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Abstract

I study convergence traders with logarithmic utility in a continuous-time equilibrium
model. In general, convergence traders reduce asset price volatility and provide liquidity

by taking risky positions against noise trading. However, when an unfavorable shock
causes them to suffer capital losses, thus eroding their risk-bearing capacity, they
liquidate their positions, thereby amplifying the original shock. In extreme circum-

stances, this wealth effect causes convergence traders to be destabilizing in that they
trade in exactly the same direction as noise traders. This situation is consistent with the
near-collapse of Long-Term Capital Management in 1998.r 2001 Elsevier Science S.A.
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1. Introduction

Convergence trading strategies were made popular by the hedge fund Long-
Term Capital Management (LTCM). A typical convergence trading strategy is
to bet that the price difference between two assets with similar, but not
identical, characteristics will narrow in the future. The near-collapse of LTCM
in 1998 illustrates the effect of convergence traders’ capital dynamics on
financial market dynamics, and motivates my study of a continuous-time
equilibrium model of convergence trading with wealth effects.1 The wealth
effect occurs when convergence traders suffer unfavorable shocks to their
positions, their risk-bearing capacity decreases along with their wealth, and
they are forced to unwind some of their positions. My model shows that the
wealth effect can act as an amplification mechanism for financial market
shocks.2

I model the equilibrium of an asset market involving three types of traders:
noise traders, long-term investors, and convergence traders. Without loss of
generality, the risky ‘‘asset’’ can be thought of as a synthetic spread position
involving a long position in one underlying asset and a short position in
another underlying asset. Examples of the risky asset are a spread position
between two stocks, a spread position between a mortgage bond and a U.S.
Treasury bond with similar maturity, or a spread position between off-the-run
and on-the-run U.S. Treasury bonds. Consistent with this interpretation, the
risky asset is assumed to have constant fundamental (cash flow) volatility.
Noise traders create exogenous, stochastic supply shocks in the market and
their trading is assumed to be mean reverting in the same way as in Campbell
and Kyle (1993) and Wang (1993). The mean reversion of noise trading creates
an opportunity for convergence trading. Long-term investors are modeled as a

1Fung and Hsieh (1999), Perold (1999), and Gatev et al. (1999) offer detailed descriptions of the

market practices and risk profiles of convergence trading, and a report by the Bank for

International Settlements (BIS, 1999) documents financial market conditions during the period of

the near-collapse of LTCM. Campbell and Kyle (1993) offer an equilibrium model of convergence

trading without wealth effects.
2Similar amplification mechanisms have been studied before under different contexts. Shleifer

and Vishny (1992) study the effect of leverage on corporate asset sales. Stein (1995) studies the effect

of homeowner’s equity on housing prices. Kiyotaki and Moore (1997) and Krishnamurthy (1998)

study amplification caused by the fluctuation of producers’ collateral values (land prices).
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group of prudent investors pursuing a robust, long-term, value-based
investment strategy. This strategy requires long-term investors to demand
the risky asset in proportion to the difference between its fundamental value
and its price. This difference represents the net present value of profits to long-
term investors in a worst-case scenario when they have to hold the asset forever
and collect all the future cash flows, rather than trade out of the position
early. The trading by long-term investors provides convergence traders with an
exit strategy when they need to liquidate their positions as a result of capital
losses.
This paper focuses on the behavior of a group of fully rational and perfectly

competitive convergence traders who aggressively exploit the short-term
opportunities created by noise traders. To capture two basic elements in
convergence trading, i.e., Sharpe ratios and capital, I assume logarithmic utility
for convergence traders. Sharpe ratios represent the trading opportunity, while
capital represents the risk-bearing capacity of convergence traders. With
continuous-time trading, logarithmic utility implies a trading strategy that
dynamically exploits the Sharpe ratio in the market and at the same time
prevents wealth from dropping down to zero. With this strategy, convergence
traders always take risky positions proportional to their wealth. Their expected
trading profits (in percentage terms) and percentage portfolio variance are both
determined by the squared Sharpe ratio.
In equilibrium, there are two state variables. One is the level of noise trading,

representing the total supply of risk in the market. The other is convergence
traders’ aggregate wealth, representing their total risk-bearing capacity. The
equilibrium is derived as a fixed-point problem in a representative convergence
trader’s trading strategy. This fixed-point problem is equivalent to a nonlinear
second-order partial differential equation. Numerical solution of the equili-
brium (using a projection technique) makes it possible to discuss the
amplification mechanism caused by the wealth effect of convergence traders.
Simulation exercises make it possible to study the stationary distribution of the
equilibrium.
The portfolio rebalancing of convergence traders associated with their

wealth changes has interesting implications for the effects of fundamental
shocks and noise trading shocks. The analysis of fundamental shocks is easy:
an unfavorable fundamental shock always causes convergence traders to lose
money, and the resulting wealth effect always causes convergence traders to
amplify the shock. The analysis of noise trading shocks is more complicated. A
shock that pushes noise trading further away from its mean makes convergence
trading more profitable (higher Sharpe ratios), and this induces convergence
traders to take larger positions relative to their wealth. This is a substitution
effect, and it has been studied by Campbell and Kyle (1993). Such a noise
trading shock also causes convergence traders to lose money on their current
positions, and therefore leads them to reduce their positions. This is the wealth
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effect, and it operates in the opposite direction from the substitution effect.
Most of the time, the substitution effect dominates the wealth effect, and
convergence traders take larger positions in response to increased noise
trading, in which case convergence trading reduces the effect of noise trading
shocks on prices and improves market liquidity. Occasionally, however, when
the wealth effect dominates the substitution effect, convergence traders
liquidate their positions in response to increased noise trading. In this case,
convergence traders become destabilizing in the sense that they trade in exactly
the same direction as noise traders, which amplifies the price effect of noise
trading shocks and reduces market liquidity. This situation is exactly illustrated
by the LTCM crisis in 1998: When LTCM suffered large capital losses, they
had to liquidate some of their positions, thereby causing liquidity to dry up and
volatility to rise.
The interaction between the wealth effect and the substitution effect allows

us to discuss an old economic question: Do speculators stabilize prices? A
common-sense argument has been strongly expressed by Friedman (1953) that
speculators always buy cheap and sell dear, and so always stabilize prices. My
model suggests otherwise.3 The wealth effect can cause speculators to unwind
their positions by buying when prices are high and selling when prices are low
after suffering large capital losses.
The amplification mechanism created by the convergence traders’ wealth

effect can cause asset price volatility to be excessive in the sense that it is too
large to be explained by the volatility of asset fundamentals in a simple present
value model with a constant discount rate. The amplification mechanism can
also cause asset price volatility to be time-varying. The extreme liquidity risks
caused by the convergence traders’ wealth effect present a great challenge to the
risk management of highly leveraged financial institutions. My model provides
a way for risk managers to study market equilibrium dynamics and to forecast
the extreme risks caused by the amplification mechanism. The wealth process
of convergence traders is endogenously determined in a stationary equilibrium
where convergence traders’ trading profits can break even with their
consumption in the long run. This allows a discussion of the determinants of
convergence trading activity across different markets.
The wealth effect studied in this paper arises from the nature of convergence

trading. Convergence traders usually specialize in a limited number of assets or

3Shleifer and Vishny (1997) have similarly observed that risk aversion can be a cause of

destabilizing speculation, but they do not offer a formal model to characterize the mechanism.

Several other explanations of destabilizing speculation have been offered in the literature. Hart and

Kreps (1986) point out that speculators buy when chances of price appreciation are high, which

may or may not be when prices are low. Stein (1987) suggests that an information externality can

cause speculation to reduce social welfare. De Long et al. (1990) suggest that the incentive for

rational speculators to take advantage of irrational positive feedback traders can also cause

speculation to be price-destabilizing.
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strategies due to the information costs of participating in many markets, as
pointed out by Merton (1987) and Shleifer and Vishny (1997). Moreover, they
often use high leverage to exploit short-term opportunities available to them.
As a result, their portfolios can be both undiversified and highly levered, so
shocks in these markets can cause large fluctuations in convergence traders’
wealth.
Another important feature of market practices is that capital does not flow

perfectly across different markets or strategies. When convergence traders
suffer capital losses, it is especially difficult for them to raise new capital to
maintain their positions, and it is equally difficult for them to find existing
convergence traders to buy out their positions without deep discounts. As
suggested by Shleifer and Vishny (1997) and Shleifer (2000), agency problems
can cause this type of imperfect capital flow to professional traders (such as
hedge funds). As these professional traders lose money, they also lose
credibility among their investors, and can thus face difficulty raising new
capital or even experience withdrawals from their investors, as occurred with
LTCM during the financial market crisis of 1998: According to the New York
Times article by Michael Lewis (Jan. 24, 1999; magazine section), LTCM had a
very hard time raising new capital to maintain their positions after they
suffered large capital losses.
My model captures this idea of imperfect capital flow by assuming that there

is no capital flow into the asset market through entry of new convergence
traders or through additional fundraising by existing convergence traders. In
this way, the model extends the limits of arbitrage argument in Shleifer and
Vishny (1997) to study market dynamics.
Kyle and Xiong (2001) study financial market contagion using a framework

similar to this paper with two risky assets. They show that the wealth effect of
convergence traders can also act as a mechanism for volatility to be transmitted
from one market to another. When convergence traders suffer large capital
losses, they need to unwind their positions across their whole portfolio,
therefore causing the prices of fundamentally unrelated assets to move
together. Aiyagari and Gertler (1998) and Gromb and Vayanos (2000) study
equilibrium models with margin-constrained traders. Their results are similar
in spirit in the sense that capital constraints can cause excess volatility in asset
markets. The wealth effect is also studied in the context of portfolio insurance
by Basak (1995) and Grossman and Zhou (1996). Omberg (1997) discusses a
potential interaction between the wealth effect and the substitution effect with
price jumps in a partial equilibrium model. In other related studies, Basak and
Croitoru (2000) study riskless arbitrage trading with position limits,
Loewenstein and Willard (2000) study the trading of hedge funds with credit
constraints, and Liu and Longstaff (2000) study a portfolio choice problem of
arbitrageurs when arbitrage opportunities follow an exogenous Brownian
bridge process.
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This paper proceeds as follows. Section 2 introduces the structure of the
model. Section 3 derives the asset return process and the convergence traders’
optimal policies, and then sets up the equilibrium as a fixed-point problem.
Section 4 illustrates the equilibrium using a numerical example. Section 5
discusses some implications of the model. Section 6 concludes the paper.

2. The model

The model studies the equilibrium of an asset market (one sector of the
aggregate financial markets) in a continuous-time framework with an infinite
time horizon. There are three types of traders in this asset market. Noise
traders create stochastic and mean-reverting supply shocks to the risky asset.
Convergence traders are fully rational with logarithmic utility. They trade the
risky asset to exploit the short-term opportunities created by noise traders.
Long-term investors hold the risky asset based on the difference between the
price and the fundamental value. Since the model is only concerned with one
sector of the aggregate financial markets, it treats the interest rate as exogenous
and assumes that all market participants can borrow and lend their capital at a
constant risk-free rate r:

2.1. Asset fundamentals

The asset is risky and its cash flows D are assumed to follow an observable,
mean-reverting stochastic process,

dD ¼ �lDðD� %DÞdtþ sDdzD ð1Þ

with constant volatility sD; constant rates of mean reversion lD; and known
long-term mean %D: The term dzD represents a fundamental shock, which
follows a Wiener process. Thus, the dividend process has a normal distribution.
In the context of convergence trading, this risky asset can be regarded as a

spread position between the two underlying assets involved. One typical
example of such spread positions given by Perold (1999) is a long position in
the stock of Shell and a short position in the stock of Royal Dutch. These two
stocks have closely related fundamentals. Therefore, this spread position can
reduce fundamental risks involved in the trade. The dividend from this spread
position is thus the difference between the dividends from the two assets
involved, and it can be either positive or negative consistent with a normal
distribution.
The fundamental value F of the risky asset (not to be confused with the

market price P described later) is defined as the expected payoff to a risk-
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neutral investor discounted at the risk-free rate:

F ¼Et

Z
N

0

e�rsDðtþ sÞ ds

¼
%D

r
þ

DðtÞ � %D

rþ lD
: ð2Þ

The second equation is just a variation of Gordon’s growth formula.
The risk-neutral excess returns process dQF corresponding to the funda-

mental values (not to be confused with the actual returns process dQ discussed
later) is given by the hypothetical mark-to-market profits of a fully levered one-
share portfolio, which collects the dividend and pays the risk-free rate of
interest:

dQF ¼ dF þ ðD� rFÞ dt: ð3Þ

Using the cash flow process and fundamental price process above, it is
straightforward to show that the risk neutral mark-to-market profit on the
risky asset follows a Brownian motion with constant volatility, defined as sF :

dQF ¼
sD

rþ lD
dzD ¼ sF dzD: ð4Þ

Since this excess return process is associated with the risk-neutral price
(fundamental value) process, there is no risk premium or drift term. The
equilibrium discussed below depends on the fundamental cash flow process
only through the parameter sF : In other words, the specific rate of mean
reversion and the long-term mean of cash flows do not affect the equilibrium
except through their effect on sF : Furthermore, the risky asset can be scaled
arbitrarily (as in a stock split) to give any level of fundamental volatility,
without changing the equilibrium.

2.2. Market-clearing condition

The equilibrium price for the risky asset (as opposed to the fundamental
value discussed above) arises from trading by three different types of market
participants: noise traders, long-term investors, and convergence traders. If
noise traders supply y shares of the risky asset while long-term investors
demand XL shares and convergence traders demand X shares, then the market-
clearing condition (which holds at every point in time) can be written as

XL þ X ¼ y: ð5Þ

Following Campbell and Kyle (1993) and Wang (1993), the supply of noise
traders is assumed to follow an exogenous mean-reverting process,

dy ¼ �lyðy� %yÞ dtþ sy dzy ð6Þ
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with long-term mean %y; mean-reversion parameter ly; and standard deviation
sy: The notation dzy denotes a noise trading shock, which follows a Wiener
process. Noise trading shocks are independent of the fundamental shocks.

2.3. Long-term investors

Long-term investors have the following aggregate demand curve for the
risky asset:

XL ¼
1

k
ðF � PÞ; ð7Þ

where k; with k > 0; denotes the slope of the downward-sloping demand
function. This demand curve is proportional to the spread between the
fundamental value F and the actual price P: Graham (1973) calls this spread a
safety margin, and it measures the net present value of profits to long-term
investors in a worst-case scenario when they have to hold the asset forever and
collect all the future cash flows, rather than trade out of the position early. If
we assume that long-term investors have exponential utility and use this
(suboptimal) strategy at the same time, the slope of this demand curve is
determined by

k ¼ fs2F ; ð8Þ

where f is the long-term investors’ aggregate absolute risk aversion and s2F is
the variance of fundamental shocks. The exact number of long-term investors
is not specified here, but it is incorporated in the aggregate risk aversion. When
there are more long-term investors, the aggregate risk aversion will be lower,
therefore the slope of the aggregate demand curve will be smaller.
According to this demand curve, long-term investors always provide

liquidity in the market. When the price falls below the fundamental value,
long-term investors will buy the asset. When the price falls further below the
fundamental value, long-term investors will buy more. The slope of the
demand curve k measures the liquidity provided by long-term investors. Larger
k means a steeper demand curve, and thus represents less liquidity from long-
term investors. Long-term investors are assumed to have deep pockets, i.e.,
they have no wealth constraints (consistent with exponential utility). As shown
later, the liquidity from long-term investors provides an exit strategy for
convergence traders during crises.
While this long-term strategy is profitable, it is not optimal. Because the

inventory of noise traders y changes randomly in a mean-reverting manner, a
short-term strategy can improve the portfolio performance of the long-term
investors. A short-term strategy implies trading more aggressively against noise
trading than with the long-term strategy used by long-term investors. This
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creates an opportunity for convergence traders to prosper in the market by
providing extra liquidity to noise traders.
The rationale behind the long-term strategy is its robustness. Graham (1973)

observes that a short-term strategy that improves upon the long-term strategy
for a given noise trading process can be subject to large model specification
risks. Therefore, he advocates a long-term strategy to exploit long-term
opportunities (measured by the safety margins) in the market. This view is
consistent with recent studies on the aversion to model uncertainty by Epstein
and Wang (1994) and Hansen et al. (1999). Since the focus of my model is on
the effect of convergence traders, I assume a simplistic trading rule for long-
term investors.

2.4. Convergence traders

Convergence traders behave optimally in response to a given noise trading
process. Intuitively, this means that they can make profits not only by
purchasing the risky asset when it is priced below fundamentals, but they can
also make short-term profits by taking the other side of transitory noise
trading. Due to the aggressive nature of convergence trading, convergence
traders are subject to large wealth fluctuations with the leverage they are
induced to use. This makes their wealth effect an important part of convergence
trading. In order to capture the two sides of convergence trading, i.e., short-
term opportunity and the wealth effect, convergence traders are assumed to be
a continuum of competitors who maximize an additively separable logari-
thmic utility function with an infinite time horizon and a time-preference
parameter r:

JðtÞ ¼ max Et

Z
N

0

e�rs lnðCtþsÞ ds: ð9Þ

With logarithmic utility, convergence traders have decreasing absolute risk
aversion. As their wealth approaches zero, convergence traders become
infinitely risk averse. To prevent their wealth from becoming negative,
convergence traders use the liquidity provided by long-term investors to
liquidate their risky positions as their wealth decreases. Note that there can be
no equilibrium with only convergence traders and noise traders (i.e., no long-
term investors), because wealth cannot be guaranteed to stay positive for
convergence traders when fundamentals have a normal distribution.
Since logarithmic utility prevents convergence traders’ wealth from falling

below zero in this model, there are no bankruptcy risks for convergence traders,
and creditors are always willing to lend money to them at the risk-free rate r: The
trading opportunity to convergence traders is the excess return process

dQ ¼ dPþ ðD� rPÞ dt ð10Þ
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with P denoting the price of the risky asset (not the fundamental value F). The
process dQ represents the cash flow to a fully levered portfolio long one share of
the risky asset.
I assume that convergence traders specialize in trading only in this asset

market. Their budget constraint is then

dW ¼ X dQþ ðrW � CÞ dt; ð11Þ

where W denotes their wealth, C denotes their consumption, and X denotes
their demand for the risky asset in shares. Consumption C can also be
interpreted as a dividend paid to investors in the convergence traders’ funds.
The convergence traders’ demand X and consumption C are derived from their
utility optimization problem. The budget constraint in Eq. (11) incorporates
the assumption that convergence traders will not receive any capital inflow at
any time. This assumption is motivated from imperfect capital inflow to
convergence trading discussed earlier.

3. Equilibrium

This paper studies a symmetric and perfectly competitive equilibrium. In this
equilibrium, each individual convergence trader is a price taker. Given
everyone else’s trading strategy, an individual convergence trader will
optimally choose the same strategy. This equilibrium condition implies that
a representative convergence trader’s trading strategy solves a fixed-point
problem.
In this model, there are two sources of uncertainty, the fundamental

shock ðdzDÞ and the noise trading shock ðdzyÞ: Since there is only one risky
asset, markets are incomplete. There are also two state variables, the level
of noise trading y and the aggregate wealth of convergence traders W :
The variables y and W represent, respectively, the total supply of risk and the
risk-bearing capacity of convergence traders. Due to logarithmic utility, the
total wealth of all convergence traders can be aggregated to represent their
aggregate risk-bearing capacity. Unlike models with constant absolute risk
aversion, the exact number of convergence traders is not important for the
equilibrium.
The fundamental variable D is not a state variable. Due to the normal

distribution assumption for the cash flow process, the fundamental risk is
constant and the variable D only measures the level of fundamental value.
Since long-term investors trade on long-term opportunities measured by the
difference between the price and the fundamental value, while convergence
traders trade on short-term opportunities measured by the Sharpe ratio (as
shown later by the model), the level of fundamental value has no effect on the
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trading strategies of either long-term investors or convergence traders.
Therefore, the variable D has no effect on the equilibrium.
The only function to be solved in the equilibrium is the convergence traders’

trading strategy or demand function for the risky asset Xðy;WÞ: This
equilibrium trading strategy should solve the convergence traders’ utility
optimization problem, while simultaneously satisfying the market-clearing
condition. With logarithmic utility, the convergence traders’ consumption
function is trivial, because they always consume their wealth at a constant rate
equal to their time-preference parameter. Given convergence traders’ trading
strategy Xðy;WÞ; the price function of the risky asset can be derived by
plugging the long-term investors’ demand function into the market-clearing
condition:

Pðy;W ;FÞ ¼ F � kðy� Xðy;WÞÞ: ð12Þ

This equation reveals the key feature of the model, which is that convergence
traders’ wealth dynamics influence the asset price dynamics. Actually, the
wealth dynamics and the price dynamics need to be determined simultaneously
in the equilibrium.
The equilibrium can be set up in three steps. The first step is to derive the

asset return process given the convergence traders’ trading strategy. The second
step is to derive a representative convergence trader’s optimal investment and
consumption policies given the asset return process. Finally, the equilibrium
involves solving a fixed-point problem which is a nonlinear second-order
partial differential equation. This equation can be solved numerically.

3.1. Asset return process

The asset return process dQ in Eq. (10) can be expressed in terms of a risk-
premium term and two volatility terms associated with the two sources of risk,
dzD and dzy:

dQ ¼ mQðy;WÞ dtþ sQDðy;WÞ dzD þ sQy ðy;WÞ dzy; ð13Þ

where mQ denotes the risk premium and sQD and sQy denote the two volatility
components. The risk premium and the volatility components are functions of
the two state variables W and y:
The wealth effect shows up through the simultaneous relation between

convergence traders’ wealth W and the return process dQ: On the one hand,
any shocks to dQ (either fundamental shocks, dzD; or noise trading shocks,
dzy) can change convergence traders’ wealth W through their budget
constraints as in Eq. (11) when they are taking some risky positions ðXa0Þ:
On the other hand, fluctuations of the convergence traders’ wealth induce
fluctuations of their local risk aversion due to logarithmic utility. If the risk
premium and volatility of convergence traders’ risky positions were to remain
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unchanged, the convergence traders would need to rebalance their risky
positions.4 The rebalancing can further move the asset prices through the
market-clearing condition as in Eq. (12). Therefore, any shock to dQ can be fed
back to itself, and the mechanism of this feedback effect is through the
convergence traders’ risk aversion. This feedback effect is exactly the wealth
effect studied in this paper. As shown later, this wealth effect always amplifies
original shocks.
The wealth effect appears as a common factor in the expressions of both the

risk premium, mQ; and the two volatility components, sQD and sQy of the excess
return process dQ: This factor Aðy;WÞ measures the magnitude of the wealth
effect, and is defined as

Aðy;WÞ ¼
1

1� kXðy;WÞXW ðy;WÞ
: ð14Þ

The subscripts y and W denote partial derivatives of a function with respect to
y or W ; i.e., XW is the derivative of X with respect to W ; and XWW is the
second derivative of X with respect to W :
The excess return process dQ is derived in Appendix A with the drift and

volatility terms given by

mQðy;WÞ ¼ fklyðy� %yÞð1� Xyðy;WÞÞ þ kXW ðy;WÞ½rW � Cðy;WÞ�

þ rkðy� Xðy;WÞÞ þ
ks2y
2
Xyyðy;WÞ

þ
k½sW ðy;WÞ�2

2
XWW ðy;WÞ

þ ksysWy ðy;WÞXyW ðy;WÞgAðy;WÞ; ð15Þ

sDDðy;WÞ ¼ sFAðy;WÞ; ð16Þ

sQy ðy;WÞ ¼ �ksyð1� Xyðy;WÞÞAðy;WÞ: ð17Þ

Appendix A also gives expressions for the convergence traders’ aggregate
wealth process.
Eq. (16) shows that the factor A measures the amplification of fundamental

shocks due to the wealth effect. Therefore, this amplification factor has the
same shape as the fundamental component of the return volatility. Eq. (17)
gives the noise trading component of the return volatility. It has three factors.
The first factor, �ksy; represents the effect of noise trading shocks on return
volatility when there are no convergence traders in the market and noise
trading shocks are buffered only by long-term investors. This factor can be
used as a benchmark to evaluate the effect of convergence traders on noise

4The risk premium and volatility do change with convergence traders’ wealth in equilibrium as

discussed in Section 4. I ignore them here for the sake of argument.
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trading shocks. The second factor, 1� Xy; represents the tendency for
convergence traders to reduce noise trading shocks if they are not wealth
constrained. This is a substitution effect. Due to the mean reversion of noise
trading, convergence traders tend to increase (reduce) their demand X when
noise trading supply y goes up (down). For profits to increase, the changes in
their demand must be less than the changes in y: Therefore, 1� Xy is always
between zero and one. The third factor of Eq. (17), Aðy;WÞ; represents the
amplification of noise trading shocks by the wealth effect. The wealth effect
forces convergence traders out of their positions in response to unfavorable
noise trading shocks. It therefore operates in the opposite direction from the
substitution effect. The net effect of convergence traders on noise trading
shocks is determined by the product of the second factor and the third factor. If
this product is below (above) one, convergence traders reduce (amplify) noise
trading shocks.
Market liquidity can be measured as @P=@y; the magnitude of price changes

caused by the innovations in asset supply shocks. It is easy to derive that

@P

@y
¼ �kð1� XyÞAðy;WÞ ¼

sQy
sy

: ð18Þ

Since sy is a constant, the noise trading component of return volatility sQy
measures the amount of liquidity in the market. When noise trading shocks can
cause large asset price fluctuations (large sQy ), there is little market liquidity.
When noise trading shocks can only cause small asset price fluctuations
(smaller sQy ), there is more market liquidity.

3.2. Optimal strategy of convergence traders

Given the return process dQ to an individual convergence trader, the value
function J is a function of wealth Wi and the two state variables W and y:

JðWi; y;WÞ ¼ max
fXi ;Cig

Et

Z
N

0

e�rs lnðCi
tþsÞ ds: ð19Þ

Note that Wi measures the individual convergence trader’s wealth, while W
represents the aggregate wealth of all convergence traders. The optimal
consumption and portfolio strategies can be solved using a Bellman equation
(see Appendix B):

Xi ¼
mQ

ðsQÞ2
Wi; ð20Þ

Ci ¼ rWi: ð21Þ

Consumption is a constant fraction r of wealth, where r is the time-
preference parameter. The consumption strategy can be interpreted as a
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constant dividend rate. The trading strategy is also proportional to the
convergence trader’s wealth, because logarithmic utility implies that the
convergence trader’s risk-bearing capacity is proportional to wealth. This
trading strategy can prevent wealth from falling to zero through dynamic
portfolio rebalancing. Whenever wealth drops, the convergence trader needs to
liquidate some risky positions if the risk premium mQ and the variance ðsQÞ2 are
unchanged. As wealth approaches zero, the convergence trader becomes
infinitely risk averse and takes almost no positions. In equilibrium, the
existence of long-term investors in the market is crucial to the implementation
of this strategy, because the liquidity from long-term investors provides a
means of exit for convergence traders.
The optimal trading strategy is short-term in the sense that it only depends

upon the instantaneous risk premium and the variance of the return process.
This contrasts with the long-term strategy used by long-term investors. This
trading strategy is also myopic, i.e., there is no hedging demand (against
changes in the future investment opportunity set), as discussed in Merton
(1971) and Breeden (1979). This is a well-known property of logarithmic utility,
and it makes the model more tractable. I will briefly discuss the effect of
hedging motives at the end of the paper.
The instantaneous mean and variance of the convergence trader’s wealth

growth rate are

Et
dWi

Wi

� �
¼

mQ

sQ

� �2

þr� r

" #
dt; ð22Þ

Vart
dWi

Wi

� �
¼

mQ

sQ

� �2
" #

dt: ð23Þ

From Eq. (22), the expected trading profit in percentage terms is determined by
the squared Sharpe ratio, while the expected wealth growth rate equals the
expected trading profits plus return from the risk-free asset minus the
consumption rate. From Eq. (23), the Sharpe ratio determines the volatility
of the convergence traders’ portfolio, which measures the leverage used by the
trader. These two equations highlight the importance of the Sharpe ratio to
convergence traders. Also, we see the great benefit of using logarithmic utility.
Logarithmic utility implies an intuitive trading strategy in terms of Sharpe
ratios, similar to the way in which Sharpe ratios are actually used in markets.

3.3. Fixed-point problem

In equilibrium, the trading and consumption rules, Xðy;WÞ and Cðy;WÞ;
should solve the log-utility optimization problem and satisfy the market-
clearing condition at the same time. Since an individual convergence trader’s
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optimal consumption and trading rules are proportional to his or her wealth,
the consumption and trading rules of all convergence traders can be aggregated
by replacing the individual wealth variable Wi with aggregate wealth W :
Denote the aggregate optimal trading rule by X * ðy;WÞ and the aggregate
optimal consumption rule by C * ðy;WÞ: Notice that X * and C * are functions
of the conjectured rules X and C as derived explicitly in Appendix B. It is
evident that the equilibrium is equivalent to a fixed-point problem:

X * ðy;WÞ ¼ Xðy;WÞ; ð24Þ

C * ðy;WÞ ¼ Cðy;WÞ: ð25Þ

These fixed-point conditions represent that given convergence traders’ trading
and consumption rules, the optimal trading and consumption rules of a
representative convergence trader should be the same. Thus, if a transversality
condition holds, the calculation of the equilibrium boils down to solving a
fixed-point problem.
To make the equilibrium interesting, the model assumes that the

convergence traders’ time-preference parameter (which is also their consump-
tion rate) is higher than the risk-free rate (r > r). Otherwise, convergence
traders could gradually accumulate wealth to infinity by investing in the risk-
free asset. In the limit as wealth approaches infinity, the risky asset will be
priced in a risk-neutral manner (P ¼ F). This is not an interesting case for us to
study. The assumption of r > r insures that there is only limited wealth for
convergence traders in a stationary equilibrium. Thus, interesting implications
can be derived about the dynamics of the convergence traders’ wealth process
and its effect on the asset price dynamics.
No existence or uniqueness theorems are available at this point. It is

conjectured that the existence of an equilibrium with a stationary distribution
of wealth is guaranteed by the assumption that long-term investors have a fixed
linear downward-sloping demand curve for the risky asset. Without long-term
investors, it is clear that convergence traders might not be able to liquidate
their positions in crises, resulting in no equilibrium. This paper uses a
numerical method to find a conjectured equilibrium, and discusses the
implications for convergence traders’ behavior and asset price dynamics.
In general, there will be no closed-form solution to the fixed-point problem.

From Eqs. (15)–(17), the solution for X * and C * in terms of X and C involves
derivatives of X up to second order. Thus, to solve the fixed-point problem, it is
necessary to solve a nonlinear second-order partial differential equation of X
with two state variables (W and y). This partial differential equation is
presented in Eq. (C.4) of Appendix C. Due to its non-linearity, this partial
differential equation is much more tedious than the equations in most linear
equilibrium models, where all the first derivatives become constant and the
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second derivatives become zero. Thus, a solution to the partial differential
equation is obtained numerically.
While a numerical solution of the partial differential equation is necessary,

the partial differential equation does satisfy obvious boundary conditions for
W ¼ 0 andN:When their wealth is zero, convergence traders do not trade, so
the boundary condition at W ¼ 0 is

Xðy; 0Þ ¼ 0: ð26Þ

On this bound, the price is given by

P ¼
%D

r
þ

D� %D

rþ lD
� ky: ð27Þ

The innovation on the per-share return for the risky asset is sF dzD � ksy dzy;

and the volatility of the per-share return on the risky asset is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2F þ ðksyÞ

2
q

:

This is the price volatility without convergence traders, and it will be used later
as a benchmark to evaluate the impact of convergence traders on price
volatility.
When wealth approaches infinity, the risk premium is driven toward zero,

i.e., the risky asset is priced in a risk-neutral manner. This drives long-term
investors out of the market, and convergence traders absorb all of the noise
trading. The boundary condition for W ¼ N is

Xðy;NÞ ¼ y: ð28Þ

On this bound, the price is equal to the fundamental value P ¼ F ; where F is
given in Eq. (2). The innovation on the per-share return for the risky asset is
sFdzD; and the volatility of the per-share returns on the risky asset is sF :

4. A numerical illustration of the equilibrium

I solve the equilibrium numerically using a projection method. The basic
idea is to approximate the equilibrium trading strategy of convergence traders
by rational functions using Chebyshev polynomials. The details of this
numerical method are discussed in Appendix D. For different parameter sets,
the calculated equilibria have similar qualitative features. Table 1 shows a
summary of some of these equilibria. To illustrate the equilibrium, I choose the
following values for the seven parameters needed to describe the model: sF ¼
0:3; %y ¼ 0; ly ¼ 0:5; sy ¼ 0:25; k ¼ 1:0; r ¼ 0:5%;r ¼ 2:5%: The time unit for
these values is per year. These seven parameters describe seven features of the
model. The first four of these features describe the equilibrium when there are
no convergence traders (or their wealth is zero):
1. The mean of the Sharpe ratio in the risky asset is zero.
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Table 1

Summary of equilibria with different parameters

The following seven parameters are needed to specify an equilibrium: sF is the volatility of

fundamental shocks of one share of the risky asset. %y is the mean of noise trading. ly is the mean
reverting speed of noise trading. sy is the volatility of noise trading shocks. k is the slope of long-

term investors’ demand curve for the risky asset. r is the risk-free interest rate. r is the time-

preference parameter of convergence traders.

The following variables are shown in this table: nu and nd are the orders of Chebyshev

polynomials in the numerator and denominator of the rational function used to approximate each

equilibrium demand function. The variable ‘‘Error’’ is the numerical error involved in the

numerical solution of each equilibrium as discussed in Appendix D. E½sQ� is the long-run average of
the total asset price volatility. E½sQD� is the long-run average of the fundamental component of the

asset price volatility. E½sQy � is the long-run average of the noise trading component of the asset price
volatility. E½W � is the long-run average of convergence traders’ wealth. E½ðmQ=sQÞ2� is the long-run
average of the squared Sharpe ratio in equilibrium. All these variables’ long-run averages are

estimated through Monte Carlo simulation. 2ðr� rÞ is roughly the long-run mean of the squared

Sharpe ratio as discussed in Section 4.

Panel A: Equilibrium dependence on fundamental volatility sF
a

sF nu nd Error E½sQ� E½sQD� E½sQy � E½W � E½ðmQ=sQÞ2� 2ðr� rÞ

0.25 13 13 1.1ð�3Þ 0.283 0.256 �0:113 0.199 3.95ð�2Þ 4.0ð�2Þ
0.30 12 12 7.1ð�4Þ 0.335 0.305 �0:132 0.179 4.02ð�2Þ 4.0ð�2Þ
0.35 10 10 1.5ð�3Þ 0.387 0.354 �0:151 0.144 4.03ð�2Þ 4.0ð�2Þ

Panel B: Equilibrium dependence on mean-reverting speed ly
b

ly nu nd Error E½sQ� E½sQD� E½sQy � E½W � E½ðmQ=sQÞ2� 2ðr� rÞ

0.4 10 10 4.4ð�3Þ 0.341 0.305 �0:148 0.158 3.84ð�2Þ 4.0ð�2Þ
0.5 12 12 7.1ð�4Þ 0.335 0.305 �0:132 0.179 4.02ð�2Þ 4.0ð�2Þ
0.6 10 10 2.5ð�3Þ 0.330 0.306 �0:116 0.202 3.89ð�2Þ 4.0ð�2Þ

Panel C: Equilibrium dependence on noise trading volatility sy
c

sy nu nd Error E½sQ� E½sQD� E½sQy � E½W � E½ðmQ=sQÞ2� 2ðr� rÞ

0.15 10 10 1.0ð�3Þ 0.331 0.302 �0:134 0.038 4.30ð�2Þ 4.0ð�2Þ
0.20 12 12 7.1ð�4Þ 0.335 0.305 �0:132 0.179 4.02ð�2Þ 4.0ð�2Þ
0.25 13 13 3.0ð�3Þ 0.342 0.308 �0:139 0.306 3.96ð�2Þ 4.0ð�2Þ
0.30 13 13 6.7ð�3Þ 0.349 0.310 �0:149 0.434 3.96ð�2Þ 4.0ð�2Þ

Panel D: Equilibrium dependence on liquidity parameter kd

k nu nd Error E½sQ� E½sQD� E½sQy � E½W � E½ðmQ=sQÞ2� 2ðr� rÞ

0.9 10 10 1.52ð�3Þ 0.333 0.304 �0:130 0.142 4.03ð�2Þ 4.0ð�2Þ
1.0 12 12 7.1ð�4Þ 0.335 0.305 �0:132 0.179 4.02ð�2Þ 4.0ð�2Þ
1.1 12 12 2.99ð�4Þ 0.338 0.307 �0:134 0.210 3.99ð�2Þ 4.0ð�2Þ
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2. The standard deviation of the Sharpe ratio is 0.323

(ðrþ lyÞksy=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ly½s2F þ ðksyÞ

2�
q

; from Appendix A).
3. Noise traders cause the price volatility in the risky asset to be 0.391

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2F þ ðkAsyÞ

2
q

Þ; which is 30.2% higher than what it would be if noise trading
volatility were zero.
4. The half-life of noise trading is 1.39 years ðlnð2Þ=lyÞ:

Panel E: Equilibrium dependence on time preference re

r nu nd Error E½sQ� E½sQD� E½sQy � E½W � E½ðmQ=sQÞ2� 2ðr� rÞ

2:0% 10 10 3.0ð�3Þ 0.328 0.306 �0:111 0.267 3.00ð�2Þ 3.0ð�2Þ
2:5% 12 12 7.1ð�4Þ 0.335 0.305 �0:132 0.179 4.02ð�2Þ 4.0ð�2Þ
3:0% 10 10 2.9ð�3Þ 0.342 0.305 �0:151 0.116 5.04ð�2Þ 5.0ð�2Þ

Panel F: Equilibrium dependence on average noise supply %yf

%y nu nd Error E½sQ� E½sQD� E½sQy � E½W � E½ðmQ=sQÞ2� 2ðr� rÞ

0 12 12 2.4ð�3Þ 0.343 0.311 �0:139 0.250 4.04ð�2Þ 4.0ð�2Þ
0.5 12 12 2.3ð�3Þ 0.333 0.315 �0:103 0.444 4.02ð�2Þ 4.0ð�2Þ
1.0 12 12 1.8ð�3Þ 0.345 0.329 �0:094 0.702 4.05ð�2Þ 4.0ð�2Þ

Panel G: Equilibrium dependence on interest rate rg

r nu nd Error E½sQ� E½sQD� E½sQy � E½W � E½ðmQ=sQÞ2� 2ðr� rÞ

5% 14 14 2.2ð�3Þ 0.345 0.313 �0:139 0.271 5.98ð�2Þ 6.0ð�2Þ
6% 12 12 2.3ð�3Þ 0.333 0.315 �0:103 0.444 4.02ð�2Þ 4.0ð�2Þ
7% 12 12 1.1ð�3Þ 0.323 0.315 �0:064 0.808 2.00ð�2Þ 2.0ð�2Þ

aEvery equilibrium in this panel shares the following parameters:
%y ¼ 0; ly ¼ 0:5; sy ¼ 0:2; k ¼ 1:0; r ¼ 0:5%; r ¼ 2:5%:

bEvery equilibrium in this panel shares the following parameters:

sF ¼ 0:3; %y ¼ 0; sy ¼ 0:2; k ¼ 1:0; r ¼ 0:5%; r ¼ 2:5%:
cEvery equilibrium in this panel shares the following parameters:

sF ¼ 0:3; %y ¼ 0; ly ¼ 0:5; k ¼ 1:0; r ¼ 0:5%; r ¼ 2:5%:
dEvery equilibrium in this panel shares the following parameters:

sF ¼ 0:3; %y ¼ 0; ly ¼ 0:5; sy ¼ 0:2; r ¼ 0:5%; r ¼ 2:5%:
eEvery equilibrium in this panel shares the following parameters:

sF ¼ 0:3; %y ¼ 0; ly ¼ 0:5; sy ¼ 0:2; k ¼ 1:0; r ¼ 0:5%:
fEvery equilibrium in this panel shares the following parameters:

sF ¼ 0:3; ly ¼ 0:5; sy ¼ 0:25; k ¼ 1:0; r ¼ 6%; r ¼ 8%:
gEvery equilibrium in this panel shares the following parameters:

sF ¼ 0:3; ly ¼ 0:5; sy ¼ 0:25; k ¼ 1:0; r ¼ 8%; %y ¼ 0:5:

Table 1 (continued)
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The remaining three features show the scales of units in the equilibrium:
5. The convergence traders’ wealth decreases at a rate of 2% ðr� rÞ per year

if they do not make any trading profits at all.
6. The value sF ¼ 0:3 gives the units in which shares of the risky asset are

measured.
7. The value r ¼ 0:5% gives the rate at which the present value is calculated.
The equilibrium is described with graphs depicting various functions of the

two state variables, wealth W and noise trading y: Notice that both state
variables have been transformed into the region of ½�1; 1� (see Appendix D).
The domain of all graphs is a square in the transformed W ; y plane centered at
the origin. Each graph fits into a rectangular box with this square as its base,
and the graph is rotated so that the intersection of the graph with the vertical
faces of the box indicate the behavior of the variable at extreme values of the
state variables as follows:
Southeast face: Convergence traders have zero wealth.
Northwest face: Convergence traders have infinite wealth.
Northeast face: Noise traders have a four-standard-deviation short position.
Southwest face: Noise traders have a four-standard-deviation long position.

4.1. Convergence traders’ demand function

Fig. 1 shows the demand function of convergence traders for the risky asset.
The intersection of the graph and the southeast face is a horizontal line at zero,
reflecting the boundary condition that convergence traders have a zero
aggregate position when they have no wealth. The northwest face contains a
45-degree line, indicating the boundary condition that convergence traders
absorb all the noise supply when they have infinite wealth. The northeast face
indicates that when noise traders are big sellers, convergence traders’ demand
goes monotonically (but not linearly) from zero to 100% of the noise trading as
their wealth goes from zero to infinity. The southwest face indicates that when
noise traders are big buyers, convergence traders’ supply goes monotonically
from zero to 100% of the noise trading as their wealth goes from zero to
infinity. On both the northeast and southwest faces, the asset offers large
(positive or negative) expected returns which convergence traders exploit as
their wealth permits.

4.2. The Sharpe ratio and wealth dynamics

Fig. 2 shows the squared Sharpe ratio. As discussed earlier, this variable
represents convergence traders’ expected trading profits measured as a
percentage of their wealth. It is also the instantaneous variance of the
convergence traders’ wealth growth rate, therefore representing the risk of their
portfolio. From the graph, the squared Sharpe ratio is zero when convergence
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traders have infinite wealth, indicating zero expected trading profits and also
zero risk for their portfolio. When convergence traders have zero wealth, the
squared Sharpe ratio can be very large as the noise trading moves away from
its long-term mean of zero. This indicates very profitable trading opportunities
for convergence traders. At the same time, convergence traders face large risks
in their portfolio when they exploit these opportunities by taking the other side
of noise trading.
For a given level of noise trading, the squared Sharpe ratio gradually

decreases as convergence traders’ wealth goes from zero to infinity. This is due
to the increase in risk-bearing capacities among convergence traders, which
cause decreased risk premia. This property of the Sharpe ratio results in mean-

Fig. 1. Equilibrium demand function X of convergence traders for the risky asset. The two

independent variables are convergence traders’ aggregate wealth and noise trading. Aggregate

wealth has been transformed monotonically using z ¼ ðW � 1Þ=ðW þ 1Þ from ð0;NÞ into ð�1; 1Þ:
As the transformed wealth z ranges from �1 to 1, the aggregate wealth W ranges from zero to

infinity. Noise trading y ranges from �1 (four standard deviations below its mean of zero) to 1

(four standard deviations above its mean of zero).
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reverting dynamics for the convergence traders’ wealth process. The drift rate
of the logarithm of convergence traders’ wealth can be derived from Eqs. (22)
and (23) by using Ito’s lemma:

Et½d logðWÞ� ¼
1

2

mQ

sQ

� �2

�ðr� rÞ

" #
dt; ð29Þ

where the coefficient of 12 appears due to the second-order term in Ito’s lemma.
This formula can help us discuss the dynamics of the wealth process and the
Sharpe ratio. When convergence traders’ wealth is low, a large risk premium is
needed to induce them to bear risk, resulting in a large squared Sharpe ratio in

Fig. 2. Squared Sharpe ratio ðmQ=sQÞ2 of the risky asset. The two independent variables are

convergence traders’ aggregate wealth and noise trading. Aggregate wealth has been transformed

monotonically using z ¼ ðW � 1Þ=ðW þ 1Þ from ð0;NÞ into ð�1; 1Þ: As the transformed wealth z

ranges from �1 to 1, the aggregate wealth W ranges from zero to infinity. Noise trading y ranges
from �1 (four standard deviations below its mean of zero) to 1 (four standard deviations above its

mean of zero).
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the market. If the squared Sharpe ratio is larger than 2ðr� rÞ; trading is so
profitable that convergence traders’ wealth is expected to go up. As wealth
becomes large, the increased risk-bearing capacity of convergence traders will
drive down the risk premium (or the squared Sharpe ratio). If the squared
Sharpe ratio is less than 2ðr� rÞ; convergence traders cannot make enough
money from trading to make up for their consumption, so their wealth is
expected to go down. As a result, the wealth process follows mean-reverting
dynamics.
Eq. (29) also implies that the long-run mean of the squared Sharpe ratio is

roughly 2ðr� rÞ: This result is motivated from the fact that convergence
traders’ long-run average trading profits should be equal to their average
consumption in order for their wealth process to be in balance. This result can
be confirmed by simulations of equilibria with different parameter sets. As
shown in Table 1, the long-run mean of the squared Sharpe ratio is always
about 2ðr� rÞ across a wide range of parameter sets. According to this result,
the trading opportunities left in the market are primarily determined by the
convergence traders’ time-preference parameter, and it depends very little on
market conditions such as the fundamental value process and the noise trading
process. The time preference (or the consumption rate given by the logarithmic
utility function) can be interpreted as the convergence traders’ cost of capital.
In this sense, this result implies that the long-run trading opportunities in the
market are determined by the convergence traders’ cost of capital, similar in
spirit to the model of endogenous participation of liquidity provision by
Grossman and Miller (1988).

4.3. Stationary probability density

Since both of the two state variables, noise trading and convergence traders’
wealth, follow mean-reverting processes, the equilibrium is stationary. The
stationary distribution of the equilibrium is obtained through a simulation of
1,000 years of weekly data (using an Euler approximation) and shown in Fig. 3.
This figure shows that noise trading concentrates within two standard
deviations of its unconditional distribution, and convergence traders’ wealth
is mostly between zero and an intermediate level.

4.4. The amplification mechanism and effect on fundamental shocks

Fig. 4 shows the fundamental component of the asset return volatility sQD:
From Eq. (16), this volatility component has the same shape as the wealth
effect amplification factor Aðy;WÞ: From the graph, it equals the volatility of
fundamental shocks ðsF ¼ 0:3Þ when the wealth is either zero or infinity. In
between, it is always above sF ; indicating that the wealth effect is always
amplifying. To illustrate the intuition, consider a situation when noise trading
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is above zero. In this situation, convergence traders take long positions in the
risky asset (from Fig. 1). If a negative fundamental shock hits the market and
there is no change in noise trading, convergence traders lose money on their
positions, and their risk aversion increases. This induces convergence traders to
reduce their risky positions. The reduction of convergence traders’ long
positions further pushes down the asset price, and the fundamental shock is
amplified. Similar intuition applies to other situations when positive funda-
mental shocks hit the market or noise trading is below zero. Therefore, the
wealth effect of convergence traders provides an amplification mechanism for
financial market shocks.

Fig. 3. Steady-state probability density of the two state variables. The two independent variables

are convergence traders’ aggregate wealth and noise trading. Aggregate wealth has been

transformed monotonically using z ¼ ðW � 1Þ=ðW þ 1Þ from ð0;NÞ into ð�1; 1Þ: As the

transformed wealth z ranges from �1 to 1, the aggregate wealth W ranges from zero to infinity.

Noise trading y ranges from �1 (four standard deviations below its mean of zero) to 1 (four

standard deviations above its mean of zero). The steady-state probability density of the two state

variables is estimated by simulating 1,000 years of equilibrium trading.
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The magnitude of the volatility amplification from the wealth effect changes
with the two state variables, and it is most significant when noise trading is far
from its mean of zero and convergence traders’ wealth is at some intermediate
level. From Eq. (14), there are two conditions necessary for the amplification
effect to be large. First, the trading opportunity should be great, so that
convergence traders will be induced to take large levered positions and
therefore make their portfolio highly sensitive to shocks in the market. Second,
the positions of convergence traders should be large so that the position
rebalancing caused by exogenous shocks can generate a large price impact.
Combining these two conditions, the amplification effect is large when noise
trading is large and convergence traders’ wealth is at some intermediate level.
In this numerical example, the mean of noise trading is zero, so the

Fig. 4. Fundamental component of asset return volatility sQD: The two independent variables are

convergence traders’ aggregate wealth and noise trading. Aggregate wealth has been transformed

monotonically using z ¼ ðW � 1Þ=ðW þ 1Þ from ð0;NÞ into ð�1; 1Þ: As the transformed wealth z

ranges from �1 to 1, the aggregate wealth W ranges from zero to infinity. Noise trading y ranges
from �1 (four standard deviations below its mean of zero) to 1 (four standard deviations above its

mean of zero).

W. Xiong / Journal of Financial Economics 62 (2001) 247–292270



amplification effect is symmetric with y: If the mean of y is nonzero, the
amplification effect becomes asymmetric, but it is still most significant in the
regions when noise trading is far from its mean and when convergence traders’
wealth is in some intermediate level.

4.5. Destabilizing speculation and effect on noise trading shocks

Fig. 5 shows the noise trading component of the return volatility sQy : From
the discussion above, this component also measures market liquidity. It is zero
when the wealth is infinite, reflecting a perfectly efficient market, i.e., noise
trading has no effect on prices and the market is infinitely liquid. When wealth
is zero, this volatility component ksy equals 0.25. This level represents the
effect of noise trading shocks on return volatility when there are no
convergence traders and the noise trading shocks are purely buffered by
long-term investors. This level measures the liquidity provided by long-term
investors and can be used as a benchmark to evaluate the effect of convergence
traders on noise trading shocks and market liquidity.
The shape of sQy when wealth is between zero and infinity reveals the

interaction between the wealth effect and the substitution effect discussed earlier.
In the middle of the graph, there is a valley where the value of noise trading is
near its mean ðy ¼ 0Þ: Along this valley, the magnitude of sQy declines
monotonically from the benchmark level to zero as convergence traders’ wealth
increases from zero to infinity. This suggests that the substitution effect
dominates the wealth effect in this valley. Convergence traders will be induced to
take larger positions in response to increased noise trading in the market,
because increased noise trading pushes the asset price further out of line and
makes the Sharpe ratio higher. As a result, the convergence traders’ trading
reduces the effect of noise trading shocks and provides liquidity into the market.
Furthermore, convergence traders become more effective in reducing the effect of
noise trading shocks as their risk-bearing capacities increase with their wealth.
For regions outside the middle valley, where noise trading y is far from its

mean of zero and wealth is below some intermediate level, the magnitude of sQy
can be even larger than the benchmark level of 0.25, indicating that the effect of
noise trading shocks has been amplified. This is exactly the region where the
wealth effect dominates the substitution effect. The mechanism works as
follows. When noise trading increases, the price moves further out of line. This
causes convergence traders to suffer large capital losses on their current
positions, and their risk-bearing capacities decrease so much that they need to
unwind some of their positions, although the Sharpe ratio becomes even higher
than before.
The situation in which the wealth effect dominates the substitution effect is

interesting, because it indicates that speculation can be destabilizing in the
sense that speculators (convergence traders in this paper) can be trading in
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exactly the same direction as noise traders, e.g., dX=dyo0: It is shown that
dX=dyo0 is equivalent5 to

ð1� XyÞAðy;WÞ > 1: ð30Þ

As discussed before, the factor 1� Xy represents the substitution effect, while
the factor A represents the wealth effect. Using this definition of destabili-
zing speculation, the bound between destabilizing speculation and stabilizing
speculation is shown in Fig. 6. This figure indicates that convergence trading

Fig. 5. Noise trading component of the asset return volatility sQy : The two independent variables

are convergence traders’ aggregate wealth and noise trading. Aggregate wealth has been

transformed monotonically using z ¼ ðW � 1Þ=ðW þ 1Þ from ð0;NÞ into ð�1; 1Þ: As the

transformed wealth z ranges from �1 to 1, the aggregate wealth W ranges from zero to infinity.

Noise trading y ranges from �1 (four standard deviations below its mean of zero) to 1 (four

standard deviations above its mean of zero).

5By definition, dXðy;WÞ=dy ¼ Xy þXWdW=dy: From Eq. (11), dW=dy ¼ XdQ=dy: From

Appendix A, dW=dy ¼ ½�kð1� XyÞ�=ð1� kXXW Þ: Therefore, dX=dy ¼ 1� ½ð1�XyÞ�=ð1�
kXXW Þ ¼ 1� ð1� XyÞAðy;WÞ:
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can be destabilizing over a large region where noise trading is far from its
long-term mean and convergence traders’ wealth is in a low or intermediate
range. From Fig. 3 we know that the two state variables are highly
concentrated in the middle. Therefore, convergence traders are stabilizing
most of the time, while only in extreme circumstances do convergence traders
become destabilizing.
This result contrasts with the common-sense observation that speculators

always buy cheap and sell dear, and so always stabilize prices, as strongly
expressed by the famous argument of Friedman (1953) that ‘‘to say that
speculation is destabilizing is equivalent to saying that speculators lose money
on average’’. The model in this paper is consistent with Friedman in the sense
that, on average, convergence traders do make money and move prices towards
their fundamentals. But in contrast to Friedman’s intuition, convergence
traders do not always make money. When they lose money, their increased risk
aversion can induce them to sell when prices are cheap and to buy when prices
are high, resulting in destabilizing speculation.

Fig. 6. Bound of destabilizing speculation. The bound is plotted between convergence traders’

aggregate wealth and noise trading. Aggregate wealth has been transformed monotonically using

z ¼ ðW � 1Þ=ðW þ 1Þ from ð0;NÞ into ð�1; 1Þ: As the transformed wealth z ranges from �1 to 1,

the aggregate wealthW ranges from zero to infinity. Noise trading y ranges from�1 (four standard
deviations below its mean of zero) to 1 (four standard deviations above its mean of zero).
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4.6. Total volatility

Fig. 7 shows the total return volatility in the risky asset. When wealth is
infinite, volatility is a constant equal to the volatility of fundamental shocks
ðsF ¼ 0:3Þ because convergence trading fully offsets noise trading. When
wealth is zero, volatility is constant at the level of 0:391; which is higher than
the fundamental volatility because of additional noise trading that is not offset.
The latter level is a benchmark level used to evaluate the effect of convergence
traders on total volatility. When noise trading is near its mean of zero,
volatility declines monotonically as wealth increases from zero to infinity along
the valley in the middle of the graph. This shows that convergence traders
reduce total price volatility because the substitution effect causes them to
reduce noise trading shocks more than the wealth effect causes them to amplify

Fig. 7. Total asset return volatility sQ: The two independent variables are convergence traders’

aggregate wealth and noise trading. Aggregate wealth has been transformed monotonically using

z ¼ ðW � 1Þ=ðW þ 1Þ from ð0;NÞ into ð�1; 1Þ: As the transformed wealth z ranges from �1 to 1,

the aggregate wealthW ranges from zero to infinity. Noise trading y ranges from�1 (four standard
deviations below its mean of zero) to 1 (four standard deviations above its mean of zero).
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fundamental shocks. When noise trading is far from its mean and wealth is
between zero and some intermediate level, the wealth effect dominates the
substitution effect, and it causes volatility to be larger than the benchmark
level. Fig. 4 shows that the two state variables stay near the middle valley most
of the time. Therefore, convergence traders reduce volatility on average, but
they can also increase volatility in extreme circumstances.
The shape of total volatility is consistent with two important aspects of asset

price volatility: excess volatility and stochastic volatility. Campbell et al. (1998)
provide a complete literature review on asset price volatility. Volatility can be
excessive in the sense that it is too large to be explained by asset fundamentals
from the simple present value model with a constant discount rate. There are
two sources of extra volatility in my model in addition to fundamental
volatility. One is noise trading shocks, and the other is the volatility
amplification of the convergence traders’ wealth effect. The first source has
been modeled by Campbell and Kyle (1993). When speculators (or smart
traders) are risk averse, they cannot eliminate all the effects of noise trading,
with the result that noise trading shocks are part of total volatility. The
volatility amplification from the convergence traders’ wealth effect is the
contribution of this paper to the literature. More specifically, the wealth effect
causes fundamental shocks to be amplified.6 Volatility also varies smoothly
over time with the evolution of the two state variables (convergence traders’
wealth and noise trading), because the magnitude of the amplification depends
nonlinearly on the two state variables.
The amplification effect studied in this model does not imply that margin

buying always destabilizes prices and increases volatility. This type of negative
effect from (margin) leverage only occurs in extreme circumstances. On ave-
rage, convergence trading reduces price volatility and improves market depth.
These results are consistent with the empirical literature on the effect of margin
buying on stock price volatility. There has been a long debate on this subject,
as in Moore (1966) and Officer (1973). More recent contributions include
Schwert (1989a,b), Hsieh and Miller (1990), Seguin (1990), and Hardouvelis
(1990). In his review of the literature, Kupiec (1997) says there is no consistent
empirical evidence supporting either the hypothesis that margin buying causes

6In the model, convergence traders will always increase asset price volatility if there is no noise

trading in markets. Without noise trading, the only sources of asset return volatility are

fundamental shocks, and only long-term investors and convergence traders trade the risky asset.

Intuitively, we can think of convergence traders as investors using a dynamic risk management

strategy to prevent their wealth from falling below zero. This situation is analogous to models on

portfolio insurance by Grossman (1988) and Grossman and Zhou (1996). These models

demonstrate that when some investors follow portfolio insurance strategies, the market volatility

is increased. This is very similar to my model’s prediction that, without noise trading in markets,

the presence of convergence traders using dynamic risk management strategies increases price

volatility.
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larger volatility or the hypothesis that margin buying reduces volatility. My
model confirms the subtlety of this issue, even from a theoretical point of view.
For other theoretical work on this topic, see Chowdhry and Nanda (1998).

5. Discussions of the model

In this section, I discuss some implications of the model. First, I discuss the
implications of liquidity risk for risk management by linking the model to the
near-collapse of Long-Term Capital Management (LTCM) in 1998: Second, I
discuss long-run implications for capital devoted to convergence trading.

5.1. LTCM and risk management of liquidity risks

My model is consistent with some of the observations about the critical
situation faced by LTCM in the late summer of 1998: The market conditions
during this period are described by the Bank for International Settlements
(BIS, 1999, p. 10): ‘‘Following Russia’s currency devaluation and default, yield
spreads on corporate bonds widened sharply worldwide, particularly for
instruments with lower credit standing. Day-to-day changes in financial prices
were unusually volatile. Measures of implied volatility, inferred from options
prices, rose sharply, peaking in October for most industrial country markets.
Quoted bid–ask spreads rose in a number of markets, reflecting reduced
liquidity. The yield premium for off-the-run government bonds in major
industrial countries also widened.’’ The report also provides detailed data on
these market variables.
The severe market conditions were partly related to the trading of a group of

specialized hedge funds represented by LTCM. According to the same report
(BIS, 1999, p. 7), ‘‘LTCM sought high rates of return primarily by identifying
small discrepancies in the prices of various instruments relative to historical
norms and then taking highly leveraged positions in the instruments in the
expectations that market prices would revert to such norms over time.’’ The
essence of this strategy is exactly the convergence trading studied in my model.
The model captures one of the key ingredients of this event: as LTCM and
other hedge funds following similar strategies scaled back their activities
voluntarily to preserve their capital after initial losses, there was a dramatic
widening in previously narrow swap spreads, credit spreads, etc., and the initial
shocks that triggered the scaling back of these hedge funds were amplified.
By aggressively taking positions against noise trading, convergence traders

effectively provide liquidity in markets. The episode of LTCM illustrates the
disturbing possibility that liquidity providers can run into liquidity problems
themselves due to capital constraints. In practice, liquidity provision is a low-
margin business pursued by leveraged financial institutions. The use of leverage
increases the possibility that these financial institutions might be forced out of
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their positions after capital losses, resulting in a one-way market. This liquidity
risk creates a major challenge to the risk management system of highly
leveraged financial institutions. As illustrated by the numerical example in the
previous section, asset price volatility in certain extreme circumstances can be
very different from historical average volatility or from volatility in normal
periods. This type of extreme volatility can be forecast by the aggregate
positions and capital of convergence traders using my model based on the
trading strategy of convergence traders and liquidity provided by long-term
investors. This type of liquidity risk only becomes significant in extreme
circumstances. Therefore, it is very difficult for currently popular Value-at-Risk
types of risk management systems to handle. A typical Value-at-Risk type of
risk management system analyzes risks based on historical data, and can
therefore be ineffective in extreme situations. After the LTCM episode in 1998;
more and more practitioners and regulators started to realize the importance of
managing liquidity risks and the ineffectiveness of Value-at-Risk types of risk
management methods.
A more recent report issued by the Bank for International Settlements (BIS,

2000) discusses a new risk management method called ‘‘dynamic macro stress
testing’’. By interviewing more than 20 large international financial institu-
tions, the BIS collected information on these financial institutions’ risk expo-
sures to certain exceptional but plausible financial market scenarios. The BIS
proposes to use this information on the aggregate risk exposure of financial
institutions to manage liquidity risks in certain markets. This proposal is
consistent with the results of my model in that it is important to take into
account the amplification mechanism caused by the convergence traders’ wea-
lth effect. However, my model goes beyond the stress testing method discussed
by the BIS. One of the weaknesses of stress testing is that it only reflects the
potential losses corresponding to a specific stress scenario, but not the proba-
bility of the scenario. By studying the dynamics of market equilibrium, my
model allows probabilities to be calculated for the endogenous liquidity risks.

5.2. Which markets attract convergence traders?

Specialization has been an important feature of convergence trading. As
pointed out by Merton (1987) and Shleifer and Vishny (1997), both normal
investors and professional traders can only trade in a limited number of assets
due to the information costs of participating in more markets. Some empirical
evidence suggests that convergence traders do specialize and only limited
amounts of capital are allocated in certain specific markets. Mitchell and
Pulvino (1999) and Baker and Savasoglu (2000) study the expected risk
premium in merger arbitrage trades. They find that returns in merger arbitrage
increase with ex ante completion risk and target size, and decrease with the
general supply of arbitrage capital. Shleifer (1986) and Wurgler and
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Zhuravskaya (2000) study the profits from convergence trading positions
consisting of short-selling a stock newly added to the S&P 500 index and
buying a substitute stock. They find a positive risk premium from this type of
trade, and an especially large risk premium for stocks without close substitutes.
Froot and O’Connell (1997) find evidence that risk premiums in the insurance
industry rise when insurers’ capital is low. Based on these studies, convergence
traders demand risk premiums for bearing risks in specific idiosyncratic
markets, and the risk premium demanded decreases with their capital.
Furthermore, capital does not flow efficiently into markets where convergence
traders are undercapitalized.
When convergence traders specialize, an interesting question raised by Shleifer

and Vishny (1997) is this: Which markets attract convergence traders? They
argue that since price volatility makes arbitrage (convergence trading) more
difficult, high volatility deters arbitrage activity. My model allows us to look at
this question more closely. The long-run average wealth accumulated in a
market by convergence traders is a measure of convergence trading activity. By
numerically computing the average wealth across different equilibria with
different exogenous parameter values, I can discuss the effect of each parameter.
There are four variables that are relevant to this discussion: the volatility of

fundamental shocks, the volatility of noise trading shocks, the mean-reverting
speed of noise trading, and the slope of the demand curve of long-term inv-
estors. Simulation results in Panel A of Table 1 show that with all other
parameters fixed, long-run average wealth decreases with the volatility of fun-
damental shocks. In this sense, high fundamental volatility discourages con-
vergence trading activity because it makes convergence trading riskier. On the
other hand, long-run average wealth increases with the volatility of noise
trading shocks as shown in Panel C of Table 1. This suggests that a high vo-
latility of noise trading shocks encourages convergence trading activity because
it generates more trading opportunities in the market. Panel B of Table 1 shows
that long-run average wealth increases with the mean-reverting speed of noise
because convergence traders can expect their profits earlier. Panel D of Table 1
shows that long-run average wealth increases with the slope of the long-term
investors’ demand curve. This suggests that more convergence trading activity
is expected if long-term investors provide less liquidity. With less liquidity from
long-term investors, more trading opportunities are available for convergence
traders, so they will accumulate more capital in the long run.
I do not claim that the amplification mechanism studied in this model applies

to aggregate stock market volatility.7 But it should be important for specific
sectors where there is a group of specialized convergence traders with

7The crisis of LTCM eventually became a crisis of the aggregate financial markets due to the

involvement of many banks and security firms as the creditors and counterparties of LTCM, but

these issues are beyond my model. Edwards (1999) provides some discussion of these issues.
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undiversified portfolios. Shocks in such markets can generate large fluctuations
in convergence traders’ capital, resulting in significant wealth effects. Even
when convergence traders trade in more than one sector but are not fully
diversified, Kyle and Xiong (2001) show that the wealth effect can still be
generated and cause assets in their portfolio to move more closely together,
resulting in reduced benefits from diversification.
Bond markets attract convergence trading on the spread positions between

different bonds with larger than usual yield spreads, because the fundamental
risks involved in this type of trade can be very limited. The effect of the
amplification mechanism in bond markets was vividly illustrated by LTCM in
1998: Even one year after the event, the yield spread between corporate bonds
and U.S. Treasury bonds stayed at a very high level compared with its
historical level. This could be partly due to the fact that convergence traders in
bond markets had lost most of their capital during the LTCM crisis, and were
not fully recapitalized after a year. Merger arbitrage trades are also very
popular among convergence traders. Since there are usually specific time limits
for a merger deal to either succeed or fail, convergence speed is high and
convergence traders can expect to realize profits quickly. With a group of
specialized merger arbitrageurs in this market, the risk premium would be
negatively related to their capital. After a series of failed deals, convergence
traders can lose a significant percentage of their capital, and the risk premium
as well as the volatility of the stocks involved are also likely to rise. Another
type of trade widely used is ‘‘pairs trading’’ of stocks, which involves betting
that the price differential between two stocks will converge. We would expect
similar phenomena with pairs trading.

6. Conclusions

This paper develops an equilibrium model of a market with a group of
specialized convergence traders. The assumption of a logarithmic utility
function for convergence traders causes their risk-bearing capacity to change
proportionally with their wealth. In equilibrium, the wealth effect occurs
through the endogenous and simultaneously determined relation between
convergence traders’ wealth dynamics and asset price dynamics. When
convergence traders suffer capital losses due to unfavorable shocks, they need
to liquidate some of their positions, thereby causing the original shocks to be
amplified. In this way, the wealth effect provides an amplification mechanism
for financial market shocks, and this amplification mechanism can explain
excess volatility and stochastic volatility. The model also studies the interaction
between two effects in convergence trading that operate in opposite directions:
the substitution effect and the wealth effect. Most of time, the substitution
effect dominates the wealth effect, and convergence traders are induced to take
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larger positions in response to increased noise trading in the market. As a
result, their trading provides liquidity and reduces asset price volatility. In
certain extreme circumstances, however, the wealth effect can dominate the
substitution effect. When this happens, convergence traders need to unwind
some of their positions in response to increased noise trading. As a result, their
trading becomes destabilizing in the sense that they are trading in exactly the
same direction as noise traders, resulting in amplified price volatility and
reduced market liquidity. This type of endogenous liquidity risk in extreme
circumstances creates a challenge for the risk management systems of leveraged
financial institutions. My model offers risk managers a tool to study market
equilibrium dynamics and to forecast this type of extreme risk using
information on market participants’ aggregate positions and capital.
The wealth effect studied in this paper is driven by voluntary liquidation of

convergence traders after their capital losses. Another possible mechanism to
generate the wealth effect is through the involuntary liquidation of convergence
traders caused by binding credit constraints imposed by their creditors. As
convergence traders suffer large capital losses, their creditors can choose to call
back their loans to avoid further losses. Both voluntary liquidation and
involuntary liquidation of convergence traders have been recognized by
Shleifer and Vishny (1997) and the Bank for International Settlements report
(BIS, 1999) as possible mechanisms associated with stressed market conditions.
The mechanism of involuntary liquidation should generate an amplification
effect on price dynamics that is qualitatively similar to that of the mechanism
of voluntary liquidation, only with an even larger magnitude. Loosely
speaking, credit constraints impose a constant upper limit on the leverage of
convergence traders. Conversely, the internal constraints on the leverage ratio
generated by logarithmic utility can expand in response to better trading
opportunities in the markets, because convergence traders with logarithmic
utility take higher leverage when the Sharpe ratio is larger. Because of this, the
involuntary liquidation caused by binding credit constraints can be larger than
the voluntary liquidation caused by the logarithmic utility studied in my model.8

In many cases, convergence traders are agents managing other people’s
money, such as hedge funds or proprietary traders of publicly listed securities
firms. This creates a potential agency problem between convergence traders
and their investors. As highlighted by Shleifer and Vishny (1997), the agency
problem can cause capital to flow out from convergence traders when
they suffer capital losses, if their investors start to doubt their strategy or

8Liu and Longstaff (2000) study a portfolio choice problem of an arbitrageur facing margin

constraints and an exogenous arbitrage opportunity represented by a Brownian bridge process.

They show that an expost realized extreme opportunity can hurt arbitrageurs by forcing them to

liquidate positions in response to binding margin constraints. Their exercise demonstrates the large

effect of margin constraints.
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ability. My model relies on this observation to assume that there is no
capital inflow to convergence traders after their capital losses. Due to the
complexity of specifically modeling the agency problem and the subsequent
capital outflow from convergence traders, I do not incorporate these features
into the model. But this feature will certainly generate even stronger
amplification effects.
With the assumption of logarithmic utility, the model also ignores the

potential hedging motives of convergence traders. Without a careful study of
convergence traders’ hedging demand, it is not clear whether the assumption
of logarithmic utility overstates or understates the amplification mechanism
in equilibrium. From Merton’s ð1971Þ dynamic portfolio theory, investors
who are more risk averse than as implied by logarithmic utility have
hedging motives, while investors who are less risk averse than as implied by
logarithmic utility have speculative motives (negative hedging motives). These
results are studied in detail by Kim and Omberg (1996). In my model, the
trading opportunity (squared Sharpe ratio) is negatively related to convergence
traders’ wealth. This makes the current trading position a natural hedge
for future opportunities, in the sense that when convergence traders suffer
losses on their current positions, future opportunities will become better
because of the decreased wealth of all convergence traders in the market. As a
result, hedging motives will induce convergence traders to take larger
positions for a given level of opportunity compared with their demand
without hedging motives. Therefore, under the structure of my model,
convergence traders who are more risk averse than as implied by logarithmic
utility have a hedging motive to take larger positions. At the same time,
because they are more risk averse, they are inclined to take smaller positions.
Thus, it is not clear how asset demands change as convergence traders become
more risk averse relative to that implied by logarithmic utility. Following the
same intuition, if convergence traders are less risk averse than as implied by
logarithmic utility, their speculative motives induce them to take smaller
positions to store capital for better opportunities in the future, but at the same
time they are less risk averse and tend to take larger positions. Thus, the net
change on their demands is also not clear. The answer to this problem is left for
future research.

Appendix A. Derivation of the asset return process

Given the aggregate trading strategy Xðy;WÞ for convergence traders, the
asset return process can be derived by applying Ito’s lemma. The market-
clearing condition gives the price function for the risky asset:

P ¼ F � kðy� XÞ: ðA:1Þ
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The excess return process for investing in one share of the risky asset is given by

dQ ¼ dPþ ðD� rPÞ dt

¼ sF dzD � k dyþ k dX þ rkðy� XÞ dt: ðA:2Þ

It is directly from Ito’s lemma that

dX ¼Xy dyþ 1=2XyyEðdyÞ
2 þ XW dW

þ 1=2XWWEðdWÞ2 þ XyWEðdy dWÞ: ðA:3Þ

Eqs. (A.2) and (A.3) show the dependence of the return process dQ on the
convergence traders’ aggregate wealth W : On the other hand, convergence
traders’ wealth depends on the return process from their budget constraint:

dW ¼ X dQþ ðrW � CÞ dt: ðA:4Þ

Therefore, the asset return process dQ and convergence traders’ wealth process
W are both endogenously and simultaneously determined in equilibrium. This
simultaneous relation can cause any shock to dQ to feed back to itself through
W : This feedback effect is exactly the wealth effect. To deal with this
simultaneous relation, Eq. (A.4) is substituted into Eq. (A.3), then Eq. (A.3) is
substituted into Eq. (A.2). Finally, the return process is derived as

dQ ¼ mQ dtþ sQD dzD þ sQy dzy; ðA:5Þ

mQ ¼

(
klyðy� %yÞð1� XyÞ þ kXW ðrW � CÞ þ rkðy� XÞ

þ
ks2y
2
Xyy þ

kðsW Þ2

2
XWW þ ksysWy XyW

)
Aðy;WÞ; ðA:6Þ

sQD ¼ sFAðy;WÞ; ðA:7Þ

sQy ¼ �ksyð1� XyÞAðy;WÞ; ðA:8Þ

where Aðy;WÞ ¼ 1=ð1� kXXW Þ represents the amplification factor of the
convergence traders’ wealth effect. The total volatility of the asset’s return is

sQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsQDÞ

2 þ ðsQy Þ
2

q
: ðA:9Þ

From the budget constraints, the process for convergence traders’ aggregate
capital can be derived as

dW ¼ mW dtþ sWD dzD þ sWy dzy; ðA:10Þ

mW ¼ XmQ þ rW � C; ðA:11Þ

sWD ¼ XsQD; ðA:12Þ
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sWy ¼ XsQy : ðA:13Þ

The total volatility of the convergence traders’ wealth is

sW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsWD Þ2 þ ðsWy Þ2

q
: ðA:14Þ

It is interesting to show the return process when convergence traders have
little wealth ðW-0Þ; because this return process represents the original trading
opportunities when there are no convergence traders at all. Under this
situation, the demand of convergence traders is small ðX-0Þ and the excess
return process is

dQ ¼ sF dzD � k dyþ rky dt: ðA:15Þ

The Sharpe ratio of the risky asset is

mQ

sQ
¼

rkyþ kly ðy� %yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2F þ ðksyÞ

2
q : ðA:16Þ

The Sharpe ratio fluctuates with noise trading y: If %y ¼ 0; the variance of the
Sharpe ratio is

E
mQ

sQ

� �2

¼
ðrþ lyÞ

2k2s2y
2ly½s2F þ ðksyÞ

2�
: ðA:17Þ

Appendix B. Derivation of a convergence trader’s optimal strategies

The trading opportunities of an individual convergence trader are

dQ ¼ mQðy;WÞ dtþ sQDðy;WÞ dzD þ sQy ðy;WÞ dzy: ðB:1Þ

The two state variables are y and W : The variable y denotes the noise trading
in the risky asset, and

dy ¼ �lyðy� %yÞ dtþ sy dzy:

The variable W is the aggregate capital of convergence traders, and

dW ¼ mW ðy;WÞ dtþ sWD ðy;WÞ dzD þ sWy dzy: ðB:2Þ

Denote an individual convergence trader’s wealth, trading, and consumption
policies as Wi; Xi; and Ci: The budget constraint is

dWi ¼ XidQþ ðrWi � CiÞ dt: ðB:3Þ

The convergence trader maximizes lifetime utility:

JðWi; y;WÞ ¼ max
Xi ;Ci

Et

Z
N

0

e�rs lnðCi
tþsÞ ds: ðB:4Þ
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The optimal trading and consumption policies are solved through a Bellman
equation. The Bellman equation can be derived as

rJðWi; y;wÞ ¼ max
Xi ;Ci

½lnðCiÞ þL0J�

¼ max
Xi ;Ci

½lnðCiÞ þ JWi ðXimQ þ rWi � CiÞ

þ 1=2JWiWi ðXiÞ2ðsQÞ2

þ lyð%y� yÞJy þ mWJW þ 1=2s2yJyy þ 1=2s2WJWW

þ JWiyEðdW
idyÞ=dtþ JWiW ðdWidWÞ=dt

þ JywEðdydWÞ=dt�; ðB:5Þ

whereL0 is the drift operator. The value function of a log-utility optimizer can
be specified as

JðWi; y;wÞ ¼
1

r
lnðWiÞ þ jðy;WÞ: ðB:6Þ

The first-order condition of the Bellman equation gives the optimal trading and
consumption policies:

Xi ¼
mQ

ðsQÞ2
Wi; ðB:7Þ

Ci ¼ rWi: ðB:8Þ

After substituting the optimal policies into the Bellman equation, Wi

disappears from both sides of the equation, and the Bellman equation
collapses into a partial differential equation in y and W only:

rjðy;WÞ ¼ lnðrÞ þ rðr� rÞ þ r
ðmAÞ2

ðsAÞ2
þ lyð%y� yÞjy

þ mWjW þ 1=2s2y jyy þ 1=2s2WjWW þ sysWy jyW : ðB:9Þ

Therefore, the convergence trader’s policy functions and value function
become separated. The solution to the PDE of the value function exists under
certain technical conditions. This paper will focus on the policy functions and
discuss the equilibrium of the asset market.
The logarithmic utility has interesting policy functions. Both trading and

consumption policies are proportional to the convergence trader’s wealth. The
optimal trading strategy is myopic or short-term in the sense that it depends
only on the instantaneous mean and variance of the return process. Thus, there
is no need for hedging against changes in the future opportunity set with
logarithmic utility even though there is for other utility functions with
constant relative risk aversion. The assumption of logarithmic utility greatly
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simplifies the problem without losing the key feature of this model, the wealth
effect.
From Appendix A, the drift and volatility terms mQ; mW ; sQD; s

Q
y ; s

W
D ; and sWy

in dQ and dW are all determined by the convergence traders’ aggregate
demand function Xðy;WÞ and consumption function Cðy;WÞ: Therefore,
Eqs. (B.7) and (B.8) show that an individual convergence trader’s optimal
strategies Xi and Ci are explicit functions of the conjectured aggregate demand
function Xðy;WÞ and consumption function Cðy;WÞ: Since explicit expressions
of these functions are extremely tedious, they are omitted here to save space.

Appendix C. The partial differential equation

Appendix C presents the partial differential equation from the fixed-point
problem of the equilibrium. Given convergence traders’ aggregate trading and
consumption rules Xðy;WÞ and Cðy;WÞ; the optimal aggregate trading and
consumption rules can be easily derived from Eqs. (B.7) and (B.8) by replacing
Wi with W :

X * ¼
mQ

ðsQÞ2
W ; ðC:1Þ

C * ¼ rW : ðC:2Þ

From the fixed-point problem, the equilibrium consumption rule is trivial
ðC ¼ rWÞ; and the equilibrium trading rule is determined by

X ¼
mQ

ðsQÞ2
W ðC:3Þ

with mQ and sQ given by Eqs. (A.6)–(A.8). By substituting all the necessary
terms into the last equation, the following partial differential equation is
obtained:

klyðy� %yÞð1� XyÞ þ kðr� rÞWXW þ rkðy� XÞ þ
ks2y
2
Xyy

þ
k

2
X2XWW

s2F þ k2s2yð1� XyÞ
2

ð1� kXXW Þ2
� k2s2y

XXyW ð1� XyÞ
1� kXXW

�
X

W

s2F þ k2s2yð1� XyÞ
2

1� kXXW
¼ 0: ðC:4Þ

This is a nonlinear second-order partial differential equation in the two state
variables y and W : In addition to X itself, the equation involves first
derivatives Xy and XW and second derivatives Xyy; XyW ; and XWW :
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Appendix D. Numerical method to the fixed-point problem

To study the equilibrium, a numerical method is needed to solve the fixed-
point problem, since the partial differential equation in (C.4) is highly
nonlinear in such a way that it is hopeless to solve it analytically. To calculate
an approximate equilibrium numerically, a projection method is used. The
trading strategy X is approximated with a rational function, where both the
numerator and denominator are polynomials of the two state variables. The
algorithm chooses coefficients of the polynomials so that the boundary
conditions hold and the partial differential equation describing the equilibrium
is approximately solved for a range of test points. Instead of ordinary
polynomials, Chebyshev polynomials are used for reasons of numerical
stability: with Chebyshev polynomials, the calculation of the values of
polynomials is more stable, and there is less ‘‘collinearity’’ among estimated
coefficients. Also, the use of Chebyshev polynomials makes it easier to impose
boundary conditions as discussed in Appendix E. For a detailed introduction
to projection methods and Chebyshev polynomials, see Judd (1998) and Press
et al. (1992).
To use Chebyshev polynomials, whose natural range is ½�1;þ1�; it is first

necessary to transform the state variables W and y to fit this range. To
transform W ; whose range is ð0;NÞ; a new variable z is introduced and defined
(with an exogenously specified scale parameter g) by

z ¼
W � g
W þ g

; zAð�1; 1Þ: ðD:1Þ

To transform y; whose natural range is ð�N;þNÞ; it is truncated at four
standard deviations of its unconditional distribution and linearly transformed
into a new state variable y:

y ¼
y� %y

4sy=
ffiffiffiffiffiffiffi
2ly

p ; yA½�1; 1�: ðD:2Þ

Both of these transformations are obviously monotonic and smooth. The
reverse transformations are

y ¼ %yþ
4syffiffiffiffiffiffiffi
2ly

p y; ðD:3Þ

W ¼ g
1þ z

1� z
: ðD:4Þ

The derivatives of the two state variables y and W can be transformed as

@

@y
¼

4syffiffiffiffiffiffiffi
2ly

p @

@y
; ðD:5Þ
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@2

@y2
¼
8s2y
ly

@2

@y2
; ðD:6Þ

@

@W
¼

ð1� zÞ2

2g
@

@z
; ðD:7Þ

@2

@W2
¼

ð1� zÞ4

4g2
@2

@z2
�

ð1� zÞ3

2g2
@

@z
; ðD:8Þ

@2

@y@W
¼

ffiffiffi
2

p
syð1� zÞ2ffiffiffiffiffi

ly
p @2

@y@z
: ðD:9Þ

These formulas can transform the original partial differential equation of
Xðy;WÞ in Eq. (C.4) into a partial differential equation of Xðy; zÞ:
The equilibrium demand function Xðy; zÞ is approximated by

Xðy; zÞ ¼

P
iþjpnu

auði; jÞTiðyÞTjðzÞP
iþjpnd

adði; jÞTiðyÞTjðzÞ
; ðD:10Þ

where Tið Þ is the ith order Chebyshev polynomial, and nu and nd are the total
orders of polynomials in the numerator and denominator of X : Let fau

ði; jÞgiþjpnu and fadði; jÞgiþjpnd denote the expansion coefficients. The total
number of coefficients is ½ðnu þ 1Þðnu þ 2Þ�=2þ ½ðnd þ 1Þðnd þ 2Þ�=2:
In terms of these transformed state variables, the boundary conditions now

hold for z ¼ �1 (zero wealth) and þ1 (infinite wealth). Furthermore, the
boundary conditions are actually linear in terms of the transformed state
variables. For the purpose of estimating the coefficient parameters,
the boundary conditions can be implemented as a series of linear constraints
on the coefficients in the Chebyshev polynomials. Appendix E explains in detail
how the boundary conditions are implemented.
To capture the nonlinearities in the demand functions and the interactions

between the two state variables, it is necessary to use high-order polynomials.
Let nu and nu denote the total orders (maximum sum of powers of the two state
variables) of the polynomials in the numerator and denominator of the
estimated equilibrium demand function Xðy;WÞ: The total number of
coefficient parameters needed to specify the demand functions is ½ðnu þ 1Þ
ðnu þ 2Þ�=2þ ½ðnd þ 1Þðnd þ 2Þ�=2: The boundary conditions, implemented as a
series of linear constraints on the coefficients, reduce the number of coefficient
parameters by 2nu þ 2nd þ 2; resulting in ½nuðnu � 1Þ�=2þ ½ndðnd � 1Þ�=2 free
parameters. In the numerical illustration of Section 4, the degree of both the
numerator and the denominator in X is 13, which results in 210 coefficients.
The constraints implied by the boundary conditions reduce this number by 54.
Thus, 156 coefficient parameters in total need to be estimated.
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To estimate the coefficients involves minimization of the sum of squared
errors in the partial differential equations over a fixed set of test points.
It appears that the demand function has more curvature near the boun-
daries z ¼ þ1 and �1; so instead of using a uniformly spaced grid of test points
in the transformed state variables, more points near the boundaries are chosen.
The grid size is 21 (for variable y) by 64 (for variable z), so the partial
differential equations are evaluated at 1,344 points. Since there are 156
parameters to be estimated, the system is overdetermined by a factor of
roughly nine.
Two types of error functions have been used at the same time. One is

defined as

Error1 ¼
X � X *

sy
; ðD:11Þ

the difference between the given strategy X and the optimal strategy X *

normalized by the volatility of noise trading. Since the magnitude of X or X *

is very small when convergence traders’ wealth is small, this method
of calculating error underestimates errors to the convergence traders’ port-
folio over the region where wealth is small. The other error function is
defined as

Error2 ¼
sF ðX � X * Þ

W
; ðD:12Þ

the difference between the percentage wealth volatility caused by the
fundamental shocks using X and X * : Since this error function is defined by
the percentage of wealth, it can correctly estimate errors over the region where
convergence traders’ wealth is small. But it may underestimate the errors to the
market-clearing condition over the region where wealth is large, because values
of X and X * can be small relative to wealthW : To give precise estimates of the
numerical errors over all regions, a combination of these two types of errors is
used:

Error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Error12 þ Error22

p
: ðD:13Þ

For the example described below, the maximum error is about 10�3: This
indicates that both types of numerical errors in the fixed-point problem are
small, and an equilibrium has probably been found.
To solve the minimization problem, a Levenberg-Marquart algorithm is

used. Despite the use of Chebyshev polynomials, the Hessian in this problem
is not well behaved because of the linear constraints from the boun-
dary conditions. Therefore, a gradient method has the potential to work
better than Newton’s method. The Levenberg-Marquart algorithm is designed
to adjust smoothly between these two methods and thus deals with this
problem.
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Appendix E. Boundary constraints

The boundary conditions are linear in the after-transformation state
variables y:

Xðy; 1Þ ¼ %yþ
4syffiffiffiffiffiffiffi
2ly

p T1ðyÞ; ðE:1Þ

Xðy;�1Þ ¼ 0: ðE:2Þ

Due to the properties of Chebyshev polynomials, Tjð1Þ ¼ 1 and Tjð�1Þ ¼
ð�1Þj : The function X in Eq. (D.10) becomes an expansion in y when z ¼ 1 or
�1: To match the coefficients of y on the two bounds with the boundary
conditions (E.1) and (E.2), the following constraints on the expansion
coefficients are obtained:Xnd

j¼0

adð0; jÞ ¼ 1; ðE:3Þ

Xnd
j¼0

ð�1Þjadð0; jÞ ¼ 1; ðE:4Þ

Xnd�i

j¼0

adði; jÞ ¼ 0 8ia0; ðE:5Þ

Xnd�i

j¼0

ð�1Þjadði; jÞ ¼ 0 8ia0; ðE:6Þ

Xnu
j¼0

auð0; jÞ ¼ %y; ðE:7Þ

Xnu�1
j¼0

auð1; jÞ ¼
4syffiffiffiffiffiffiffi
2ly

p ; ðE:8Þ

Xnd�i

j¼0

auði; jÞ ¼ 0 8i > 1; ðE:9Þ

Xnd�i

j¼0

ð�1Þ jadði; jÞ ¼ 0 8i: ðE:10Þ

These linear constraints can be implemented by determining the first two
columns of the expansion coefficients from the rest of the columns of the
expansion coefficients:
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adð0; 0Þ ¼ 1�
1

2

Xnd
j¼2

½1þ ð�1Þ j �adð0; jÞ; ðE:11Þ

adð0; 1Þ ¼ �
1

2

Xnd
j¼2

½1� ð�1Þ j �adð0; jÞ; ðE:12Þ

adði; 0Þ ¼ �
1

2

Xnd�i

j¼2

½1þ ð�1Þ j�adði; jÞ 8ia0; ðE:13Þ

adði; 1Þ ¼ �
1

2

Xnd�i

j¼2

½1� ð�1Þ j�adði; jÞ 8ia0; ðE:14Þ

auð0; 0Þ ¼
%y
2
�
1

2

Xnu
j¼2

½1þ ð�1Þ j �auð0; jÞ; ðE:15Þ

auð0; 1Þ ¼
%y
2
�
1

2

Xnu
j¼2

½1� ð�1Þ j �auð0; jÞ; ðE:16Þ

auð1; 0Þ ¼

ffiffiffi
2

p
syffiffiffiffiffi
ly

p �
1

2

Xnu
j¼2

½1þ ð�1Þ j�auð1; jÞ; ðE:17Þ

auð1; 1Þ ¼

ffiffiffi
2

p
syffiffiffiffiffi
ly

p �
1

2

Xnu
j¼2

½1� ð�1Þ j�auð1; jÞ; ðE:18Þ

auði; 0Þ ¼ �
1

2

Xnu�i

j¼2

½1þ ð�1Þ j�auði; jÞ 8i > 1; ðE:19Þ

auði; 1Þ ¼ �
1

2

Xnu�i

j¼2

½1� ð�1Þ j� auði; jÞ 8i > 1: ðE:20Þ

In this way, the total number of parameters is reduced by 2nu þ 2nd þ 2 (first
two columns of these two coefficient matrices). Therefore, the total number of
parameters needed to specify the demand functions X is ½nuðnu � 1Þ�=2þ ½nd
ðnd � 1Þ�=2:
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