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Abstract. In [C. W. Gear, T. J. Kaper, I. G. Kevrekidis, and A. Zagaris, Projecting to a Slow Manifold:
Singularly Perturbed Systems and Legacy Codes, SIAM J. Appl. Dyn. Syst. 4 (2005) 711–732], we developed a class
of iterative algorithms within the context of equation-free methods to approximate low-dimensional, attracting, slow
manifolds in systems of differential equations with multiple time scales. For user-specified values of a finite number of
the observables, the m−th member of the class of algorithms (m = 0, 1, . . .) finds iteratively an approximation of the
appropriate zero of the (m+ 1)−st time derivative of the remaining variables and uses this root to approximate the
location of the point on the slow manifold corresponding to these values of the observables. This article is the first of
two articles in which the accuracy and convergence of the iterative algorithms are analyzed. Here, we work directly
with fast–slow systems, in which there is an explicit small parameter, ε, measuring the separation of time scales. We
show that, for each m = 0, 1, . . ., the fixed point of the iterative algorithm approximates the slow manifold up to and
including terms of O(εm). Moreover, for each m, we identify explicitly the conditions under which the m−th iterative
algorithm converges to this fixed point. Finally, we show that when the iteration is unstable (or converges slowly)
it may be stabilized (or its convergence may be accelerated) by application of the Recursive Projection Method.
Alternatively, the Newton–Krylov Generalized Minimal Residual Method may be used. In the subsequent article, we
will consider the accuracy and convergence of the iterative algorithms for a broader class of systems—in which there
need not be an explicit small parameter—to which the algorithms also apply.
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1. Introduction. The long-term dynamics of many complex chemical, physical, and biological
systems simplify when a low-dimensional, attracting, invariant slow manifold is present. Such a
slow manifold attracts all nearby initial data exponentially, and the reduced dynamics on it govern
the long term evolution of the full system. More specifically, a slow manifold is parametrized by
observables which are typically slow variables or functions of variables. All nearby system trajectories
decompose naturally into a fast component that contracts exponentially toward the slow manifold
and a slow component which obeys the reduced system dynamics on the manifold. In this sense,
the fast variables become slaved to the observables, and knowledge of the slow manifold and of the
reduced dynamics on it suffices to determine the full long-term system dynamics.

The identification and approximation of slow manifolds is usually achieved by employing a
reduction method. We briefly list a number of these: Intrinsic Low Dimensional Manifold (ILDM),
Computational Singular Perturbation (CSP), Method of Invariant Manifold (MIM), Approximate
Inertial Manifold approaches, and Fraser-Roussel iteration, and we refer the reader to [5, 9] for a
more extensive listing.
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1.1. A class of iterative algorithms based on the zero-derivative principle. In [5], we
developed a class of iterative algorithms to locate slow manifolds for systems of Ordinary Differential
Equations (ODEs) of the form

u′ = p(u, v), u ∈ RNs ,
v′ = q(u, v), v ∈ RNf ,

(1.1)

where Ns+Nf ≡ N. We treated the variables u as the observables (that is, as parametrizing the slow
manifold we are interested in), and we assumed that there exists an Ns−dimensional, attracting,
invariant, slow manifold L, which is given locally by the graph of a function v = v(u). For specified
values of u, the algorithm finds approximations to v(u). However, we emphasize that we did not
need explicit knowledge of which variables are fast and which are slow, only that the variables u
suffice to parametrize L.

To leading order, the location of a slow manifold L is obtained by setting v′ = 0, i.e., by solving
q(u, v) = 0 for v. Of course, the manifold defined by this equation is in general not an invariant
slow manifold under the flow of the full system (1.1). This is only approximately true, since higher-
order derivatives with respect to the (fast) time t are, in general, large on it. If one requires
that v′′ vanishes, then the solutions with initial conditions at the points defined by this condition
depend only on the slow time to one order higher, as v′ also remains bounded in the vicinity of this
manifold. Similarly, demanding that successively higher-order time derivatives vanish, we obtain
manifolds where all time derivatives of lower order remain bounded. The solutions with these initial
conditions depend only on the slow time to successively higher order and thus approximate, also
to successively higher order, solutions on the slow manifold. In other words, demanding that time
derivatives of successively higher order vanish, we filter out the fast dynamics of the solutions to
successively higher orders. In this manner, the approximation of the slow manifold L is improved
successively, as well. This idea may be traced back at least to the work of Kreiss [1, 12, 13],
who studied systems with rapid oscillations (asymptotically large frequencies) and introduced the
bounded derivative principle to find approximations of slow manifolds as the sets of points at which
the derivatives are bounded (not large). The requirement here that the derivatives with respect to
the (fast) time t vanish (or be small) is the analog for systems (1.1) with asymptotically stable slow
manifolds. A similar idea was introduced independently by Lorenz in [14], where he used a simple
functional iteration scheme to approximate the zero of the first derivative, then used the converged
value of this scheme to initialize a similar scheme that approximates the zero of the second derivative,
and so on until successive zeroes were found to be virtually identical. See also [3] and [7] for other
works in which a similar condition is employed.

The elements of the class of iterative algorithms introduced in [5] are indexed by m = 0, 1, . . ..
The m−th algorithm is designed to locate, for any fixed value of the observable u0, an appropriate
solution, v = vm(u0), of the (m+ 1)−st derivative condition

(

dm+1v

dtm+1

)

(u0, v) = 0.(1.2)

Here, the time derivatives are evaluated along solutions of (1.1). In general, since condition (1.2)
constitutes a system of Nf nonlinear algebraic equations, the solution vm(u0) cannot be computed
explicitly. Also, the explicit form of (1.1), and thus also an analytic formula for the (m+1)−st time
derivative in Eq. (1.2), may be unavailable (e.g., in Equation-Free or legacy code applications). In
this case, a numerical approximation for it has to be used. The m-th algorithm in the class generates
an approximation v#

m of vm(u0), rather than vm(u0) itself, using either an analytic formula for the
time derivative or a finite difference approximation for it. In either case, the approximation v#

m to
vm(u0) is determined through an explicit functional iteration scheme, which we now introduce.
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The algorithm with general m is defined by the map F̃m : R
Nf → RNf ,

F̃m(v) = v − (−H)m+1

(

dm+1v

dtm+1

)

(u0, v).(1.3)

Here, H, which we label as the iterative step size, is an arbitrary positive number whose magnitude
we fix below for stability reasons. We initialize the iteration with some value v(1) and generate the
sequence

{

v(r+1) ≡ F̃m(v
(r))
∣

∣

∣
r = 1, 2, . . .

}

.

In addition, one prescribes a tolerance TOLm and terminates the iteration procedure when ‖v
(r+1)−

v(r)‖ < TOLm for some r ≥ 1. The output of thism−th algorithm is the last member of the sequence
{v(r+1)}, denoted by v#

m.

As we show in this article, not only is the point (u0, v
#
m) of interest for each individual m

because it approximates (u0, v(u0)), but the entire sequence {(u0, v
#
m)}m is also of interest because

it converges to (u0, v(u0)) with a suitably convergent sequence {TOLm}. Hence, the latter point
can be approximated arbitrarily well by members of that sequence, and the class of algorithms may
be used as an integrated sequence of algorithms in which the output v#

m of the m−th algorithm can
be used to initialize the (m+1)−st algorithm. Of course, other initializations are also possible, and
we have carried out the analysis here in a manner that is independent of which choice one makes.

Van Leemput et al. [17] employed the first (m = 0) algorithm in the class to initialize Lattice
Boltzmann Models (LBM) from sets of macroscopic data in a way that eliminates the stiff dynamics
triggered by a bad initialization. They showed that the algorithm they derived converges uncondi-
tionally to a fixed point close to a slow manifold, and they used the algorithm to couple a LBM to a
reaction-diffusion equation along the interface with good results [18]. The algorithm has also been
applied to a series of examples in [5]. It was found that the m−th algorithm converged exponen-
tially for each value of m that was tried, and that the accuracy of the approximation to (u0, v(u0))
improved as the order m was increased.

1.2. Iterative algorithms based on the zero-derivative principle for explicit fast–slow

systems. A central assumption that we made in [5] is that we work with systems (1.1) for which
there exists a smooth and invertible coordinate change

z = z(w) with inverse w = w(z),(1.4)

where w = (u, v) and z = (x, y), which puts the system (1.1) into the explicit fast–slow form

x′ = f(x, y, ε), x ∈ RNs ,
εy′ = g(x, y, ε), y ∈ RNf .

(1.5)

We emphasize that, in general, we have no knowledge whatsoever of the transformation that puts
system (1.1) into an explicit fast–slow form. Here, f and g are smooth functions of their arguments,
the manifold L is transformed smoothly, and det(Dyg)0(z) ≡ det(Dyg(z, 0)) 6= 0 on the manifold
L[0] = {z|g(z, 0) = 0} (on which the dynamics reduce for ε = 0), see also [5].

Due to the above assumption, it turns out to be natural to split the analysis of the accuracy
and convergence of the functional iteration into two parts. In the first part, which we present in this
article, we work directly on systems that are already in explicit fast–slow form (1.5). In the context
of these systems, the accuracy and convergence analysis may be carried out completely in terms of
the small parameter ε. The system geometry – the slow manifold and the fast fibers transverse to
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L – makes the convergence analysis especially transparent. Then, in the second part, we work with
the more general systems (1.1). For these, the accuracy analysis proceeds along similar lines as that
for this first part, with the same type of result as Theorem 2.1 below. However, the convergence
analysis is considerably more involved than that for explicit fast–slow systems. For these general
systems, one must analyze a series of different scenarios depending on the relative orientations of (i)
the tangent space to L, (ii) the tangent spaces to the fast fibers at their base points on L, and (iii)
the hyperplane of the observables u. Moreover, all of the analysis must be carried out through the
lens of the coordinate change (1.4) and its inverse, so that it is less transparent than it is in part
one. Part two will be presented as a subsequent article.

As applied specifically to explicit fast–slow systems (1.5), the m−th iterative algorithm (1.3) is
based on the (m+ 1)−st derivative condition,

(

dm+1y

dtm+1

)

(x0, y) = 0.(1.6)

In particular, for each m and for any arbitrary, but fixed, value of the observable x0, one makes an
initial guess for h(x0) and uses the m-th iterative algorithm to approximate the appropriate zero
of this (m + 1)−st derivative, where the end (converged) result of the iteration is the improved
approximation of h(x0).

For each m = 0, 1, . . ., the m−th iterative algorithm is defined by the map Fm : R
Nf → RNf ,

Fm(y) = y − (−H)m+1

(

dm+1y

dtm+1

)

(x0, y),(1.7)

where H is an arbitrary positive number whose magnitude is O(ε) for stability reasons. We seed
with some value y(1) and generate the sequence

{

y(r+1) ≡ Fm(y
(r))
∣

∣

∣ r = 1, 2, . . .
}

.(1.8)

Here also, one prescribes a tolerance TOLm and terminates the iteration procedure when ‖y
(r+1) −

y(r)‖ < TOLm for some r ≥ 1. The output of this m−th algorithm is the last member of the
sequence {y(r+1)}, denoted by y#

m. Finally, we note that the dependence of Fm and y on ε has been
suppressed in the notation to keep it compact.

1.3. Fundamental hypotheses and essentials from Fenichel theory. Throughout this
article, we make some assumptions about the systems (1.5) and use some basic theory about slow,
invariant manifolds in systems of the form (1.5). We emphasize that this theory is briefly discussed
here only to provide a framework in which to analyze the algorithms.

We assume that the set, K, in which the observables x lie is compact, and that the manifold
L0 may be expressed as the graph of a function h0 for all x ∈ K. More generally, we may work with
local pieces of L0 if it cannot be so expressed. In addition, we assume that L0 is normally attracting,
which for systems of the form (1.5) implies that the eigenvalues of the fast subsystem linearized at
points on L0 have negative real parts. (This is a special case of normal hyperbolicity, in which none
of the eigenvalues have zero real part.) Finally, in order to apply Fenichel theory [4], we assume that
L0 is overflowing invariant at its boundary. This assumption may be satisfied by introducing a C

∞

bump function in the vector field at the boundary of K, as is shown in [8].

Under the above assumptions, Fenichel theory [4, 8] gives the existence of a slow manifold L
that is invariant with respect to the dynamics of system (1.5) when ε is sufficiently small. Orbits on
L evolve slowly, and orbits off L converge at a minimal exponential rate toward it and are shadowed
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by an orbit on it. Generally, slow manifolds are not unique; typical systems (1.5) have a family of
slow manifolds, all of which are exponentially close (O(e−c/ε)) to each other, for some c > 0. The
choice of bump function at the boundary of K selects one member of this family, and makes the
manifold locally unique. Moreover, due to the assumption that the unperturbed manifold L0 is the
graph of a function, we know that L is the graph of a function h,

L = {(x, y) |x ∈ K, y = h(x)} ,(1.9)

for all x ∈ K. See for example Theorem 4 in [8].

The function h : K → RNf satisfies the invariance equation

g(x, h(x), ε)− εDh(x)f(x, h(x), ε) = 0,(1.10)

and it is O(ε) close to the unperturbed (a.k.a. critical) manifold uniformly for x ∈ K. It is insightful
to recast this invariance equation in the form

(−Dh(x), INf
)G(x, h(x), ε) = 0, where G ≡

(

εf
g

)

,(1.11)

which reveals a clear geometric interpretation. Since L corresponds to the zero level set of the
function −h(x) + y by Eq. (1.9), the rows of the Nf ×N gradient matrix (−Dh(x), INf

) form a basis
for NzL, the space normal to the slow manifold at the point z = (x, h(x)) ∈ L. Thus, Eq. (1.11)
states that the vector field G is perpendicular to this space and hence contained in the space tangent
to the slow manifold, TzL.

For compactness of notation, we have suppressed the dependence on ε in h(x). Also, for
asymptotic expansions of general functions m(x, y, ε), we denote the coefficient on the term with
εi by mi(x, y), and we use the convention that O(ε

i) = εim(x, y, ε) where m is a bounded smooth
function for all sufficiently small values of ε.

1.4. Statement of the main results. In this article, we first examine the m-th iterative
algorithm in which an analytical formula for the (m + 1)−st derivative is used, and we prove that
it has a fixed point y = hm(x0), which is O(ε

m+1) close to the corresponding point h(x0) on the
invariant manifold L, for each m = 0, 1, . . .. See Theorem 2.1 below.

Second, we determine the conditions on (Dyg)0 under which the m-th iterative algorithm con-
verges to this fixed point, again with an analytical formula for the (m+1)−st derivative. In particu-
lar, for m = 0, the iteration converges for all systems (1.5) for which (Dyg)0 is uniformly Hurwitz on
L[0] and provided that the iterative step size H is small enough. For each m ≥ 1, convergence of the
algorithm imposes more stringent conditions on H and on the spectrum of (Dyg)0. In particular, if
σ((Dyg)0) is contained in certain sets in the complex plane, which we identify completely, then the
iteration converges for small enough values of the iterative step size H, see Theorem 3.1. These sets
do not cover the entire half-plane, and thus complex eigenvalues can, in general, make the algorithm
divergent.

Third, we show explicitly how the Recursive Projection Method (RPM) of Shroff and Keller [16]
stabilizes the functional iteration for each m ≥ 1 in those regimes where the iteration is unstable.
This stabilization result is useful for practical implementation in the equation-free context; and, the
RPM may also be used to accelerate convergence in those regimes in which the iterations converge
slowly. Alternatively, the Newton–Krylov Generalized Minimal Residual Method (NK-GMRES [10])
may be used to achieve this stabilization.

Fourth, we analyze the influence of the tolerance, or stopping criterion, used to terminate the
functional iteration. We show that, when the tolerance TOLm for the m−th algorithm is set to
O(εm+1), the output y#

m also satisfies the asymptotic estimate ‖y
#
m − h(x0)‖ = O(ε

m+1).

5



Finally, we extend the accuracy and convergence analyses to the case where a forward difference
approximation of the (m+1)−st derivative is used in the iteration, instead of the analytical formula.

As to the accuracy, we find that the m-th iterative algorithm also has a fixed point y = ĥm(x0)
which is O(εm+1) close to h(x0), so that the iteration in this case is as accurate asymptotically
as the iteration with the analytical formula. Then, as to the stability, we find that the m-th
iterative algorithm with a forward difference approximation of the (m+ 1)−st derivative converges
unconditionally for m = 0. Moreover, for m = 1, 2, . . ., the convergence is for a continuum of
values of the iterative step size H and without further restrictions on (Dyg)0, other than that it
is uniformly Hurwitz on L[0], see Theorem 6.1. These advantages stem from the use of a forward
difference approximation, and we will show in a future work that the use of implicitly defined maps
Fm yields similar advantages.

2. Existence of a fixed point hm(x0) and its proximity to h(x0). We rewrite the map
Fm, given in Eq. (1.7), as

Fm(y) = y − Lm(x0, y),(2.1)

where the function Lm : R
N → RNf is given by

Lm(z) ≡ (−H)
m+1

(

dm+1y

dtm+1

)

(z), for anym = 0, 1, . . . ,(2.2)

where z = (x0, y). The fixed points, y = hm(x0), of Fm are determined by the equation

Lm(x0, hm(x0)) = 0,

that is, by the (m + 1)−st derivative condition (1.6). The desired results on the existence of the
fixed point hm(x0) and on its proximity to h(x0) are then immediately at hand from the following
theorem:

Theorem 2.1. For each m = 0, 1, . . ., there is an εm > 0 such that for 0 < ε ≤ εm, the
(m+ 1)−st derivative condition (1.6),

Lm(x, y) ≡ (−H)
m+1

(

dm+1y

dtm+1

)

(x, y) = 0,(2.3)

can be solved uniquely for y to yield an Ns−dimensional manifold Lm which is the graph of a function
hm : K → RNf over x. Moreover, the asymptotic expansions of hm and h agree up to and including
terms of O(εm),

hm(·) =
∑

i=0

εihm,i(·) =
m
∑

i=1

εih[i](·) +O(ε
m+1).

This theorem guarantees that, for each x0 ∈ K, there exists an isolated fixed point y = hm(x0)
of the functional iteration algorithm. Moreover, this fixed point varies smoothly with x0, and the
approximation (x0, hm(x0)) of the point (x0, h(x0)) on the actual invariant slow manifold is valid up
to O(εm+1).

The remainder of this section is devoted to the proof of this theorem. We prove it for m = 0
and m = 1 in Sections 2.1 and 2.2, respectively. Then, in Section 2.3, we use induction to prove the
theorem for general m.
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2.1. Proof of Theorem 2.1 for m = 0. We show, for each x ∈ K, that L0(z) has a root
y = h0(x), that h0 lies O(ε) close to h[0](x), the corresponding point on the critical manifold, and
that the graph of the function h0 over K forms a manifold.

For m = 0, definition (2.2), the chain rule, and the ODEs (1.5) yield

L0 = −Hy′ = −ε−1Hg.(2.4)

Substituting the asymptotic expansion y = h0(x) =
∑

i=0 ε
ih0,i(x) into this formula and combining

it with the condition L0 = 0, we find that, to leading order,

g(x, h0,0(x), 0) = 0,

where we have removed the O(1), nonzero, scalar quantity −H/ε. In comparison, the invariance
equation (1.10) yields

g
(

x, h[0](x), 0
)

= 0,(2.5)

to leading order, see Eq. (A.2) in Appendix A. Thus h0,0 can be chosen to be equal to h[0], and
L0(z) has a root that is O(ε)−close to y = h(x).

It remains to show that the graph of the function h0 is an Ns−dimensional manifold L0. Using
Eq. (2.4), we calculate

(DyL0) = −ε
−1H (Dyg) ,

where all quantities are evaluated at (x, h0(x), ε). Moreover,

(DyL0) (x, h0(x)) = −ε
−1H (Dyg)0 +O(ε),

with (·)0 = (·)(x, h0,0(x), 0) = (·)(x, h[0](x), 0), since h0,0 = h[0]. Thus, the Jacobian (DyL0)(x, h0(x))
is non-singular for 0 < ε ¿ 1, because H = O(ε) by assumption and because det(Dyg)0 6= 0, see
the Introduction. Therefore, we have

det (DyL0) (x, h0(x)) 6= 0, for all x ∈ K,

and hence L0 is a manifold by the Implicit Function Theorem and [15, Theorem 1.13]. This completes
the proof of the theorem for the case m = 0.

2.2. The proof of Theorem 2.1 for m = 1. In this section, we treat the m = 1 case.
Technically speaking, one may proceed directly from the m = 0 case to the induction step for
general m. Nevertheless, we find it useful to present a concrete instance and a preview of the general
case, and hence we give a brief analysis of the m = 1 case here.

We calculate

L1 = (−H)
2y′′ = −H(−Hy′)′ = −HL′0 = −ε

−1H(DzL0)G.

Using the ODEs (1.5) and Eq. (2.4), we rewrite this as

L1 =
(

−ε−1H
)2
[ε(Dxg)f + (Dyg)g] .(2.6)

We recall that the solution is denoted by y = h1(x) and that we write its asymptotic expansion as
h1(x) =

∑

i=0 ε
ih1,i(x). Substituting this expansion into Eq. (2.6) and recalling that H = O(ε), we

obtain at O(1)

L1 = (−ε
−1H)2 (Dyg)0 g0 +O(ε),
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where (·)0 = (·)(x, h1,0(x), 0). Hence, y = h[0](x) is a root of L1 to leading order by Eq. (2.5). Also,
sinc by assumption we have that det(Dyg)0 6= 0, we know that the root is locally unique and hence
that h1,0 = h[0].

At O(ε), we obtain

(−ε−1H)2(Dyg)0
[

(Dyg)
−1
0 (Dxg)0f0 + (Dyg)0h1,1 + (Dεg)0

]

= 0,(2.7)

where we used the expansion

g(x, h1, ε) = g0 + ε [(Dyg)0h1,1 + (Dεg)0] +O(ε
2)

and that g0 = g(x, h1,0, 0) = g(x, h[0], 0). Differentiating both members of the identity g(x, h[0](x), 0) =
0 with respect to x, we obtain

(Dxg)0 + (Dyg)0(Dh[0]) = 0,

whence (Dyg)
−1
0 (Dxg)0 = −Dh[0]. Removing the invertible prefactor (−H/ε)

2(Dyg)0, we find that
Eq. (2.7) becomes

−(Dh[0])f0 + (Dyg)0h1,1 + (Dεg)0 = 0.

This equation is identical to Eq. (A.3) in Appendix A, and thus h1,1 = h[1]. Hence, we have shown
that the asymptotic expansion of h1(x) agrees with that of h(x) up to and including terms of O(ε),
as claimed for m = 1.

Finally, the graph of the function h1 forms an Ns−dimensional manifold L1. This may be shown
in a manner similar to that used above for L0 in the case m = 0. This completes the proof for m = 1.

2.3. The induction step: the proof of Theorem 2.1 for general m. In this section, we
prove the induction step that establishes Theorem 2.1 for all m. We assume that the conclusion of
Theorem 2.1 is true for m and show that it also holds for m+ 1, i.e., that the condition

[(DzLm)(x, y)]G(x, y, ε) = 0(2.8)

can be solved uniquely for y to yield y = hm+1(x), where

hm+1(·) =

m+1
∑

i=0

εih[i](·) +O(ε
m+2).

To begin with, we recast the (m+1)−st derivative condition Eq. (2.3) in a form that is reminiscent of
the invariance equation, Eq. (1.11). Letm ≥ 0 be arbitrary but fixed. It follows from definition (2.2),
Eq. (1.11), and Eq. (1.5) that

Lm = −H
d

dt

(

(−H)m
dmy

dtm

)

= −H
dLm−1

dt
= −ε−1H(DzLm−1)G.(2.9)

Therefore, the (m+ 1)−st derivative condition (2.3) can be rewritten in the desired form as

(DzLm−1)G = 0,(2.10)

where we have removed the O(1), nonzero, scalar quantity −H/ε.

The induction step will be now be established using a bootstrapping approach. First, we
consider a modified version of Eq. (2.8), namely the condition

[(DzLm)(x, hm(x))]G(x, y, ε) = 0,(2.11)
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in which the matrix DzLm is evaluated on Lm (already determined at the m−th iteration) instead
of on the as-yet unknown Lm+1. This equation is easier to solve for the unknown y, since y appears
only in G. We now show that the solution y = h̃m+1(x) of this condition approximates h up to and
including O(εm+1) terms.

Lemma 2.1. For ε > 0 sufficiently small, the condition Eq. (2.11) can be solved uniquely for y
to yield

y = h̃m+1(x) =

m+1
∑

i=0

εih[i](x) +O(ε
m+2), for all x ∈ K.(2.12)

Now, with this first lemma in hand, we bootstrap up from the solution y = h̃m+1 of this modified
condition to find the solution y = hm+1 of the full (m + 1)−st derivative condition, Eq. (2.8).
Specifically, we show that their asymptotic expansions agree up to and including terms of O(εm+1),

Lemma 2.2. For ε > 0 sufficiently small, the condition (2.8), can be solved uniquely for y to
yield

y = hm+1(x) =

m+1
∑

i=0

εih̃m+1,i(x) +O(ε
m+2), for all x ∈ K.

These lemmata are proven in Appendix B, and Theorem 2.1 follows directly from them.

3. Stability analysis of the fixed point hm(x0). In this section, we analyze the stability
type of the fixed point y = hm(x0) of the functional iteration scheme given by Fm(y). To fix the
notation, we let

σ(Dyg)0 =
{

λ` = λ`,R + i λ`,I = |λ`|e
iθ` = λ`,R(1 + i tanθ`) : ` = 1, . . . ,Nf

}

(3.1)

and remark that normal attractivity of the slow manifold implies that λ`,R < 0 (equivalently, π/2 <
θ` < 3π/2) for all ` = 1, . . . ,Nf . Then, we prove the following theorem:

Theorem 3.1. For each m = 0, 1, . . ., there is an εm > 0 such that for 0 < ε ≤ εm the
functional iteration scheme defined by Fm is stable if and only if the following two conditions are
satisfied for all ` = 1, . . . ,Nf :

θ` ∈ Sm ≡
⋃

k=0,...,m

(

2m+ 4k + 1

2(m+ 1)
π,
2m+ 4k + 3

2(m+ 1)
π

)

∩

[(

π

2
,
3π

2

)

mod 2π

]

(3.2)

and

0 < H < Hmax
` ≡

ε

|λ`|
[2 cos((m+ 1)(θ` − π))]

1/(m+1)
.(3.3)

In particular, if λ1, . . . , λNf
are real, then the functional iteration is stable for all H satisfying

H < Hmax ≡ 21/(m+1) ε

‖Dyg‖2
.(3.4)

The graphs of the stability regions for m = 0, 1, 2, 3 are given in Figure 3.1.

We now prove this theorem. By definition, hm(x0) is exponentially attracting if and only if

σ ((DFm) (hm(x0))) ⊂ B(0; 1),(3.5)
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where B(0; 1) denotes the open ball of radius one centered at the origin. To determine the spectrum
of (DFm)(hm(x0)), we use Eq. (2.1) and Lemma B.1 to obtain

(DFm) (y) = INf
− (DyLm) (x0, y)

= INf
−
(

−ε−1H(Dyg)(x0, y, 0)
)m+1

+O (ε, ‖g0(x0, y)‖) .

Letting y = hm(x0) in this expression and observing that ‖g0(x0, hm(x0))‖ = O(ε) by virtue of the
estimate hm = h0 +O(ε) (see Theorem 2.1) and Eq. (2.5), we obtain to leading order

(DFm) (hm(x0)) = INf
−
(

−ε−1HDyg
)m+1

0
,(3.6)

where zm = (x0, hm(x0)) and the notation (·)0 signifies that the quantity in parentheses is evaluated
at the point (x0, h[0](x0)) ∈ L[0]. Finally, then, we find to leading order

σ ((DFm) (hm(x0)))=
{

µ` = 1−
(

|λ`| ε
−1H

)m+1
ei(m+1)(θ`−π)

∣

∣

∣
` = 1, . . . ,Nf

}

.(3.7)

In view of Eq. (3.7), condition (3.5) becomes
∣

∣

∣
1−

(

|λ`| ε
−1H

)m+1
ei(m+1)(θ`−π)

∣

∣

∣
< 1, for all ` = 1, . . . ,Nf .(3.8)

Here, we note that higher order terms omitted from formula (3.7) do not affect stability for small
enough values of ε, because the stability region B(0; 1) is an open set. Next, we study the circum-
stances in which this stability condition is satisfied. This study naturally splits into the following
two cases:

Case 1: The eigenvalues λ1, . . . , λNf
are real. This is the case, for example, when the fast part

of system (1.5) corresponds to a spatial discretization of a self-adjoint operator. Here, θ` = π for all
`, and thus condition (3.8) reduces to

0 <
(

|λ`| ε
−1H

)m+1
< 2, for all ` = 1, . . . ,Nf ,

which is satisfied if Eq. (3.4) holds.

Case 2: Some of the eigenvalues λ1, . . . , λNf
have nonzero imaginary parts. Using Eq. (3.7), we

calculate

|µ`|
2
= 1 +

(

|λ`| ε
−1H

)m+1
[

(

|λ`| ε
−1H

)m+1
− 2 cos((m+ 1)(θ` − π))

]

.

This equation shows that |µ`|
2 is a convex quadratic function of Hm+1. Convexity implies that, if

there exists a solution Hmax
` > 0 to the equation |µ`| = 1, then |µ`| < 1 for all 0 < H < Hmax

` .
Plainly, |µ`| = 1 implies

(

|λ`| ε
−1Hmax

`

)m+1
− 2 cos((m+ 1)(θ` − π)) = 0,

which yields condition (3.3). Further, the condition that Hmax
1 , . . . , Hmax

Nf
be real and positive

translates into condition (3.2). This completes the proof of Theorem 3.1.

For later comparison to the results of numerical simulations, it is useful to write formula (3.3)
explicitly for the first several values of m. For m = 0, formula (3.3) becomes

Hmax
` = −

ε

|λ`|
2 cos θ`,

10
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Fig. 3.1. Hmax
` as a function of θ` ∈ (π/2, 3π/2), for m = 0, 1, 2, 3. Hmax

` is measured in units of ε/ |λ`|. The
eigenvalue µ` is stable for all 0 < H < Hmax

` .

see Figure 3.1. We note that Hmax
` > 0 for all θ` ∈ (π/2, 3π/2), and thus the fixed point h0(x0) is

stable for all 0 < H < Hmax, where Hmax = min`(H
max
` ).

For m = 1, formula (3.3) becomes

Hmax
` =

ε

|λ`|

√

2 cos(2θ`),

see Figure 3.1. We see that, on (π/2, 3π/2), Hmax
` > 0 only if θ` lies in the subinterval (3π/4, 5π/4).

Therefore, the fixed point h1(x0) is stable if and only if (i) θ` ∈ (3π/4, 5π/4), for all ` = 1, . . . ,Nf ,
and (ii) 0 < H < Hmax = min`(H

max
` ).

For m = 2, formula (3.3) becomes

Hmax
` = −

ε

|λ`|
[2 cos(3θ`)]

1/3,

see Figure 3.1. Here also, Hmax
` > 0 on (π/2, 3π/2) only if θ` lies in the subinterval (5π/6, 7π/6).

Thus, h2(x0) is stable if and only if (i) θ` ∈ (5π/6, 7π/6), for all ` = 1, . . . ,Nf , and (ii) 0 < H <
Hmax = min`(H

max
` ).

For m = 3, formula (3.3) becomes

Hmax
` =

ε

|λ`|
[2 cos(4θ`)]

1/4,

see Figure 3.1. We observe that, on (π/2, 3π/2), Hmax
` > 0 only if θ` lies in the subdomain

(π/2, 5π/8) ∪ (7π/8, 9π/8) ∪ (11π/8, 3π/2). Therefore, the fixed point h3(x0) is stable if and only if
(i) θ` ∈ (π/2, 5π/8) ∪ (7π/8, 9π/8) ∪ (11π/8, 3π/2), for all ` = 1, . . . ,Nf , and (ii) 0 < H < Hmax =
min`(H

max
` ).

4. Stabilization of the algorithm using RPM. In the previous section, we saw that, for
any m ≥ 1, the m−th algorithm in our class of algorithms may have a number of eigenvalues that
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either are unstable or have modulus only slightly less than one. In this section, we demonstrate
how the Recursive Projection Method (RPM) of Shroff and Keller [16] may be used to stabilize the
algorithm or to accelerate its convergence in all such cases.

For the sake of clarity, we assume that (DFm)(hm(x0)) hasM eigenvalues, labelled {µ1, . . . , µM},
that lie outside the disk B(0; 1 − δ), for some small, user-specified δ > 0, and that the remaining
Nf −M eigenvalues {µM+1, . . . , µNf

} lie inside it. We let P denote the maximal invariant subspace
of (DFm)(hm(x0)) corresponding to {µ1, . . . , µM} and P denote the orthogonal projection operator
from RNf onto that subspace. Additionally, we use Q to denote the orthogonal complement of P in
RNf and Q = INf

− P to denote the associated orthogonal projection operator. These definitions
induce an orthogonal direct sum decomposition of RNf ,

RNf = P⊕Q = PRNf ⊕QRNf ,

and, as a result, each y ∈ RNf has a unique decomposition y = p̃ + q̃, with p̃ = Py ∈ P and
q̃ = Qy ∈ Q. The fixed point problem y = Fm(y) may now be written as

p̃ = PFm(p̃+ q̃),(4.1)

q̃ = QFm(p̃+ q̃).(4.2)

The fundamental idea of RPM is to use Newton iteration on Eq. (4.1) and functional iteration
on Eq. (4.2). In particular, we decompose the point y(1) (which was used to generate the sequence
{y(r+1)} in Eq. (1.8)) via

y(1) = p̃(1) + q̃(1) = Py(1) +Qy(1).

Then, we apply Newton iteration on Eq. (4.1) (starting with p̃(1)) and functional iteration on
Eq. (4.2) (starting with q̃(1)),

p̃(r+1) = p̃(r) +
[

IM − P (DFm(p̃
(r) + q̃(r)))P

]−1
PFm(p̃

(r) + q̃(r)),
q̃(r+1) = QFm(p̃

(r) + q̃(r)).
(4.3)

The iteration is terminated when ‖y(r+1)− y(r)‖ < TOLm, for some r ≥ 1, as was also the case with
functional iteration.

Application of Theorem 3.13 from [16] directly yields that the stabilized (or accelerated) iterative
scheme (4.3) converges for all initial guesses y(1) close enough to the fixed point hm(x0), as long as

1 /∈ σ(P (DFm(hm(x0)))P ) = {µ1, . . . , µM}.

In our case, this condition is satisfied for all H > 0, because the fact that L is normally attracting
implies that each eigenvalue λ` of Dyg is bounded away from zero uniformly over the domain K on
which the slow manifold is defined. Thus, the iteration scheme (4.3) converges.

5. Tuning of the tolerance. In this section, we establish that, for every m = 0, 1, . . ., ‖y#
m −

h(x0)‖ = O(ε
m+1) whenever TOLm = O(εm+1). The value returned by the functional iteration

is within the tolerance of the point on the true slow manifold for sufficiently small values of the
tolerance.

The brunt of the analysis needed to prove this principal result involves showing that, for these
small tolerances, y#

m is within the tolerance of the fixed point, hm(x0). The desired principal result
is then immediately obtained by combining this result with the result of Theorem 2.1, where it was
shown that ‖hm(x0)− h(x0)‖ = O(ε

m+1).
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We begin by observing that

‖y#
m − hm(x0)‖ ≤ ‖y

#
m − y(r)‖+ ‖y(r) − hm(x0)‖, for any r > 0,

by the triangle inequality. The first term is O(εm+1) by definition, as long as r is chosen large
enough so that the stopping criterion, ‖y(r+1) − y(r)‖ < TOLm, is satisfied. As to the second term,
we may obtain the same type of estimate, as follows: First,

y(r+1) − y(r) = Fm

(

y(r)
)

− y(r) = −Lm

(

x0, y
(r)
)

,

where we used Eq. (2.1), and hence

Lm

(

x0, y
(r)
)

= y(r) − y(r+1).

Second, Lm is invertible in a neighborhood of its fixed point, by the Implicit Function Theorem,
because the Jacobian of Lm(x0, ·) at hm(x0) is

(DyLm) (zm) =
(

−ε−1HDyg
)m+1

0
,

by Eq. (3.6), and det(Dyg) 6= 0 since L[0] is normally attracting. Third, by combining these first
two observations, we see that

y(r) = L−1
m

(

y(r) − y(r+1)
)

,

where L−1
m denotes the local inverse of Lm(x0, ·). Fourth, and finally, by expanding L

−1
m around

zero, noting that L−1
m (0) = hm(x0), and using the triangle inequality, we obtain

‖y(r) − hm(x0)‖ ≤
∥

∥(DyL
−1
m )(0)

∥

∥

∥

∥

∥y(r) − y(r+1)
∥

∥

∥+O
(

‖y(r) − y(r+1)‖2
)

.

Recalling the stopping criterion, we have therefore obtained the desired bound on the second term,
as well,

‖y(r) − hm(x0)‖ < ‖
(

DyL
−1
m

)

(0)‖TOLm +O
(

(TOLm)
2
)

.

Hence, the analysis of this section is complete.

6. The effects of differencing. In a numerical setting, the time derivatives of y are approxi-
mated, at each iteration, by a differencing scheme,

(

dm+1y

dtm+1

)

(z) ≈
1

Ĥm+1

(

∆m+1y
)

(z), where z ≡ (x0, y) and Ĥ > 0.

In this section, we examine how the approximation and convergence results of Sections 2–5 are
affected by the use of differencing. We choose forward differencing,

(

∆m+1y
)

(z) =

m+1
∑

`=0

(−1)m+1−`

(

m+ 1
`

)

φy(z; `Ĥ),(6.1)

where φ(z; t) is the exact solution with initial condition z for concreteness of exposition, and where Ĥ
is a positive, O(ε) quantity. Also, forward differencing is directly implementable in an Equation-Free
or legacy code setting.
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By the Mean Value Theorem,

(

∆m+1y
)

(z) = Ĥm+1

(

dm+1y

dtm+1

)

(z) +
m+ 1

2
Ĥm+2

(

dm+2y

dtm+2

)

(φ(z; t̂))

=

(

−
1

η

)m+1 [

Lm(z)−
m+ 1

2η
Lm+1(φ(z; t̂))

]

,(6.2)

where η = H/Ĥ > 0 is an O(1) parameter available for tuning and φ(z; t̂) is the point on the
solution φ(z; t) at some time t̂ ∈ [0, (m+1)Ĥ ]. Thus, for the m−th algorithm, the approximation of
dm+1y/dtm+1 by the above scheme corresponds to generating the sequence {y(r)|r = 1, 2, . . .} using
the map

F̂m(y) = y − L̂m(z), z = (x0, y),(6.3)

where

L̂m(z) = (−η)
m+1

(

∆m+1y
)

(z) = Lm(z)−
m+ 1

2η
Lm+1(φ(z; t̂)).(6.4)

Therefore, by Eq. (6.2),

F̂m(y) = Fm(y) +
m+ 1

2η
Lm+1(φ(z; t̂)).

Remark. For convenience in the analysis in this section, we take the flow φ to be the exact
flow corresponding to Eq. (1.5). The analysis extends directly to many problems for which only
a numerical approximation of φ is known. For example, if the discretization procedure admits a
smooth error expansion (such as exists often for fixed step-size integrators in legacy codes or in the
Equation-Free context), then the leading order results still hold, and the map φ obtained numerically
is sufficiently accurate so that the remainder estimates below hold. In particular, given a p-th order
scheme and an integration step size h̃, it suffices to take h̃ = O(ε) to guarantee that the error
made in using the numerically-obtained map φ is O(εp). Of course, with other integrators, one
could alternatively require that the timestepper be O(εm+2) accurate, i.e., of one-higher order of
accuracy.

6.1. Existence of a fixed point ĥm(x0) of the map F̂m. In this section, we establish that

the map F̂m has an isolated fixed point y = ĥm(x) which differs from hm(x0) (and thus also from
h(x0), by virtue of Theorem 2.1) only by terms of O(ε

m+1).

The fixed point condition F̂m(x0, y) = y may be rewritten as

0 = L̂m(x0, y) = Lm(x0, y)−
m+ 1

2η
Lm+1(φ(x0, y; t̂)),(6.5)

where we combined Eqs. (6.3) and (6.4). In order to show that F̂m has an isolated fixed point ĥm(x0)
which is O(εm+1)−close to hm(x0), we need to establish the validity of the following two conditions.

(i). The second term in the right member of Eq. (6.5) satisfies the asymptotic estimate

‖Lm+1(φ(zm; t̂))‖ = O(ε
m+1), where zm = (x0, hm(x0)).(6.6)
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(ii). The Jacobian of L̂m satisfies

det
(

DyL̂m

)

(zm) 6= 0 and
∥

∥

∥

(

DyL̂m

)

(zm)
∥

∥

∥

2
= O(1).(6.7)

Let us begin by examining the term Lm+1(φ(zm; t̂)). Let (x̂, ŷ) = φ(zm; t̂). Then, we may write

Lm+1(φ(zm; t̂)) = Lm+1(x̂, ŷ)− Lm+1(x̂, hm+1(x̂)),

because Lm+1(·, hm+1(·)) ≡ 0 by the definition of Lm+1 and hm+1. Hence,

‖Lm+1(φ(zm; t̂))‖ ≤ ‖ (DyLm+1)(x̂, hm+1(x̂))‖ ‖ŷ − hm+1(x̂)‖+ O
(

‖ŷ − hm+1(x̂)‖
2
)

.(6.8)

Now, ‖(DyLm+1)(x̂, hm+1(x̂))‖ is O(1) by Lemma B.1. Next, the triangle inequality yields

‖ŷ − hm+1(x̂)‖ ≤ ‖ŷ − h(x̂)‖+ ‖h(x̂)− hm+1(x̂)‖.

The first term in the right member remains O(εm+1) for all times t̂ ∈ [0, (m + 1)Ĥ)]. Indeed, the
initial condition zm is O(εm+1)-close to the normally attracting manifold L. Thus, the Fenichel
normal form [8] guarantees that the orbit generated by this initial condition remains O(εm+1)-close
to L for O(1) time intervals. The second term in the right member is also O(εm+1), by Theorem 2.1.
Thus, ‖ŷ−hm+1(x̂)‖ is also O(ε

m+1). Substituting these estimations into inequality (6.8), we obtain
that ‖Lm+1(φ(zm; t̂))‖ is O(ε

m+1) and condition (6.6) is satisfied.

Next, we determine the spectrum of (DyL̂m)(zm) to leading order to check condition (6.7). We
will work with the definition of ∆m+1y, Eq. (6.1), rather than with formula (6.2) which involves the
unknown time t̂. Combining Eqs. (6.1) and (6.3), we obtain

L̂m(z) = ηm+1
m+1
∑

`=0

(

m+ 1
`

)

(−1)`φy(z; `Ĥ).

Differentiating both members of this equation with respect to y, we obtain

(

DyL̂m

)

(z) = ηm+1
m+1
∑

`=0

(

m+ 1
`

)

(−1)`(Dyφ
y)(z; `Ĥ).(6.9)

Next, (Dyφ
y)(zm; t) = e

(t/ε)(Dyg)0 to leading order for all t of O(ε) because L is normally attracting.

Then, Since `Ĥ = O(ε) for all ` = 0, 1, . . . , (m+ 1), we may rewrite Eq. (6.9) to leading order as

(

DyL̂m

)

(zm) = ηm+1
m+1
∑

`=0

(

m+ 1
`

)

(

−e(Ĥ/ε)(Dyg)0
)`

= ηm+1
(

INf
− e(Ĥ/ε)(Dyg)0

)m+1

.

Hence,

σ
((

DyL̂m

)

(zm)
)

=

{

ηm+1
(

1− eλ`Ĥ/ε
)m+1

∣

∣

∣

∣

` = 1, . . . ,Nf

}

,(6.10)

where zm = (x0, hm(x0)). This leading order formula for the elements of the spectrum shows
that (DyL̂m)(zm) is O(1) and non-degenerate for all positive O(ε) values of H and Ĥ. Thus,
condition (6.7) is also satisfied.
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6.2. Stability of the fixed point ĥm(x0) for η = 1. In this section, we determine the stability

of the fixed point ĥm(x0) under functional iteration using F̂m in the case that Ĥ = H. Our results
for Ĥ = H are summarized in the following theorem. The general case Ĥ 6= H is treated in the next
section, and the main result there is given in Theorem 6.2.

Theorem 6.1. Fix η = 1. Let ε > 0 be sufficiently small. The functional iteration scheme
defined by F̂0 is unconditionally stable. For each m = 1, 2, . . ., the functional iteration scheme defined
by F̂m is stable if and only if, for each ` = 1, . . . ,Nf , the pair (H, θ`) lies in the stability region the
boundary of which is given by the implicit equation

1 = 2

m+1
∑

j=1

j−1
∑

k=1

(

m+ 1
j

)(

m+ 1
k

)

(−1)j+ke−(j+k)H` cos ((j − k)H` tan θ`)

+

m+1
∑

k=1

(

m+ 1
k

)2

e−2kH` , where H` = −λ`,RH/ε > 0.(6.11)

Here, the branch of arctan is chosen so that θ` ∈ (π/2, 3π/2). In particular, if λ1, . . . , λNf
are real,

then the functional iteration is unconditionally stable. If at least one of the eigenvalues has a nonzero
imaginary part, then a sufficient and uniform (in θ1, . . . , θNf

) condition for stability is that

H >
εHs(1)

min` |λ`,R|
, where Hs(1) = −ln

(

21/(m+1) − 1
)

≥ 0.(6.12)

The stability regions for various values of m are plotted in Figure 6.2.

Following the procedure used in Section 3, we determine σ((DF̂m)(ĥm(x0))) and examine the
circumstances in which the stability condition

σ
((

DF̂m

)

(ĥm(x0))
)

⊂ B(0; 1)(6.13)

is satisfied. Equation (6.3) yields

(DF̂m)(ĥm(x0)) = INf
− (DyL̂m)(x0, ĥm(x0))

and thus also

{µ̂`} ≡ σ
((

DyF̂m

)(

ĥm(x0)
))

= 1− σ
((

DyL̂m

)(

x0, ĥm(x0)
))

.

Since ĥm(x0) differs from hm(x0) only at terms of O(ε
m+1), (DyL̂m)(x0, ĥm(x0)) also differs from

(DyL̂m)(x0, hm(x0)) only at terms of O(ε
m+1). Thus, Eq. (6.10) yields, to leading order and for

` = 1, . . . ,Nf ,

µ̂` = 1−
(

1− eλ`H/ε
)m+1

=

m+1
∑

k=1

(

m+ 1
k

)

(−1)k+1ekλ`H/ε.(6.14)

Recalling Eq. (3.1) and defining H` = −λ`,RH/ε, we rewrite Eq. (6.14) in the form

µ̂` =
m+1
∑

k=1

(

m+ 1
k

)

(−1)k+1e−kH`(1+i tan θ`).(6.15)

The stability condition (6.13) becomes, then,

|µ̂`| =

∣

∣

∣

∣

∣

m+1
∑

k=1

(

m+ 1
k

)

(−1)k+1e−kH`(1+i tan θ`)

∣

∣

∣

∣

∣

< 1, for all ` = 1, . . . ,Nf .(6.16)

As in Section 3, we distinguish two cases.
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Fig. 6.1. The eigenvalue µ̂` for values of H between zero and 100ε. The thick line denotes the boundary of the
stability region ( i.e., the unit circle). The eigenvalue λ` was taken to be −1+ i for each one of the graphs. The arrow
points to increasing values of H.

Case 1: All of the eigenvalues of (Dyg)0 are real. Then, θ` = π for all ` = 1, . . . ,Nf , and hence
Eq. (6.15) becomes

µ̂` =
m+1
∑

k=1

(

m+ 1
k

)

(−1)k+1e−kH` = 1− (1− e−H`)m+1.

Thus, the spectrum of (DyF̂m)(ĥm(x0)) is contained in (0, 1) for all positive O(ε) values of H.

Equivalently, the fixed point ĥm(x0) is unconditionally stable for these values of H.

These results may be interpreted both in the context of the m-th iterative algorithm for each
fixed m, as well as in the context of using the algorithms as an integrated class. In particular,
for each fixed m, the rate of convergence to the fixed point of the m-th algorithm increases as H
increases. Also, for any fixed iterative step size H, the rate of convergence of the m-th algorithm
to its fixed point decreases as the order, m, of the iterative algorithm increases. This information is
important for determining how large an m one should use, especially when using the algorithms as
an integrated class.

Case 2: Some of the eigenvalues of (Dyg)0 have nonzero imaginary parts. In this case, some
of the eigenvalues may be unstable for certain values of H. Figure 6.1 demonstrates this: in it, we
have drawn the complex eigenvalue µ̂` for various values of H and for m = 0, 1, 2, 3. Plainly, µ̂` is
unstable for m > 0 and for H small enough, as |µ̂`| > 1. We determine the stability regions in the
(θ`, H`)−plane as functions of m.

First, we derive the uniform bound (6.12). Using formula (6.15), we calculate

|µ̂`| ≤
m+1
∑

k=1

(

m+ 1
k

)

e−kH` = (1 + e−H`)m+1 − 1,(6.17)
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Fig. 6.2. The regions of H for which |µ`| < 1 as functions of θ` ∈ (π/2, 3π/2). White corresponds to stability
(|µ`| < 1) and black to instability (|µ`| > 1). H is measured in units of ε/

∣

∣λ`,R

∣

∣. The angle θ` takes values on
(π/2, 3π/2) and the black horizontal line corresponds to the uniform bound Hs(1) of Eq. (6.12).

and thus |µ̂`| < 1, for all H` > Hs(1). Recalling that H` = −λ`,RH/ε, we conclude that all of the
eigenvalues µ̂` lie in the unit disk (equivalently, the m−th algorithm is stable) for all O(ε) values of
H greater than εHs(1)/min` |λ`,R|, irrespective of the values of θ1, . . . , θNf

. This is demonstrated
in Figure 6.2.

Next, we derive formulae which describe exactly the stability regions. For m = 0, Eq. (6.12)
yields Hs(1) = 0. Thus, |µ̂`| < 1 for all positive O(ε) values of H and for all ` = 1, . . . ,Nf . As

a result, the fixed point ĥ0(x0) is unconditionally stable for positive, O(ε) values of H, see also
Figure 6.2.

For m = 1, Eq. (6.15) becomes

µ̂` = 2e
−H`(1+i tan θ`) − e−2H`(1+i tan θ`).

Writing µ̂` for the complex conjugate of µ̂`, then, we calculate

|µ̂`|
2
= µ̂` µ̂` = 4e

−2H` − 4e−3H` cos(H` tan θ`) + e
−4H` .(6.18)

Using this formula, we recast the stability condition (6.16) into the form

4e−2H` − 4e−3H` cos(H` tan θ`) + e
−4H` < 1.

In particular, the boundary of the stability region can be obtained by equating the expression in the
left member of this inequality to one and solving for θ`, to obtain

θ` = arctan

(

H−1
`

[

arccos

[

1

4
e−H` + eH` −

1

4
e3H`

]

+ 2kπ

])

.

Here, k ∈ Z and the branch of arctan is chosen so that θ` ∈ (π/2, 3π/2). We have plotted the
stability region in Figure 6.2. We also note here that the boundary of the stability region close to
π/2 and to 3π/2 has fine structure, see Figure 6.3.
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Fig. 6.3. The fine structure of the stability region depicted in Figure 6.2 (with m = 1) close to π/2. The exterior
of the lobes is part of the stability region.

For a general value of m, the stability condition (6.16) is

|µ̂`| =

∣

∣

∣

∣

∣

m+1
∑

k=1

(

m+ 1
k

)

(−1)k+1e−kH`(1+i tan θ`)

∣

∣

∣

∣

∣

< 1, for all ` = 1, . . . ,Nf .

Now, using Eq. (6.15), we calculate

|µ̂`|
2
= µ̂` µ̂`

=

m+1
∑

j=1

m+1
∑

k=1

(

m+ 1
j

)(

m+ 1
k

)

(−1)j+ke−(j+k)H`ei(j−k)H` tan θ`

= 2

m+1
∑

j=1

j−1
∑

k=1

(

m+ 1
j

)(

m+ 1
k

)

(−1)j+ke−(j+k)H` cos ((j − k)H` tan θ`)

+

m+1
∑

k=1

(

m+ 1
k

)2

e−2kH` .

Equation (6.11) now follows directly.

6.3. Stability of the fixed point ĥm(x0) for η 6= 1. In this section, we determine the stability

of the fixed point ĥm(x0) for Ĥ 6= H. We define the function

Ĥm(η) =

{

−ln
(

21/(m+1) − 1
)

, if 0 < η ≤ 1,
−ln

∣

∣21/(m+1)/η − 1
∣

∣ , if η > 1.
(6.19)

Our results are summarized in the following theorem.

Theorem 6.2. Fix η > 0. For each m = 0, 1, 2, . . ., there is an εm > 0 such that for 0 < ε ≤ εm
the functional iteration scheme defined by F̂m is stable if and only if, for each ` = 1, . . . ,Nf , the pair
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(Ĥ, θ`) lies in the stability region the boundary of which is given by the implicit equation

1 = 2η2(m+1)
m+1
∑

j=1

j−1
∑

k=1

(

m+ 1
j

)(

m+ 1
k

)

(−1)j+ke−(j+k)Ĥ` cos
(

(j − k)Ĥ` tan θ`

)

+2ηm+1
(

ηm+1 − 1
)

m+1
∑

k=1

(

m+ 1
k

)

(−1)ke−kĤ` cos
(

kĤ` tan θ`

)

+η2(m+1)
m+1
∑

k=1

(

m+ 1
k

)2

e−2kĤ` +
(

ηm+1 − 1
)2
,(6.20)

where Ĥ` = −λ`,RĤ/ε > 0. Here, the branch of arctan is chosen so that θ` ∈ (π/2, 3π/2). In
particular:
(i) Assume that Im(λ`) = 0, for all ` = 1, . . . ,Nf . If 0 < η < 21/(m+1), then the functional iteration
is unconditionally stable. If η > 21/(m+1), then the functional iteration is stable if and only if

0 < Ĥ <
εĤm(η)

max` |λ`,R|
.(6.21)

(ii) Assume that at least one of Im(λ1), . . . , Im(λNf
) is nonzero. If 0 < η < 21/(m+1), then a sufficient

and uniform (in θ1, . . . , θNf
) condition for stability is

Ĥ >
εĤm(η)

min` |λ`,R|
.(6.22)

If η > 21/(m+1), the functional iteration is unstable for any θ1, . . . , θNf
and for all

Ĥ >
εĤm(η)

max` |λ`,R|
.(6.23)

These results are demonstrated in Figures 6.4 and 6.5.

As in Section 6.2, we determine when the stability condition (6.13) holds. The analogue of
Eqs. (6.14) and (6.15) in this case is, to leading order and for ` = 1, . . . ,Nf ,

µ̂` = 1− ηm+1
(

1− eλ`Ĥ/ε
)m+1

= 1− ηm+1
(

1− e−Ĥ`(1+i tan θ`)
)m+1

.(6.24)

The stability condition (6.13) becomes, then,

|µ̂`| =

∣

∣

∣

∣

1− ηm+1
(

1− e−Ĥ`(1+i tan θ`)
)m+1

∣

∣

∣

∣

< 1, for all ` = 1, . . . ,Nf .(6.25)

Here also, we distinguish two cases.

Case 1: All of the eigenvalues of (Dyg)0 are real. Then, θ` = π for all ` = 1, . . . ,Nf , and hence
Eq. (6.25) becomes

µ̂` = 1− ηm+1(1− e−Ĥ`)m+1.

Plainly, the condition µ̂` < 1 is satisfied for all positive Ĥ` and η. Next, solving this equation for η,
we obtain an equation for the level curve µ̂` = constant,

η =
(1− µ̂`)

1/(m+1)

1− e−Ĥ`

.
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Fig. 6.4. The stability region in the (η, Ĥ`)−plane together with the level curves µ̂`(η, Ĥ`) = −1 (thick curve),

µ̂`(η, Ĥ`) = 0 (solid curve in the middle), µ̂`(η, Ĥ`) = 1 (union of the two semiaxes). The dashed level curves to the
right and left of the level curve µ̂` = 0 correspond to representative positive and negative values of µ̂`, respectively.
The eigenvalue µ̂` is stable for all pairs (η, Ĥ`) to the left of the level curve µ̂` = −1.

For 0 < η < 21/(m+1) and for all O(ε) and positive values of Ĥ, we obtain µ̂` > −1 (and thus the

eigenvalue µ̂` is stable), see Fig. 6.4. Therefore, σ((DyF̂m)(ĥm(x0))) ⊂ (−1, 1), and the fixed point

ĥm(x0) is unconditionally stable.

For η > 21/(m+1), we obtain the condition 0 < Ĥ` < Ĥm(η), and Eq. (6.21) follows directly.
Finally, we note that, for a fixed value of η and as Ĥ →∞, the spectrum clusters around 1− ηm+1.
Thus, the choice η = 1 is optimal in the sense that large values of Ĥ bring the spectrum closer to
zero.

Case 2: Some of the eigenvalues of (Dyg)0 have nonzero imaginary parts. In this case, some

of the eigenvalues may become unstable for certain combinations of η and Ĥ, as our analysis in
Section 6.2 also showed.

First, we consider the case 0 < η < 21/(m+1) and derive the uniform bound (6.22). Using
formula (6.24) and working as in Eq. (6.17), we estimate

|µ̂`| ≤
∣

∣1− ηm+1
∣

∣+ ηm+1
[

(1 + e−Ĥ`)m+1 − 1
]

.

Hence

|µ̂`| ≤

{

1 + ηm+1
[

(1 + e−Ĥ`)m+1 − 2
]

, for 0 < η ≤ 1,

ηm+1(1 + e−Ĥ`)m+1 − 1, for η > 1.

Combining these inequalities with the stability condition |µ̂`| < 1, we obtain the sufficient condition
Ĥ` > Ĥm(η), where Ĥm(η) is the uniform bound (6.19) (see also Fig. 6.5). Recalling that Ĥ` =

−λ`,RĤ/ε, we conclude that, if condition (6.22) is satisfied, then σ((DyF̂m)(ĥm(x0))) ⊂ B(0; 1), and
hence the m−th algorithm is stable.
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Fig. 6.5. The stability regions in the (η, Ĥ`)−plane for m = 0 (left panel) and m = 1, 2, . . . (right panel). The
eigenvalue µ̂` is stable in region I, unstable in region II, and its stability type is θ`−dependent in region III.

Next, we consider the case η > 21/(m+1) and derive the uniform bound (6.23). Equation (6.24)
yields

|1− µ̂`| ≥ ηm+1
(

1−
∣

∣

∣
e−Ĥ`eiĤ` tan θ`

∣

∣

∣

)m+1

≥ ηm+1
(

1− e−Ĥ`

)m+1

.

Thus, |1− µ̂`| > 2, for η > 2
1/(m+1) and Ĥ` > Ĥm(η), and therefore

|µ̂`| ≥ ||1− µ̂`| − 1| > 1,

Hence, µ̂` is unstable.

Remark. Conditions (6.22) and (6.23) may be interpreted by means of the fact that σ((DyF̂m)(ĥm(x0)))

clusters around 1 − ηm+1 as Ĥ → ∞. For 0 < η < 21/(m+1), there holds that −1 < 1 − ηm+1 < 1.
Thus, for Ĥ large enough, the eigenvalues are contained in the unit disk. On the contrary, 1−ηm+1 <
−1 for η > 21/(m+1), and thus the eigenvalues lie outside the unit disk for Ĥ large enough.

Finally, formula (6.20) describing the stability region may be derived in a manner entirely
analogous to that used to derive Eq. (6.11).

7. Conclusions and Discussion. In this article, we characterized the accuracy and conver-
gence properties of the class of iterative algorithms introduced in [5] for explicit fast-slow systems
(1.5). The m-th member of the class corresponds to a functional iteration scheme to solve the
(m+1)−st derivative condition (1.6). We showed that this condition has an isolated solution, which
corresponds to a fixed point of this m-th member and which is accurate up to and including terms
of O(εm), see Theorem 2.1. Also, we derived explicit formulae for the domain of convergence of the
functional iteration, both in the case where analytical formulae for the (m+1)−st derivative are used
(see Theorem 3.1) and in the case where the (m+1)−st derivatives are estimated through a forward
difference scheme (see Theorem 6.1). These convergence results are illustrated in Figures 3.1, 6.2,
and 6.3. Further, we demonstrated how the Recursive Projection Method may be used to stabilize
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Fig. 6.6. The stability region in the (η, Ĥ`)−plane for m = 1 and for various values of η. The last two values
for η are just below and just above the value 21/(m+1) =

√
2. White denotes stability and black denotes instability.

the functional iteration in all cases when it is unstable or to accelerate its convergence in those cases
where the convergence is slow.

An extension of the analysis presented here to more general multiscale systems (1.1) will be
presented in a subsequent article. The analysis of the accuracy of the (m+1)−st derivative condition
presented in Section 2 carries through, essentially (modulo a number of technicalities), in the more
general case as well. The analysis of the stability of the functional iteration, on the other hand, is far
more involved. The reason for that is that, although the hyperplane u = u0 and the space tangent
to the fast fibration over the slow manifold coincide to leading order for explicit fast–slow systems
(1.5), this is not the case for the more general systems (1.1). The absence of this feature makes the
stability question for the functional iteration far more difficult to answer in the general case.

In addition, we are in the process of generalizing the results of this article to other maps that
may be used in the context of the functional iteration scheme developed in [5]. In particular, it is of
interest to use maps which are implicitly defined (as opposed to the explicitly defined ones presented
in [5] and in this article). Preliminary analytical results for m = 0 and m = 1 indicate that one may
construct functional iteration schemes based on implicit maps which not only retain the accuracy of
the functional iteration scheme presented in this article but which are also unconditionally stable.
Moreover, we think that this analysis may be extended to higher values of m, and we note that it is
also possible to carry out the functional iteration with implicitly defined maps even when one only
has a legacy code as a timestepper.

Appendix A. The one-higher-order proposition . In this appendix, we state and prove
a technical proposition – called the one-higher-order proposition – about the asymptotic accuracy of
approximations of L given an approximation of the normal space to L. This result is instrumental
in the proof of the technical lemmas contained in the next appendix.

We begin by recalling the useful formulation, Eq. (1.11), of the invariance equation that defines
the function h(x), whose graph is the invariant, slow manifold L. This formulation revealed that
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the matrix (−Dh(x), INf
) forms a basis for NzL, the space normal to the slow manifold at the point

z = (x, h(x)) ∈ L.

The function h(x) admits an asymptotic expansion in ε,

h(·) =
∑

i=0

εih[i](·),(A.1)

where the coefficients h[i], i = 0, 1, . . . , are determined by expanding asymptotically the left member
of Eq. (1.10) and setting the coefficient of εi equal to zero to obtain

gi −
i−1
∑

`=0

(Dh[`])fi−1−` = 0, i = 0, 1, . . . ,

where the sum is understood to be empty for i = 0. The first few equations are

g0 = 0,(A.2)

(Dyg)0h[1] + (Dεg)0 − (Dh[0])f0 = 0.(A.3)

Here, Eq. (A.2) is satisfied identically, Eq. (A.3) yields the coefficient h[1], and so on.

The one-higher-order proposition, which we now state and prove, establishes a connection be-
tween the order in ε to which a set N of row vectors approximates NzL and the order to which the
solution η(x) to the condition N G = 0 approximates h.

Proposition A.1. Let ε > 0 be sufficiently small. Let N(x, ε) be an Nf × N matrix with the
property that its rows span NzL up to and including terms of O(ε

m), for some m = 0, 1, . . . . That
is, N(·, ε) is of the form

N(·, ε) = C



−
m
∑

i=0

εiDh[i](·)−
∑

i≥m+1

εiRi(·) , INf



 ,(A.4)

where C is a non-singular Nf × Nf matrix and Ri 6= Dh[i], for i = m + 1,m + 2, . . . , in general.
Then, the condition

N(x, ε)G(x, y, ε) = 0(A.5)

can be solved for y to yield a function y = η(x), the asymptotic expansion of which agrees with that
of h(x) up to and including terms of O(εm+1),

η(x) =
∑

i=0

εiηi(x) =

m+1
∑

i=0

εih[i](x) +O(ε
m+2).(A.6)

This proposition is called the one-higher-order proposition, because it states that the order to
which η(x) approximates the full slow manifold is of one higher than that to which N approximates
the normal space.

Proof of Proposition A.1. We recall that h(·) = Σi=0ε
ih[i](·), by Eq. (A.1), and that h[i] is

determined from the O(εi) terms of the invariance equation (1.11). Similarly, ηi is determined from
the O(εi) terms of Eq. (A.5). Thus, to establish Eq. (A.6), it suffices to compare the terms of these
two equations from O(1) up through and including O(εm+1) and to show that they are equal.
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First, for each i = 0, 1, . . . ,m, the invariance equation (1.11) at O(εi) is

(

−Dh[0], INf

)

Gi +

i
∑

`=1

(

−Dh[`], 0
)

Gi−` = 0.(A.7)

Second, to derive the O(εi) terms for the condition NG = 0, we substitute the hypothesis (A.4) in
Eq. (A.5) and left-multiply by C−1 to obtain

C−1 N G =

(

−
m
∑

i=0

εiDh[i] +O(ε
m+1), INf

)

G = 0.(A.8)

Thus, for each i = 0, 1, . . . ,m, this condition at O(εi) is

(

−Dh[0], INf

)

Gi +

i
∑

`=1

(

−Dh[`], 0
)

Gi−` = 0.

Plainly, this equation is identical to Eq. (A.7). Thus, proceeding inductively in i, one has ηi = h[i],
for i = 0, 1, . . . ,m.

Finally, we look at the O(εm+1) terms of the two equations. Eq. (A.7) with i = m+ 1 is

(

−Dh[0], INf

)

Gm+1 +

m
∑

`=1

(

−Dh[`], 0
)

Gm+1−` +
(

−Dh[m+1], 0
)

G0 = 0.(A.9)

Also, Eq. (A.8) at O(εm+1) is

(

−Dh[0], INf

)

Gm+1 +
m
∑

`=1

(

−Dh[`], 0
)

Gm+1−` + (Rm+1, 0)G0 = 0.(A.10)

We note that Rm+1 6= −Dh[m+1], in general. However, G0 = 0, since the terms appearing in
Eqs. (A.9)–(A.10) are evaluated at (x, η0, 0) ≡ (x, h[0], 0). Thus, Eqs. (A.9) and (A.10) also agree,
and hence ηm+1 = h[m+1]. This completes the proof of the proposition.

Appendix B. Proofs of Lemmata 2.1 and 2.2 . In this appendix, we prove lemmata 2.1
and 2.2 characterizing the asymptotic accuracy of the approximation to L obtained from the (m+
1)−st derivative condition (2.10).

Proof of Lemma 2.1. We write zm for (x, hm(x)) and z for (x, h(x)). The strategy is as follows:
We will show that the rows of (DzLm)(zm, ε) span NzL up to and including terms of O(ε

m). Then,
we will apply Proposition A.1 to establish Eq. (2.12).

The manifold Lm is the graph of the function hm, and thus it coincides exactly with the zero level
set of the function −hm(x)+ y. As a result, the rows of the Nf ×N gradient matrix (−Dhm(x), INf

)
form a basis for Nzm

Lm. Second, the function hm(·) is defined through the (m + 1)−st derivative
condition Lm(·, hm(·), ε) = 0. Therefore, Lm also coincides with (a connected component of) the zero
level set of the function Lm(z, ε). Thus, the rows of the Nf ×N gradient matrix (DzLm)(x, hm(x), ε)
also form a basis for Nzm

Lm. It follows from the existence of these two bases that there exists a
non-singular Nf ×Nf matrix C such that

(DzLm) (·, hm(·), ε) = C (−Dhm(·), INf
) .(B.1)
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Next, the induction hypothesis implies that the asymptotic expansions of hm and h agree up
to and including terms of O(εm),

hm(·) =
m
∑

i=0

εih[i](·) +O(ε
m+1).(B.2)

Since the vector field is assumed to be sufficiently smooth, we may differentiate both sides of this
equation with respect to x to obtain

Dhm(·) =

m
∑

i=0

εiDh[i](·) +O(ε
m+1).(B.3)

Combining Eqs. (B.1) and (B.3), then, we find

(DzLm) (·, hm(·), ε) = C

(

−

m
∑

i=0

εiDh[i](·) +O(ε
m+1), INf

)

.

This equation shows that the rows of (DzLm)(x, hm(x), ε) span NzL up to and including terms of
O(εm). Hence, application of the one-higher-order proposition, Proposition A.1, completes the proof
of this lemma.

Before we proceed with the proof of Lemma 2.2, we prove the following result which will be
needed therein:

Lemma B.1. For m = 0, 1, . . ., there is an εm > 0 such that for 0 < ε ≤ εm, for H = O(ε),
and for a general point z = (x, y), the function Lm is written as

Lm(z) = (−ε
−1H)m+1

[

(Dyg)0 (z)
]m

g0(z) +O
(

ε, ‖g0(z)‖
2
)

,

where the notation “(·)0(z)” stands for (·)(z, 0). The Jacobian DyLm is written as

(DyLm) (z) =
(

−ε−1H (Dyg)0
)m+1

+O (ε, ‖g0(z)‖) .(B.4)

Proof. For this proof, we write (·)0 instead of (·)0(z) for the sake of brevity. The proof is by
induction on m. For m = 0, we recall Eq. (2.4),

L0 = −ε
−1Hg,

and hence, expanding g in powers of ε, we find

L0 = −ε
−1Hg0 +O(ε).

This is the desired formula for L0. Differentiating both members of this formula with respect to y,
we obtain

DyL0 = −ε
−1H (Dyg)0 +O(ε).

This is the desired formula for DyL0.

Next, we carry out the induction step for general m, namely we assume that

Lm =
(

−ε−1H
)m+1

(Dyg)
m
0 g0 +O

(

ε, ‖g0‖
2
)

,(B.5)

DyLm =
(

−ε−1H (Dyg)0
)m+1

+O (ε, ‖g0(z)‖)(B.6)
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and show that

Lm+1 =
(

−ε−1H
)m+2

(Dyg)
m+1
0 g0 +O

(

ε, ‖g0‖
2
)

,(B.7)

DyLm+1 =
(

−ε−1H (Dyg)0
)m+2

+O (ε, ‖g0(z)‖) .(B.8)

By Eq. (2.9),

Lm+1 = −ε
−1H(DzLm)G = −ε

−1H [ε(DxLm)f + (DyLm)g] .

Then, we substitute the induction hypothesis (B.5) into this expression. Application of the differ-
ential operator (−H/ε)[ε(Dx·)f + (Dy·)g] on the smooth O(ε, ‖g0‖

2) remainder does not alter its
asymptotic magnitude. Moreover, the term ε(DxLm)f is O(ε) and, hence, can be absorbed also in
the remainder. Therefore, we are left with the term (−H/ε)(DyLm)g. Substituting DyLm into this
expression from the induction hypothesis (B.6), we arrive at the desired formula (B.7).

Finally, we prove the leading order formula (B.8). We differentiate both members of the leading
order formula (B.7) with respect to y and use the product rule derivative to evaluate the right
member. The second term from the product rule is precisely the leading order term in Eq. (B.8).
The other terms from the product rule,

(

−ε−1H
)m+2

[

m+1
∑

r=1

(Dyg)
m+1−r
0

(

(D2
yg)0, g0

)

(Dyg)
r−1
0

]

,

may be absorbed in the remainder since they all involve a factor that is linear in g0. Thus, we have
obtained the desired formula (B.8) and completed the proof of the lemma.

Proof of Lemma 2.2. We begin by estimating
(

(DzLm)(x, h̃m+1(x), ε)
)

G(x, h̃m+1(x), ε).

We may write
(

(DzLm)(·, h̃m+1(·), ε)
)

G(·, h̃m+1(·), ε)

=
[

(DzLm)(·, h̃m+1(·), ε)− (DzLm)(·, hm(·), ε)
]

G(·, h̃m+1(·), ε),(B.9)

since

((DzLm)(·, hm(·), ε))G(·, h̃m+1(·), ε) = 0

by the definition of h̃m+1.

Next, we have the following estimates of the asymptotic magnitudes of the two terms in the
right member of Eq. (B.9):

h̃m+1 =

m+1
∑

i=0

εih[i] +O(ε
m+2)

by Lemma 2.1, and also

hm =

m
∑

i=0

εih[i] +O(ε
m+1)
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by the induction hypothesis. Thus,

h̃m+1 − hm = O(ε
m+1),

and hence Taylor’s Theorem with remainder yields

(DzLm)(·, h̃m+1(·), ε)− (DzLm)(·, hm(·), ε) = O(ε
m+1),(B.10)

since Lm and its derivatives are O(1). This is the desired estimate of the first term in the right
member of Eq. (B.9).

It remains to estimate the second term, G(·, h̃m+1(·), ε) in the right member of Eq. (B.9).

We recall that G =
(

εf
g

)

, where f and g are O(1) in general. Hence, the first component of

G(·, h̃m+1(·), ε) is plainly O(ε). The second component is as well, since Lemma 2.1 implies that
h̃m+1,0 = h[0] and hence that g(·, h̃m+1(·), ε) = O(ε), also. Therefore,

G(·, h̃m+1(·), ε) = O(ε).(B.11)

Combining the estimates (B.10) and (B.11), we see that the right member of Eq. (B.9) is
O(εm+2), which is the desired result.

Finally, the solution of the condition Lm+1 = 0 yields an Ns−dimensional manifold Lm+1, as
may be shown using the Implicit Function Theorem and [15, Theorem 1.13]. It suffices to show that

det (DyLm+1) (·, hm+1(·)) 6= 0.

Lemma B.1 yields a leading order formula for DyLm+1,

(DyLm+1) (z) =
(

−ε−1H (Dyg)0
)m+2

+O (ε, ‖g0(z)‖) .

Here, z is a general point and (·)0(z) = (·)(z, 0). Next, we showed above that h(m+1,0) = h0.
Recalling, then, Eq. (2.5), we obtain

(DyLm+1) (x, hm+1(x)) =
[

−ε−1H (Dyg)0
]m+2

+O(ε), for all x ∈ K,

where (Dyg)0 = (Dyg)(x, h0(x), 0). Thus,

det (DyLm+1) (x, hm+1(x)) 6= 0, for all x ∈ K,

by normal hyperbolicity and the proof is complete.
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