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Random Switching and Optimal Processing in the Perception of Ambiguous Signals
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The optimal interpretation of noisy data is a compromise between the data and our prior expectations.
In the case of ambiguous signals, like the Necker cube, trajectories of the optimal interpretation map to
configurations of a random field Ising model. This analogy provides at least a qualitative account of
several robust phenomena in human perception of ambiguous stimuli.

PACS numbers: 87.10.+¢

When we view ambiguous figures, such as the Necker  jectories of the feature f(¢), P[d(¢)], serves as a normaliza-

cube [1], we have the subjective impression that our per- tion factor and will play no role in our general discussion.
ception switches at random between two equally plausible To proceed we need to make some hypotheses about
interpretations of the input data. This impression of  the structure of the distributions in Eq. (1). If we look
randomness has been quantified in psychophysical experi- at one instant of time, we can define some notion of
ments [2]. Clearly the different metastable percepts corre- “goodness of fit” between the data d and some possible
spond to different patterns of neural activity in the brain, value of the feature f. We will call this goodness of fit

and one possible model of the random switching is that it  y2[d(¢); f(z)], since under sufficiently strong assumptions
is driven by noise in the neural circuitry itself [3]. The the conventional y? statistic is the relevant measure. For
idea of trapping in locally stable states of neural activity simplicity we assume that the fluctuations in the data are
could also explain perceptual hysteresis. Common to effectively white noise, so that we can write

these models is that our perceptions are limited by the

quality of neural hardware—the brain is behaving ran- PLd(0)] f(1)] = exp(—i / dr Xz[d(t);f(t)]>, )
domly when the external world is static. Here we present 2N

an alternative view: The brain always finds the statisti-
cally optimal interpretation of the incoming sense data,

but these data are noisy and must be smoothed by some a . . . S
priori hypotheses about the dynamics of the world [4]. vazlues of f, geparatgd by a Filfference Afi Wh.lCh minimize
We consider for simplicity that the interpretation of an X Inipartlcular; if we ignore the noise in 4 an.d.set
ambiguous stimulus can be reduced to the problem of d(r) = d, then x [d;f.(t)].has two ‘degenerate minima
estimating a single variable or feature which may vary so that the two alternative interpretations of the data are

in time, f(z). To arrive at this estimate the brain makes equally likely. If we try to change f continuously from
use of some sense data which we can collect into an one stable interpretation to the other, we must surmount

array d(¢). Given these data, what can the brain (or any a bagrier in x?, and we refer to the height of this barrier
machine, for that matter) conclude about f(#)? Since the as 1/!/ max . K ledee that f lowl

data are noisy, all one can state is the relative likelihood 0 5ummartl;etmtl; nt(?w ¢ fe.t att. eatu:ces vary's }(:W Y,
that the data were generated by different features, which WZ aSSl(limetl at eh ! mf terlfv i.we fO / ISGC osen
is the conditional probability of f(¢) given d(z). Bayes’ independently at each imstant of time lrom a tyaussian

theorem tells us that this probability can be written as distribution. This means that our a priori dlstrlbutlf)n
1 corresponds to a random walk of the feature, with
Plf)]d®)] =

P[d(t)]P[d(t) | F(OIP[ F(1)], (1)  effective diffusion constant D,

where P[ f(¢)] is the a priori probability of the time varia- 1 )

tion f(¢z). This prior distribution embodies the observer’s PLf(1)] = eXP(_E f dtf (Z))- 3)
knowledge that rapid variations in the feature f are un-

likely in the natural world or in a given experimental Putting these terms together and assuming that the noise
setup. The distribution of the data averaged over all tra- | 8d(t) in the data is small, we have

where N is the noise level. The fact that we are viewing
an ambiguous figure means that there are two distinct

. _ 2 .
PLAW1 ()] = exp(—ﬁ; [aio- 5| thQ[d(t);f(t)])eXp(—ﬁ [ ar 22200

If we leave aside (for the moment) the term involving the noise 8d, the probability distribution for f(z) is exactly the
(imaginary time) path integral for a quantum-mechanical particle moving in a double potential well. Obviously the most

_ 5d(t))- 4

d(t)=d
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likely trajectory f(z) is a constant value which sits at one
or the other minimum of y2. In the present context this
means that the most likely estimate of the feature f is
one which is constant at one or the other of the two
possible stable interpretations of the ambiguous figure.
But from the quantum-mechanical analogy we know that
there are also instanton trajectories which “tunnel” from
one interpretation to the other [5]. These switching events
occur in a small time 79, and in the absence of any other
perturbations the mean time between switching events is

Tswitch = 70 €Xp(So), where
N [Af] | XEax
~ A So ~ ——4| T 5
T0 | fl ZDX%M, 0 ) DN (5)

How is this changed by the perturbation due to the noise
8d(1)?

If we ignore dynamics on times faster than 7p, the
particle can be in only one of two states, which we
identify with the states *=1 of an Ising spin o,; the index n
counts time in bins of size 7. The fact that flips are rare
means that spins in adjacent time bins tend to be parallel.
Small white noise fluctuations in the data can favor either
stable interpretation, producing an equivalent magnetic
field 4, which is an independent random variable in each
bin. We emphasize that our estimate of the feature f(r)
is now approximated as the sequence of spins, while the
random field arises from a particular instance of noise in
the input data; thus the random field must be viewed as
quenched disorder. The probability for a configuration of
spins {o,} is then given by the one-dimensional random
field Ising model,

P[{o'n}] x exp[sozanan-ﬂ + Zhnan:l» (6)
where the random field has a variance

2
o 7o [0AX2[d(2); £(2)]
<hn> B 4N ( ad(t) d(z)—E) ’ )

Ax[d(@); f(0)] = x*[d(@0); f (D]l s)—5+

= X fOllpw-r- - ®)

The qualitative solution of the random field Ising model

is given by the Imry-Ma [6] argument, which tells us that

at low noise level (so that both Sq and (h2) are large) the

configuration of spins breaks into domains of spin up and
spin down, with the typical domain size

&= S5/(hy). ©)
In the present context this means that typical estimates of
the stimulus parameters will flip between the two stable
configurations with a typical switching time Fswiicn ~ €70
rather than 7gyicn, from above. Putting the various factors

together we find R
_) - (10)
d(t)=d

S 2AAfR 5 (0Ax?[d®); ()]

switch D X' max ad(t)
At low noise levels, the optimal interpretation of ambigu-
ous incoming data thus switches randomly at a rate in-

3078

dependent of the noise level. Indeed, the switching rate
is proportional to the a priori expected drift rate between
the two ambiguous interpretations, |Af|?/D, but is sup-
pressed in (linear) proportion to the y? “barrier” between
the interpretations.

These results should be contrasted with models where
random switching among percepts is triggered by dynam-
ics and noise in a neural network rather than by the noise
in the sense data itself. In general, the switching be-
tween locally stable states of the network must be some
form of Kramers’ problem [7], and we expect that the
predicted switching rate will depend exponentially on the
noise level and on the “barrier” height. One might object
that our analysis is based on a probability distribution for
trajectories f(¢), and it ought to be possible to construct
a noisy network whose trajectories are drawn from the
same distribution. This is true, but the resulting network
dynamics are quite complex and nonlocal in time; this is
related to the fact that the real devices which make op-
timal estimates usually make delayed estimates [8]. The
central point of our discussion is that random switching
is an inevitable feature of optimal estimation, independent
of the circuitry in which the estimator is realized.

To make these ideas concrete we consider a problem in
pitch perception [9]. When we hear a harmonic sequence,
e.g., 1000, 1200, and 1400 Hz, we assign a pitch equal to
the fundamental even if it is not present in the physical
signal. This search for the missing fundamental continues
if the signals are slightly inharmonic, as in a sequence
fn = nf) + &, and the perceived pitches can be predicted
[9] as those f which minimize

X2 =D(fu — nuh) (1)
“m

Note that there are multiple minima corresponding to
different assignments of the integers {n,}. When the
signals are maximally inharmonic, § = f,/2 and there
are two near degenerate minima of x?2; if we choose
the set {n,} which minimizes x? at fixed f we find
that the resulting x?(f) has the standard double-well
form. Human observers hear both pitches, and the percept
switches at random, as for ambiguous figures in vision.
In the context of our analysis above, the parameter we
are trying to estimate is the pitch f, and the data are the
representations of the individual components f, in the
sensory nerves. A typical experiment involves listening
to three components which are interpretable as the 10th,
11th, and 12th (or 9th, 10th, and 11th) harmonics of a
fundamental near 200 Hz; the two possible interpretations
differ by |Af| ~ 20 Hz. In naturally occurring sounds,
such as speech, frequency modulations of this magnitude
occur on time scales of several tens of msec, so we
human listeners probably have an a priori distribution
for pitch fluctuations with |Af|?/2D ~ 0.01-0.1 sec.
The remaining factor in Eq. (9) is dimensionless and
determined entirely by the choice of integers {n,}, and
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we find the predicted 7gyicn ~ 1.2—12 sec, in reasonable
agreement with experiment [2,9,10].

The predicted switching times depend on the parame-
ters of the stimulus and on the a priori assumptions of
the observer. Thus individual differences in mean switch-
ing time could be substantial, although the distribution of
switching times should be more reproducible, in agree-
ment with experiment [2]. If the brain adjusts its “prior”
expectations in response to recent sensory experience [4],
it should be possible to manipulate the observable switch-
ing times by having the observer listen to sounds with
different statistical properties. Certainly human observers
adjust their expectations in relation to the instructions
given at the start of the experiment, so that instructing
the observer to expect changing signals should increase
the reversal rate, as observed [11].

In vision one can have not just one ambiguous figure
but a whole array, in one or two spatial dimensions.
Ramachandran and Anstis [12] have studied arrays of
alternating dots which can be seen as moving either
horizontally or vertically. In this case the feature f(z)
is the orientation of the local motion vector, and it is
clear that a reasonable a priori distribution will include
not only the penalties for temporal variation discussed
above but also a term which penalizes spatial gradients
of the velocity. In this case the same arguments given
here map the problem of making optimal estimates for
the array onto a two- or three-dimensional random field
Ising model. At zero noise, of course, both models have
a true phase transition to ferromagnetic order, and this
ordering survives the random field perturbation in the 3D
case; the 2D case is marginal [6]. A ferromagnetic phase
corresponds to perceiving all of the dot pairs moving
in the same direction, or a coherent motion percept.
For two-dimensional arrays, then, it is clear that one
should observe coherent motion, and switching between
the two possible directions of motion should be very slow,
infinitely slow in the limit of large arrays.

Experiments [12] show clearly that a 2D array is al-
ways seen to move coherently, and spontaneous switching
is unobservably slow, as predicted. This clear “magneti-
zation” of the pattern is disrupted if a stripe through the
2D array is occluded, as expected since the correspond-
ing couplings in the Ising model are eliminated. In an
array of Necker cubes there is no obvious a priori distri-
bution which would couple the relative depth parameters
in neighboring cubes, so we expect a paramagnetic phase
where different cubes switch at random, as observed [13].

A coherent percept across the entire 2D array is
predicted to occur even when the prior distribution
has only local terms, and hence the optimal processor
can be constructed entirely from local operations. True
“magnetization” in the 1D array would require long range
interactions, but it may be difficult to distinguish this
from the marginal case. Controlled manipulation of the
noise level, perhaps by jittering the dots which give rise

.signals.

to ambiguous motion, might make it possible to test
the prediction that the transition to coherent motion is
indeed a phase transition. One can even fantasize about
studying the scaling behavior of our perceptions in the
neighborhood of such a transition, but this may be asking
too much of the experiments.

To summarize, we have shown that optimal estimation
of a potentially time-varying feature inevitably leads to
random perceptual switching in response to ambiguous
The predicted switching rate is independent of
the (small) noise level in the sense data, but does depend
on the observer’s a priori hypotheses. If the observer
can assume that features are truly static (D — 0), then
the predicted switching rate vanishes, in agreement with
experiments on carefully instructed human observers [11].
It is attractive that this combination of randomness and
apparent subjectivity emerges from an objective theory of
optimal estimation.

We thank R. Mannella for organizing the conference
which made us think about these issues, and S. Smirnakis
for helpful discussions. M. Elbaum, M. Feigenbaum, and
M. Magnasco all asked the same important question [8],
and we are grateful to them for insisting on an answer.
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