



# Simulations of flame acceleration and transition to detonation: How accurate are they?

#### **Huahua Xiao**

V.N. Gamezo, R.W. Houim, E.S. Oran

August 30, 2017

The 1st International Workshop on Near-Limit Flames

AEROSPACE ENGINEERING



# Deflagration-to-detonation transition (DDT) is an important research topic in reactive flows



Hydrogen Explosion in a Pipe. Norsk Hydro Ammonia Plant, Norway, 1997

#### Pulse Detonation Engine





# Several mechanisms of DDT have been seen in reactive gas systems

- Reactivity-gradient mechanism through hot spots
  - Zeldovich et al. (1970), Lee et al. (1978), and Oran (2007, 2015)
- Direct initiation of detonation by multi-shock collision
  - Goodwin et al. (2016, 2017), and Maeda et al. (2016)
- Self-intensified turbulent flame accelerating to CJ velocity
  - This is a possible mechanism for unconfined DDT
  - Poludnenko et al. (2011, 2012)

### Mechanisms of DDT are not fully understood and quantitative modeling still remains a challenge

- Very rapid, nonlinear, and complex process
  - Involves combustion instabilities, turbulence, shock-flame interactions, boundary layer effects, and detonation initiation.
- Cover an extremely broad range of spatial scale
  - 4-12 orders of magnitude in real systems, which is one of the factors making the problem computationally challenging
- Stochastic nature of DDT
  - Poses difficulties in both determining the quantitative effects of parameters and validating numerical models

#### There are many unanswered questions

How and where can hot spots be created in the DDT process?

What is required in a numerical model to quantitatively calculate DDT in obstructed channels?

How can we understand the effects of numerical algorithms and implementations on the accuracy of DDT calculations?

#### The modeling process Start from observations of the real world

- Define model equations
  - Approximate the real world
- Determine numerical schemes suitable for transforming equations into algebraic form
  - Approximate the model equations
- Program algorithm and implementation on computer
  - Approximates algebraic equations
- Analyze and present results in form of graphs, movies ...
  - Show selected interpretations of the results

## The numerical simulations solve the two-dimensional, fully compressible, reactive Navier-Stokes equations

Mass: 
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{U}) = 0$$

Momentum: 
$$\frac{\partial (\rho \mathbf{U})}{\partial t} + \nabla \cdot (\rho \mathbf{U} \mathbf{U}) + \nabla P = \nabla \cdot \hat{\tau}$$

Energy: 
$$\frac{\partial E}{\partial t} + \nabla \cdot ((E + P)\mathbf{U}) = \nabla \cdot (\mathbf{U} \cdot \hat{\tau}) + \nabla \cdot (K\nabla T) - \rho q\dot{w}$$

Species: 
$$\frac{\partial (\rho Y)}{\partial t} + \nabla \cdot (\rho Y \mathbf{U}) + \nabla \cdot (\rho D \nabla Y) - \rho \dot{w} = 0$$

State Equation: 
$$P = \frac{\rho RT}{M}$$

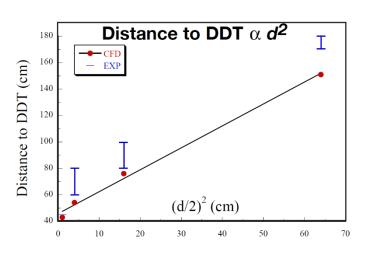
Stress Tensor: 
$$\hat{\tau} = \rho \nu ((\nabla \mathbf{U}) - (\nabla \mathbf{U})^T - \frac{2}{3} (\nabla \cdot \mathbf{U}) \mathbf{I})$$

### The combustion of fuel-air mixture is modeled using a single-step chemical-diffusive model

Reaction Rate

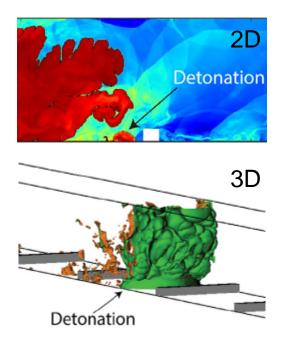
$$\dot{\omega} = dY/dt = A\rho Y exp\left(\frac{-E_a}{RT}\right)$$

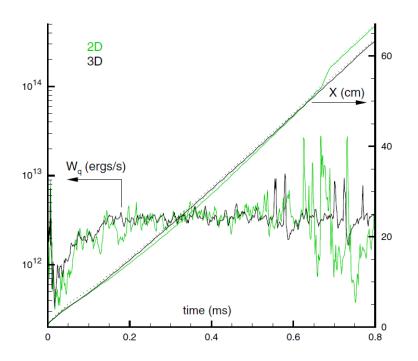
Transport properties


$$\mu = \mu_0 T^n$$
,  $D = D_0 T^n$ ,  $k = k_0 T^n$  (n = 0.7)

 The combustion model can reproduce major properties of flame, detonation, and the transitions between them for premixed combustion

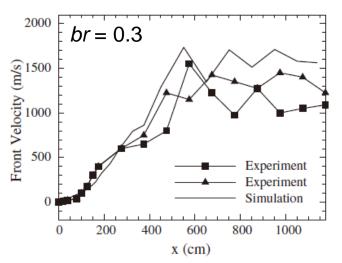
# Prior studies of DDT showed that the model can reproduce the major features of DDT in obstructed channels that qualitatively and quantitatively agree with experiments

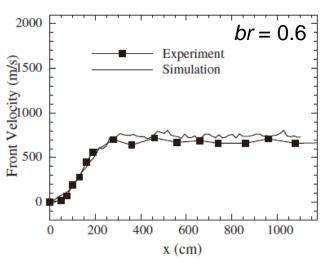

- Reproduce the main regimes observed in experiments
  - Choking flame, quasi-detonation, and detonation (Lee et al., 1984)
- Agree well with the experiments of H<sub>2</sub>-Air DDT
  - By Teodorczyk, 2007






# Prior studies also showed that 2D simulations agree with 3D simulations


Same flame acceleration (FA) and DDT mechanism






## Good agreement with experiments was also shown for large-scale methane-air DDT in obstructed channels

- Experiments by Kuznetsov et al. (2002)
  - 17.4 cm in diameter, 1188 cm in length
  - 52 cm in diameter, 2130 cm in length





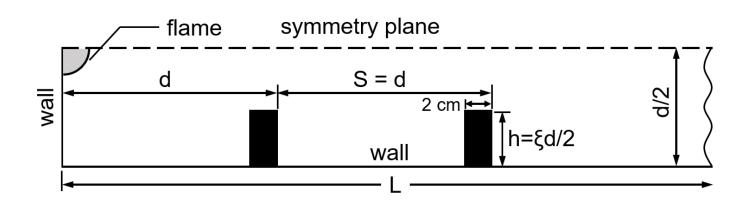
17.4 cm diameter channel

# The modeling process Determines the accuracy of the simulations

- Define model equations
  - Approximate the real world
- Determine numerical schemes suitable for transforming equations into algebraic form
  - Approximate the model equations
- Program algorithm and implementation on computer
  - Approximates algebraic equations
- Analyze and present results in form of graphs, movies ...
  - Show selected interpretations of the results

### Two different codes with different numerical algorithms are used to solve the same model equations

#### ALLA (low-order)


- 2<sup>nd</sup>-order Godunov method with Colella-Glaz Riemann solver
- 2<sup>nd</sup>-order direction-splitting time integration
- AMR: Fully Threaded Tree algorithm

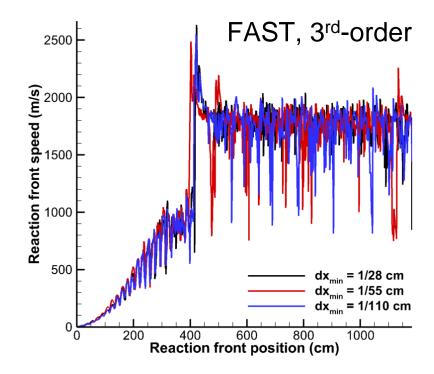
#### FAST (high-order)

- 3<sup>rd</sup>/5<sup>th</sup>-order WENO algorithm with HLLC Riemann solver
- 2<sup>nd</sup>-order Runge-Kutta time integration
- AMR: block-structured gridding using Boxlib

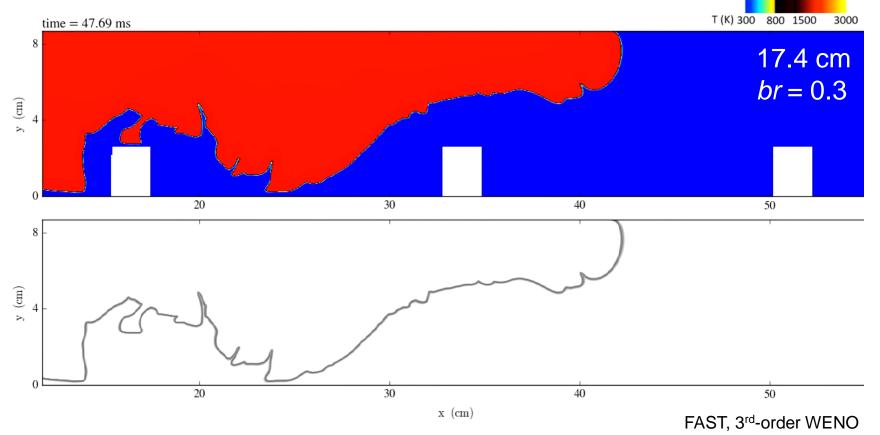
# The computational domain is a channel, closed at the left end, with evenly-spaced obstacles

- No-slip, adiabatic boundary conditions are used at all the walls and obstacle surfaces
- Symmetry conditions are applied along the center line
- Non-reflecting conditions are used at the right end

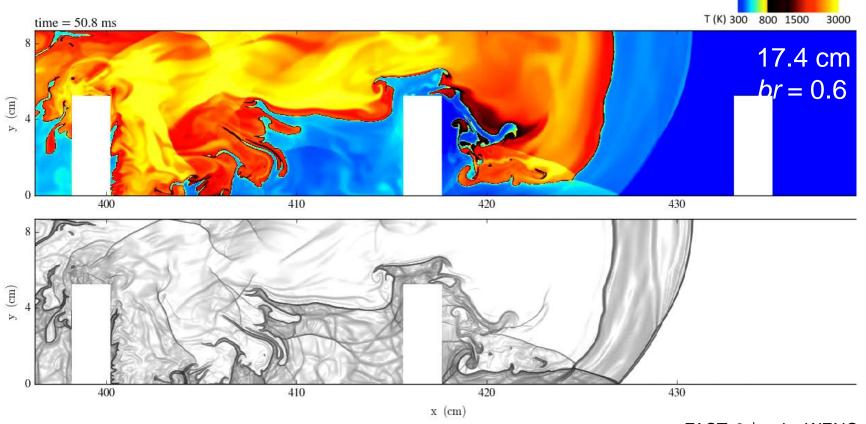



## Two channel diameters, 17.4 and 52 cm, are selected, corresponding to available experimental configurations\*

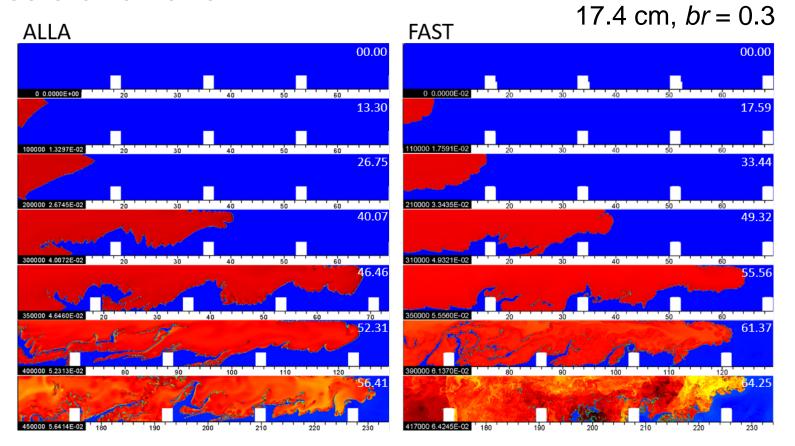
| Diameter d (cm)   | 17.4     | 52       |
|-------------------|----------|----------|
| Length L (cm)     | 1187.8   | 2130     |
| Blockage ratio br | 0.3, 0.6 | 0.3, 0.6 |


The computations are performed using ALLA and FAST, and the results will be compared to each other and to the existing experimental data by Kuznetsov et al.\*

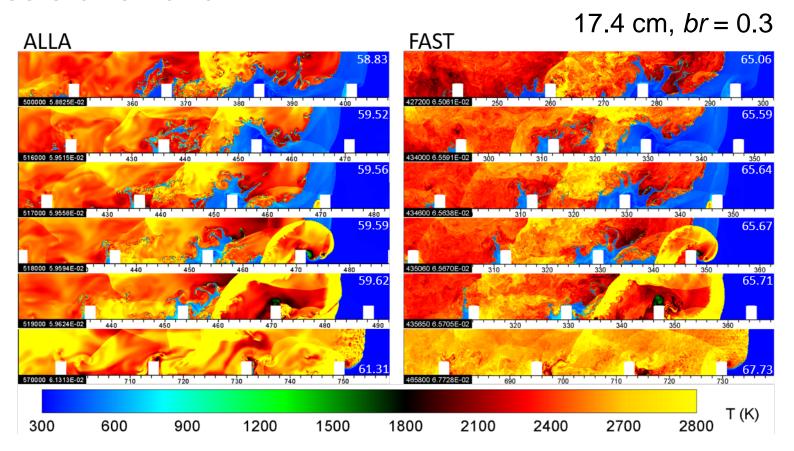
# The grid resolution test shows that different resolutions give similar flame acceleration and length to DDT


- In the following calculations
  - First compare the 2<sup>nd</sup> (ALLA) to the 3<sup>rd</sup> (FAST), then to the 5<sup>th</sup>-order scheme (FAST)
  - $dx_{min} = 0.18125 (\sim 1/55) \text{ mm}$

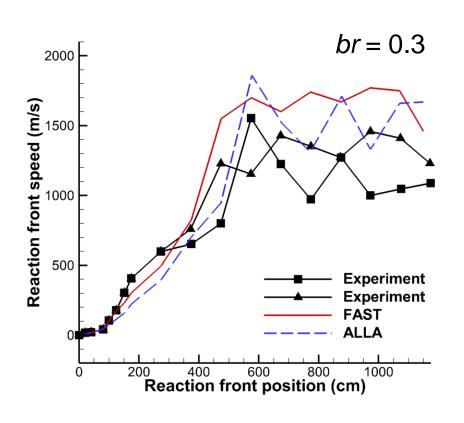


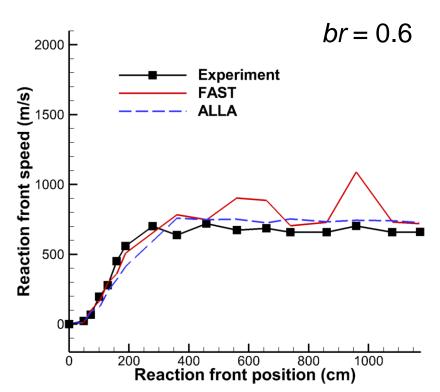

Flame acceleration involves thermal expansion, fluid instabilities, vortices, and turbulence. DDT occurs as hot spots are created by Mach stem reflection




# Overall, flame propagates in a "choking" regime at high blockage ratio br = 0.6.

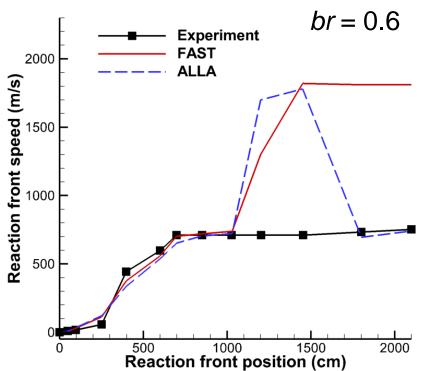



#### **ALLA and FAST show the same mechanism of flame acceleration and DDT**




#### ALLA and FAST show the same mechanism of flame acceleration and DDT





### The computational results are in quantitative agreement with experiment for the channel with diameter 17.4 cm

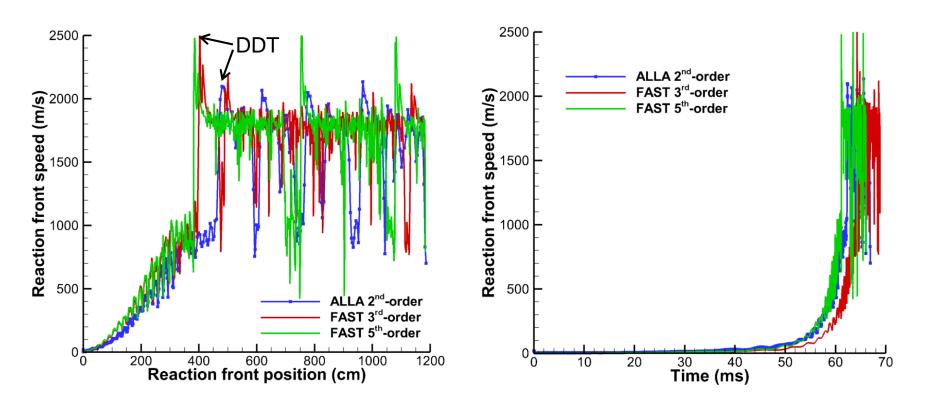




### The computations show a difference in the occurrence of DDT for the 52 cm channel with large blockage 0.6



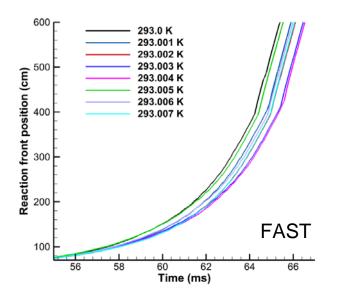



## Why can there be a difference in the occurrence of DDT for the 52 cm channel with large blockage ratio 0.6

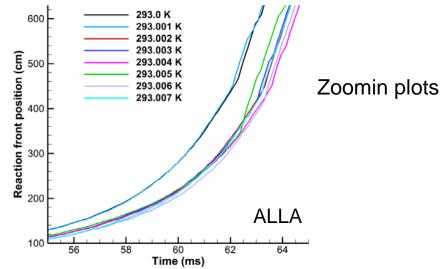
DDT criteria from experiments

$$d^*>\lambda$$
 (Peraldi et al., Proc Combust Inst, 1986) 
$$L^*=(S+d)/(2(1-d*/d)>7\lambda$$
 (Dorofeev et al., Shock Waves, 2002)

- For the 52 cm channel at br = 0.6, we have  $d^* = 1.7 \lambda$ ,  $L^* = 7 \lambda$
- DDT is a stochastic phenomenon in nature
  - When comparing deterministic simulations of a stochastic system to a limited set of available experiments, differences may be expected


#### The results for low and high-order schemes are close




17.4 cm channel, br = 0.3

#### Stochasticity test show that the difference in DDT distance between ALLA and FAST is within the stochasticity range

- □ Impose random tiny perturbation in the background initial conditions corresponding to  $\nabla T = 0.001 \text{ K}$
- DDT occurrence distances
  - FAST: 415–467 cm



ALLA: 347–467 cm



#### **Conclusions**

- ALLA and FAST methods with different schemes and implementations predict similar flame speeds and lengths to DDT that quantitatively agree with experiments
- The numerical model works for coarse and fine grids, high- and low-order schemes with different implementations
- The major difference between ALLA and FAST lies in the detonation failure at high blockage ratio
- Same DDT mechanism is observed, i.e., the hot-spot mechanism with Mach-stem reflection
- This work further supports the validity and reliability of the numerical model for simulating DDT in obstructed channels



Do you have any questions?

AEROSPACE ENGINEERING



#### **Example: model for stoichiometric hydrogen-air**

|        | Quantity                 | Value                                         | Definition                                 |
|--------|--------------------------|-----------------------------------------------|--------------------------------------------|
|        | $T_0$                    | 293 K                                         | Initial temperature                        |
| Innut  | $P_0$                    | 1 atm                                         | Initial pressure                           |
|        | $ ho_0$                  | $8.7345 \times 10^{-4} \text{ g/cm}^3$        | Initial density                            |
| Input  | $\gamma$                 | 1.17                                          | Adiabatic index                            |
|        | M                        | 21 g/mol                                      | Molecular weight                           |
|        | A                        | $6.85 \times 10^{12} \text{ cm}^3/\text{g-s}$ | Pre-exponential factor                     |
|        | $E_a(=Q)$                | $46.37  R  T_0$                               | Activation energy                          |
|        | q                        | $43.28 R T_0/M$                               | Chemical energy release                    |
|        | $\nu_0 = \kappa_0 = D_0$ | $2.9 \times 10^{-5} \text{ g/s-cm-K}^{0.7}$   | Transport constants                        |
|        | G                        | 200                                           | T : 0 1                                    |
|        | $S_l$                    | 298 cm/s                                      | Laminar flame speed                        |
|        | $T_b$                    | $7.289 T_0$                                   | Post-flame temperature                     |
|        | $ ho_b$                  | $0.1372 \ \rho_0$ $0.035 \ \mathrm{cm}$       | Post-flame density Laminar flame thickness |
|        | $x_l$                    |                                               |                                            |
| Output | $D_{CJ}$                 | $1.993 \times 10^5 \text{ cm/s}$              | CJ detonation velocity                     |
|        | $P_{ZND}$                | $31.47 P_0$                                   | Post-shock pressure                        |
|        | $P_{CJ}$                 | $16.24 P_0$                                   | Pressure at CJ point                       |
|        | $T_{ZND}$                | $3.457 T_0$                                   | Post-shock temperature                     |
|        | $T_{CJ}$                 | $9.010 \ T_0$                                 | Temperature at CJ point                    |
|        | $\rho_{ZND}$             | $9.104 \ \rho_0$                              | Post-shock density                         |
|        | $ ho_{CJ}$               | $1.802 \ \rho_0$                              | Density at CJ point                        |
|        | $x_d$                    | $0.01927~\mathrm{cm}$                         | 1D half-reaction thickness                 |
|        | $\lambda$                | 1-2 cm                                        | Detonation cell size                       |

#### **Example: model for stoichiometric methane-air**

| Input Po To M  Y A Ea  | 1 atm<br>298 K<br>27 g/mol<br>1.197<br>$1.64 \times 10^{13} \text{ c/m}^3/\text{g s}$<br>$67.55RT_0$<br>$39.0RT_0/M$<br>$3.6 \times 10^{-6} \text{ g/s cm K}^{0.7}$ |                              |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| $v_0$ $\kappa_0 = D_0$ | $6.25 \times 10^{-6} \mathrm{g/s} \mathrm{cm} \mathrm{K}^{0.7}$                                                                                                     |                              |
|                        | 0.23 × 10 g/3 cm K                                                                                                                                                  |                              |
| Output                 | Calculated values                                                                                                                                                   | Tanget values                |
|                        | Calculated values                                                                                                                                                   | Target values                |
| $S_{l}$                | 38.02 cm/s                                                                                                                                                          | 34-45 cm/s [26,27]           |
| $T_b$                  | 2210 K                                                                                                                                                              | 2200-2230 K [28]             |
| $x_f$                  | 0.0439 cm                                                                                                                                                           |                              |
| $D_{CJ}$               | 1820 m/s                                                                                                                                                            | ~1815 m/s [42 <sub>*</sub> ] |
| $x_d(\lambda)$         | 0.229 cm (16–23 cm) <sup>*</sup>                                                                                                                                    | 0.13–0.62 cm (13–31 cm) [19] |