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Recognition of pathogens relies on families of proteins showing
great diversity. Here we construct maximum entropy models of
the sequence repertoire, building on recent experiments that pro-
vide a nearly exhaustive sampling of the IgM sequences in
zebrafish. These models are based solely on pairwise correlations
between residue positions but correctly capture the higher order
statistical properties of the repertoire. By exploiting the interpre-
tation of these models as statistical physics problems, we make
several predictions for the collective properties of the sequence
ensemble: The distribution of sequences obeys Zipf's law, the
repertoire decomposes into several clusters, and there is a massive
restriction of diversity because of the correlations. These predic-
tions are completely inconsistent with models in which amino acid
substitutions are made independently at each site and are in good
agreement with the data. Our results suggest that antibody
diversity is not limited by the sequences encoded in the genome
and may reflect rapid adaptation to antigenic challenges. This
approach should be applicable to the study of the global properties
of other protein families.
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he number of possible amino acid sequences exceeds the num-

ber of individual protein molecules that have ever been
synthesized. As a result, the limited set of sequences that we
see today carries a signature of evolutionary history (1). But
not all of the limitations are historical—randomly chosen
sequences will not fold into stable, compact structures (2, 3),
and carrying out specific functions places yet more requirements
on the sequence. Regardless of the balance between historical
and functional constraints, the stochastic nature of evolutionary
change means that the sequences we observe should be thought
of as being drawn out of a probability distribution. The goal of
this paper is to construct an approximation to this distribution,
by using a limited but biologically important example, the pro-
blem of antibody diversity.

The ensemble of all proteins is daunting, so most work focuses
on particular families of proteins. The most tractable examples
are those in which the relevant segments of the proteins are short,
and experiments provide many independent samples of se-
quences from the family. For a family of small proteins that
mediate protein—protein interactions, methods were developed
to generate artificial sequences that are consistent with the
patterns of single site substitutions and correlations between sub-
stitutions at pairs of sites; remarkably, most of these artificial se-
quences fold into functional structures (4, 5). Although this work
did not lead to an explicit construction of the underlying prob-
ability distribution, the implicit model is equivalent to a maximum
entropy model that captures pairwise correlations but ignores
higher order interactions (6) and thus connects to other efforts to
describe biological networks with simplified models (7-12).
Maximum entropy methods have since been used to look at
protein—protein interactions in bacterial signaling (13) and at
the serine proteases (14).

A key feature of the maximum entropy approach is its intimate
connection to statistical mechanics (15, 16). Maximum entropy
models predict the underlying probabilities in the form of a
Boltzmann distribution, thus assigning an effective energy to
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every amino acid sequence in our ensemble. Natural questions
about this statistical mechanics problem have clear biological
correlates: What is the entropy in sequence space or, equiva-
lently, the allowed diversity of functional proteins? Does the
energy landscape break up into multiple valleys, corresponding
to clusters of closely related proteins? Are the barriers between
these valleys large, so that different clusters are isolated, or are
there paths that can smoothly mutate one class of sequences into
another? Are the interactions among substitutions at different
sites strong or weak? Is it possible that these interactions are
tuned to some special values, perhaps analogous to critical points
in statistical mechanics? Here we approach these problems in the
context of antibody diversity.

For antibodies, sequence diversity has a direct biological func-
tion, setting the range of antigenic challenges to which the organ-
ism can respond. Classical work has emphasized the com-
binatorial diversity generated by piecing together different seg-
ments of the antibody molecule, each of which is encoded in
the genome (17). Very recently, it has become possible to provide
the sequences of essentially every single antibody molecule in in-
dividual organisms (18), and this explosion of data invites us to
look more closely at the diversity within the combined segments,
beyond that represented in the genome itself. As we will see, for
the zebrafish studied in ref. 18, this nongenomic diversity is
substantial and concentrates in short segments of the molecule,
the D regions of these molecules. This combination of focus on
short sequences and a nearly complete sampling of the relevant
ensemble provides a unique opportunity to address the theoreti-
cal questions outlined above.

Defining the Problem

All jawed vertebrates are endowed with an adaptive immune sys-
tem that responds to and “remembers” a wide range of challenges
from the environment. One major component of the immune sys-
tem are the B cells, each of which expresses multiple copies of a
single antibody molecule on its surface. Binding to these mole-
cules is the fundamental step by which the system recognizes
an antigen, and hence the diversity of these molecules defines
the range of pathogens to which the organism can respond effec-
tively (19). During the development of B cells, the genome is
modified by recombination to encode a single antibody sequence
assembled from three pieces termed V, D, and J. In the zebrafish
(20), there are 39 choices for the V region, 5 for D, and 5 for J, for
a total of 975 possible VDJ combinations or classes. During
recombination, nongenomic nucleotides are randomly added
and others are removed at the VD and DJ junctions, generating
what is called junctional diversity. Furthermore, during the life-
time of the organism, the antibody sequences encoded in prolif-
erating B cells undergo somatic hypermutation. Finally, B cells
that successfully bind pathogens proliferate, whereas B cells that
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are not used are eliminated. As a result, the expressed repertoire
of antibodies is a complex combination of VDIJ class, phylogenic
history, and pathogen environment.

The experiments of ref. 18 give us a snapshot of the complete
antibody repertoire in each of fourteen zebrafish, labeled A-N.
More precisely, these experiments extracted the mRNA for the
complementarity determining region 3 (CDR3) of the heavy
chain of IgM molecules and reverse transcribed, amplified,
and then sequenced the resulting cDNA by using high throughput
methods. It will be important in our analysis that the amplifica-
tion step has biases, and so all averages over the distribution of
sequences must be reweighted by a primer-dependent amplifica-
tion, as discussed in ref. 18 (SI Text). Each fish yielded from
28,000 to 112,000 sequence reads of ~200 nucleotides covering
the last 90 nucleotides of V and all of D and J.

The Vand J segments of all the sequences are easily recognized
by aligning with the genome, discarding a small fraction of se-
quences with stop codons or frame mismatches. The situation
for D regions is more subtle, and so we define the D region to
be all the residues that lie between the identifiable parts of
the V and J segments, as explained more fully in S7 Text.

We find that the D region is much more diverse than expected
from its genomic origin and concentrates most of the nongenomic
diversity, as illustrated in Fig. S1. Most obviously, in the genome
D regions range from 11 to 14 nucleotides, whereas in the
sampled sequences the D regions range from 1 to 6 amino acids
(3 to 18 nucleotides; Fig. S14). If we try to match each sequence
to one of the genomic sequences, the quality of these assignments
typically is quite poor (Fig. S1B). By using mutual information
between residue positions as a measure of variability within
VDJ classes (see SI Text), we find that residues in the D region
are both variable and correlated even within a given D class,
whereas the Vand J regions show very little diversity within their
classes (Fig. S1C). Junctional diversity, somatic hypermutations,
or other mechanisms may be the source of this nongenomic D
variability and could explain the poor quality of the D assign-
ments. Independent of the mechanism, these results suggest that,
in trying to define the distribution of sequences represented in
the system, we should focus our attention on the D region.

To be precise, we describe each observed D region sequence as
6 = (0,0,,...,01), where L is the length of the sequence. At
each site along the sequence, o; can take on 20 different values,
corresponding to the 20 possible amino acids (¢; = Ala, Arg,
Asn, ...). We would like to know the probability P(s) that any
particular sequence will be found in the antibody repertoire of
each individual. The difficulty is that there are ~(20)Fm» possible
sequences, where L., = 8 is the maximum length of the D
region; in principle, each sequence can occur with a different
probability, and hence the number of possible sequences is also
the number of parameters required to specify the distribution.
This number, ~2.5 x 10'°, is much larger than the number of in-
dependent measurements that we can make and perhaps even
larger than the number of B cells in the entire zebrafish at
any one moment. How, then, can we make progress?

Maximum Entropy Models of the D Region

Whereas experiments cannot characterize the entire distribution
P(o), it is possible to make reliable measurements of many
averages over this distribution. For example, we can characterize
the probability that any single amino acid appears in the sequence,
P, (o). Further, we can characterize the probability that two parti-
cular amino acids appear separated by a distance k£ along the
sequence, P, (o, 0’;k), and we can do this for nearest neighbors
(k = 1), next-nearest neighbors (k = 2), and so on. Notice that
these quantities do not refer to specific sites along the sequence
but rather to pairs of sites separated by given distances; in this
way, we can analyze sequences that have variable lengths and are
difficult to align, as observed for the D regions. We could continue
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along this line, characterizing the probability of occurrence of
triplets, quartets, etc., but at some point we will run out of data.
The central idea of maximum entropy models is to take some
limited set of averages seriously as a characterization of the
system and then build the least structured model for the distribu-
tion P(s) that is consistent with these data (15, 16). Formally,
minimizing structure means maximizing the entropy

SIP) = - Y P(6) log,[P(c)] [1]

Here we will find the maximum entropy distribution consistent
with the single residue frequencies, P, (o), with the pairwise dis-
tributions of amino acids along the sequence, P,(c,0’;k), and
with the observed distribution of lengths of the D region,
P(L). Finding this model distribution, which we denote P(™), in-
volves solving an optimization problem (maximize §) subject to
constraints (the observed distributions). Because of the con-
nection between maximum entropy distributions and statistical
mechanics, the form of the solution is well known.

We can write P in the form of the Boltzmann distribution, as
if the sequences represented the state of a physical system in ther-
mal equilibrium:

pim — %exp[—E(a)}, [21

where the effective energy of each sequence is
L
E6) = —u(L) - Y h(o) = Y Yiilone). B3]

To complete the analogy to thermodynamics, we should think of
the temperature as being such that kg7 = 1. Then u(L) acts like a
chemical potential for adding residues, /(o) is a uniform biasing
field that prefers some amino acids over others, and the couplings
Ji describe the interactions between amino acids at different
sites, reaching across a range K, as schematized in Fig. 1A4.

The hs, Js, and ps must be chosen such that P (L), P(lm), and

P agree with the data.

Calculating P™ (L), P"), and P{") from the full distribution
P (6) is hard in general, and the inverse problem of inferring
the model parameters from these observables is clearly not easier.
We solve the inverse problem by combining Monte Carlo simula-
tions with gradient descent (see SI 7ext). The number of para-
meters can be fairly large, 399K + 19 + L. ~ 103, although
vastly smaller than the number of possible parameters (20)%mas,
To test the validity of our method and control for overfitting,
we learned the maximum entropy distribution from only half
of the sequences (training set). Then the model predictions were
compared to the second half of the data (testing set). We solved
the inverse problem and tested our solution for all 14 fish and for
different interaction ranges K = 1,2,3,4. Our results showed
excellent agreement with the data, as illustrated in Fig. 1B for
the pairwise frequencies in fish A.

Testing and Exploring the Model

The maximum entropy model is the least structured model con-
sistent with the observed pairwise correlations among amino
acids, but of course there is no guarantee that nature is described
by this minimal model. To test the model, we look systematically
at its predictions for measurable quantities that are not already
used in determining the model parameters. If we can convince
ourselves that these predictions are at least approximately
correct, we can take the model more seriously and ask what it
tells us about the nature of antibody diversity.

Mora et al.


http://www.pnas.org/cgi/data/1001705107/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/1001705107/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/1001705107/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/data/1001705107/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/data/1001705107/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/data/1001705107/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/data/1001705107/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/1001705107/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/data/1001705107/DCSupplemental/Supplemental_PDF#nameddest=STXT

[

\

BN AS DN AS D

Ji(o1,09) Ji(o2,03) Ji(03,04) WEY
B Pyos,05li—j=k) k=1

10° 7 L 10 >
3 @ g
d 2
2 102 € 107
£ ©
g =
= o
3 10 g 10
g @
1S e

: o .
106 . 108
106 104 102 10° 106 104 102 10°
observed, testing set observed, testing set
Fig. 1. Maximum entropy model. (A) The model of the D region is viewed as

a system of interacting residues (o4, ..., 6;) in thermal equilibrium, schema-
tized here by its interaction network for K = 2. To each sequence ¢ is asso-
ciated an energy E(¢) (Eq. 3). Then the sequences of the repertoires are
drawn at random from the Boltzmann distribution (Eq. 2). (B) Fit quality
and control for overfitting. Pairwise frequencies of nearest- (k = 1, red)
and second-nearest neighbor (k = 2, yellow) residues. (Left) Comparison be-
tween the model prediction, where the model was fitted with the training
data, and the testing data. (In this figure the maximum interaction range is
K =2, but K =1, 3, and 4 gave similar results.) (Right) Direct comparison
between the training data and the testing data. The scatter is of the same
magnitude, showing that the model is as precise as the data allow.

Local Biases. The model we have constructed does not incorporate
any site specificity—interactions between amino acids depend on
the distance between them but not on their absolute location
along the sequence (Eq. 3). But, because amino acids at the start
or end of the sequence have only half the number of neighbors
that are available to sites in the middle of the sequence, the
model predicts “end effects” that will be manifest as position-
specific biases in amino acid composition. As shown in Fig. 24,
these predicted biases can be large, so that the probability of
finding particular amino acids at specific sites, P|(c), can vary
by more than two orders of magnitude. These predictions are
in very good agreement with the data. We emphasize once again
that these predictions of site-specific substitution patterns are ob-
tained from a model that has no explicit site-specific information
(both & and J are position-independent) and that is learned from
an ensemble of sequences that have not been aligned. In a similar
spirit, we find good agreement between the predicted and
observed probabilities of contiguous amino acid triplets (Fig. 2B
and SI Text), even though the model has no explicit three-site
interactions.

Zipf's Law. The space of possible sequences is so large that we can-
not test the predictions for the distribution P(s) directly. Still, we
can get a global view of the distribution through a Zipf plot, in
which we put the observed sequences in order on the basis of their
frequency of occurrence, and plot probability P vs. rank r, as in
Fig. 3. We see that both the data and the predictions of the model
are very close to obeying Zipf’s law, P o« 1/r (21, 22), and the data
and model agree very well with one another. The same pattern is
observed in all fish, although the ranking of particular sequences
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Fig. 2. Local observables and the entropy are well captured by the model.
(A) Position-dependent amino acid frequency. (Top) Frequency as a function
of position i =1, ..., 4 from the left end of the sequence. (Bottom) Compar-
ison between model and data of position-dependent frequencies, normal-
ized by the prediction of the independent model. Error bars are obtained
as the standard deviation over many choices of partition between training
and testing sets. (B) Comparison of triplet frequencies of contiguous amino
acids, normalized by the prediction of the independent model. The small
crosses illustrate one choice of the training/testing partition. The black error
bars represent the average measurement error made on a triplet frequency
at that frequency value, obtained as the standard deviation over many
choices of the training/testing partition. The diagonal error bars show the
average error between model and data. (C) Entropy of all fish: from fre-
quency counting, from the independent model, and from the maximum en-
tropy model with range K =1, ..., 4.

varies. The dynamic range over which we can observe Zipf’s law is
limited by the number of independent sequences that are read in
the experiments, but the model predicts that this behavior
should continue even if this number were extended by an order
of magnitude.

Zipf’s law first attracted attention in the context of language
(22), and many models have been proposed for the origin of this
behavior. Even before Zipf’s work, it was known that some
growth processes with mutations can generate Zipfian distribu-
tions (21, 23). Because we have built a model out of measured
pairwise correlations, with strong analogies to statistical
mechanics, we emphasize that Zipf’s law reflects the proximity
of a critical point in the strength of the underlying interactions.
The rank of a state ¢ is determined by the number of states with
higher probability or lower energy in Eq. 2. But counting the
number of states is equivalent to measuring the (microcanonical)
entropy, and then Zipf’s law is the statement that the entropy
grows linearly with the energy, with slope one (see SI Text). This
locally linear relation between energy and entropy is character-
istic of thermodynamic systems at a critical point (24) and could
not emerge from a system of noninteracting units or even from an
interacting system with slightly weaker or stronger correlations.
Thus, the strength of correlations that we see in the real
sequences corresponds to interactions with a critical strength, re-
stricting the set of allowed sequences substantially but not forcing
the system to “freeze” into a small set of possibilities.

PNAS | March 23,2010 | vol. 107 | no.12 | 5407

BIOPHYSICS AND
COMPUTATIONAL BIOLOGY


http://www.pnas.org/cgi/data/1001705107/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/1001705107/DCSupplemental/Supplemental_PDF#nameddest=STXT

[

Z

1\

=y

Entropy. The fundamental quantity in a maximum entropy con-
struction is the entropy S itself. Entropy measures the diversity
in sequence space and hence is also a fundamental quantity from
a biological point of view. If we imagine that sequences are con-
structed by choosing amino acids at random, then the entropy
could be as large as log,(20) bits per residue, or a total of ~15
bits for the average length D region. For almost all fish (F is
an exception and is excluded from further analyses), the observed
biases in the use of the different amino acids do not reduce this
very much; that is, if we choose amino acids independently at
every site but with the observed frequencies,

=

Pina(6) =EP(L) | | Pi (o), [4]

i=1

then the entropy S[P;,q] of this independent model is nearly
log,(20) bits per residue. We can think of the maximum entropy
model as part of a hierarchy, in which the entropy is reduced
every time we take account of additional correlations (25). As
shown in Fig. 2C, the entropy is reduced significantly as we take
account of correlations between neighboring amino acids, corre-
sponding to K = 1 in Eq. 3. It is reduced further when we include
next-nearest neighbors (K = 2), and the reduction seems to pla-
teau as we include more distant neighbors (K = 3, 4). Including
all of these pairwise correlations pushes the total entropy well
below 10 bits for all fish, so that out of tens of thousands of
possible sequences, most of the distribution is concentrated in
only a few hundred (~2%) sequences, and this is consistent with
what we observe in the Zipf plots (Fig. 3). This restriction of se-
quence space is even more dramatic when we realize that, given
the maximum length of the D regions, there really are tens of
millions of possible sequences.

The difference between the entropy of the independent model
and the true entropy, I = S[P;,q] — S[P], measures the overall
strength of correlations in the system and is called the multiinfor-
mation. The maximum entropy model predicts a value for 70" =
S[Pina] — S[P"] that must be smaller than I, and the ratio 1) /I
measures the fraction of the correlated structure that we capture
in our model. The difficulty is that, because sequence space is
large, estimating the entropy S[P] is difficult. Methods are avail-
able, however, that allow us to estimate S[P] even when we do not

107!
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Fig. 3. The distribution of D regions obeys Zipf's law. Probability of D region
sequences as a function of their rank in fish A, as observed from frequency
counting (Blue Line), and as predicted by the independent (Green Line) and
the maximum entropy model with K = 2 (Red Line). The dashed line has slope
—1. (Inset) The same for all fish, from frequency counting.
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have enough samples to accurately estimate P(o) itself, as ex-
plained in S7 7ext and ref. 26. By using these methods, we find,
as shown in Fig. 2C, I /I in the range from 0.67 to 0.91
across the different fish. Thus our maximum entropy model,
on the basis of only pairwise correlations, captures between
two-thirds and 90% of all the correlated structure in the distribu-
tion of sequences.

Comparison Between Fish. The analysis of entropies shows that the
repertoires of individual fish span only a tiny fraction of the
possible sequence space. Do the repertoires of different fish over-
lap with each other, or are they distinct? To answer this question,
we first computed a similarity factor Sim[P,, P;] between reper-
toire distributions (see SI Text). This factor takes values between 0
and 1 and measures the difficulty of guessing to which of the two
repertoires (a or ) a given sequence belongs. Fig. S2 shows the
similarity factor for all pairs of fish, as calculated by the maximum
entropy model (see SI Text). Whereas the choices of V, D, and J
segments are correlated with the family relations among the fish
(18), this measure of similarity among D regions is not.

To study repertoire specificity beyond two fish, we looked at
the average information that the sequence o of a single antibody
molecule carries about the identity « of the fish from which it is
drawn,

L P(o,a)
I((l, 5) = ZP((T, (l) 10g2 {W:l s [5]

c.a

where P(c, a) is the probability that a sequence picked at random
in the dataset be 6 and come from fish a. Fig. 4 represents this
mutual information as a function of the fish entropy S, =
—YP(a)log,[P(a)] for many subgroups of fish of various sizes.
The fish entropy is an upper bound to the mutual information and
is reached only when sequences give perfect information about
which fish they came from, i.e., when each sequence belongs
to one fish uniquely. Although the mutual information remains
far from this upper bound, it keeps growing linearly with the en-
tropy as the size of the group is increased, each fish adding its own
unique diversity. Importantly, this individuality of the sequence
ensembles depends dominantly on correlations, because in the
independent model, P;,q(s) from Eq. 4, the mutual information
between identity and sequence is roughly a factor of four smaller
(Fig. 4, Lower Inset). All 13 fish do not suffice to cover the
potential diversity of D regions, as evidenced by the absence
of saturation.
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Fig.4. Fish repertoires overlap yet are specific. Mutual information between
fish and sequence vs. the entropy of fish. Each point is a subgroup of all 13
fish (excluding fish F), color-coded by its size (from dark blue to red). Filled
circles are averages over groups of each size. (Upper Inset) Comparison
between mutual information estimated from counting observed sequences
and that predicted by the maximum entropy model. (Lower Inset) Mutual
information vs. fish entropy, as predicted by the independent model.
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Multivalley Landscape. The energy function in Eq. 3 includes com-
peting interactions—the couplings J can be positive or negative,
favoring both correlated and anticorrelated amino acid substitu-
tions at different sites. From the statistical mechanics of disor-
dered systems (27) we know that such competition can lead to
“frustration” and many metastable states. A metastable state is
defined as a local minimum of the energy landscape or, in prob-
abilistic language, a local maximum of the probability distribu-
tion. Does this happen in the case of antibody diversity?

Our model assigns an energy to every sequence, but to find
local minima in this landscape we need to define “local.” Because
mutations occur at the level of nucleotides, we work in the space
of nucleotide sequences; to assign a (free) energy to nucleotide
sequences, we translate to amino acids, compute E (o) from Eq. 3,
and add a correction term for the entropy of codon usage. Then
we say that two sequences are adjacent if (i) they differ by one
nucleotide, (if) they differ by one nucleotide insertion and one
deletion, or (iii) they differ by three insertions or three deletions;
the last criterion is necessary because, by construction, the lengths
of D regions is a multiple of 3. With this conservative definition,
we find ~10 local minima per fish; examples are shown in Fig. 5.
Some of these states correspond to the D regions encoded in the
genome, as shown in Fig. 54, but many do not. The structure of
the energy landscape, and hence the probability with which se-
quences appear in the organism’s antibody repertoire, thus has
elements that are not simply a record of genomic history but pre-
sumably reflect rapid adaptation to the antigenic environment.

Each metastable state defines a basin of attraction or valley in
the energy landscape, and we can assign each sequence to its cor-
responding valley by moving “downhill”: Starting from a given
sequence, go to the lowest energy neighbor, and continue doing
so until the energy stops decreasing and a metastable state has
been reached. Fig. 5B represents the energy of all sequences
in a basin of attraction as a function of their distance (in number
of steps) to the metastable states; although there are differences
of detail, the different basins have very similar structures. As we
explore away from the minimum energy in each basin, at some
point we reach the “pass” that connects neighboring valleys;
the trajectories over these passes are analogous to the trajectories
from reactants to products in a chemical reaction, with the pass
identifiable as the transition state (28). Because the sequences

JGTCCGACALCACT {WSDINT

are not too long, we can find these paths by a conventional Monte
Carlo procedure (see SI Text), and in most cases we found con-
tinuous paths through adjacent observed sequences between
metastable states. When the two metastable states had the same
length, we found paths where each step was a single nucleotide
mutation. Fig. 5C summarizes the connections among the seven
most populated metastable states in the repertoire of fish A.
Taken together, these results on the energy landscape imply that
the repertoire explores much of the sequence space and is not
slaved to the genomic templates or to any specific sequence
arising in the adaptation process.

Summary and Discussion
The formation of the antibody repertoire is an example of an
accelerated evolutionary process under selective pressure. Anti-
bodies in a given organism are correlated both through their
genomic origin and as a result of the adaptation history. In this
study we have analyzed the repertoire of B cell antibodies by
building compact models of the hypervariable region of their
heavy chain, on the basis of the principle of maximum entropy.
The reduction of parameters achieved by the model is enor-
mous. Even though we are looking at the relatively short hyper-
variable D regions, there are tens of millions of possible
sequences, and in principle each sequence occurs with a different
probability in the repertoire. In contrast, the number of para-
meters of our model is of order 400K, where K is the interaction
range. Importantly, this number scales reasonably with sequence
size, making our approach tractable for systems in which the
relevant sequence is much longer, including the hypervariable re-
gions in other species. The compactness of the model allows for
generalization, so we can predict quantities that are not deducible
simply by counting sequences in the observed sample: the overall
size of the repertoire, the overlaps between repertoires of differ-
ent individuals, and the probability of finding new, as yet unob-
served, sequences in larger samples from the same individual.
The maximum entropy construction accounts for correlations
between amino acid substitutions at different residue positions
through an effective interaction structure. These interactions
are strong enough to generate a dramatically different ensemble
of sequences than would be expected if substitutions at each site
were independent. The diversity of the repertoire is substantially
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reduced (from an entropy of ~14 bits to ~8 bits), the distribution
of sequences obeys Zipf’s law, and the distribution has a complex
structure of “metastable states,” clusters of sequences with high
probability.

We have addressed the question of individuality, by using our
model and tools from information theory. At one extreme, the
fish could be completely different from each other, with each fish
bringing its own set of unique sequences. At the other extreme,
fish could have more or less identical repertoires, sharing the
same antibodies in the same proportions. We found an intermedi-
ate situation, where about 50% of the repertoire diversity was
unique to each fish (Fig. 4), and the rest shared among all fish.
As one concatenates the individual repertoires, including more
and more fish, the size of the resulting metarepertoire must
saturate, because the number of possible antibody sequences is
finite. But this saturation is not reached even for 13 fish, meaning
that each fish is still unique compared to all other 12 taken
together and not only compared to each of them separately.

The details of the adaptation process undergone by the reper-
toire are largely unknown, and our model provides only a first
step to aid in its study. What is the mutation mechanism?
How do recognition and selection work? Our observation of
Zipf’s law provides an important constraint on these mechanisms.
As we have emphasized, this behavior arises only if the inter-
actions between substitutions at different sites have a critical
strength. But these interactions are just a summary of the muta-
tion and selection dynamics. There are simple growth processes
with mutation that can generate Zipfian distributions (23), but
much work remains to find a realistic model that generates
the full structure of P(o).

The structure of the energy landscape underlying our model
shows that the repertoire decomposes into several components.
Each component is centered on a metastable state, a peak in the
probability distribution of sequences. Some metastable states are
closely related to the genomic templates, although rarely identi-
cal, whereas others are not attributable to any genomic template.
We can think of these metastable states as markers of adaptation.
For example, an infection could have caused the proliferation of
antibodies particularly efficient for recognizing a specific antigen,
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thus creating a peak in the probability landscape, which suggests
the possibility of using metastable states and their basins of
attraction for probing infectious history, perhaps in experiments
that follow the dynamics of the sequence ensemble over time.

The clusters associated with the metastable states are not com-
pletely disconnected from one other: We found continuous paths
of observed sequences between most metastable states, which
means that, far from being slaved to their genome, the D se-
quences have the freedom to explore sequence space extensively
during the adaptation process, forming a large cloud of possi-
bilities between the highly concentrated regions of the sequence
space, i.e., the metastable states, whether they be genomic or not.
The method we have used for finding these paths—a Metropolis
walk in energy space—further illustrates the power of the
maximum entropy model: Because it naturally favors low energy
barriers, this algorithm is more likely to find paths where all se-
quences are present in the data. More generally, it could be used
as a tool for retracing mutation paths between any two sequences
and could lend us insight into the repertoire’s evolutionary
history.

Finally, the success of maximum entropy models in accounting
for the higher order statistical structure of the sequence ensemble
encourages us to think that this approach is more widely appli-
cable. The maximum entropy formalism shows how, as in many
statistical physics problems, the observable correlations between
amino acid substitutions at any two sites provide the signatures of
collective behavior in the system as a whole. The idea that crucial
aspects of life should be viewed as emergent, collective phenom-
ena has been discussed for decades. The challenge has been to
move beyond metaphor by developing precise mathematical tools
for extracting quantitative models of this collective behavior from
experiment. We believe that we have taken useful steps in this
direction in the work reported here.

ACKNOWLEDGMENTS. We thank S.R. Quake, J.A. Weinstein, and their
colleagues for sharing their data and for several helpful discussions. This
work was supported in part by National Science Foundation Grant
PHY-0650617 and by National Institutes of Health Grant P50 GMO071598;
T.M. was supported by the Human Frontiers Science Program.

14. Halabi N, Rivoire O, Leibler S, Ranganathan R (2009) Protein sectors: Evolutionary units
of three-dimensional structure. Cell 138:774-786.

15. Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620-630.

16. Jaynes ET (1957) Information theory and statistical mechanics. Il. Phys Rev
108:171-190.

17. Hozumi N, Tonegawa S (1976) Evidence for somatic rearrangement of immuno-
globulin genes coding for variable and constant regions. Proc Nat/ Acad Sci USA
73:3628-3632.

18. Weinstein JA, Jiang N, White RA, Fisher DS, Quake SR (2009) High-throughput sequen-
cing of the zebrafish antibody repertoire. Science 324:807-810.

19. Murphy KP, Travers P, Janeway C, Walport M (2008) Janeway’s Immunobiology
(Garland, New York).

20. Lieschke GJ, Trede NS (2009) Fish immunology. Curr Biol 19:R678-R682.

21. Newman MEJ (2005) Power laws, Pareto distributions and Zipf's law. Contemp Phys
46:323-351.

22. Zipf GK (1932) Selected Studies of the Principles of Relative Frequency in Language
(Harvard Univ Press, Cambridge, MA).

23. Yule G (1925) A mathematical theory of evolution, based on the conclusions of Dr. J. C.
Willis, FRS. Phil Trans R Soc B 213:21-87.

24. Huang K (2008) Statistical Mechanics (Wiley, New York), 2nd Ed.

25. Schneidman E, Still S, Berry MJ, Bialek W (2003) Network information and connected
correlations. Phys Rev Lett 91:238701.

26. Strong SP, Koberle R, de Ruyter van Steveninck RR, Bialek W (1998) Entropy and
information in neural spike trains. Phys Rev Lett 80:197-200.

27. Mézard M, Parisi G, Virasoro MA (1987) Spin Glass Theory and Beyond (World
Scientific, Singapore).

28. Hanggi P, Talkner P, Borkovec M (1990) Reaction-rate theory: Fifty years after Kramers.
Rev Mod Phys 62:251-341.

Mora et al.



