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Digital Images

Digital Image An image f(x, y) discretized in

both spatial coordinates and in brightness

Digital Image = Matrix

• row and column indices = point in image

• matrix element value = gray level at that

point

• pixel = element of digital array or picture

element
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Digital Image Processing

Digital Image Processing Set of techniques
for the manipulation, correction, and en-
hancement of digital images
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	Methods

• Fourier/wavelet transforms

• Stochastic/statistical methods

• Partial differential equations (PDEs) and
differential/geometric models

– Systematic treatment of geometric fea-
tures of images (shape, contour, curva-

ture)

– Wealth of techniques for PDEs and com-
putational fluid dynamics
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Examples of Digital Image Processing

Smoothing Removing bad data

Sharpening Highlighting edges (discontinuities)

Restoration Determination of unknown origi-

nal image from given noisy image

• Ill-conditioned inverse problem

• No unique solution

• Regularization techniques impose de-

sirable properties on the solution
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Digital Image Restoration

• Wanted: De-noised image u with edges

• Given

– Observed image z

– User-chosen weight α

• Need

– Regularity functional R(u)

– Function space S(Ω)

• Tikhonov regularization

min
u∈S(Ω)

αR(u) +
1

2
‖u − z‖2
︸ ︷︷ ︸

error

7



Total Variation (TV) Regularization

min
u∈S(Ω)

αR(u) +
1

2
‖u − z‖2

• Total Variation [Rudin-Osher-Fatemi 92]

R(u) =

∫

Ω
|∇u| dx dy where

|∇u| =

√
√
√
√

(
∂u

∂x

)2

+

(

∂u

∂y

)2

S(Ω) = W1,1(Ω),first derivative in L1

• Features

– u need not be differentiable

– Discontinuities allowed

– Derivatives considered in the weak sense
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Euler-Lagrange Equation

• 1st-order necessary condition for the mini-

mizer u

min
u

∫

Ω
α|∇u| +

1

2
(u − z)2 dx dy

• Theory

−α∇ ·

(

∇u

|∇u|

)

+ u − z = 0

• Degenerate when |∇u| = 0

• Practice

−α∇ ·






∇u
√

|∇u|2 + β




+ u − z = 0

small β > 0
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Previous Work

−α∇ ·






∇u
√

|∇u|2 + β




+ u − z = 0

Rudin-Osher-Fatemi 1992 Time marching to

steady state with gradient descent. Im-

provement in Marquina-Osher 1999.

Chan-Chan-Zhou 1995 Continuation proce-

dure on β.

Vogel-Oman 1996 Fixed point iteration.
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Dependence on β

−α∇ ·






∇u
√

|∇u|2 + β




+ u − z = 0 (1)

β large Smeared edges.

β small PDE nearly degenerate.

No β if we rewrite (1) in terms of new vari-

able...
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Introduce Dual Variable w

TV (u) =

∫

Ω
|∇u| dx dy

TV (u) =







∫

Ω
max
|w|≤1

(∇u · w) dx dy u smooth
∫

Ω
max
|w|≤1

u(∇ · w) dx dy u non-smooth

w =

(

w1
w2

)

, wi ∈ C∞
0 (Ω), and |w|∞ ≤ 1

(Giusti 1984, Chan-Golub-Mulet 1995)

Interpretation

w =







∇u
|∇u|

u smooth and |∇u| 6= 0

not unique otherwise
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Deriving Dual Formulation

min
u

∫

Ω
α|∇u| +

1

2
(u − z)2 dx dy

• “Weak” definition of Total Variation

= min
u

∫

Ω
α max

|w|≤1
u(∇ · w) +

1

2
(u − z)2 dx dy

• Interchange max and min

= max
|w|≤1

min
u

∫

Ω
αu(∇ · w) +

1

2
(u − z)2 dx dy

︸ ︷︷ ︸

Ψ(u)

• Quadratic function of u

∇Ψ(u) = ~0 ⇐⇒ u = z + α(∇ · w)

• Write u in terms of w

max
|w|≤1

∫

Ω
α (z + α(∇ · w))
︸ ︷︷ ︸

u

(∇ · w)

+
1

2
(z + α(∇ · w)
︸ ︷︷ ︸

u

−z)2 dx dy
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Dual Total Variation Regularization

max
|w|≤1

∫

Ω
αz(∇ · w) +

3α2

2
(∇ · w)2 dx dy

• Advantages

– Quadratic objective function in w

– No need for β

– u = z + α(∇ · w)

• Disadvantages

– Constrained optimization problem

– One constraint per pixel
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Dual Total Variation Algorithms

Dissertation of C. 2001

• Primal-Dual Interior Point (Developed by

Mulet.)

• Relaxation (Coordinate Descent) Meth-

ods: Easy to code

– Dual

– Hybrid

– Barrier: Constrained → unconstrained

Suggested by Vandenberghe.
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Discrete Dual Total Variation Regularization

Discrete image has N = n × n pixels

• Continuous

max
|w|≤1

∫

Ω
αz(∇ · w) +

3α2

2
(∇ · w)2 dx dy

w : Ω → R
2

• Discrete

max
|wi|≤1

i=1,...,N

αzTAw +
3α2

2
‖Aw‖2

Aw represents ∇ · w

wi =

(

wx
i

w
y
i

)

∈ R
2 w =






w1
...

wN




 ∈ R

2N
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Barrier Method

• Detailed

max
|wi|≤1

i=1,...,N

αzTAw +
3α2

2
‖Aw‖2

• General

– Constrained

min
gi(w)>0
i=1,...,N

f(w)

– Unconstrained

min
w

B(w, µ)

where

B(w, µ) = f(w) − µ
N∑

i=1

log gi(w)

18



Barrier Method

Constrained problem → sequence of

unconstrained problems

• Barrier Function

B(w, µ) = f(w) − µ
N∑

i=1

log gi(w)

︸ ︷︷ ︸

infinite penalty
for violating feasibility

as µ→0

• Barrier Method: Solves sequence of

min
w

B(w, µk) for µk ↘ 0

• Use Relaxation Method to solve each

min
w

B(w, µk)

for fixed µk.
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Relaxation Method

min
w

B(w, µk)

• Implementation

1. Fix all components of w except for the

ith component.

2. Minimize B(w, µk) with respect to wi ∈ R
2:

min
wi

B(wi, µk) + terms independent of i

Newton’s method with backtracking line

search

3. Update wi (Gauss-Seidel implemen-

tation converges for convex uncon-

strained problems)

4. Repeat procedure for i = 1, . . . , N

5. Iterate until convergence
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Summary

• Dual Total Variation problem solved

• No smoothing parameter required

Future Work

• Deeper understanding of w for non-smooth

u

• More realistic images

• Barrier relaxation algorithm

– Tighter control of stopping criteria

– Multigrid implementation
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