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Weak pairwise correlations imply
strongly correlated network states in a
neural population
Elad Schneidman1,2,3, Michael J. Berry II2, Ronen Segev2 & William Bialek1,3

Biological networks have so many possible states that exhaustive sampling is impossible. Successful analysis thus
depends on simplifying hypotheses, but experiments on many systems hint that complicated, higher-order interactions
among large groups of elements have an important role. Here we show, in the vertebrate retina, that weak correlations
between pairs of neurons coexist with strongly collective behaviour in the responses of ten or more neurons. We find
that this collective behaviour is described quantitatively by models that capture the observed pairwise correlations but
assume no higher-order interactions. These maximum entropy models are equivalent to Ising models, and predict that
larger networks are completely dominated by correlation effects. This suggests that the neural code has associative or
error-correcting properties, and we provide preliminary evidence for such behaviour. As a first test for the generality of
these ideas, we show that similar results are obtained from networks of cultured cortical neurons.

Much of what we know about biological networks has been learned
by studying one element at a time—recording the electrical activity of
single neurons, the expression levels of single genes or the concen-
trations of individual metabolites. On the other hand, important
aspects of biological function must be shared among many
elements1–4. As a first step beyond the analysis of elements in
isolation, much attention has been focused on the pairwise corre-
lation properties of these elements, both in networks of neurons5–13

and in networks of genes14–16. But given a characterization of pairwise
correlations, what can we really say about the whole network? How
can we tell if inferences from a pairwise analysis are correct, or if they
are defeated by higher-order interactions among triplets, quadru-
plets, and larger groups of elements? If these effects are important,
how can we escape from the ‘curse of dimensionality’ that arises
because there are exponentially many possibilities for such terms?

Here we address these questions in the context of the vertebrate
retina, where it is possible to make long, stable recordings from
many neurons simultaneously as the system responds to complex,
naturalistic inputs17–20. We compare the correlation properties of
cell pairs with the collective behaviour in larger groups of cells, and
find that the minimal model that incorporates the pairwise corre-
lations provides strikingly accurate but non-trivial predictions of the
collective effects. These minimal models are equivalent to the Ising
model in statistical physics, and this mapping allows us to explore
the properties of larger networks, in particular their capacity for
error-correcting representations of incoming sensory data.

The scale of correlations

Throughout the nervous system, individual elements communicate
by generating discrete pulses termed action potentials or spikes21.
If we look through a window of fixed time resolution Dt, then for
small Dt these responses are binary—either the cell spikes (‘1’) or it
doesn’t (‘0’). Although some pairs of cells have very strong corre-
lations, most correlations are weak, so that the probability of seeing

synchronous spikes is almost equal to the product of the probabilities
of seeing the individual spikes; nonetheless, these weak correlations
are statistically significant for most, if not all, pairs of nearby cells. All
of these features are illustrated quantitatively by an experiment on
the salamander retina (Fig. 1), where we record simultaneously from
40 retinal ganglion cells as they respond to movies taken from a
natural setting (see Methods). The correlations between cells have
structure on the scale of 20 ms and we use this window as our typical
Dt.

The small values of the correlation coefficients suggest an approxi-
mation in which the cells are completely independent. For most
pairs, this is true with a precision of a few per cent, but if we
extrapolate this approximation to the whole population of 40 cells, it
fails disastrously. In Fig. 1e, we show the probability P(K) that K of
these cells generate a spike in the same small window of duration Dt.
If the cells were independent, P(K) would approximate the Poisson
distribution, whereas the true distribution is nearly exponential. For
example, the probability of K ¼ 10 spiking together is ,105£ larger
than expected in the independent model.

The discrepancy between the independent model and the actual
data is even more clear if we look at particular patterns of response
across the population. Choosing N ¼ 10 cells out of the 40, we can
form an N-letter binary word to describe the instantaneous state of
the network, as in Fig. 1b. The independent model makes simple
predictions for the rate at which each such word should occur, and
Fig. 1f shows these predictions as a scatter plot against the actual rate
at which the words occur in the experiment. At one extreme, the
word 1011001010 occurs once per minute, whereas the independent
model predicts that this should occur once per three years (a
discrepancy of ,106£). Conversely, the word 1000000010 is pre-
dicted to occur once per three seconds, whereas in fact it occurred
only three times in the course of an hour. The independent model
makes order-of-magnitude errors even for very common patterns of
activity, such as a single cell generating a spike while all others are
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silent. Moreover, within the clusters corresponding to different total
numbers of spikes, the predictions and observations are strongly
anti-correlated.

We conclude that weak correlations among pairs of neurons
coexist with strong correlations in the states of the population as a
whole. One possible explanation is that there are specific multi-
neuron correlations, whether driven by the stimulus or intrinsic to
the network, which simply are not measured by looking at pairs
of cells. Searching for such higher-order effects presents many
challenges22–24. Another scenario is that small correlations among
very many pairs could add up to a strong effect on the network as a
whole. If correct, this would be an enormous simplification in our
description of the network dynamics.

Minimal consequences of pairwise correlations

To describe the network as a whole, we need to write down a

probability distribution for the 2N binary words corresponding to
patterns of spiking and silence in the population. The pairwise
correlations tell us something about this distribution, but there are
an infinite number of models that are consistent with a given set of
pairwise correlations. The difficulty thus is to find a distribution
that is consistent only with the measured correlations, and does
not implicitly assume the existence of unmeasured higher-order
interactions. As the entropy of a distribution measures the random-
ness or lack of interaction among different variables25, this minimally
structured distribution that we are looking for is the maximum
entropy distribution26 consistent with the measured properties of
individual cells and cell pairs27.

We recall that maximum entropy models have a close connection
to statistical mechanics: physical systems in thermal equilibrium are
described by the Boltzmann distribution, which has the maximum
possible entropy given the mean energy of the system26,28. Thus, any
maximum entropy probability distribution defines an energy func-
tion for the system we are studying, and we will see that the energy
function relevant for our problem is an Ising model. Ising models
have been discussed extensively as models for neural networks29,30,
but in these discussions the model arose from specific hypotheses

Figure 1 | Weak pairwise cross-correlations and the failure of the
independent approximation. a, A segment of the simultaneous responses of
40 retinal ganglion cells in the salamander to a natural movie clip. Each dot
represents the time of an action potential. b, Discretization of population
spike trains into a binary pattern is shown for the green boxed area in a.
Every string (bottom panel) describes the activity pattern of the cells at a
given time point. For clarity, 10 out of 40 cells are shown. c, Example cross-
correlogram between two neurons with strong correlations; the average
firing rate of one cell is plotted relative to the time at which the other cell
spikes. Inset shows the same cross-correlogram on an expanded time scale;
x-axis, time (ms); y-axis, spike rate (s21). d, Histogram of correlation
coefficients for all pairs of 40 cells from a. e, Probability distribution of
synchronous spiking events in the 40 cell population in response to a long
natural movie (red) approximates an exponential (dashed red). The
distribution of synchronous events for the same 40 cells after shuffling each
cell’s spike train to eliminate all correlations (blue), compared to the Poisson
distribution (dashed light blue). f, The rate of occurrence of each pattern
predicted if all cells are independent is plotted against the measured rate.
Each dot stands for one of the 210 ¼ 1,024 possible binary activity patterns
for 10 cells. Black line shows equality. Two examples of extreme mis-
estimation of the actual pattern rate by the independent model are
highlighted (see the text).

Figure 2 | A maximum entropy model including all pairwise interactions
gives an excellent approximation of the full network correlation
structure. a, Using the same group of 10 cells from Fig. 1, the rate of
occurrence of each firing pattern predicted from the maximum entropy
model P2 that takes into account all pairwise correlations is plotted against
the measured rate (red dots). The rates of commonly occurring patterns are
predicted with better than 10% accuracy, and scatter between predictions
and observations is confined largely to rare events for which the
measurement of rates is itself uncertain. For comparison, the independent
model P1 is also plotted (from Fig. 1f; grey dots). Black line shows equality.
b, Histogram of Jensen–Shannon divergences (see Methods) between the
actual probability distribution of activity patterns in 10-cell groups and the
models P1 (grey) and P2 (red); data from 250 groups. c, Fraction of full
network correlation in 10-cell groups that is captured by the maximum
entropy model of second order, I (2)/IN, plotted as a function of the full
network correlation, measured by the multi-information IN (red dots). The
multi-information values are multiplied by 1/Dt to give bin-independent
units. Every dot stands for one group of 10 cells. The 10-cell group featured
in a is shown as a light blue dot. For the same sets of 10 cells, the fraction of
information of full network correlation that is captured by the conditional
independence model, Icond–indep/IN, is shown in black (see the text).
d, Average values of I (2)/IN from 250 groups of 10 cells. Results are shown for
different movies (see Methods), for different species (see Methods), and for
cultured cortical networks; error bars show standard errors of the mean.
Similar results are obtained on changing N and Dt; see Supplementary
Information.
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about the network dynamics. Here, the Ising model is forced upon us
as the least-structured model that is consistent with measured spike
rates and pairwise correlations; we emphasize that this is not an
analogy or a metaphor, but rather an exact mapping.

Whether we view the maximum entropy model through its
analogy with statistical physics or simply as a model to be constructed
numerically from the data (see Methods), we need meaningful ways
of assessing whether this model is correct. Generally, for a network of
N elements, we can define maximum entropy distributions PK that
are consistent with all Kth-order correlations for any K ¼ 1;2;…;N
(ref. 27). These distributions form a hierarchy, from K ¼ 1 where all
elements are independent, up toK ¼ N, which is an exact description
that allows arbitrarily complex interactions; their entropies SK
decrease monotonically toward the true entropy S : S1 $ S2 $ · · · $
SN ¼ S: The entropy difference or multi-information IN ¼ S1 2 SN
measures the total amount of correlation in the network, indepen-
dent of whether it arises from pairwise, triplet or more-complex
correlations31. The contribution of the Kth-order correlation is IðKÞ ¼
SK21 2 SK and is always positive (more correlation always reduces
the entropy); IN is the sum of all the I (K) (ref. 27). Therefore, the
question of whether pairwise correlations provide an effective
description of the system becomes the question of whether the
reduction in entropy that comes from these correlations,
I (2) ¼ S1 2 S2, captures all or most of the multi-information IN.

Are pairwise correlations enough?

Figure 2 shows the predictions of the maximum entropy model P2

consistent with pairwise correlations in populations of N ¼ 10 cells.
Looking in detail at the patterns of spiking and silence of one group
of 10 cells, we see that the predicted rates for different binary words

are tightly correlated with the observed rates over a very large
dynamic range, so that the dramatic failures of the independent
model have been overcome (Fig. 2a).

With 40 cells, we can choose many different populations of 10
cells, and in each case we find that the predicted and observed
distributions of words are very similar. It would typically take
thousands of independent samples to distinguish reliably between
the true distribution of responses and the maximum entropy model,
two orders of magnitude more than for the independent model
(Fig. 2b).

The success of the pairwise maximum entropy models in captur-
ing the correlation structure of the network is summarized by the
fraction I (2)/IN < 90% (Fig. 2c). This ratio is larger when IN itself is
larger, so that the pairwise model is more effective in describing
populations of cells with stronger correlations, and the ability of this
model to capture,90% of the multi-information holds independent
of many details (Fig. 2d; see also Supplementary Information): we
can vary the particular natural movies shown to the retina, use an
artificial movie, change the size of the bins Dt used to define the
binary responses, change the number of neurons N that we analyse,
and even shift from a lower vertebrate (salamander) to a mammalian
(guinea pig) retina. Finally, the correlation structure in a network of
cultured cortical neurons32 can be captured by the pairwise model
with similar accuracy.

The maximum entropy model describes the correlation structure
of the network activity without assumptions about its mechanistic
origin. A more traditional approach has been to dissect the corre-
lations into contributions that are intrinsic to the network and those
that are driven by the visual stimulus. The simplest model in this view
is one in which cells spike independently in response to their input, so
that all correlations are generated by covariations of the individual
cells’ firing rates33. Although there may be situations in which
conditional independence is a good approximation, Fig. 2c shows
that this model is less effective than the maximum entropy model in
capturing the multi-information for 232 out of 250 groups of 10
neurons, even though the conditional independent model has ,200
times more parameters (see Methods). The hypothesis of conditional
independence is consistently less effective in capturing the structure
of more-strongly correlated groups of cells, which is opposite to the
behaviour of the maximum entropy model. Finally, whereas the
maximum entropy model can be constructed solely from the
observed correlations among neurons, the conditionally indepen-
dent model requires explicit access to repeated presentations of the
visual stimulus. Thus, the central nervous system could learn the
maximum entropy model from the data provided by the retina alone,
but the conditionally independent model is not biologically realistic
in this sense.

We conclude that although the pairwise correlations are small and
the multi-neuron deviations from independence are large, the
maximum entropy model consistent with the pairwise correlations
captures almost all of the structure in the distribution of responses
from the full population of neurons. Thus, the weak pairwise
correlations imply strongly correlated states. To understand how
this happens, it is useful to look at the mathematical structure of the
maximum entropy distribution.

Ising models, revisited

We recall that the maximum entropy distribution consistent with
a known average energy kEl is the Boltzmann distribution,
P / exp(2E/kBT), where kB is Boltzmann’s constant and T is
temperature. This generalizes, so that if we know the average values
of many variables fm describing the system, then the maximum
entropy distribution is P / exp(2Smlmfm), where there is a separate
Lagrange multiplier lm for each constraint26,28. In our case, we are
given the average probability of a spike in each cell and the
correlations among all pairs. If we represent the activity of cell i by
a variable j i ¼ ^1, where þ 1 stands for spiking and 21 stands for

Figure 3 | Pairwise interactions and individual cell biases, as in equation
(1). a, Example of the pairwise interactions J ij (above) and bias values (or
local fields) hi (below) for one group of 10 cells. b, Histograms of hi and J ij
values from 250 different groups of 10 cells. c, Two examples of 3 cells within
a group of 10. At left, cells A and B have almost no interaction
(JAB ¼ 20.02), but cell C is very strongly interacting with both A and B
(JAC ¼ 0.52, JBC ¼ 0.70), so that cells A and B exhibit strong correlation, as
shown by their cross-correlogram (bottom panel). At right, a ‘frustrated’
triplet, in which cells A and B have a significant positive interaction
(JAB ¼ 0.13), as do cells B and C (JBC ¼ 0.09), but A and C have a significant
negative interaction (JAC ¼ 20.11). As a result, there is no clear correlation
between cells A and B, as shown by their cross-correlogram (bottom panel).
d, Interaction strength J ij plotted against the correlation coefficient Cij; each
point shows the value for one cell pair averaged over many different groups
of neighbouring cells (190 pairs from 250 groups), and error bars show
standard deviations.
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silence, then these constraints are equivalent to fixing the average of
each j i and the averages of all products j ij j, respectively. The
resulting maximum entropy distribution is

P2ðj1;j2;…;jN Þ ¼
1

Z
exp

i

X
hiji þ

1

2 i–j

X
Jijjijj

2
4

3
5 ð1Þ

where the Lagrange multipliers {hi, J ij} have to be chosen so that the
averages {kj il, kj ij jl} in this distribution agree with experiment; the
partition function Z is a normalization factor. This is the Ising
model28, where the j i are spins, the hi are local magnetic fields
acting on each spin, and the J ij are the exchange interactions; note
that h . 0 favours spiking and J . 0 favours positive correlations.

Figure 3 shows the parameters {hi, J ij} for a particular group of ten
cells, as well as the distributions of parameters for many such groups.
Most cells have a negative local field, which biases them toward
silence. Figure 3c and d illustrates the non-trivial relationship
between the pairwise interaction strengths J ij and the observed
pairwise correlations.

We can rewrite equation (1) exactly by saying that each neuron or
spin j i experiences an effective magnetic field that includes the local
field or intrinsic bias hi and a contribution from interactions with all
the other spins (neurons), hint

i ¼ 1
2

P
j–iJijjj; note that hint

i depends on
whether the other cells are spiking or silent. The intrinsic bias
dominates in small groups of cells, but as we look to larger networks,
the fact that almost all of the ,N2 pairs of cells are significantly (if
weakly) interacting shifts the balance so that the typical values of the
intrinsic bias are reduced while the effective field contributed by the
other cells has increased (Fig. 4).

Larger networks and error correction

Groups of N ¼ 10 cells are large enough to reveal dramatic depar-
tures from independence, but small enough that we can directly
sample the relevant probability distributions. What happens at larger
N? In general, we expect that the total capacity of the network to
represent its sensory inputs should grow in proportion to the
number of neurons, N. This is the usual thermodynamic limit in
statistical mechanics, where energy and entropy are proportional to
system size28. But this behaviour is not guaranteed when all elements
of the system interact with each other. In the Ising model, it is known
that if all pairs of spins (here, cells) interact significantly, then to
recover the thermodynamic limit the typical size of the interactions
J ij must decrease with N (refs 30, 34). Although we have not analysed
very large networks, we see no signs of significant changes in J with
growing N (Fig. 4b, c).

In a physical system, the maximum entropy distribution is the
Boltzmann distribution, and the behaviour of the system depends on
the temperature, T. For the network of neurons, there is no real
temperature, but the statistical mechanics of the Ising model predicts
that when all pairs of elements interact, increasing the number of
elements while fixing the typical strength of interactions is equivalent
to lowering the temperature, T, in a physical system of fixed size, N.
This mapping predicts that correlations will be even more important
in larger groups of neurons.

We can see signs of strong correlation emerging by looking at
the entropy and multi-information in sub-networks of different
sizes. If all cells were independent, the entropy would be S1, exactly

Figure 4 | Interactions and local fields in networks of different size.
a, Greyscale density map of the distribution of effective interaction fields
experienced by a single cell hinti versus its own bias or local field hi (see the
text); distribution formed over network configurations at each point in time
during a natural movie for n ¼ 1,140 3-cell groups (top panel) and n ¼ 250
10-cell groups (bottom panel). Black line shows the boundary between
dominance of local fields versus interactions. b, Mean interactions J ij and
local fields hi describing groups ofN cells, with error bars showing standard
deviations across multiple groups. c, Pairwise interaction in a network of 10
cells Jð10Þij plotted against the interaction values of the same pair in a sub-
network containing only 5 cells Jð5Þij : Line shows equality.

Figure 5 | Extrapolation to larger networks. a, Average independent cell
entropy S1 and network multi-information IN, multiplied by 1/Dt to give
bin-independent rates, versus number of cells in the network N.
Theoretically, we expect IN / N(N 2 1) for small N; the best fit is
IN / N1.98^0.04. Extrapolating (dashed line) defines a critical network size
N c, where INwould be equal to S1. b, Information thatN cells provide about
the activity of cell N þ 1, plotted as a fraction of that cell’s entropy, S(j i),
versus network size N; each point is the average value for many different

groups of cells. Extrapolation to larger networks (dashed line,
slope ¼ 1.017 ^ 0.052) defines another critical network size N c, where one
would get perfect error-correction or prediction of the state of a single cell
from the activity of the rest of the network. c, Examples of ‘check cells’, for
which the probability of spiking is an almost perfectly linear encoding of
the number of spikes generated by the other cells in the network. Cell
numbers as in Fig. 1.
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proportional to N. For weak correlations, we can solve the Ising
model in perturbation theory to show that the multi-information IN
is the sum of mutual information terms between all pairs of cells, and
hence IN / N(N 2 1). This is in agreement with the empirically
estimated IN up to N ¼ 15, the largest value for which direct
sampling of the data provides a good estimate (Fig. 5a), and
Monte Carlo simulations of the maximum entropy models suggest
that this agreement extends up to the full population of N ¼ 40
neurons in our experiment (G. Tkačik, E.S., R.S., M.J.B. and W.B.,
unpublished data). Were this pattern to continue, at N < 200 cells IN
would become equal to the independent entropy S1, and the true
entropy SN ¼ S1 2 IN would vanish as the system ‘froze’. Because we
see variable firing patterns of all the cells, we know that literal freezing
of the network into a single state doesn’t happen. On the other hand,
networks of N < 200 cells must be very strongly ordered. Interest-
ingly, experiments indicate that a correlated patch on the retina has
roughly this size: the strongest correlations are found for cells within
,200 mm of each other, and this area contains ,175 ganglion cells in
the salamander19.

Because the interactions J ij have different signs, frustration (Fig. 3c)
can prevent the freezing of the system into a single state. Instead there
will be multiple states that are local minima of the effective energy
function, as in spin glasses34. We find that roughly 40% of all triplets
of cells are indeed frustrated. If the number of minimum energy
patterns is not too small, then the system retains a significant
representational capacity. If the number of patterns is not too
large, then observing only some of the cells in the network is
sufficient to identify the whole pattern uniquely, just as in the
Hopfield model of associative memory29. Thus, the system would
have a holographic or error-correcting property, so that an observer
who has access only to a fraction of the neurons would nonetheless be
able to reconstruct the activity of the whole population.

We can see suggestions of this error-correcting property by asking
directly how much the knowledge of activity in N cells tells us about
whether cell N þ 1 will spike (Fig. 5b). Our uncertainty about the
state of one cell is reduced in proportion to the number of cells that
we examine, and if this trend continues, then again at N < 200 all
uncertainty would vanish. Alternatively, we can look for particular
kinds of error correction. In our population of 40 cells, we have found
three cells for which the probability of spiking is an almost perfectly
linear encoding of the number of spikes generated by the other cells in
the network (Fig. 5c). To the extent that local field potentials or
intrinsic optical signals in cortex reflect the total number of spikes
generated by nearby neurons, this observation is analogous to the
statement that the spiking in single pyramidal cells is correlated with
these more collective responses35. By observing the activity of the
‘check cells’ in Fig. 5c, we can estimate how many spikes are generated
by the network as a whole even before we observe any of the other
cells’ responses.

Discussion

We have seen that the maximum entropy principle provides a unique
candidate model for the whole network that is consistent with
observations on pairs of elements but makes no additional assump-
tions. Despite the opportunity for higher-order interactions in the
retina, this model captures more than 90% of the structure in the
detailed patterns of spikes and silence in the network, closing
the enormous gap between the data and the predictions of a model
in which cells fire independently. Because the maximum entropy
model has relatively few parameters, we evade the curse of dimen-
sionality and associated sampling problems that would ordinarily
limit the exploration of larger networks. The low spiking probabil-
ities, and weak but significant correlations among almost all pairs of
cells, are not unique to the retina. Indeed, the maximum entropy
model of second order captures over 95% of the multi-information
in experiments on cultured networks of cortical neurons. In addition,
application of the maximum entropy formalism of ref. 27 to ganglion

cells in monkey retina shows that pairwise correlations in groups of up
to N ¼ 8 ‘ON’ or ‘OFF’ parasol cells, restricted to adjacent cells in each
mosaic, can account for 98% of the observed deviations from statistical
independence (E. J. Chichilnisky, personal communication).

The success of a model that includes only pairwise interactions
provides an enormous simplification in our description of the
network. This may be important not only for our analysis, but also
for the brain. The dominance of pairwise interactions means that
learning rules based on pairwise correlations36 could be sufficient to
generate nearly optimal internal models for the distribution of
‘codewords’ in the retinal vocabulary, thus allowing the brain to
accurately evaluate new events for their degree of surprise37.

The mapping of the maximum entropy problem to the Ising
model, together with the observed level of correlations, implies
that groups of N < 200 cells will behave very differently than smaller
groups, and this is especially interesting because the patch of
significantly correlated ganglion cells in the retina is close to this
critical size19. Because the response properties of retinal ganglion cells
adapt to the input image statistics38,39, this matching of correlation
length and correlation strength cannot be an accident of anatomy but
rather must be set by adaptive mechanisms. Perhaps there is an
optimization principle that determines this operating point, maxi-
mizing coding capacity while maintaining the correlation structures
that enable error-correction.

Although we have focused on networks of neurons, the same
framework has the potential to describe biological networks more
generally. In this view, the network is much more than the sum of its
parts, but a nearly complete model can be derived from all its pairs.

METHODS
Retinal experiments. Retinae from the larval tiger salamander (Ambystoma
tigrinum) and the guinea pig (Cavia porcellus) were isolated from the eye,
retaining the pigment epithelium, and placed over a multi-electrode array19.
Both were perfused with oxygenated medium: room temperature Ringers for
salamander and 36 8C Ames medium for guinea pig. Extracellular voltages were
recorded by a MultiChannel Systems MEA 60 microelectrode array and streamed
to disk for offline analysis. Spike waveforms were sorted either using the spike
size and shape from a single electrode19 or the full waveform on 30 electrodes18.
Recorded ganglion cells were spaced no more than 500mm apart, and were
typically close enough together to have overlapping receptive field centres. Our
analysis is based on measurements of 95 cells recorded in 4 salamanders and 35
cells recorded in 2 guinea pigs.

Natural movie clips (‘Nat.’ in Fig. 2) were acquired using a Canon Optura Pi
video camera at 30 frames per second. Movie clips broadly sampled woodland
scenes as well as man-made environments, and included several qualitatively
different kinds of motion: objects moving in a scene, optic flow, and simulated
saccades19. In spatially uniform flicker (‘FFF’ in Fig. 2), the light intensity
was randomly chosen to be black or white every 16.7 ms. For most experiments, a
20–30 s stimulus segment was repeated many times; in one experiment, a 16 min
movie clip was repeated several times. All visual stimuli were displayed on an
NEC FP1370 monitor and projected onto the retina using standard optics. The
mean light level was 5 lux, corresponding to photopic vision.
Cultured cortical networks.Data on cultured cortical neurons were recorded by
the laboratory of S. Marom (Technion–Israel Institute of Technology) using a
multi-electrode array, as described in ref. 32. The data set analysed here is an
hour-long epoch of spontaneous neuronal activity recorded through 60
electrodes.
Analysis. Mean spike rates ranged from 0.3 to 4.5 spikes s21. Spike trains are
binned using Dt ¼ 20-ms windows (unless otherwise noted) into binary
sequences of spiking (1) and non-spiking (0); in the rare cases where there is
more than one spike in a bin, we denote it as ‘1’. Cross-correlation values were
estimated by discretizing the neural response into binary (spike/no spike)
variables for each cell, using Dt ¼ 20-ms bins, and then computing the
correlation coefficients among these variables. Because the data sets we consider
here are very large (,1 hour), the threshold for statistical significance of the
individual correlation coefficients is well below jCj ¼ 0.01.

Information theoretic quantities such as IN depend on the full distribution of
states for the real system. Estimating these quantities can be difficult, because
finite data sets lead to systematic errors40. With large data sets (,1 hour) and
N , 15 cells, however, systematic errors are small, and we can use the sample-
size dependence of the estimates to correct for these errors, as in ref. 41. For
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networks of modest size, as considered here, constructing the maximum entropy
distribution consistent with the mean spike rates and pairwise correlations can
be viewed as an optimization problem with constraints. Because the entropy is a
convex function of the probabilities, and the constraints are linear, many efficient
algorithms are available42. To test our models we sometimes need surrogate data
without correlations. To remove all correlations among neurons (Fig. 1), we shift
the whole spike train of each cell by a random time relative to all the other cells.
To generate the conditionally independent responses (Fig. 2), we use data from
repeated presentations (trials) of the same movie and shuffle the trial labels on
each cell independently. We then use the joint probability distribution of the
cells under conditional independence, P cond-indep(j1, j2, …, jN), to compute
I cond-indep ¼ S1 2 S[P cond-indep(j1, j2, …, jN)]. Note that the conditionally
independent model has NT/Dt parameters, because each cell has its own spike
rate, potentially different at each moment in time, where T is the duration of the
stimulus movie; in our case NT/Dt < 104, in contrast to the N(N þ 1)/2 ¼ 55
parameters of the maximum entropy model, for N ¼ 10 cells.

The Jensen–Shannon divergence, D JS[pkq], quantifies the dissimilarity of the
distributions p and q, essentially measuring the inverse of the number of
independent samples we would need in order to be sure that the two distri-
butions were different43.
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