Rollover Risk

Wei Xiong

Princeton Initiative September 10, 2011

Overview

- ▶ Rollover risk is a key factor in the recent credit crunch.
 - Bankruptcy of Bear Stearns, Lehman Brothers
 - ▶ Debt crises of Greece and Spain, and concerns about European banks

Overview

- Rollover risk is a key factor in the recent credit crunch.
 - Bankruptcy of Bear Stearns, Lehman Brothers
 - ▶ Debt crises of Greece and Spain, and concerns about European banks
- Rollover risk depends on insolvency risk.
- Rollover risk also exacerbates conflicts among different stakeholders:
 - conflict between debt and equity holders
 - coordination problem between creditors

Overview

- Rollover risk is a key factor in the recent credit crunch.
 - Bankruptcy of Bear Stearns, Lehman Brothers
 - Debt crises of Greece and Spain, and concerns about European banks
- Rollover risk depends on insolvency risk.
- Rollover risk also exacerbates conflicts among different stakeholders:
 - conflict between debt and equity holders
 - coordination problem between creditors
- Through these channels, rollover risk affects the borrower's credit risk:
 - exacerbates its insolvency risk
 - exposes it to market liquidity risk
 - makes debt structure an important factor

Debt Structure

- Why do firms use debt? Frictions cause deviation from M-M Theorem.
 - ▶ Debt reduces cost of auditing the firms, e.g., Townsend (1979)
 - Short-term debt is a disciplinary device, e.g., Calomiris and Kahn (1991)
 - Short-term debt reduces adverse selection, e.g., Gorton and Pennacchi (1990)

Debt Structure

- Why do firms use debt? Frictions cause deviation from M-M Theorem.
 - ▶ Debt reduces cost of auditing the firms, e.g., Townsend (1979)
 - Short-term debt is a disciplinary device, e.g., Calomiris and Kahn (1991)
 - Short-term debt reduces adverse selection, e.g., Gorton and Pennacchi (1990)
- Optimal leverage
 - ► Tradeoff between tax shield and bankruptcy cost, e.g., Leland (1994)
- Optimal debt maturity
 - ▶ Debt overhang, e.g., Myers (1978) and He and Diamond (2010)
 - Tradeoff between lower cost of short-term debt financing and greater rollover risk, e.g., He and Xiong (2010)

- Standard credit risk models focus on fundamental insolvency risk.
 - key determinant: distance to default (volatility adjusted leverage).
 - Review by Duffie and Singleton (2003).

- Standard credit risk models focus on fundamental insolvency risk.
 - key determinant: distance to default (volatility adjusted leverage).
 - Review by Duffie and Singleton (2003).
- First generation with exogenous default threshold:
 - ► The firm defaults when its asset value falls below its debt level, e.g., Merton (1973), Longstaff and Schwartz (1995).

- Standard credit risk models focus on fundamental insolvency risk.
 - key determinant: distance to default (volatility adjusted leverage).
 - Review by Duffie and Singleton (2003).
- First generation with exogenous default threshold:
 - The firm defaults when its asset value falls below its debt level, e.g., Merton (1973), Longstaff and Schwartz (1995).
- Second generation with endogenous threshold:
 - The firm defaults when its equity value drops to zero, e.g., Leland (1994), Leland and Toft (1996)
 - Rollover exposes the borrower to market liquidity risk, e.g., He and Xiong (2010).

- Standard credit risk models focus on fundamental insolvency risk.
 - key determinant: distance to default (volatility adjusted leverage).
 - Review by Duffie and Singleton (2003).
- First generation with exogenous default threshold:
 - The firm defaults when its asset value falls below its debt level, e.g., Merton (1973), Longstaff and Schwartz (1995).
- Second generation with endogenous threshold:
 - The firm defaults when its equity value drops to zero, e.g., Leland (1994), Leland and Toft (1996)
 - Rollover exposes the borrower to market liquidity risk, e.g., He and Xiong (2010).
- Third generation with endogenous threshold:
 - The firm defaults when short-term creditors refuse to roll over, e.g., Morris and Shin (2004, 2010) and He and Xiong (2009).

"Rollover Risk and Credit Risk" by He and Xiong (2010)

- ▶ Build on Leland (1994) and Leland and Toft (1996):
 - A firm has to constantly roll over its maturing debt by issuing new debt with the same maturity and face value at market price.
 - ► Equity holders of the firm bear the rollover gain/loss and endogenously default when the equity value drops to zero.

"Rollover Risk and Credit Risk" by He and Xiong (2010)

- ▶ Build on Leland (1994) and Leland and Toft (1996):
 - A firm has to constantly roll over its maturing debt by issuing new debt with the same maturity and face value at market price.
 - Equity holders of the firm bear the rollover gain/loss and endogenously default when the equity value drops to zero.
- Intrinsic conflict between debt and equity holders:
 - at times of rollover losses, equity holders will inject capital to bail out maturing debt holders only to the extent the option value of keeping the firm alive is positive
- ▶ Debt rollover exposes the firm to liquidity risk in bond markets.
 - Deteriorating liquidity exacerbates default risk.
 - Liquidity premium and default premium are entangled.

Model (1)

- ▶ A firm repays maturing bonds by issuing new bonds at market prices.
 - ► The rollover gain/loss is absorbed by equity holders;
 - ► The firm defaults when equity value drops to zero.

Model (1)

- A firm repays maturing bonds by issuing new bonds at market prices.
 - The rollover gain/loss is absorbed by equity holders;
 - ▶ The firm defaults when equity value drops to zero.
- ► The unlevered firm value follows a log-normal process under the Q-measure:

$$\frac{dV_t}{V_t} = (r - \delta) dt + \sigma dZ_t.$$

- Riskfree rate r, payout rate δ .
- ▶ In bankruptcy creditors recover α fraction of the firm value.

Model (2): Debt Structure

- ▶ The firm commits to a stationary debt structure (C, P, m):
 - ▶ aggregate face value P and annual coupon payment C;
 - each bond has maturity m;
 - debt expirations are uniformly spread across time, i.e., over (t, t + dt), $\frac{1}{m}dt$ fraction of the bonds matures.

Model (2): Debt Structure

- ► The firm commits to a stationary debt structure (C, P, m):
 - ▶ aggregate face value P and annual coupon payment C;
 - each bond has maturity m;
 - debt expirations are uniformly spread across time, i.e., over (t, t+dt), $\frac{1}{m}dt$ fraction of the bonds matures.
- ► The firm issues new bonds with the same face value, coupon rate and maturity to replace maturing bonds.
- ▶ Over (t, t + dt), the net cash flow to equity holders is

$$NC_{t} = \delta V_{t} - (1 - \pi) C + \frac{1}{m} \left[\overline{d} \left(V_{t}, m \right) - P \right].$$

- ▶ $\overline{d}(V_t, m)$: market value of per unit newly issued bond;
- ▶ When the bond price drops, equity holders face rollover losses.
- Will show the loss is greater for short-term debt.

Model (3): Endogenous Default

- lacktriangle The firm defaults when V_t drops to an endogenous threshold V_B .
 - At V_B , equity value $E(V_B) = 0$, i.e., the firm cannot raise any equity financing;
 - ▶ Optimality of V_B : smooth pasting $E'(V_B) = 0$.

Model (3): Endogenous Default

- lacktriangle The firm defaults when V_t drops to an endogenous threshold V_B .
 - At V_B , equity value $E(V_B) = 0$, i.e., the firm cannot raise any equity financing;
 - ▶ Optimality of V_B : smooth pasting $E'(V_B) = 0$.
- Intrinsic conflict of interest between debt and equity holders:
 - When the bond price falls (for either fundamental or liquidity reasons), equity holders bear the rollover loss while the maturing debt holders get paid in full.
 - Equity holders face a tradeoff: rollover loss vs option value of keeping the firm alive.

Model (4): The Secondary Bond Markets

- ▶ The secondary markets of corporate bonds are highly illiquid.
 - Large bid-ask spreads and price impact.
 - Edwards, Harris, and Piwowar (2007): bid/ask spread on corporate bonds ranges from 4 to 75 bps.
 - Bao, Pan, and Wang (2009): trading cost (bid/ask spread & price impact) ranges from 74 to 221 bps; and the cost is higher for long-term bonds.

Model (4): The Secondary Bond Markets

- ▶ The secondary markets of corporate bonds are highly illiquid.
 - Large bid-ask spreads and price impact.
 - Edwards, Harris, and Piwowar (2007): bid/ask spread on corporate bonds ranges from 4 to 75 bps.
 - Bao, Pan, and Wang (2009): trading cost (bid/ask spread & price impact) ranges from 74 to 221 bps; and the cost is higher for long-term bonds.
- ▶ When a bond holder sells a bond, he only recovers a fraction (1 k) of the value.
 - ▶ k represents the liquidity discount (trading cost, info problem,...)

Model (4): The Secondary Bond Markets

- ► The secondary markets of corporate bonds are highly illiquid.
 - Large bid-ask spreads and price impact.
 - Edwards, Harris, and Piwowar (2007): bid/ask spread on corporate bonds ranges from 4 to 75 bps.
 - Bao, Pan, and Wang (2009): trading cost (bid/ask spread & price impact) ranges from 74 to 221 bps; and the cost is higher for long-term bonds.
- ▶ When a bond holder sells a bond, he only recovers a fraction (1 k) of the value.
 - ▶ *k* represents the liquidity discount (trading cost, info problem,...)
- ▶ Each bond investor is subject to Poisson liquidity shocks with intensity ξ , a la Amihud and Mendelson (1986).
 - ▶ Upon the arrival of a liquidity shock, he has to sell his bond holdings.
- We assume no cost for trading equity and issuing new bonds.

▶ For a given V_B , PDE for the debt value $d(V_t, \tau; V_B)$:

▶ For a given V_B , PDE for the debt value $d(V_t, \tau; V_B)$:

$$\left(r + \underbrace{\xi k}_{\text{liquidity premium}}\right) d\left(V_t, \tau\right) = c - \frac{\partial d\left(V_t, \tau\right)}{\partial \tau} + \left(r - \delta\right) V_t \frac{\partial d\left(V_t, \tau\right)}{\partial V} + \frac{1}{2} \sigma^2 V_t^2 \frac{\partial^2 d\left(V_t, \tau\right)}{\partial V^2}.$$

- At the bankruptcy, $d\left(V_B, \tau; V_B\right) = \frac{\alpha V_B}{m}$, for all $\tau \in [0, m]$.
- At maturity, $d\left(V_t,0;V_B\right)=p$, for all $V_t>V_B$.

▶ For a given V_B , PDE for the debt value $d(V_t, \tau; V_B)$:

$$\left(r + \underbrace{\xi k}_{\text{Diguidity premium}}\right) d\left(V_t, \tau\right) = c - \frac{\partial d\left(V_t, \tau\right)}{\partial \tau} + \left(r - \delta\right) V_t \frac{\partial d\left(V_t, \tau\right)}{\partial V} + \frac{1}{2} \sigma^2 V_t^2 \frac{\partial^2 d\left(V_t, \tau\right)}{\partial V^2}.$$

- At the bankruptcy, $d\left(V_B, \tau; V_B\right) = \frac{\alpha V_B}{m}$, for all $\tau \in [0, m]$.
- At maturity, $d(V_t, 0; V_B) = p$, for all $V_t > V_B$.
- ODE for equity value E (V):

▶ For a given V_B , PDE for the debt value $d(V_t, \tau; V_B)$:

$$\left(r + \underbrace{\xi k}_{\text{liquidity premium}}\right) d\left(V_t, \tau\right) = c - \frac{\partial d\left(V_t, \tau\right)}{\partial \tau} + \left(r - \delta\right) V_t \frac{\partial d\left(V_t, \tau\right)}{\partial V} + \frac{1}{2} \sigma^2 V_t^2 \frac{\partial^2 d\left(V_t, \tau\right)}{\partial V^2}.$$

- At the bankruptcy, $d(V_B, \tau; V_B) = \frac{\alpha V_B}{m}$, for all $\tau \in [0, m]$.
- At maturity, $d\left(V_t,0;V_B\right)=p$, for all $V_t>V_B$.
- ODE for equity value E (V):

$$rE = (r - \delta) V_t E_V + \frac{1}{2} \sigma^2 V_t^2 E_{VV} + \delta V_t - (1 - \pi) C + d (V_t, m) - p.$$

with boundary condition $E(V_B) = 0$:

Closed-form solution for E (V) using Laplace tranformation.

▶ For a given V_B , PDE for the debt value $d(V_t, \tau; V_B)$:

$$\left(r + \underbrace{\xi k}_{\text{liquidity premium}}\right) d\left(V_t, \tau\right) = c - \frac{\partial d\left(V_t, \tau\right)}{\partial \tau} + \left(r - \delta\right) V_t \frac{\partial d\left(V_t, \tau\right)}{\partial V} + \frac{1}{2} \sigma^2 V_t^2 \frac{\partial^2 d\left(V_t, \tau\right)}{\partial V^2}.$$

- At the bankruptcy, $d\left(V_B, \tau; V_B\right) = \frac{\alpha V_B}{m}$, for all $\tau \in [0, m]$.
- At maturity, $d(V_t, 0; V_B) = p$, for all $V_t > V_B$.
- ▶ ODE for equity value E (V):

$$rE = (r - \delta) V_t E_V + \frac{1}{2} \sigma^2 V_t^2 E_{VV} + \delta V_t - (1 - \pi) C + d(V_t, m) - p.$$

with boundary condition $E(V_B) = 0$:

- ▶ Closed-form solution for E(V) using Laplace tranformation.
- ▶ Smooth pasting $E'(V_B) = 0$: closed-form solution for V_B .

Key Channels of Liquidity Effects

- ▶ Consider an unanticipated liquidity shock which increases ξ or k.
 - e.g., increased redemption risk, margin risk, or market illiquidity.

Baseline Model Parameters for Illustration

- ▶ Risk-free rate: r = 8%.
- ▶ Tax rate: $\pi = 27\%$.
- Asset volatility $\sigma = 23\%$; payout rate $\delta = 2\%$.
- ▶ Trading cost k = 1%; Intensity of liquidity shocks $\xi = 1$.
 - Consistent with Bao, Pan, and Wang (2009) who focus on a relatively liquid sample.
- Liquidation recovery rate: $\alpha = 0.5$.
- ▶ Debt maturities m = 1; total principal P = 61.68; total coupons C = 6.39.
- Current asset value: $V_t = 100$.

Market Liquidity and Endogenous Default

► Two channels of liquidity effects: liquidity premium and endogenous default risk.

Amplification by Short-term Debt

- ▶ Shorter maturity forces equity holders to quickly realize rollover loss.
 - ▶ Rollover loss per unit of time: $\left[\overline{d}\left(V_{t},m\right)-P\right]/m$.
 - ► More severe conflict b/w debt- and equity-holders.
- Short-term maturity makes an individual bond safer, but a firm with more short-term debt is riskier.

Implications: Predicting Defaults

- Our model predicts market liquidity as a new factor for predicting bond defaults, in addition to
 - ► Distance to default: leverage, asset volatility
 - Firms' liquidity holdings: cash, credit lines
- ► The existing structural credit risk models have mixed successes:
 - Leland (2004): Leland model does a good job in capturing average default probabilities of bonds with different ratings.
 - Bharath and Shumway (2008): distance-to-default variable constructed from Merton model is not a sufficient statistic for default probability.
 - Davydenko (2007): distance to default cannot capture the cross section of bond spreads;
- Collin-Dufresne, Goldstein, and Martin (2001): standard variables cannot explain the changes of credit spreads.
- ▶ Das, Duffie, Kapadia, and Saita (2007): distance-to-default variables cannot fully capture default correlation observed in the data.

Implications: Decomposing Credit Spreads

- Both academics and policy makers have recognized the important effect of market liquidity on credit spreads, but tend to treat it as independent from default risk.
- Several studies, e.g., Longstaff, Mithal, and Neis (2005), Beber,
 Brandt, and Kavajecz (2008), and Schwarz (2009), decompose credit spreads to assess contributions of liquidity premium and default risk:

$$CreditSpread_{i,t} = \alpha + \beta \cdot CDS_Spread_{i,t} + \delta \cdot LIQ_{i,t} + \epsilon_{i,t}$$

- Default risk explains a majority part of the cross-sectional variation, although the liquidity effect is also significant.
- ▶ But these two effects are correlated through endogenous default.
 - How to classify the correlated part?
 - In the empirical analysis, the more precise measure of default risk (via traded prices) could have favored the default risk effect.

Implications: Measuring Liquidity Effects

- Several recent studies examine the impact of TAF on LIBOR-OIS spread.
 - e.g., Taylor and Williams (2009), McAndrews, Sarkar, and Wang (2008), Wu (2008).
- They tend to control for default risk using certain credit spread, such as CDS spread or LIBOR-REPO spread.
 - Example: Taylor and Williams (2009)

$$(\mathit{LIBOR} - \mathit{OIS})_t = a \cdot (\mathit{LIBOR} - \mathit{REPO})_t + b \cdot \mathit{TAF}_t + \epsilon_t$$

 The control variables can also absorb liquidity effects and thus leading to an under-estimation.

Implications: Maturity Risk

- Our model implies that firms' debt maturity structure is an important determinant of credit risk.
- Evidence on non-financial firms with more maturing long-term debt during the recent credit crisis period had to cut down more investment and had greater credit spread increases.
 - Almeida, et al. (2009), Hu (2010).
- Evidence on credit ratings had ignored maturity risk.
 - Gopalan, Song, and Yerramilli (2009).

Debt Runs

- ▶ In practice, short-term debt tends to be the marginal financing.
 - ► Short-term debt holders' rollover decision is crucial.
- Runs by short-term debt holders on financial institutions was one of the main causes of the credit crisis of 2007-2008.
- ▶ Similar concerns looming over European countries and banks.

Coordination between Debt Holders

- ► The classic Diamond-Dybvig model on bank runs:
 - The simultaneous coordination problem among depositors leads to a self-fulfilling bank-run equilibrium.

Coordination between Debt Holders

- ► The classic Diamond-Dybvig model on bank runs:
 - The simultaneous coordination problem among depositors leads to a self-fulfilling bank-run equilibrium.
- Global-games models of bank runs:
 - Rochet and Vives (2004) and Goldstein and Pauzner (2005) allow depositors holding noisy private signals about bank fundamental.
 - Signal noise leads to strategic uncertainty and prevents multiple equilibria, e.g., Carlsson and van Damme (1993) and Morris and Shin (2003).

Coordination between Debt Holders

- ► The classic Diamond-Dybvig model on bank runs:
 - The simultaneous coordination problem among depositors leads to a self-fulfilling bank-run equilibrium.
- Global-games models of bank runs:
 - Rochet and Vives (2004) and Goldstein and Pauzner (2005) allow depositors holding noisy private signals about bank fundamental.
 - Signal noise leads to strategic uncertainty and prevents multiple equilibria, e.g., Carlsson and van Damme (1993) and Morris and Shin (2003).
- Dynamic coordination between creditors:
 - In a multiple-period setting, each maturing creditor is concerned by rollover decisions of future maturing creditors, e.g., He and Xiong (2009).
 - Fundamental volatility plays a key role
 - ▶ Debt maturity, credit lines, and liquidity also matter

"Dynamic Debt Runs" by He and Xiong (2009)

- A firm holds a long-term risky asset by rolling over short-term debt.
 - ▶ No equity holders, only debt holders making rollover decisions.

"Dynamic Debt Runs" by He and Xiong (2009)

- A firm holds a long-term risky asset by rolling over short-term debt.
 - ▶ No equity holders, only debt holders making rollover decisions.
- ► The environment of illiquid/imperfect capital markets:
 - The firm cannot find a single creditor (with deep pockets) to finance all the debt, and has to rely on a continuum of small creditors.
 - When some creditors choose to run, the firm needs to draw on unreliable credit lines.
 - The firm asset is illiquid, i.e., the firm can only recover a fraction of its fundamental value in a premature liquidation.

"Dynamic Debt Runs" by He and Xiong (2009)

- A firm holds a long-term risky asset by rolling over short-term debt.
 - ▶ No equity holders, only debt holders making rollover decisions.
- ► The environment of illiquid/imperfect capital markets:
 - The firm cannot find a single creditor (with deep pockets) to finance all the debt, and has to rely on a continuum of small creditors.
 - When some creditors choose to run, the firm needs to draw on unreliable credit lines.
 - The firm asset is illiquid, i.e., the firm can only recover a fraction of its fundamental value in a premature liquidation.
- ► Two key assumptions:
 - ▶ The asset fundamental is time-varying and publicly observable.
 - A staggered debt structure.

Long-Term Asset

- The firm holds a long-term asset:
 - ► The asset generates constant cash flow rdt over a period dt.
 - At a Poisson arrival time τ_{ϕ} , the asset matures with a final payoff equal to τ_{ϕ} value of a publicly observable process:

$$\frac{dy_t}{y_t} = \mu dt + \sigma dZ_t.$$

Long-Term Asset

- The firm holds a long-term asset:
 - ▶ The asset generates constant cash flow *rdt* over a period *dt*.
 - At a Poisson arrival time τ_{ϕ} , the asset matures with a final payoff equal to τ_{ϕ} value of a publicly observable process:

$$\frac{dy_t}{y_t} = \mu dt + \sigma dZ_t.$$

lacktriangle Risk-neutral agents with discount rate ho. Asset fundamental value:

$$F(y_t) = E_t \left[\int_t^{\tau_{\phi}} e^{-\rho(s-t)} r ds + e^{-\rho(\tau_{\phi}-t)} y_{\tau_{\phi}} \right] = \frac{r}{\rho + \phi} + \frac{\phi}{\rho + \phi - \mu} y_t$$

- y_t is the firm fundamental.
- Our model ignores complications from private information.

Staggered Debt Financing

- \blacktriangleright We assume a unit measure of short-term creditors (discount rate ρ).
 - ▶ Interest payment rdt.
 - $r > \rho$.

Staggered Debt Financing

- We assume a unit measure of short-term creditors (discount rate ρ).
 - ▶ Interest payment *rdt*.
 - $r > \rho$.
- ► A staggered debt structure:
 - Each contract matures with a probability of δdt , a la Calvo (1983).
 - ▶ In aggregate, δdt fraction of debt matures over (t, t + dt).
 - This fraction is small and thus avoiding the Diamond-Dybvig type simultaneous coordination problem.
 - ▶ Rollover risk: during a contract period, other creditors might run.

Staggered Debt Financing

- We assume a unit measure of short-term creditors (discount rate ρ).
 - ▶ Interest payment *rdt*.
 - $r > \rho$.
- A staggered debt structure:
 - ▶ Each contract matures with a probability of δdt , a la Calvo (1983).
 - ▶ In aggregate, δdt fraction of debt matures over (t, t + dt).
 - This fraction is small and thus avoiding the Diamond-Dybvig type simultaneous coordination problem.
 - Rollover risk: during a contract period, other creditors might run.
- At τ_{δ} , an individual creditor decides to run or roll over.
 - ▶ Threshold strategy y_* : roll over if and only if $y \ge y_*$.

Debt Run and Liquidation

- Over (t, t + dt), δdt fraction of contracts matures.
- ▶ If they choose to run, the firm needs to draw on its credit lines.
 - With prob $\theta \delta dt$, the credit lines fail, causing the firm to fail.
 - \triangleright θ : unreliability of credit lines.
 - ► Can also be interpreted as imperfect government bailout.
 - With prob $1 \theta \delta dt$, the firm raises new fund and pays the creditors.

Debt Run and Liquidation

- Over (t, t + dt), δdt fraction of contracts matures.
- ▶ If they choose to run, the firm needs to draw on its credit lines.
 - With prob $\theta\delta dt$, the credit lines fail, causing the firm to fail.
 - $ightharpoonup \theta$: unreliability of credit lines.
 - Can also be interpreted as imperfect government bailout.
 - With prob $1 \theta \delta dt$, the firm raises new fund and pays the creditors.
- **Early liquidation recovers** $\alpha \in (0,1)$ of the fundamental value:

$$\widetilde{L}(y_t) = \alpha F(y_t).$$

- Liquidation decision is irreversible, no partial liquidation.
- ▶ The firm's liquidation value, $\widetilde{L}(y)$, is equally divided among all creditors, including the running ones.
- ▶ Because the probability of firm failing by one's own run is tiny, the expected payoff from running is 1.

Three Possible Paths for An Individual Creditor

- ▶ A creditor receives r until a random time $\tau = \min (\tau_{\phi}, \tau_{\delta}, \tau_{\theta})$;
- ▶ Other creditors' rollover threshold y_* : rollover when $y > y_*$, run otherwise.

An Individual Creditor's Problem

▶ Given other creditors' threshold y_* , his value function is

$$V\left(y_{t};y_{*}\right) = E_{t}\left\{\int_{t}^{\tau}e^{-\rho(s-t)}rds\right.$$

$$+ \underbrace{e^{-\rho(\tau-t)}\min\left(1,y_{\tau}\right)\mathbf{1}_{\left\{\tau=\tau_{\phi}\right\}}}_{\text{Top path, the asset matures and pays off}}$$

$$+ \underbrace{e^{-\rho(\tau-t)}\max_{\text{rollover or run}}\left\{1,V\left(y_{\tau};y_{*}\right)\right\}\mathbf{1}_{\left\{\tau=\tau_{\delta}\right\}}}_{\text{Middle path, make the rollover decision when contract expires}}$$

$$+ \underbrace{e^{-\rho(\tau-t)}\min\left(1,L+ly_{\tau}\right)\mathbf{1}_{\{\tau=\tau_{\theta}\}}}.$$

Bottom path, the firm fails due to other creditors' run

Debt run externality: each creditor's run imposes an externality on the other creditors who are locked in.

The Unique Monotone Equilibrium

- ▶ There exists a **unique** equilibrium threshold y_* s.t. $V(y_*; y_*) = 1$.
 - Equilibrium uniquely defined in upper and lower dominance regions.
 - Knowing future maturing creditors will not run in dominance regions, backward induction uniquely determines equilibrium in the middle.

The Unique Monotone Equilibrium

- ▶ There exists a **unique** equilibrium threshold y_* s.t. $V(y_*; y_*) = 1$.
 - Equilibrium uniquely defined in upper and lower dominance regions.
 - Knowing future maturing creditors will not run in dominance regions, backward induction uniquely determines equilibrium in the middle.
- Strategic uncertainty originates from time-varying fundamental.
 - e.g., Frankel and Pauzner (2000).
 - In contrast to Carlsson and van Damme (1993) and Morris and Shin (1998), strategic uncertainty arises from noise in private signals.
- Requires a well spread-out fundamental process.
 - Continuous time not essential.
 - ▶ Does not rely on specific information structure and immune from information revealed by market prices, e.g., Angeletos and Werning (2006) and Hellwig, Mukherji and Tsyvinski (2006).

Rat Race after a Drop in Liquidation Value

- ightharpoonup Consider an unexpected drop in liquidation recovery rate α .
- \triangleright A creditor's optimal response y' to other creditors' threshold y_* .

Calibrating Model Parameters

- We use a set of parameters for illustration.
 - ▶ Discount rate $\rho = 1.5\%$.
 - Asset cashflow r=7%; asset duration $1/\phi=13$.
 - Asset's liquidation recovery rate $\alpha = 55\%$.
 - Asset's volatility $\sigma=20\%$, growth rate $\mu=1.5\%$, and current fundamental $y_0=1.4$.
 - ▶ Debt rollover frequency $\delta = 10$.
 - Unreliability of credit lines $\theta = 5$.

Effects of Liquidation Value

- Illiquidity exacerbates runs.
 - Similar to Rochet and Vives (2004).
- ▶ Threshold y_* sensitive to α .
 - Amplification effect by the rat race.

Effects of Fundamental Volatility

- Volatility affects each creditor in three channels:
 - ▶ Insolvency risk, causing y_* to increase with σ ;
 - ▶ Rollover risk (strategic uncertainty), causing y_* to increase with σ ;
 - Embedded option, causing y_* to decrease with σ .

Effects of Credit Lines

- Credit lines can temporarily sustain a firm under runs.
 - ► Common intuition: stronger credit lines should deter runs.
- When volatility is sufficiently large, credit lines exacerbate runs because fundamental can deteriorates during the period the firm lives on credit lines.
 - Uncertain government bailouts can be counter productive.

Effects of Debt Maturity

- ▶ Common intuition: longer debt maturities mitigate runs.
- Two offsetting effects of longer maturities:
 - 1) the firm faces less frequent rollover with other creditors and thus less likely to fail under runs.
 - 2) internally, longer lock-in effect for each creditor, which motivates runs, especially severe when voaltility is high.
- Longer maturities exacerbate runs when volatility is sufficiently high.
 - consistent with experience of runs on ABCP, e.g., Covitz, Liang, and Suarez (2009).

Further Discussion

- Synchronous vs Asynchronous Debt Structure
 - ▶ It is common for firms to spread out debt expirations.
 - The synchronous structure leads to more severe runs than the static-rollover benchmark when volatility is sufficiently high.
 - Which structure is optimal?
- Optimal Debt Maturity
 - Cheng and Milbradt (2010) extend the model to allow the firm switching b/w two projects: one with high growth and low volatility, the other with low growth and high volatility.
 - The optimal debt maturity trades off discipline on risk shifting and debt run risk.
- Spillover and Systemic Risk
 - When firms hold similar assets and face a downward sloping curve, runs on one firm can spill over to other firms.
 - Each firm's optimal debt structure and debt maturity depend on its own characteristics (fundamental volatility and asset illiqidity) and peer characteristics.

Summary

- ▶ Rollover risk is a key determinant of the health of the credit markets.
- Rollover risk exacerbates conflicts among different stakeholders:
 - conflict between debt and equity holders
 - coordination problem between creditors
- Through these channels, rollover risk affects the borrower's credit risk:
 - exacerbates its insolvency risk
 - exposes it to market liquidity risk
 - makes debt structure an important factor