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Many crucial biological processes operate with surprisingly small
numbers of molecules, and there is renewed interest in analyzing
the impact of noise associated with these small numbers. Twenty-
five years ago, Berg and Purcell showed that bacterial chemotaxis,
where a single-celled organism must respond to small changes in
concentration of chemicals outside the cell, is limited directly by
molecule counting noise and that aspects of the bacteria’s behav-
ioral and computational strategies must be chosen to minimize the
effects of this noise. Here, we revisit and generalize their argu-
ments to estimate the physical limits to signaling processes within
the cell and argue that recent experiments are consistent with
performance approaching these limits.

A striking fact about biological systems is that single molec-
ular events can have macroscopic consequences. The most

famous example is, of course, the storage of genetic information
in a single molecule of DNA, so that changes in the structure of
this single molecule (mutations) can have effects on animal
behavior and body plan from generation to generation (1). But
the dynamics of individual molecular interactions can influence
behavior on much shorter time scales. Thus, we (and other
animals) can see when a single molecule of rhodopsin absorbs a
photon (2), and some animals can smell a single molecule of
airborne odorant (3). Even if a single molecular event does not
generate a specific behavior, the reliability of behavior still can
be limited by inevitable fluctuations associated with counting
random molecular events. Thus, the visual system has a regime
where perception is limited by photon shot noise (4, 5), and the
reliability with which bacteria can swim up a chemical gradient
appears to be limited by noise in the measurement of the
gradient itself (6). It is an open question whether biochemical
signaling systems within cells operate close to the corresponding
counting noise limits.

The analysis of bacterial chemotaxis by Berg and Purcell (6)
provided a clear intuitive picture of the noise in ‘‘measuring’’
chemical concentrations. Their argument was that if we have a
sensor with linear dimensions a, we expect to count an average
of N� � c�a3 molecules when the mean concentration is c� . Each
such measurement, however, is associated with a noise �N1 �
�N� . A volume with linear dimension a can be cleared by
diffusion in a time �D � a2�D, so if we are willing to integrate
over a time � we can make Nmeas � ���D independent measure-
ments, reducing the noise in our estimate of N by a factor of
�Nmeas. The result is that our fractional accuracy in measuring
N, and hence in measuring the concentration c itself, is given by

�c
c�

�
�N

N�
�

1

�N� Nmeas

�
1

�Dac� �
. [1]

A crucial claim of Berg and Purcell (6) is that this result applies
when the sensor is a single receptor molecule, so that a is of
molecular dimensions, as well as when the sensor is the whole
cell, so that a � 1 �m.

The discussion by Berg and Purcell (6) made use of several
special assumptions that we suspect are not required, which
leads to some clear questions: For interactions of a substrate
with a single receptor, does Eq. 1 provide a general limit to
sensitivity, independent of molecular and biochemical details?
Can we understand explicitly how correlations among nearby

receptors result in a limit like Eq. 1 but with a ref lecting the
size of the receptor cluster? Do the spatial correlations among
nearby receptors have an analog in the time domain, so that
there is a minimum averaging time required for noise reduc-
tion to be effective? Finally, if we can establish Eq. 1 or its
generalizations as a real limit on sensitivity for any signaling
process (Fig. 1), we would like to know if cells actually operate
near this limit.

We address these questions within the general framework of
statistical mechanics through analysis of intrinsic f luctuations of
the receptor–ligand system. In most cases that we know about,
biochemical signaling molecules are thought to interact with
their receptors through some kinetic processes that lead to
equilibrium between bound and unbound states. In this case,
f luctuations in occupancy of a binding site are a form of thermal
noise. Rather than tracing through the consequences of different
microscopic hypotheses about the nature of the interaction
between signaling molecules and their targets, this connection to
thermal noise allows us to use the fluctuation–dissipation the-
orem (7–9), which relates noise levels to macroscopic kinetics in
the same way that Einstein connected the statistics of Brownian
motion to the macroscopic frictional forces on the Brownian
particle.

Our main result is a derivation of the accuracy limit to which
biochemical receptors are able to measure concentrations of
signaling molecules. Although analysis of f luctuations in chem-
ically reacting systems has been an active area in theoretical
chemistry (10–14), most existing approaches are based on the
Fokker–Planck or Langevin equations and have focused on the
detailed connection between kinetic parameters and observ-
able f luctuation spectra. In contrast, our goal is to establish, if
possible, general limits on the sensitivity or accuracy of
signaling systems that are independent of the often unknown
kinetic details. We begin with a simple example of binding to
a single receptor to present the f luctuation–dissipation theo-
rem for chemical kinetic systems and to show that we can
recover conventional results. By considering the coupled
binding and ligand diffusion processes, we derive the accuracy
limit to measuring the concentration of a diffusing ligand,
where we find a contribution from the chemical kinetics of the
measurement process as well as a lower bound that depends
only on molecule counting noise. Within the same framework,
we extend this result from a single receptor to multiple,
noninteracting receptors, addressing the more complex case of
cooperative interactions among receptors elsewhere (W.B.
and S.S., unpublished results). Our results can be summarized
by saying that the intuitive estimates of Berg and Purcell in fact
correspond to a ‘‘noise f loor’’ that is independent of kinetic
details; real systems can be noisier but not more precise than
this limit.

We compare our results with two recent quantitative exper-
iments on intracellular signaling in Escherichia coli, regulation of
gene expression by transcription factors and control of the
flagellar motor by the ‘‘response regulator’’ CheY�P, and find
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that the performance of the cell is near the limit set by diffusive
counting noise.

Theory
Binding to a Single Receptor. Consider a binding site for signaling
molecules, and let the fractional occupancy of the site be n. If we
do not worry about the discreteness of this one site, or about the
fluctuations in concentration c of the signaling molecule, we can
write a kinetic equation

dn�t�
dt

� k�c�1 � n�t�� � k�n�t�. [2]

This equation describes the kinetics whereby the system comes
to equilibrium. The free energy F associated with binding, which
is given by the difference in the free energies of the unbound and
bound states of the receptor, is related to the rate constant
through detailed balance,

k�c
k�

� exp� F
kBT� . [3]

If we imagine that thermal fluctuations can lead to small changes
�k� and �k� in the rate constants, we can linearize Eq. 2 to
obtain

d�n
dt

� ��k�c � k���n � c�1 � n� ��k� � n��k�. [4]

But from Eq. 3 we have

�k�

k�
�

�k�

k�
�

�F
kBT

. [5]

Applying this constraint to Eq. 4, we find that the individual rate
constant fluctuations cancel, and all that remains is the fluctu-
ation in the thermodynamic binding energy �F; the resulting
equation can be written in the form

kBT
k�c�1 � n� �

d�n
dt

�
kBT�k�c � k��

k�c�1 � n� �
�n � �F . [6]

It is useful to note the analogy between this chemical kinetic
problem and the Langevin equation (15) for the position, X(t),
of an overdamped Brownian particle bound by a Hookean
spring. The spring generates a restoring force proportional to
position, ��X, and as the particle moves through the fluid it
experiences a viscous drag with drag coefficient �, so that the
(Newtonian) equation of motion becomes

�
dX
dt

� �X � f�t�, [7]

where f(t) is a fluctuating force. The dissipative and fluctuating
parts of the force on the Brownian particle are related through
the fluctuation–dissipation theorem

	 f�t�f�t � ��
 � 2kBT����� , [8]

where kB is the Boltzmann constant and T is the temperature;
angle brackets denote ensemble averages. Intuitively, this rela-
tion is a consequence of the fact that the fluctuating and the
dissipative forces both arise because of collisions of the Brown-
ian particle with the molecules of the fluid.

More generally, the linear response, X(t), of a system from
equilibrium due to the thermodynamically conjugate ‘‘force,’’
F(t), defines the generalized susceptibility, 	(t),

X�t� � �
0

�

	�t��F�t � t��dt�, [9]

where we have taken 	X(t)
  0 (Fig. 2). The generalized
susceptibility depends on the properties of the system and
completely characterizes its response to small external pertur-
bations. Fourier transforming

	̃�
� � �
0

�

	�t�ei
tdt, [10]

the response to an external force near equilibrium becomes
X̃(
)  	̃(
)F̃(
). In its general form, the f luctuation–
dissipation theorem relates the imaginary part of the generalized
susceptibility, 	̃(
), which determines how much energy is
dissipated by a system as heat due to an external force, to
the power spectrum of the spontaneous fluctuations of the
corresponding coordinate, X, for the closed system in thermal
equilibrium

SX�
� �
2kBT



Im�	̃�
�� , [11]

where Im [. . .] refers to the imaginary part. In the present
chemical system, the ‘‘coordinates’’ are the concentrations of the

Fig. 1. Measuring the concentration of a signaling molecule by a biological
sensor, which in turn controls downstream events, is a generic task. Here,
several examples are depicted schematically for E. coli. Binding of attractant�
repellent molecules to a surface receptor complex modulates the rate of
autophosphorylation of the associated kinase. This change in kinase activity
results in a corresponding concentration change of the internal signaling
molecule, CheY�P, that controls the direction of flagellar motor rotation.
Also shown is transcription initiation, where the promoter region can be
regarded as a sensor for transcription factors (TF). These proteins, whose
concentrations vary depending on the cell cycle and external cues, determine
whether or not RNA polymerase (RNAP) turns on a gene.

Bialek and Setayeshgar PNAS � July 19, 2005 � vol. 102 � no. 29 � 10041

BI
O

PH
YS

IC
S

PH
YS

IC
S



interacting species, or equivalently the fractional occupancy of
receptors, the phenomenological ‘‘equations of motion’’ are the
chemical kinetic equations, and the thermodynamically conju-
gate ‘‘forces’’ are the free-energy differences among the species
(17, 18) (Table 1).

Fourier transforming, from Eq. 6 we find the generalized
susceptibility, 	̃(
), describing the response of the coordinate n
to its conjugate force F,

	̃�
� �
�ñ�
�

�F̃�
�
�

1
kBT

k�c�1 � n� �

� i
 � �k�c � k��
. [12]

The fluctuation–dissipation theorem relates this response func-
tion to the power spectrum of fluctuations in the occupancy, n,

Sn�
� �
2k�c�1 � n� �


2 � �k�c � k��2 , [13]

� 	��n�2

2�c

1 � �
�c�
2 , [14]

where the total variance is

	��n�2
 � �
��

� d


2�
Sn�
� � kBT

� ñ�
�

�F̃�
�
�


0
[15]

�
k�c�1 � n� �

k�c � k�
� n� �1 � n� �, [16]

and the correlation time is given by �c  (k�c � k�)�1. These
are the usual results for switching in a Markovian way between
two states; here it follows from the ‘‘macroscopic’’ kinetic

equations, as in Eq. 2, plus the fact that binding is an equilibrium
process. Note that in using the fluctuation–dissipation theorem
to arrive at this result, no assumptions are required about the
underlying statistics of transitions between the bound and un-
bound states of the receptor. The Markovian nature of these
transitions is reflected in the macroscopic chemical kinetic
equations.

Coupled Binding and Diffusion. The same methods can be used in
the more general case where the concentration itself has dy-
namics due to diffusion. Now we write

dn�t�
dt

� k�c�x�0, t��1 � n�t�� � k�n�t�, [17]

where the receptor is located at x�0, and

�c�x�, t�
�t

� D�2c�x�, t� � ��x� � x�0�
dn�t�

dt
, [18]

where the last term expresses the ‘‘injection’’ of one molecule at
the point x�0 as it unbinds from the receptor. Linearizing the
equations as before, and solving Eq. 18 by transforming to spatial
Fourier variables, we find the linear response function

�ñ�
�

�F̃�
�
�

k�c��1 � n� �

kBT
1

�i
�1 � ��
�� � �k�c� � k��
,

[19]

where c̃ is the mean concentration, and

��
� � k��1 � n� � � d3k
�2��3

1
�i
 � Dk2 . [20]

We note that by obtaining the spatial Fourier transform of Eq.
18 over infinite volume, we are assuming the number of ligand
molecules to be infinite at constant concentration. Hence, we are
considering only the regime where the number of ligand mole-
cules exceeds the number of receptors. The ‘‘self-energy’’ ¥(
)
is ultraviolet divergent, which can be traced to the delta function
in Eq. 18; we have assumed that the receptor is infinitely small.
A more realistic treatment would give the receptor a finite size,
which is equivalent to cutting off the k integrals at some (large)
� � ��a, with a the linear dimension of the receptor.

If we imagine mechanisms that read out the receptor occu-
pancy and average over a time � long compared with the
correlation time �c of the noise, then the relevant quantity is the
low frequency limit of the noise spectrum. Hence, we are
interested in

��
 �� D�a2� � ��0� �
k��1 � n� �

2�Da
, [21]

and

Fig. 2. For the mass-spring system immersed in a viscous fluid, measuring the
linear response of the position, X(t), to a known, small external force, F(t),
determines the generalized susceptibility. From this susceptibility, the fluc-
tuation–dissipation theorem can be used to obtain the power spectrum of
fluctuations in the closed system at equilibrium, as in Eq. 11. These fluctuations
provide a lower bound on the accuracy of any measurement of the position.
If measurements are carried out on N identical mass-spring systems, the
expected error is reduced by a factor of 1��N. However, as N increases, this
improvement ceases to hold, as neighboring mass-spring systems become
physically close enough to experience correlated fluctuations from collisions
with the particle bath, as shown. These correlations have been measured for
two optically trapped colloidal particles (16).

Table 1. Linear response in mechanical and chemical systems

Physical quantity Mass-spring system Chemical system

Coordinate Displacement Receptor occupancy, �n � n � n�
Conjugate force f Free energy change �F � kBT (�k � �k � � �k � �k � )
Spring constant � kBT�[n� (1 � n� )]
Damping constant � kBT�(k � n� )

The response of a chemical system near equilibrium is directly analogous to that of the familiar mass-spring
system in a viscous fluid, in the limit that the inertial term, MẌ, can be neglected (valid for ��M �� �2�4).
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�ñ�
�

�F̃�
�
�

k�c��1 � n� �

kBT
��i
�1 � ��0�� � �k�c� � k���� 1 .

[22]

Applying the fluctuation–dissipation theorem once again, we
find

Sn�
� �
2k�c��1 � n� � �1 � ��0��


2�1 � ��0��2 � �k�c� � k��2 . [23]

The total variance in occupancy is unchanged because it is
an equilibrium property of the system. Coupling to concen-
tration f luctuations does serve to renormalize the correlation
time of the noise, �c3 �c [1 � ¥(0)]. The new �c can be written
as

�c �
1 � n�

k�
�

n� �1 � n� �

2�Dac�
, [24]

so the second term is a lower bound on �c, independent of the
kinetic parameters k�,

�c 
n� �1 � n� �

2�Dac�
. [25]

Again, the relevant quantity is the low-frequency limit of the
noise spectrum,

Sn�
 � 0� �
2n� �1 � n� �

k�c� � k�
�

�n� �1 � n� ��2

�Dac�
. [26]

If we average for a time �, then the root-mean-square error in our
estimate of n will be

�nrms � �Sn�0� �
1
�

, [27]

and we see that this noise level has a minimum value indepen-
dent of the kinetic parameters k�,

�nrms 
n� �1 � n� �

��Dac� �
. [28]

To relate these results back to the discussion by Berg and
Purcell (6), we note that an overall change in concentration is
equivalent to a change in F by an amount equal to the change in
chemical potential, so that �c�c� � �F�kBT. This equivalence
means that there is an effective spectral density of noise in
measuring c

Sc
eff�
� � � c�

kBT�
2

SF�
� , [29]

where the ‘‘noise force’’ spectrum SF(
) is given by the fluc-
tuation–dissipation theorem as

SF�
� � ��ñ�
�

�F̃�
�
��2

Sn�
� � �
2kBT



Im	 �F̃�
�

� ñ�
�
 .

[30]

In the present case, we find that

Sc
eff�
� �

2c� 2

k�c� �1 � n� �
�

c�
�Da

. [31]

As before, the accuracy of a measurement that integrates for a
time � is set by

�crms � �Sc
eff�0� �

1
�

, [32]

and we find again a lower bound that is determined only by the
physics of diffusion,

�crms

c�


1
��Dac� �

. [33]

Note that this result is (up to a factor of ��) exactly the
Berg–Purcell formula in Eq. 1.

Binding to Multiple, Noninteracting Receptors. To complete the
derivation of Berg and Purcell’s original results (6), we consider
a collection of m receptor sites at positions x��, where �  1,
2, . . . , m:

dn��t�
dt

� k�c�x��, t��1 � n��t�� � k�n��t�, [34]

�c�x�, t�
�t

� D�2c�x�, t� � �
i1

m

��x� � x���
dn�� t�

dt
. [35]

We can solve Eq. 35 by going to a spatial Fourier representation
as before, and we find

�c�x��, 
� �
i
�

2�2D
�ñ��
�

�
i


2�2 �
���

m
�ñ��
�

�x�� � x��� �
0

� k sin�k �x�� � x����
�i
 � Dk2 dk ,

[36]

where � is the cut-off wave number; as before, the cut-off arises
to regulate the delta function in Eq. 35 and is related to the size
of the individual receptor. In the limit �x�� � x��� (
�D)1�2 �� 1,
for � � � with �, �  1, . . . , m, we have

�c�x��, 
� �
i
�

2�2D
�ñ��
� �

i

4�D �

���

m
�ñ��
�

�x�� � x��� . [37]

Combining this equation with the Fourier transform of Eq. 34
and summing to find the total occupancy �Ñ(
)  ¥�1

m �n�(
)
of the receptor cluster, we obtain

� i
�Ñ � �	 �k�c� � k�� �
i
�k��1 � n� �

2�2D 
 �Ñ

�
i
k��1 � n� �

4�D �
�1

m �
���

� ñ�

1
�x�� � x���

� mk�c� �1 � n� �� �F̃
kBT� . [38]

In cluster geometries such that the innermost sum is indepen-
dent of x��, we can write the sum as

�
�1

m �
���

�ñ�

1
�x�� � x��� � ��m� � �Ñ, [39]

Bialek and Setayeshgar PNAS � July 19, 2005 � vol. 102 � no. 29 � 10043

BI
O

PH
YS

IC
S

PH
YS

IC
S



where

��m� � �
�2

m 1
�x�� � x�1� , [40]

and this simplification allows us to solve Eq. 38 directly to find
the response of �Ñ to the force �F̃. Then, as before, we use the
fluctuation–dissipation theorem to find the spectrum of �F̃ and
convert that to an equivalent concentration error as in Eq. 31.
The result is

��crms

c� � 2

�
2

mk�c� �1 � n� ��
�

1
�Dc� �

� �

m
�

��m�

2m � .

[41]

We note that whereas the first term is positive and depends on
the details of the chemical kinetics of ligand-receptor binding,
the second term defines a lower bound on the measurement
accuracy of the ligand concentration by the receptor cluster that
depends only on the physics of diffusion. As an example, for
receptors of radius b uniformly distributed around a ring of
radius a � b (Fig. 3), this lower bound is

�crms

c�


1
��Dc� �

� 1
mb

�
g0

2a�
1�2

, [42]

where for m �� 1, we have used �(m) � mg0�a; g0 is a geometric
factor of order unity for typical cluster geometries and receptor
distributions (W.B. and S.S., unpublished results). With an
increasing number of receptors, m, the accuracy in measuring the
substrate concentration ultimately is limited by the linear size of
the cluster. Extension of this result to cooperatively interacting
receptors is treated separately elsewhere (W.B. and S.S., unpub-
lished results); remarkably, we find that this lower bound in
measurement accuracy persists, independent of the details of
cooperative interactions among the cluster subunits.

Summary. For both a single receptor and an array of receptors,
we find that the sensitivity of signaling is limited, and this limit
can be described as an effective noise in concentration, �crms,
determined by

��crms

c� � 2

� F��kj� , c� , m� �
1

�Dc� ��
. [43]

In this summary, F({kj}, c� , m) depends on the details of the
kinetic interactions between the signaling molecules and its
receptor through the kinetic parameters, {kj}, the substrate
concentration, c� , and the number of receptors, m. The important
point is that this term is positive, so that even if we do not know
the details of the ligand-receptor chemical kinetics, we know that
the noise level can never be smaller than that set by the second
term. In the second term � is an effective size for the receptor
or the receptor array; then, to within a factor, this term is exactly
that written down by Berg and Purcell (Eq. 1) for a perfect
concentration measuring device. Thus, although the original
Berg and Purcell (6) arguments made use of very specific
assumptions, we see that in the general case the details of the
chemical signaling only add to the noise level.

Comparison with Experiment
Here, we consider two experimentally well-characterized exam-
ples to demonstrate how the theoretical limits on receptor
occupancy noise and the resulting precision of concentration
measurements compare with the performance of real cellular
signaling systems.

Regulation of Gene Expression in Bacteria. Expression of genes is
controlled in part by the occupancy of specific sites in the
promotor regions adjacent to the sequences of DNA that code
for protein (19). Reversing the usual picture of changes in
transcription factor concentration as driving changes in gene
expression, we can view gene expression as a sensor for the
concentration of the transcription factor proteins that bind to the
promoter site. In a bacterium like E. coli, transcription factors
are present in NTF � 100 copies in a cell of volume of �1 �m3

(20); presumably, the concentration of free transcription factor
molecules is smaller than NTF�V. Diffusion constants for small
proteins in the E. coli cytoplasm are D � 3 �m2�s (21); promoter
sites have a linear dimension a � 3 nm, and putting these factors
together, we find the crucial combination of parameters �Dac� �
3 s�1.

If the transcription factor is a repressor then gene expression
levels are determined by 1 � n, whereas if it is an activator then
expression is related to n. Because �nrms � n� (1 � n� ) (Eq. 28),
fractional f luctuations in either A  n or A  1 � n are
determined by

�A
�A

� �1 � �A�
1

��Dac��
. [44]

The minimum fluctuations in expression level thus are given by

�A
�A

 �0.1� � �1 � �A� � �100
NTF

� 1�2

� � 30 s
�
� 1�2

. [45]

Recent experiments (22) indicate that E. coli achieves �10%
precision in control of gene expression at small values of A� . For
this performance to be consistent with the physical limits, the
transcription machinery must therefore integrate the promoter
site occupancy for times of the order of 1 min, even assuming that
the translation from occupancy to expression level itself is
noiseless. This integration can be provided by the lifetime of the
mRNA transcripts themselves, which is �3 min in prokaryotes
(23). Recent theoretical work, motivated by ref. 22, has ad-

Fig. 3. Schematic representation of a cluster of m receptors of size b, distrib-
uted uniformly on a ring of size a. For a �� b, the relative accuracy in
measurement of the substrate concentration improves as 1��m until mb �
a, at which point the binding�unbinding events of nearby receptors are no
longer independent.
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dressed the difference between ‘‘intrinsic’’ sources of noise in the
regulation of gene expression in bacteria and ‘‘extrinsic’’ sources
of noise that arise from population-level variations among cells
(24–26). In this context, our results demonstrate the existence of
a previously unappreciated intrinsic noise floor due to diffusion
of transcription factors. In principle, this noise floor could be
reduced by averaging over longer times, but very recent work on
engineered regulatory elements in E. coli (27) shows that the
correlation time of intrinsic noise is �10 min, suggesting that the
time averaging done by this system is not much more than the
minimum required to achieve the observed precision.

Control of the Flagellar Motor by CheY. The output of bacterial
chemotaxis is control of the flagellar rotary motor (28). The
phosphorylated form of the signaling protein CheY (CheY�P)
binds to the motor and modulates the probability of clockwise vs.
counterclockwise rotation (29). Recent measurements (30) show
that the probability p of clockwise rotation depends very steeply
on the concentration c of CheY�P,

p �
ch

ch � c1�2
h , [46]

with h � 10 and c1�2 � 3 �M. In the phenomenological
description of the motor as a simple random telegraph process,
switching between clockwise and counterclockwise rotation is
governed by Poisson statistics. For c � c1�2, the switching
frequency is measured experimentally to be f � 1.5 s�1. If we
view the motor as a sensor for the internal messenger CheY�P,
then the observed behavior of the motor determines an equiv-
alent noise level of

�crms � � �p
�c�

� 1

�2p�1 � p� � � �0

�
� 1�2

, [47]

where �0 is the correlation time of the motor state; for the simple
telegraph model it can be shown that �0  2p(1 � p)�f. Using
Eq. 46 we find

�crms

c
�

2
h � 1

f�
. [48]

Thus, for c � c1�2, a single motor provides a readout of CheY�P
concentration accurate to �12% within 2 s.

The motor C ring has a diameter 2a � 45 nm, with m � 34
individual subunits to which the CheY�P molecules bind (31).
From Eq. 42 we find

�crms

c
�

1
27 � 2s

�
� 1�2

, [49]

where we have taken the size of the individual receptor binding
site to be b � 1 nm, and D � 3 �m2�s as above. Hence, for the
collection of receptors comprising the motor, the physical limit
to measurements of the CheY�P concentration corresponds to
�4% precision within 2 s.

Taken at face value, our estimates of the actual sensitivity and
limiting sensitivity of the motor agree within a factor of three.
Recent work shows that at constant CheY�P concentration the
power spectrum of motor bias deviates substantially from the
Lorentzian prediction of the Poisson or telegraph model (32); in
particular, there is peaking in the spectrum so that the low
frequency limiting noise may be lower than estimated from the
mean switching frequency. It also might be the case that even the
very steep dependence in Eq. 46 is broadened by small errors in
the concentration measurements (see note 17 in ref. 30), so that
we underestimate the actual sensitivity of the motor. Thus, it is
possible that there is an even closer agreement between the cell’s
performance and the physical limit, which could be tested in
experiments pointed more specifically at this issue.

Concluding Remarks
We have derived from statistical mechanics the physical limits to
the precision of concentration measurement for biological sen-
sors that rely on the binding of a diffusing ligand to a receptor.
Our approach complements and extends the classic work by Berg
and Purcell (6), establishing that their intuitive result indeed
does set a lower bound on the actual noise level. For a single
receptor the accuracy in measurement of concentration is lim-
ited by the noise associated with the arrival of discrete substrate
molecules at the receptor. Our approach extends in a straight-
forward way to multiple receptors without relying on additional
considerations; for this case, our result demonstrates more
transparently the role of multiple receptors in improving the
measurement accuracy, as well as that of correlations in insuring
that this improvement saturates at a level set by the receptor
cluster size. Relevant internal or external signaling molecules are
often present in low copy numbers, and their concentration in
turn regulates downstream biochemical networks crucial to the
cell’s functions. For two experimentally well-studied examples,
we show that the cell’s performance is close to the physical limits.
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