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We develop a theory of the line shape for macroscopic tunneling spectroscopy and show how both
spectral linewidths and line shifts are related to phenomenological dissipative coefficients for the
relevant macroscopic coordinate. In the limit of weak dissipation our theory justifies a simple ap-
proximate interpretation of recent experiments on Josephson junctions; in this way macroscopic tun-
neling spectroscopy can be used to obtain accurate in situ estimates of the parameters required to
calculate the absolute rate of macroscopic tunneling. Our calculations also clarify the extent to
which spectroscopic experiments provide evidence for macroscopic quantum behavior.

The quantum-mechanical behavior of macroscopic sys-
tems! has thus far been probed by two very different types
of experiment, both carried out on Josephson junctions.
In the first,? a system is prepared in a metastable state and
one measures the rate of escape from this state; quantita-
tive comparison with quantum-mechanical predictions
provides evidence that the escape proceeds by tunneling of
a macroscopic coordinate. In the second,” one studies
changes in this tunneling rate induced by an external field
at frequency w; resonances in this “tunneling spectrum”
are interpreted as transitions among quantized energy lev-
els within the metastable state. While macroscopic tun-
neling is the subject of a large theoretical literature,*
several physical issues which arise in tunneling spectros-
copy of a macroscopic coordinate have not been discussed
at all:> How is the simple picture of transitions among
quantum levels affected by dissipation? What features of
the spectrum provide evidence for quantum—as opposed
to classical resonant—behavior? What are the conditions
for observing these quantum effects?

Here we present a theory of line shapes—the effects of
dissipation—for macroscopic tunneling spectroscopy.
Our analysis is confined to the limit of small dissipation
and assumes that the tunneling events themselves are
J
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where F.(?) is an external force and 8F (1) is chosen from
a stationary Gaussian ensemble of functions with spectral
density.
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As a microscopic model® we couple g (¢) linearly to some
generalized coordinate X (¢) of the bath, so that

=342+ V(@) +84X +Hypun(X) . 3)

The dynamics of this model reproduce those of Eq. (1) if
the heat-bath coordinate X (¢) responds linearly to its con-
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semiclassical, conditions which are met in the experiments
of Ref. 3. We show that under these conditions—and as
far as we can see, only under these conditions—the tunnel-
ing spectrum admits a very simple physical interpretation.
In this regime both spectral line widths and line shifts are
calculated; both are found to be independent of assump-
tions regarding the asymptotic behavior of the dissipative
mechanism at frequencies far from the measurement fre-
quency. The line shifts are “doubly small,” being propor-
tional both to the phenomenological dissipation coeffi-
cient and to the deviation of the undamped macroscopic
coordinate from semiclassical behavior; this justifies an
approximate interpretation of the Josephson junction ex-
periments which neglects the line shifts altogether. The
absolute strength of lines in the tunneling spectra are
more difficult to interpret and especially to measure, so
we shall not discuss them here.

Consider a “particle” of unit mass moving in a poten-
tial ¥ (q) having a single well separated from the continu-
um by a classically forbidden region (the barrier to tunnel-
ing). The coordinate g is coupled to a heat bath which
generates a frequency dependent linear damping constant
v(w); by this we mean that the classical Langevin equa-
tion for g (z) is

=Fo(t)+0F (1), (1

I

jugate force and if the response function (determined by
the details of Hy,;,) is chosen as X(w)=iwg ().
Quantum mechanically this is equivalent to the statement
that in the bare (g =0) theory X () is a free field with the
retarded propagator (fi=1)

X(0)=—i6(){[X(2),X(0)])
—a—2 iai it
=g f Py ioy(w)e'" . (4)

We note that this program may also be implemented by
writing X (¢) as a sum of harmonic oscillator or fermion
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coordinates,” but the essential idea behind either approach
is that of linear response, as emphasized by Caldeira and
Leggett.*

In quantizing the theory it is convenient to define ener-
gy levels €, in the well formed by V(q). We do this by
truncating the potential® with an infinite wall at some g,
deep inside the classically forbidden region. This wall
divides the entire configuration space {¢,X} into two re-
gions and prevents tunneling out of the well. Our strategy
is to solve the truncated problem perturbatively in g, and
then to remove the wall and allow tunneling to occur; in
the semiclassical (small #), low dissipation limit this pro-
cedure treats the different energy scales of the problem in
order of decreasing significance, as will be seen below.

The truncated problem is equivalent to the one-particle
sector of

HT— zencncn +Hbath(X +gX zqnmcncm ’ (5)
m,n
where g,,, are matrix elements of g between eigenstates of
truncated problem and the c,:r are fermion operators which
create the states | n) of the macroscopic system. At zero
temperature we are interested in the generating functional

[ aHE ()=

m

From this effective interaction we construct a diagram-
matic perturbation theory in the usua] way. The small pa-
rameter for this expansion is @ ~yq?2/#, where v is a typi-
cal value of y(w) and ¢ is a typical value of g,,. Since
q’~*#/20 we see that a~y/w=1/Q, where Q is the
quality factor of classical small-amplitude oscillations in
the metastable well.

Our goal is to calculate, to lowest order in the dissipa-
tion, the shift and broadening of energy levels in the meta-
stable well; we emphasize that the connection to tunneling
will be made below only when we remove the barrier at
q,- The relevant quantities are the diagonal terms in the
self-energy matrix evaluated on energy shell, since both
off-diagonal and off-shell effects are of higher order in
the dissipation. We obtain

2
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The imaginary part of X,, can be readily evaluated for
arbitrary frequency dependent dissipation,

ImZ,,(€,)=— |Gum | 20(€, — € )€ — € V(€ —€p) -

(9a)

The real part is only slightly more complicated; for in-
stance in the case of Ohmic dissipation with cutoff,
Y(w)=y0lo,~ |w|),

@c
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ReZ,,(€,)= — }’T- S | Gum | M€ —€m)In (9b)
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where the JJ,J, are Grassman variables and (- -- )
denotes a vacuum expectation value. This functional
gives Green’s functions which describe the dynamics of a
system suddenly created in state |n), and from these
Green’s functions we can extract the energies and life-
times of the states by standard arguments. This pro-
cedure generalizes to finite temperature provided that our
expectation value is always taken in a state of zero fer-
mions.

Passing to the interaction representation we can write A
as a functional integral and integrate out the coordinates
X (t), essentially following the influence functional for-
malism® but for the generating functional rather than for
the propagator itself; this procedure can of course also be
carried out for the individual Green’s functions. The re-
sult is exactly equivalent to a pure fermion system with
effective energy-dependent pairwise interactions defined
by

—iw(t —1t') T( )CII( t')c,(t)e)(t') . )

[

If the states {|n)} were precisely harmonic oscillator
eigenstates [€, =fiwg(n + 5 )], the lifetime of the nth state
would be, for arbitrary y(w), 7,=[2Im3,,(¢,)]”
=[ny(we)]~!, and the shift of the (real part of the) ener-
gy Ae,=ReZ,,(€,) would be independent of n. For in-
stance, if the dissipation were Ohmic,
Ae, =(y /2m)In(w, /wy). Whenever Ag, is independent of
n changes in the observable energy differences,
Ae, ., =A€, — A€,,, vanish. In the small # limit the low
lying states are always well described by harmonic oscilla-
tor states, so we conclude that the shift in level spacing
due to interaction with the heat bath is of second order in
.

The energy shift produced by an Ohmic heat bath in-
teracting with a harmonic oscillator is logarithmically
divergent as the cutoff goes to infinity. While this loga-
rithm is not, in itself, alarming, since it is n independent,
its presence alerts us to the necessity of showing that simi-
lar divergences do not occur in observable quantities when
the full anharmonic potential is considered. Energy-level
differences will be independent of the cutoff and hence
immune to the divergence if 3, | g | (€, —€x) is in-
dependent of n. Summing over the complete set of states
we have

2 |an I 2(6,,
k

so that
2 I 9nk i 2(6" — € )~
k

—e)=5{(n|[[HT,qlq]|n) ,

[p,q]=constant ,

as required.
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As an explicit example we consider the potential
Vig)=700q"+8:9°+84q"+ - -

and calculate energy-level shifts perturbatively in the cou-
plings g3,g84. This is in fact a systematic semiclassical ex-
pansion for an arbitrary potential, since terms
~gnq",n >4, contribute only at higher order in #. In the
absence of interactions with the heat bath we have energy
levels

3gs  15¢3 ;
€, =hwy |1+% | —5 — (n+73)
n 0 2(08 4@(5) 2
3 15g3
+#w, —giz—— g53 n?+constant ,
2(0() 40)0

and we find the observable line shifts

Ae,_.,,=(n —m) —33’—]#@0
Two
3 2
e B s w4+ . 0
@o (2h)

Thus we see that the “dissipative Lamb shift” Ae,_,,, is
explicitly of order #, as promised, and is small both by a
factor 1/Q and by the smallness of the anharmonicity
83,84 (which is equivalent). Finally, since Ae,_,,,
~(n —m), the dissipative Lamb shift is at this order just
a renormalization of the frequency wg; this does not per-
sist to order #°, but these are typically very small correc-
tions.

To connect the dynamics within the metastable well to
tunneling spectroscopy requires that we remove the artifi-
cial barrier introduced above. This can be done rigorously
using the path decomposition expansion® to give a self-
energy matrix with elements on the order of the tunneling
rates I' ~wpe 5/ where S is the minimum action for
tunneling through the barrier. In semiclassical situations
S >>#i so this is by far the smallest energy scale in the
problem. Several points should now be noted.

il

|qnm l2[1/7n+1/7m]

(1) Since the tunneling rates are the smallest energy
scale in the problem they contribute only diagonal and
imaginary parts to the self-energy, =, ~ —8,,,T,.

(2) The T, are strictly the self-energies obtained upon
removing the barrier from the full problem with dissipa-
tion; they must thus already include corrections due to
damping.*

(3) To get reliable estimates of = we must be careful to
include many states in the well even at low temperatures.
This is due to the fact that if we keep only the lowest n
levels we necessarily make errors in describing the cou-
pling to heat bath modes at frequencies 1 ~nwy. Since it
precisely those modes with Q~w, which dominate the
dynamics, it is clear that » must be large compared to 1.

(4) The calculation outlined above is easily generalized
to finite temperature by replacing the free propagator of
the heat-bath coordinate with its finite-temperature form.
The result is to introduce Bose occupation factors in Egs.
(9); thus the lifetime of each state decreases when
k g T > fiwg.

(5) Since T',, << | 2,,, | we can interpret I',, as the decay
rate from state | n) out of the well and ImX,, as the de-
cay n— {n'} within the well. In fact this inequality must,
be satisfied if the notion of tunneling at fixed temperature
is to make sense; if it is not satisfied then the system can
tunnel before it equilibrates and hence the decay rate is
sensitive to the initial preparation of the state within the
metastable well.

(6) In general the rate at which an external field induces
transitions among the states in the metastable well can be
written in terms of multipoint Green’s functions, as can
the field-induced change in the tunneling rate. In a
many-body system these multipoint Green’s functions can
have poles which are not derivable from those of the two-
point functions, but in our problem these collective excita-
tions do not exist—only one “particle” is present at any
one time. As a result we can obtain the transition rates by
simple perturbation theory using the energy levels and
lifetimes derived above, and this will give the correct spec-
tral shape although not necessarily the correct absolute
rates. For an external field which couples linearly to g,
transitions n —m occur at rates

Vm ~ f iﬂl(w)

27 (04 € —€m +AEy_ )+ (1/Ty+1/7p,

where I(w) is the spectral density of the field. Similarly,
the field-induced tunneling rate out of the well is of the
form

AT~ S Povm(To—T) /Y (12)

n,m

where P, is the thermal occupation probability of state
|n) and y, is an effective decay rate; in general
Ym~1/7,. Again, these arguments give the line shape
but not the absolute intensities. These intensities depend
in detail on the potential, however, and are extremely dif-
ficult to measure.

)2 ’ (11

(7) At high temperatures we expect that the dynamics
are fully classical. In this regime there may still be classi-
cal resonances at integral multiples of the small oscillation
frequency wq; resolvable resonances of this sort do not im-
ply quantum behavior. The only clear evidence of quan-
tum behavior that can be seen in the tunneling spectrum
involves the resolution of lines spaced by less than w,, e.g.,
the 0—1 and 1—2 lines which are separated by
~#w3/V,, with V, a typical scale in the potential V(q).
From the results above regarding temperature-dependent
linewidths we estimate that these quantum resonances

merge into a broad asymmetric smear!® above
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T ~(#iwg/kg)Q (Fiwg/Vy). In general, this temperature
may be quite different from the naive prediction that sys-
tems are classical above T ~#iwy/kpg.

We conclude that because the dissipative Lamb shift is
so small, macroscopic tunneling spectroscopy yields spec-
tral lines whose position can be interpreted as the differ-
ences among energy levels in the metastable well and
whose widths may be identified with rates of dissipative
transitions among these levels as in the standard Breit-
Wigner picture. This is not an obvious conclusion, and in
particular depends critically on the combination of small
damping and semiclassical motion. We also conclude that
tunneling spectra depend only on y(w) at the frequencies
of the observed transitions and hence this spectroscopy is
quite insensitive to the form of the dissipation. The sim-
ple interpretation which can be given to macroscopic tun-
neling spectroscopy suggests that it will provide a very ac-
curate method for in situ determination of some of the pa-
rameters required for quantitative calculations of macro-

scopic quantum effects. Finally, from the results dis-
cussed here it is clear that the observation by Martinis
et al.’ of resolved 0—1 and 1—2 transitions—with a
splitting in agreement with that calculated for the un-
damped, truncated problem—does indeed provide evi-
dence for the validity of quantum mechanics on a macro-
scopic scale.
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