Exact and Stable Covariance Estimation from Quadratic Sampling via Convex Programming

Yuxin Chen†, Yuejie Chi*, Andrea J. Goldsmith†

Stanford University†, Ohio State University*
• Data Stream / Stochastic Processes
 ○ Each data instance can be high-dimensional
 ○ We’re interested in information in the data rather than the data themselves

• Covariance Estimation
 ○ second-order statistics $\Sigma \in \mathbb{R}^{n \times n}$
 ○ cornerstone of many information processing tasks
What are Quadratic Measurements?

- Quadratic Measurements
 - obtain \(m \) measurements of \(\Sigma \) taking the form
 \[
y_i \approx a_i^\top \Sigma a_i \quad (1 \leq i \leq m)
 \]
 - rank-1 measurements!
Example: Applications in Spectral Estimation

- **High-frequency wireless and signal processing** (Energy Measurements)
 - Spectral estimation of **stationary processes** *(possibly sparse)*
Example: Applications in Spectral Estimation

- **High-frequency wireless and signal processing** (Energy Measurements)
 - Spectral estimation of stationary processes (*possibly sparse*)
 - Channel Estimation in MIMO Channels
Example: Applications in Optics

- **Phase Space Tomography**
 - measure correlation functions of a wave field

Fig credit: Chi et al
Example: Applications in Optics

- **Phase Space Tomography**
 - measure correlation functions of a wave field

- **Phase Retrieval**
 - signal recovery from magnitude measurements
Example: Applications in Data Streams

- **Covariance Sketching**
 - data stream: real-time data \(\{x_t\}_{t=1}^{\infty} \) arriving sequentially at a high rate...

- **Challenges**
 - limited memory
 - computational efficiency
 - hopefully a single pass over the data
Proposed Quadratic Sketching Method

1) Sketching:
 ○ at each time t, obtain a quadratic sketch $(a_i^\top x_t)^2$
 — a_i: sketching vector
Proposed Quadratic Sketching Method

1) Sketching:
 - at each time t, obtain a quadratic sketch $\left(a_i^T x_t \right)^2$
 — a_i: sketching vector

2) Aggregation:
 - all sketches are aggregated into m measurements
 \[
y_i = a_i^T \left(\frac{1}{T} \sum_{t=1}^{T} x_t x_t^T \right) a_i \approx a_i^T \Sigma a_i \quad (1 \leq i \leq m)
\]
Proposed Quadratic Sketching Method

1) Sketching:
○ at each time t, obtain a quadratic sketch $(a_i^T x_t)^2$
 — a_i: sketching vector

2) Aggregation:
○ all sketches are aggregated into m measurements

 $$y_i = a_i^T \left(\frac{1}{T} \sum_{t=1}^{T} x_t x_t^T \right) a_i \approx a_i^T \Sigma a_i \quad (1 \leq i \leq m)$$

• Benefits:
 ○ one pass
 ○ minimal storage *(as will be shown)*
Given: \(m (\ll n^2) \) quadratic measurements \(y = \{y_i\}_{i=1}^m \)

\[
y_i = a_i^\top \Sigma a_i + \eta_i, \quad i = 1, \ldots, m,\]

\(a_i \): sampling vectors
\(\eta = \{\eta_i\}_{i=1}^m \): noise terms

more concise operator form:

\[
y = A(\Sigma) + \eta\]

Goal: recover \(\Sigma \in \mathbb{R}^{n \times n} \).

Sampling model

sub-Gaussian i.i.d. sampling vectors
Geometry of Covariance Structure

- **# unknown > # stored measurements**
 - exploit low-dimensional structures!

- **Structures considered in this talk:**
 - low rank
 - Toeplitz low rank
 - simultaneously sparse and low-rank

1) low rank
2) Toeplitz low rank
3) jointly sparse and low rank
Low Rank

- **Low-Rank Structure:**
 - A few components explain most of the data variability
 - metric learning, array signal processing, collaborative filtering ...

- \(\text{rank}(\Sigma) = r \ll n. \)
Trace Minimization for Low-Rank Structure

- **Trace Minimization**

\[(\text{TraceMin}) \quad \text{minimize}_{M} \quad \underbrace{\text{trace}(M)}_{\text{low rank}}\]

\[\text{s.t.} \quad \|\mathcal{A}(M) - y\|_1 \leq \epsilon, \quad \text{noise bound}\]

\[M \succeq 0.\]

○ inspired by *Candes et. al.* for phase retrieval
Theorem 1 (Low Rank). With high prob, for all Σ with $\text{rank}(\Sigma) \leq r$, the solution $\hat{\Sigma}$ to TraceMin obeys

$$
\|\hat{\Sigma} - \Sigma\|_F \lesssim \frac{\|\Sigma - \Sigma_r\|_*}{\sqrt{r}} + \frac{\epsilon}{m},
$$

due to imperfect structure

due to noise

provided that $m \gtrsim rn$. (Σ_r: rank-r approx of Σ)

- **Exact recovery** in the noiseless case
- **Universal recovery**: simultaneously works for all low-rank matrices
- **Robust recovery** when Σ is *approximately* low-rank
- **Stable recovery** against bounded noise
empirical success probability of Monte Carlo trials: $n = 50$

- **Near-Optimal** Storage Complexity!
 - degrees of freedom $\approx rn$
Toeplitz Low Rank

- **Toeplitz Low-Rank Structure:**
 - **Spectral sparsity!**
 - possibly *off-the-grid* frequency spikes (Vandemonde decomposition)
 - wireless communication, array signal processing ...

- \(\text{rank}(\Sigma) = r \ll n. \)
Trace Minimization for Toeplitz Low-Rank Structure

• Trace Minimization

\[(\text{ToepTraceMin}) \quad \text{minimize}_M \quad \text{trace}(M) \quad \text{low rank}\]

\[\text{s.t.} \quad \| \mathcal{A}(M) - y \|_2 \leq \varepsilon_2 \quad \text{noise bound},\]

\[M \succeq 0,\]

\[M \text{ is Toeplitz}.\]
minimize \(\text{tr}(M) \) \ s.t. \(\|A(M) - y\|_2 \leq \epsilon_2, \quad M \succeq 0, \quad M \text{ is Toeplitz} \)

Theorem 2 (Toeplitz Low Rank). With high prob, for all Toeplitz \(\Sigma \) with \(\text{rank}(\Sigma) \leq r \), the solution \(\hat{\Sigma} \) to ToepTraceMin obeys

\[
\|\hat{\Sigma} - \Sigma\|_F \lesssim \frac{\epsilon_2}{\sqrt{m}},
\]

due to noise

provided that \(m \gtrsim r \text{poly log}(n) \).

- **Exact recovery** in the absence of noise
- **Universal recovery**: simultaneously works for all Toeplitz low-rank matrices
- **Stable recovery** against bounded noise
empirical success probability of Monte Carlo trials: $n = 50$

- **Near-Optimal** Storage Complexity!
 - degrees of freedom $\approx r$
Simultaneous Structure

- **Joint Structure:** Σ is *simultaneously* sparse and low-rank.
 - **rank:** r
 - **sparsity:** k

 \[
 \Sigma = U \Lambda U^\top, \quad \text{where } U = [u_1, \ldots, u_r]
 \]
Convex Relaxation for Simultaneous Structure

- Convex Relaxation

\[
\begin{align*}
\text{minimize}_{M} & \quad \text{trace}(M) + \lambda \|M\|_1 \\
\text{subject to} & \quad \|A(M) - y\|_1 \leq \epsilon, \\
& \quad M \succeq 0.
\end{align*}
\]

- \L_i and Voroninski for rank-1 cases
minimize $\text{tr}(M) + \lambda \|M\|_1$ \quad \text{s.t.} \quad A(M) = y, \quad M \succeq 0

Theorem 3 (Simultaneous Structure). SDP with $\lambda \in \left[\frac{1}{n}, \frac{1}{N_\Sigma} \right]$ is exact with high probability, provided that

$$m \gtrsim \frac{r \log n}{\lambda^2} \quad (1)$$

where $N_\Sigma := \max \left\{ \| \text{sign} (\Sigma_\Omega) \|, \sqrt{\frac{k \sum_{i=1}^r \| u_i \|^2}{r}} \right\}$.

- Exact recovery with appropriate regularization parameters
- Question: how good is the storage complexity (1)?
Definition (Compressible Matrices)

- *non-zero entries* of u_i exhibit *power-law decays*
 - $\|u_i\|_1 = O(\text{poly log}(n))$.
Compressible Covariance Matrices: Near-Optimal Recovery

Definition (Compressible Matrices)

- non-zero entries of u_i exhibit power-law decays
 - $\|u_i\|_1 = O(\text{poly log}(n))$.

Corollary 1 (Compressible Case). For compressible covariance matrices, SDP with $\lambda \approx \frac{1}{\sqrt{k}}$ is exact w.h.p., provided that

$$m \gtrsim kr \cdot \text{poly log}(n).$$

- Near-Minimal Measurements!
 - degree-of-freedom: $\Theta(kr)$
Stability and Robustness

- **noise**: $\|\eta\|_1 \leq \epsilon$

- **imperfect structural assumption**: $\Sigma = \Sigma_\Omega + \Sigma_c$

 simultaneous sparse and low-rank residuals
Stability and Robustness

- **noise**: $\|\eta\|_1 \leq \epsilon$

- **imperfect structural assumption**: $\Sigma = \Sigma_\Omega + \Sigma_c$
 \[\text{simultaneous sparse and low-rank residuals}\]

Theorem 4. Under the same λ as in Theorem 1 or Corollary 1,

$$\left\| \hat{\Sigma} - \Sigma_\Omega \right\|_F \lesssim \frac{1}{\sqrt{r}} \left(\|\Sigma_c\|_* + \lambda \|\Sigma_c\|_1 \right) + \frac{\epsilon}{m}$$

- stable against bounded noise
- robust against imperfect structural assumptions
• **Restricted Isometry Property**: a powerful notion for compressed sensing

\[\forall \mathbf{X} \text{ in some class : } \| \mathcal{B}(\mathbf{X}) \|_2 \approx \| \mathbf{X} \|_F. \]

◦ *unfortunately, it does *NOT* hold for quadratic models*
Mixed-Norm RIP (for Low-Rank and Joint Structure)

- **Restricted Isometry Property**: a powerful notion for compressed sensing

 \[\forall X \text{ in some class} : \quad \| B(X) \|_2 \approx \| X \|_F. \]

 - unfortunately, it does **NOT** hold for quadratic models

- **A Mixed-norm Variant**: **RIP-\(\ell^2/\ell^1\)**

 \[\forall X \text{ in some class} : \quad \| B(X) \|_1 \approx \| X \|_F. \]
• **Restricted Isometry Property:** a powerful notion for compressed sensing

\[\forall X \text{ in some class}: \quad \| B(X) \|_2 \approx \| X \|_F. \]

- unfortunately, it does **NOT** hold for quadratic models

• **A Mixed-norm Variant:** **RIP-\(\ell_2/\ell_1\)**

\[\forall X \text{ in some class}: \quad \| B(X) \|_1 \approx \| X \|_F. \]

- does **NOT** hold for \(A\), but hold after \(A\) is **debiased**
- A very simple proof for PhaseLift!
Concluding Remarks

- **Our approach / analysis works for other structural models**
 - Sparse covariance matrix
 - Low-Rank plus Sparse matrix

- **The way ahead**
 - Sparse *inverse* covariance matrix
 - Beyond sub-Gaussian sampling
 - Online recovery algorithms
Full-length version available at arXiv:

Exact and Stable Covariance Estimation from Quadratic Sampling via Convex Programming

Thank You! Questions?