Implicit Regularization in Nonconvex Statistical Estimation

Yuxin Chen

Electrical Engineering, Princeton University
Nonconvex estimation problems are everywhere

Empirical risk minimization is usually nonconvex

\[
\begin{align*}
\text{minimize}_{x} & \quad \ell(x; y) \quad \rightarrow \quad \text{may be nonconvex} \\
\text{subj. to} & \quad x \in S \quad \rightarrow \quad \text{may be nonconvex}
\end{align*}
\]
Nonconvex estimation problems are everywhere

Empirical risk minimization is usually nonconvex

\[
\begin{align*}
\text{minimize}_{x} & \quad \ell(x; y) \quad \rightarrow \quad \text{may be nonconvex} \\
\text{subj. to} & \quad x \in S \quad \rightarrow \quad \text{may be nonconvex}
\end{align*}
\]

- low-rank matrix completion
- graph clustering
- dictionary learning
- mixture models
- deep learning
- ...

3/36
Nonconvex optimization may be super scary

There may be bumps everywhere and exponentially many local optima

e.g. 1-layer neural net (Auer, Herbster, Warmuth ’96; Vu ’98)
Nonconvex optimization may be super scary

There may be bumps everywhere and exponentially many local optima

e.g. 1-layer neural net (Auer, Herbster, Warmuth ’96; Vu ’98)
... but is sometimes much nicer than we think

Under certain statistical models, we see benign global geometry: no spurious local optima

Fig credit: Sun, Qu & Wright
efficient algorithms
statistical models
exploit geometry
benign landscape
Nonconvex algorithms

• Optimization-based methods
 ○ gradient descent, mirror descent, ADMM, ...
Nonconvex algorithms

- Optimization-based methods
 - gradient descent, mirror descent, ADMM, ...

- Proper regularization
 - better exploit statistical / geometric properties
Optimization-based methods: two-stage approach

- Start from an appropriate initial point
Optimization-based methods: two-stage approach

• Start from an appropriate initial point

• Proceed via some iterative optimization algorithms
Roles of regularization

• Prevents overfitting and improves generalization
 ○ e.g. ℓ_1 penalization, SCAD, nuclear norm penalization, ...
Roles of regularization

• Prevents overfitting and improves generalization
 ○ e.g. ℓ_1 penalization, SCAD, nuclear norm penalization, ...

• Improves computation by stabilizing search directions
 ○ e.g. trimming, projection, regularized loss
Roles of regularization

• Prevents overfitting and improves generalization
 o e.g. ℓ_1 penalization, SCAD, nuclear norm penalization, ...

• Improves computation by stabilizing search directions
 \Rightarrow focus of this talk
 o e.g. trimming, projection, regularized loss
Are unregularized methods suboptimal for nonconvex estimation?
Regularized vs. unregularized methods

- **Phase retrieval**
 - regularized
 - unregularized
 - trimming
 - suboptimal comput. cost

- **Matrix completion**
 - regularized
 - unregularized
 - regularized cost projection
 - ?

- **Blind deconvolution**
 - regularized
 - unregularized
 - regularized cost projection
 - ?

Are unregularized methods suboptimal for nonconvex estimation?
Regularized vs. unregularized methods

- Phase retrieval
 - regularized
 - unregularized
 - trimming
 - suboptimal
 - comput. cost

- Matrix completion
 - regularized
 - unregularized
 - regularized cost
 - projection
 - ?

- Blind deconvolution
 - regularized
 - unregularized
 - regularized cost
 - projection
 - ?

Are unregularized methods suboptimal for nonconvex estimation?
Are unregularized methods suboptimal for nonconvex estimation?
Missing phase problem

Detectors record **intensities** of diffracted rays

- electric field \(x(t_1, t_2) \) \longrightarrow Fourier transform \(\hat{x}(f_1, f_2) \)

Fig credit: Stanford SLAC

intensity of electrical field: \[|\hat{x}(f_1, f_2)|^2 = \left| \int x(t_1, t_2) e^{-i2\pi(f_1 t_1 + f_2 t_2)} dt_1 dt_2 \right|^2 \]
Missing phase problem

Detectors record intensities of diffracted rays

- electric field $x(t_1, t_2) \rightarrow$ Fourier transform $\hat{x}(f_1, f_2)$

Fig credit: Stanford SLAC

Intensity of electrical field:

$$|\hat{x}(f_1, f_2)|^2 = \left| \int x(t_1, t_2)e^{-i2\pi(f_1 t_1 + f_2 t_2)} dt_1 dt_2 \right|^2$$

Phase retrieval: recover signal $x(t_1, t_2)$ from intensity $|\hat{x}(f_1, f_2)|^2$
Solving quadratic systems of equations

\[
A \begin{pmatrix} x \\ Ax \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \\ 2 \\ -1 \\ 4 \\ 2 \\ -2 \\ -1 \\ 3 \\ 4 \end{pmatrix} \quad \Rightarrow \quad y = |Ax|^2 = \begin{pmatrix} 1 \\ 9 \\ 4 \\ 1 \\ 16 \\ 4 \\ 4 \\ 1 \\ 9 \\ 16 \end{pmatrix}
\]

Recover \(x^\dagger \in \mathbb{R}^n \) from \(m \) random quadratic measurements

\[
y_k = |a_k^\top x^\dagger|^2, \quad k = 1, \ldots, m
\]

Assume w.l.o.g. \(\|x^\dagger\|_2 = 1 \)
Wirtinger flow (Candès, Li, Soltanolkotabi ’14)

Empirical loss minimization

\[
\text{minimize}_x \quad f(x) = \frac{1}{m} \sum_{k=1}^{m} \left[(a_k^\top x)^2 - y_k \right]^2
\]
Wirtinger flow (Candès, Li, Soltanolkotabi ’14)

Empirical loss minimization

$$\text{minimize}_x \ f(x) = \frac{1}{m} \sum_{k=1}^{m} \left[(a_k^\top x)^2 - y_k \right]^2$$

• Initialization by spectral method

• Gradient iterations: for $t = 0, 1, \ldots$

$$x^{t+1} = x^t - \eta_t \nabla f(x^t)$$
Two standard conditions that enable geometric convergence of GD

\[f(t) / (1 + t^2) \]
Gradient descent theory revisited

Two standard conditions that enable geometric convergence of GD

- (local) restricted strong convexity (or regularity condition)
Gradient descent theory revisited

Two standard conditions that enable geometric convergence of GD

• (local) restricted strong convexity (or regularity condition)
• (local) smoothness

\[\nabla^2 f(x) \succeq 0 \quad \text{and} \quad \text{is well-conditioned} \]
Gradient descent theory revisited

f is said to be α-strongly convex and β-smooth if

\[0 \preceq \alpha I \preceq \nabla^2 f(x) \preceq \beta I, \quad \forall x \]

ℓ_2 error contraction: GD with $\eta = 1/\beta$ obeys

\[\|x^{t+1} - x^\triangledown\|_2 \leq \left(1 - \frac{\alpha}{\beta}\right) \|x^t - x^\triangledown\|_2 \]
Gradient descent theory revisited

f is said to be α-strongly convex and β-smooth if

$$0 \preceq \alpha I \preceq \nabla^2 f(x) \preceq \beta I, \quad \forall x$$

\textbf{ℓ_2 error contraction:} GD with $\eta = 1/\beta$ obeys

$$\|x^{t+1} - x^\star\|_2 \leq \left(1 - \frac{\alpha}{\beta}\right)\|x^t - x^\star\|_2$$
Gradient descent theory revisited

\[\|x^{t+1} - x^\parallel\|_2 \leq (1 - \alpha/\beta) \|x^t - x^\parallel\|_2 \]

- region of local strong convexity + smoothness

- If this nice region is ℓ_2 ball and if we start within this region, then GD converges fast
Gradient descent theory revisited

\[\| x^{t+1} - x^\s\|_2 \leq (1 - \alpha/\beta) \| x^t - x^\s\|_2 \]

- region of local strong convexity + smoothness

- If this nice region is \(\ell_2 \) ball and if we start within this region, then GD converges fast
Gradient descent theory revisited

\[\| x^{t+1} - x^\dagger \|_2 \leq (1 - \alpha/\beta) \| x^t - x^\dagger \|_2 \]

- region of local strong convexity + smoothness

- If this nice region is ℓ_2 ball and if we start within this region, then GD converges fast
Gradient descent theory revisited

\[\| x^{t+1} - x^\dagger \|_2 \leq (1 - \alpha/\beta) \| x^t - x^\dagger \|_2 \]

- region of local strong convexity + smoothness

- If this nice region is ℓ_2 ball and if we start within this region, then GD converges fast
Gradient descent theory revisited

\[0 \leq \alpha I \leq \nabla^2 f(x) \leq \beta I, \quad \forall x \]

\(l_2\) error contraction: GD with \(\eta = 1/\beta\) obeys

\[
\|x^{t+1} - x^\flat\|_2 \leq \left(1 - \frac{\alpha}{\beta}\right) \|x^t - x^\flat\|_2
\]

- Condition number \(\beta/\alpha\) determines rate of convergence
Gradient descent theory revisited

\[0 \leq \alpha I \leq \nabla^2 f(x) \leq \beta I, \quad \forall x \]

\textbf{ℓ_2 error contraction:} GD with $\eta = 1/\beta$ obeys

\[\|x^{t+1} - x^\sharp\|_2 \leq \left(1 - \frac{\alpha}{\beta}\right) \|x^t - x^\sharp\|_2 \]

- Condition number β/α determines rate of convergence
- Attains ε-accuracy within $O\left(\frac{\beta}{\alpha} \log \frac{1}{\varepsilon}\right)$ iterations
What does this optimization theory say about WF?

Gaussian designs: \(a_k \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, I_n), \quad 1 \leq k \leq m \)
What does this optimization theory say about WF?

Gaussian designs: $a_k \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, I_n), \quad 1 \leq k \leq m$

Population level (infinite samples)

$$E[\nabla^2 f(x)] = 3 \left(\|x\|_2^2 I + 2xx^\top \right) - \left(\|x^b\|_2^2 I + 2x^b x^b^\top \right)$$

(locally) positive definite and well-conditioned

Consequence: WF converges within logarithmic iterations if $m \to \infty$
What does this optimization theory say about WF?

Gaussian designs: \(a_k \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, I_n), \quad 1 \leq k \leq m \)

Finite-sample level \((m \asymp n \log n) \)

\[\nabla^2 f(x) \succ 0 \]
What does this optimization theory say about WF?

Gaussian designs: $a_k \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, I_n), \quad 1 \leq k \leq m$

Finite-sample level ($m \asymp n \log n$)

$$\nabla^2 f(x) \succ 0 \quad \text{but ill-conditioned} \quad (\text{even locally})$$

condition number $\asymp n$
What does this optimization theory say about WF?

Gaussian designs: \(a_k \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, I_n), \quad 1 \leq k \leq m \)

Finite-sample level \((m \asymp n \log n)\)

\[
\nabla^2 f(x) \succ 0 \quad \text{but ill-conditioned} \quad \text{(even locally)}
\]

condition number \(\asymp n \)

Consequence (Candès et al ‘14): WF attains \(\varepsilon \)-accuracy within \(O(n \log \frac{1}{\varepsilon}) \) iterations if \(m \asymp n \log n \)
What does this optimization theory say about WF?

Gaussian designs: \(a_k \sim \mathcal{N}(0, I_n) \), \(1 \leq k \leq m \)

Finite-sample level (\(m \approx n \log n \))

\[\nabla^2 f(x) \succ 0 \quad \text{but ill-conditioned} \quad (\text{even locally}) \]

condition number \(\approx n \)

Consequence (Candès et al '14): WF attains \(\varepsilon \)-accuracy within \(O(n \log \frac{1}{\varepsilon}) \) iterations if \(m \approx n \log n \)

Too slow ... can we accelerate it?
One solution: truncated WF (Chen, Candès ’15)

Regularize / trim gradient components to accelerate convergence
One solution: truncated WF (Chen, Candès ’15)

Regularize / trim gradient components to accelerate convergence

WF: $\eta_t = O(1/n)$
One solution: truncated WF (Chen, Candès ’15)

Regularize / trim gradient components to accelerate convergence

WF: $\eta_t = O(1/n)$

WF with trimming: $\eta_t = O(1)$
One solution: truncated WF (Chen, Candès ’15)

Regularize / trim gradient components to accelerate convergence

WF: $\eta_t = O(1/n)$

WF with trimming: $\eta_t = O(1)$

With better-controlled search directions, one can proceed much faster
But wait a minute ...

WF converges in $O(n)$ iterations
WF converges in $O(n)$ iterations

Step size taken to be $\eta_t = O(1/n)$
But wait a minute ...

WF converges in $O(n)$ iterations

Step size taken to be $\eta_t = O(1/n)$

This choice is suggested by *generic* optimization theory
WF converges in $O(n)$ iterations

Step size taken to be $\eta_t = O(1/n)$

This choice is suggested by worst-case optimization theory
But wait a minute ...

WF converges in $O(n)$ iterations

Step size taken to be $\eta_t = O(1/n)$

This choice is suggested by worst-case optimization theory

Does it capture what really happens?
Numerical surprise with $\eta_t = 0.1$

Vanilla GD (WF) can proceed much more aggressively!
A second look at gradient descent theory

Which region enjoys both strong convexity and smoothness?

\[\nabla^2 f(x) = \frac{1}{m} \sum_{k=1}^{m} \left[3(a_k^\top x)^2 - (a_k^\top x^\perp)^2 \right] a_k a_k^\top \]
A second look at gradient descent theory

Which region enjoys both strong convexity and smoothness?

\[\nabla^2 f(x) = \frac{1}{m} \sum_{k=1}^{m} \left[3(a_k^\top x)^2 - (a_k^\top x^\dagger)^2 \right] a_k a_k^\top \]

- Not smooth if \(x \) and \(a_k \) are too close (coherent)
A second look at gradient descent theory

Which region enjoys both strong convexity and smoothness?

- x is not far away from x^\natural
A second look at gradient descent theory

Which region enjoys both strong convexity and smoothness?

- \mathbf{x} is not far away from \mathbf{x}^{\ddagger}
- \mathbf{x} is incoherent w.r.t. sampling vectors (incoherence region)
A second look at gradient descent theory

Which region enjoys both strong convexity and smoothness?

- x is not far away from x^\dagger
- x is incoherent w.r.t. sampling vectors (incoherence region)
A second look at gradient descent theory

- region of local strong convexity + smoothness

- Prior theory only ensures that iterates remain in ℓ_2 ball but not incoherence region
A second look at gradient descent theory

- region of local strong convexity + smoothness

- Prior theory only ensures that iterates remain in ℓ_2 ball but not incoherence region
A second look at gradient descent theory

- region of local strong convexity + smoothness

- Prior theory only ensures that iterates remain in ℓ_2 ball but not incoherence region
A second look at gradient descent theory

- region of local strong convexity + smoothness

- Prior theory only ensures that iterates remain in ℓ_2 ball but not incoherence region
A second look at gradient descent theory

- region of local strong convexity + smoothness

- Prior theory only ensures that iterates remain in ℓ_2 ball but not incoherence region
A second look at gradient descent theory

- region of local strong convexity + smoothness

- Prior theory only ensures that iterates remain in ℓ_2 ball but not incoherence region
A second look at gradient descent theory

- Prior theory only ensures that iterates remain in ℓ_2 ball but not incoherence region

region of local strong convexity $+$ smoothness
A second look at gradient descent theory

- region of local strong convexity + smoothness

- Prior theory only ensures that iterates remain in ℓ_2 ball but not incoherence region
A second look at gradient descent theory

- region of local strong convexity + smoothness

- Prior theory only ensures that iterates remain in ℓ_2 ball but not incoherence region

- *Prior theory enforces regularization to promote incoherence*
Our findings: GD is implicitly regularized

region of local strong convexity + smoothness
Our findings: GD is implicitly regularized

region of local strong convexity + smoothness
Our findings: GD is implicitly regularized

- region of local strong convexity + smoothness
Our findings: GD is implicitly regularized

region of local strong convexity + smoothness
Our findings: GD is implicitly regularized

region of local strong convexity + smoothness

GD implicitly forces iterates to remain incoherent
Theoretical guarantees

Theorem 1 (Phase retrieval)

Under i.i.d. Gaussian design, WF achieves

\[\max_k \left| \mathbf{a}_k^T (\mathbf{x}^t - \mathbf{x}^\dagger) \right| \lesssim \sqrt{\log n} \| \mathbf{x}^\dagger \|_2 \quad \text{(incoherence)} \]
Theoretical guarantees

Theorem 1 (Phase retrieval)

Under i.i.d. Gaussian design, WF achieves

- $\max_k |\mathbf{a}_k^T (\mathbf{x}^t - \mathbf{x}^\dagger)| \lesssim \sqrt{\log n} \|\mathbf{x}^\dagger\|_2$ (incoherence)
- $\|\mathbf{x}^t - \mathbf{x}^\dagger\|_2 \lesssim (1 - \frac{\eta}{2})^t \|\mathbf{x}^\dagger\|_2$ (near-linear convergence)

provided that step size $\eta \asymp \frac{1}{\log n}$ and sample size $m \gtrsim n \log n$.

Step size: $\frac{1}{\log n}$ (vs. $\frac{1}{n}$)

Computational complexity: $n/\log n$ times faster than existing theory for WF.
Theoretical guarantees

Theorem 1 (Phase retrieval)

Under i.i.d. Gaussian design, WF achieves

- \(\max_k |a_k^T (x^t - x^*)| \lesssim \sqrt{\log n} \|x^*\|_2 \) (incoherence)
- \(\|x^t - x^*\|_2 \lesssim (1 - \eta^2)^t \|x^*\|_2 \) (near-linear convergence)

provided that step size \(\eta \approx \frac{1}{\log n} \) and sample size \(m \gtrsim n \log n \).

- Step size: \(\frac{1}{\log n} \) (vs. \(\frac{1}{n} \))
Theoretical guarantees

Theorem 1 (Phase retrieval)

Under i.i.d. Gaussian design, WF achieves

\[
\max_k | \mathbf{a}_k^\top (\mathbf{x}_t - \mathbf{x}_\natural) | \lesssim \sqrt{\log n} \| \mathbf{x}_\natural \|_2 \quad (\text{incoherence})
\]

\[
\| \mathbf{x}_t - \mathbf{x}_\natural \|_2 \lesssim (1 - \frac{\eta}{2})^t \| \mathbf{x}_\natural \|_2 \quad (\text{near-linear convergence})
\]

provided that step size \(\eta \approx \frac{1}{\log n} \) and sample size \(m \gtrsim n \log n \).

- Step size: \(\frac{1}{\log n} \) (vs. \(\frac{1}{n} \))

- Computational complexity: \(n / \log n \) times faster than existing theory for WF
For each $1 \leq l \leq m$, introduce leave-one-out iterates $x^{t,(l)}$ by dropping lth measurement.
Key ingredient: leave-one-out analysis

- Leave-one-out iterates $x^{t,(l)}$ are independent of a_l, and are hence incoherent w.r.t. a_l with high prob.
Key ingredient: leave-one-out analysis

- Leave-one-out iterates $x^{t,(l)}$ are independent of a_l, and are hence incoherent w.r.t. a_l with high prob.
- Leave-one-out iterates $x^{t,(l)} \approx$ true iterates x^t
This recipe is quite general
Low-rank matrix completion

Given partial samples Ω of a low-rank matrix M, fill in missing entries

Fig. credit: Candès
Prior art

\[
\text{minimize}_X \quad f(X) = \sum_{(j,k) \in \Omega} \left(e_j^\top XX^\top e_k - M_{j,k} \right)^2
\]
Prior art

\[\text{minimize}_X \quad f(X) = \sum_{(j,k) \in \Omega} \left(e_j^\top X X^\top e_k - M_{j,k} \right)^2 \]

Existing theory on gradient descent requires

- regularized loss (solve \(\min X f(X) + R(X) \) instead)
- e.g. Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma '16
- projection onto set of incoherent matrices
 - e.g. Chen, Wainwright '15, Zheng, Lafferty '16
Prior art

\[
\min_X f(X) = \sum_{(j,k) \in \Omega} \left(e_j^\top X X^\top e_k - M_{j,k} \right)^2
\]

Existing theory on gradient descent requires

- regularized loss (solve \(\min_X f(X) + R(X) \) instead)
 - e.g. Keshavan, Montanari, Oh ’10, Sun, Luo ’14, Ge, Lee, Ma ’16
Prior art

\[
\text{minimize}_X \quad f(X) = \sum_{(j,k)\in\Omega} \left(e_j^\top XX^\top e_k - M_{j,k} \right)^2
\]

Existing theory on gradient descent requires

- regularized loss (solve \(\min_X f(X) + R(X) \) instead)
 - e.g. Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma '16

- projection onto set of incoherent matrices
 - e.g. Chen, Wainwright '15, Zheng, Lafferty '16
Theoretical guarantees

Theorem 2 (Matrix completion)

Suppose M is rank-r, incoherent and well-conditioned. Vanilla gradient descent (with spectral initialization) achieves ε accuracy

- in $O\left(\log \frac{1}{\varepsilon}\right)$ iterations

if step size $\eta \lesssim \frac{1}{\sigma_{\text{max}}(M)}$ and sample size $\gtrsim nr^3 \log^3 n$
Theorem 2 (Matrix completion)

Suppose M is rank-r, incoherent and well-conditioned. Vanilla gradient descent (with spectral initialization) achieves ε accuracy

- in $O\left(\log \frac{1}{\varepsilon} \right)$ iterations w.r.t. $\| \cdot \|_F$, $\| \cdot \|$, and $\| \cdot \|_{2,\infty}$

if step size $\eta \lesssim \frac{1}{\sigma_{\text{max}}(M)}$ and sample size $\gtrsim nr^3 \log^3 n$
Suppose M is rank-r, incoherent and well-conditioned. **Vanilla gradient descent** (with spectral initialization) achieves ε accuracy

- in $O(\log \frac{1}{\varepsilon})$ iterations w.r.t. $\| \cdot \|_F$, $\| \cdot \|$, and $\| \cdot \|_{2,\infty}$

if step size $\eta \lesssim 1/\sigma_{\text{max}}(M)$ and sample size $\gtrsim nr^3 \log^3 n$

- **Byproduct**: vanilla GD controls **entrywise error** — errors are spread out across all entries
Blind deconvolution

Reconstruct two signals from their convolution; equivalently,

find $h, x \in \mathbb{C}^n$ s.t. $b_k^* h_k x_k^* a_k = y_k, \quad 1 \leq k \leq m$

Fig. credit: Romberg

Fig. credit: EngineeringsALL
Prior art

\[
\begin{align*}
\text{minimize}_{x, h} & \quad f(x, h) = \sum_{k=1}^{m} \left| b_k^* \left(hx^* - h^b x^{b*} \right) a_k \right|^2 \\
 a_k & \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, I) \quad \text{and} \quad \{b_k\} : \text{partial Fourier basis}
\end{align*}
\]
Prior art

\[
\text{minimize}_{x, h} \quad f(x, h) = \sum_{k=1}^{m} \left| b_k^* \left(hx^* - h^\dagger x^{\dagger*} \right) a_k \right|^2
\]

\[a_k \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, I)\] and \(\{b_k\} : \text{partial Fourier basis}\)

Existing theory on gradient descent requires

- regularized loss + projection
 - e.g. Li, Ling, Strohmer, Wei ’16, Huang, Hand ’17, Ling, Strohmer ’17
Prior art

\[
\min_{x, h} \quad f(x, h) = \sum_{k=1}^{m} \left| b_k^* \left(h x^* - h^\dagger x^\dagger \right) a_k \right|^2
\]

\[a_k \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, I) \quad \text{and} \quad \{b_k\} : \text{partial Fourier basis}\]

Existing theory on gradient descent requires

- regularized loss + projection
 - e.g. Li, Ling, Strohmer, Wei '16, Huang, Hand '17, Ling, Strohmer '17
 - requires \(m\) iterations even with regularization
Theoretical guarantees

Theorem 3 (Blind deconvolution)

Suppose h^\perp is incoherent w.r.t. $\{b_k\}$. Vanilla gradient descent (with spectral initialization) achieves ε accuracy in $O(\log \frac{1}{\varepsilon})$ iterations, provided that step size $\eta \lesssim 1$ and sample size $m \gtrsim n \text{poly log}(m)$.

- Regularization-free
- Converges in logarithmic iterations (vs. $O(m)$ iterations in prior theory)
Incoherence region in high dimensions

2-dimensional high-dimensional (mental representation)

incoherence region is vanishingly small
Summary

- Implicit regularization: vanilla gradient descent automatically forces iterates to stay incoherent
Summary

- **Implicit regularization**: vanilla gradient descent automatically forces iterates to stay *incoherent*
- Enable error controls in a much stronger sense (e.g. *entrywise error control*)

Paper:

“Implicit regularization in nonconvex statistical estimation: Gradient descent converges linearly for phase retrieval, matrix completion, and blind deconvolution”, Cong Ma, Kaizheng Wang, Yuejie Chi, Yuxin Chen, arXiv:1711.10467