Combustion Chemistry in the Twenty-First Century: Developing a Theory-Informed Chemical Kinetic Model for the Small-Hydrocarbon Fuels

> James A. Miller Argonne National Laboratory

Collaborators/Co-Authors/Partners

- Stephen Klippenstein
- Raghu Sivaramikrishnan
- Michael Burke (Columbia)
- Franklin Goldsmith (Brown)
- Yuri Georgievski
- Larry Harding
- Branko Ruscic

- Ahren Jasper
- Judit Zádor
- Nils Hansen

Peter Glarborg

 Argonne-Sandia High-Pressure Combustion Consortium – DOE Office of Basic Energy Sciences

Distinguishing Characteristics of Present Model

- Focus on C₀-C₃ chemistry (plus methanol and ethanol)— molecules large enough to exhibit lowtemperature chemistry, small enough to be attacked with high-level electronic-structure methods
- Relies heavily on theory (thermochemistry, transport, chemical kinetics)
- Focus on extension to high pressure
- No fitting, no "optimization", no adjustable parameters

What does "high pressure" mean?

mean free path

Thermochemistry

- Active Thermochemical Tables
- Very High-Level Electronic Structure Theory: C-H-O-N species with 34 or fewer electrons – 4 (or 5) heavy atoms

High Accuracy *Ab Initio* **Thermochemistry**

Central Elements

- CCSD(T)/TZ rovibrational analysis
- CCSD(T)/CBS(AQZ,A5Z)
- CCSDT(Q)/DZ CCSD(T)/DZ
- **Minor Corrections**
- Core-Valence CCSD(T,full)/CBS(pcVTZ,pcVQZ)
- Anharmonic Vibration Corrections B3LYP or MP2
- Relativistic
 Cl(aug-cc-pcvtz)
- Diagonal Born-Oppenheimer HF/TZ
- 2σ Accuracy ~ 0.2 kcal/mol
- **Replace with CASPT2 and/or CI+QC as necessary**

Transport Properties

2 Objectives

- 1. Provide accurate Lennard-Jones parameters for use in flame calculations
- 2. Test accuracy of isotropic/Lennard-Jones potential

Methods

- Calculate σ and ε for N₂- X from "isotropically averaged potential" using MP2/aug'dz method – use combining rules to get self parameters
- Calculate collision integral (diffusion) "exactly" from classical trajectories using fitted potentials
- Calculate dipole moments and polarizabilities from highlevel electronic structure theory

Lennard-Jones Potential

$H - N_2$ interaction

$H_2 - N_2$ interaction

Chemical Kinetics

- RRKM/non-RRKM behavior
- Dissociation of weakly-bound free radicals
- Multiple-well, multiple-product-channel problems

Types of Chemical Reactions

RRKM Intramolecular Dynamics

H+O₂ **⇒OH+O**

Т, К

Effect of non-RRKM Behavior in H+O₂ ≠ OH+O

CH₄ flame speeds

 $^{3}CH_{2}+O_{2}\rightarrow products$

Courtesy of Alex Landera

³CH₂+O₂ Rate Constants

Courtesy of Alex Landera

Weakly-bound free radicals

- Dissociate primarily to form stable molecule and another free radical
- Low threshold energies for dissociation (weak bonds) with "intrinsic" potential energy barriers
- Examples: vinyl, ethyl, n- and i-propyl (all alkyl radicals), allyl, formyl, ...
- Not weakly bound- methyl, propargyl, ...

The Dissociation of Formyl Radical

HCO dissociation

k(1/s)

Non-equilibrium population distributions during dissociation of weakly-bound free radicals

 Non-equilibrium factor, f_{ne}, occurs naturally in the analytical treatment of reversible dissociation

$$f_{ne} = 1 / \left[\int_0^\infty \frac{x(E)}{F(E)} x(E) dE \right]$$

- Measure of the extent to which dissociation "disturbs" the equilibrium population distribution
- If f_{ne} is significantly smaller than 1, get significant disturbance ⇒ dissociation during vibrational relaxation ⇒ inadequacy of phenomenological (rate constant) description

Non-Equilibrium factors for Selected Radicals Non-equilibrium factors

Propyl radicals

Possible Solution

Internal energy relaxation is presumed to be infinitely fast in phenomenological models

 Dissociated radical is formed before "thermalization" is complete

• Take dissociated radical to be formed from radical-producing reactions, e.g.

 $C_{2}H_{6}+OH \rightleftharpoons C_{2}H_{5}+H_{2}O$ $C_{2}H_{6}+OH \rightleftharpoons C_{2}H_{4}+H+H_{2}O$

Reactions Investigated (or Re-Investigated) for this Project

Everything on C_3H_7 potential, ... C_3H_6 ..., C_3H_5O ..., ... C_2H_4 ..., C_2H_5 +H, C_2H_5 +OH, C_2H_5 +O₂, C_3H_7 +O₂, C_3H_3 dissociation, ${}^{3}CH_2$ +O₂, HCO+OH, CH₂OH/CH₃O dissociation, C_2H_3 +O₂, dissociation of hydroxypropyl and propoxy radicals, etc. (probably a number that I have forgotten)

CH₃+OH *i* products

Figure 1. Zero-point inclusive stationary point energies computed at the QCISD(T)/CBS//B3LYP/6-311++G** level of theory.

CH₃+OH **⇒** products

Comparison with Experiment

flame speed(cm/s)

flame speed

Propane Ignition Delay Times

1/T(K)

Allene ignition delay times

1/T(K)

Low-Temperature Autoignition of Propane

