however, if the informa-
tion carried by each spike were independent, since then
the total information would be the integral of the local
information rate. This independence isn’t exactly true,
but it isn’t a bad approximation under some conditions
[10], and we adopt it here. Then the only remaining
technical problem is to be sure that small systematic er-
rors in the estimate of the local information rate don’t
accumulate as we compute the time integral, but this can
be checked by shuffling the data and making sure that
the shuffled data yields zero information. The results of
this computation are shown in Fig 5.

Should we be surprised by the fact that the neural
response from this one single neuron carries somewhat
more than one bit of information about the future? Per-
haps not. This is, after all, a direction selective motion
sensitive neuron, and because of the correlations the di-
rection of motion tends to persist; maybe all we have
found is that the neuron encodes the current sign of the
velocity, and this is a good predictor of the future sign,
hence one bit, with perhaps a little more coming along
with some knowledge of the speed. We’d like to suggest
that things are more subtle.

Under the conditions of these experiments, the signal–
to–noise in the fly’s retina is quite high. As explained in
Ref [17], we can think of the fly’s eye as providing an es-
sentially perfect view of the visual world that is updated
with a time resolution ∆t on the scale of milliseconds.
But if we are observing a Gaussian stochastic process
with a correlation time of τc, then the limit to prediction
is set by the need to extrapolate across the ‘gap’ of du-
ration ∆t. Since the exponentially decaying correlation
function corresponds to a Markov process, this limiting
predictive information is calculable simply as the mutual
information between two samples separated by the gap;
the result is

Ipred =
1
2

log2

[
1

1− exp(−2∆t/τc)

]
. (17)

Plugging in the numbers, we find that, for these stim-
uli, capturing roughly one bit of predictive information
depends in an essential way on the system have a time
resolution of better than ten milliseconds, and the ob-
served predictive information requires resolution in the
3− 4 ms range.

When we look back at a window of the neural response
with duration T , we expect to gain RinfoT bits of infor-
mation about the stimulus [28], and as noted above this
necessarily is information about the past. Thus the x–
axis of Fig 5, which measures the duration of the win-
dow, can be rescaled, so that the whole figure is a plot of
information about the future vs information about the
past, as in the lower left quadrant of Fig 3. Thus we can
compare this measure of neural performance with the
information bottleneck limit derived from the statistical
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structure of the visual stimulus itself; since the stimulus
is a Gaussian stochastic process, this is straightforward
[23], and as above we assume that the fly has access to
a perfect representation of the velocity vs. time, up-
dated at multiples of the time resolution ∆t. With ∆t
in the range of 3 − 4 ms to be consistent with the total
amount of predictive information captured by the neu-
ral response, we find that the performance of the neuron
always is within a factor of two of the bottleneck limit,
across the whole range of window sizes.

VIII. DISCUSSION

We should begin our discussion by reminding the
reader that, more than most papers, this is a report on
work in progress, intended to capture the current state of
our understanding rather than to draw firm conclusions.

Efficient representation? Although one should be
careful of glib summaries, it does seem that the fly’s
visual system offers concrete evidence of the brain build-
ing representations of the sensory world that are efficient
in the sense defined by information theory. The absolute
information rates are large (especially in comparison to
prior expectations in the field!), and there are many signs
that the coding strategy used by the brain is matched
quantitatively to the statistical structure of sensory in-
puts, even as these change in time. This matching, which
gives us a much broader view of “adaptation” in sensory
processing, has now been observed directly in many dif-
ferent systems [29].

Why are these bits different from all other bits? Con-
trary to widespread views in the neuroscience commu-
nity, information theory does give us a language for
distinguishing relevant from irrelevant information. We
have tried to argue that, for living organisms, the crucial
distinction is predictive power. Certainly data without
predictive power is useless, and thus ‘purifying’ predic-
tive from non–predictive bits is an essential task. Our
suggestion is that this purification may be more than
just a first step, and that providing a maximally effi-
cient representation of the predictive information can be
mapped to more biologically grounded notions of opti-

mal performance. Whether or not this general argument
can be made rigorous, certainly it is true that extracting
predictive information serves to unify the discussion of
problems as diverse as signal processing and learning.

A new look at the neural code? The traditional ap-
proach to the the analysis of neural coding tries to cor-
relate (sometimes in the literal mathematical sense) the
spikes generate by neurons with particular features of
the sensory stimulus. But, because the system is causal,
these features must be features of the organism’s recent
past experience. Our discussion of predictive informa-
tion suggests a very different view, in which we ask how
the neural response represents the organism’s future sen-
sory experience. Although there are many things to be
done in this direction, we find it exciting that one can
make rather direct measurements of the predictive power
encoded in the neural response.

From an experimental point of view, the most com-
pelling success would be to map neural responses to
points in the information plane—information about the
future vs information about the past—and find that
these points are close to the theoretical optimum de-
termined by the statistics of the sensory inputs and the
information bottleneck. We are close to being able to do
this, but there is enough uncertainty in our estimates of
information (recall that we work only in the approxima-
tion where spikes carry independent information) that
we are reluctant to put theory and experiment on the
same graph. Our preliminary result, however, is that
theory and experiment agree within a factor of two, en-
couraging us to look more carefully.
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