"Kinetic mechanisms" discussion Summary

Matt Oehlschlaeger

Challenges

- Expense of theoretical and experimental determinations of rate coefficient
 - ~30 rate theoretical rate predictions / year;
 similar annual experimental yield
 - Not all theoretical predictions are of equal value;
 QC tools in the wrong hands can be dangerous

- Development and optimization of rate rules for reactions that can't be calculated or measured
 - Is number of rules finite?

Challenges

- Never will be enough data to validate a model across all conditions found in a turbulent flame
 - Need to identify regimes where uncertainty & sensitivity exists
 - Multiple groups perform complimentary experiments
 - (Re)evaluate old data
- At high temperatures
 - Pyroltic chemistry leaves fragments
 - Structure of fuel fragments (olefins) controls their reactivity
 - Design thoughtful experiment to probe these portions of the models; not always necessary to look at parent fuel
- Low temperatures: fuel specific chemistry important
- C₀ chemistry
 - Relatively small uncertainties (~25%) → high cost for small improvements
 - HO₂ chemistry a question, measurements needed

Challenges - What does industry care about?

- Real fuels
 - Blending effects classes of components
 - Prediction of octane rating for fuel blends
 - Aromatics, olefins
 - N-alkanes (NTC energy release)
 - Alternative fuels farther off than public may think
- Mechanisms
 - Simplicity number of reactions
 - Rate of heat release, transition from low- to high-T, temperature distribution, NOx, soot, noise (diesel), ignition delay
 - Resolve trends
 - Sensitivity of parameters on operation/performance
- Tools for: model development, surrogate formulation, rate prediction, etc.
 - Methods for dissemination and training
 - Industry is using: not predictive enough for computer design
 - No feedback
 - Little feedback even between kinetics and CFD communities
 - Translation of uncertainties in fundamental properties/predictions to uncertainties in applied outputs (engine performance)

How has the community changed?

- Today's perception: science will answer everything
- 1979: Irvin Glassman "this soot problem keeps coming around"
 - Today soot is still a problem
- First n-heptane mechanism ~1970
 - Still being worked on
 - First N-dodecane mechanism ~1990s
 - Similar fidelity to n-heptane
 - Still work need NTC/low-T regions

Our work is directed by the problems facing industry

Roadmap/Collaborations

- Common community C₀ model
 - Optimized vs not
 - Dynamic vs fixed vs partially fixed
- Documentation
 - Data must be made available necessary for simulation of exp
 - Models must be available, documented, and consistent (e.g., forward and reverse rates consistent with thermo)
 - Should further standardization of the requirements for reporting models and experiments exist?
- Cyber infrastructure for data/models/etc.
 - Models and data need to be on web
 - Improve the visibility of our work
 - Historical record of model changes
 - Prime?