Discussion of

“Firm Dynamics, Job Turnover, and Wage Distribution in an Open Economy”

Kerem Coşar, Nezih Guner and James Tybout

Oleg Itskhoki
Princeton University

Philadelphia Workshop on Macroeconomics
April 2011
“New-new trade theory”

• Before 1980: Neoclassical trade theory
 — Ricardian productivity differences
 — Heckscher-Ohlin relative factor endowment differences
 — Focus on comparative advantage at the sectoral level and between-group inequality (skill premium)

• 1980-90s: New trade theory
 — Krugman and Helpman-Krugman models
 — Increasing returns and love of variety
 — Intraindustry trade and home market effects

• After mid-1990s: New-new trade theory
 — Melitz model, BEJK model
 — Comparative advantage at the level of the firm
 — Fixed cost of trade and selection into export market
 — Focus on within-industry between-firm reallocation and wage effects
“New-new trade theory”

- Late 1990s: Firm-level datasets and empirical facts
 “Exceptional Exporter Performance”
 - Large, productive, skill- and capital-intensive
 - Reallocation within industries across firms
 - Majority of changes in inequality also at this level
 - Size and exporter wage effects

- Early 2000s: Product market modeling
 - Focus on selection, revenue and employment effects
 - Structural estimation by EKK

- Late 2000s: Labor market modeling
 - Departures from competitive labor markets to capture wage distributional effects: new story for trade and inequality
 - Unemployment? Short-run versus long-run
 - This paper: structural estimation
• Ingredients
 — Two-sector small open economy, homogeneous workers
 — Nontradable service sector pins down outside option
 — Melitz tradable industrial sector with DMP search friction, firing costs, and stochastic idiosyncratic productivity
 — Stationary equilibrium
 — Unemployment = informality

• Trade liberalization and labor market deregulation lead to:
 (i) less job security (greater turnover)
 (ii) increase in informality/unemployment
 (iii) increase in average wages and welfare
 (iv) increase in wage inequality
Mechanisms

1. Firing costs: standard (more job creation and job destruction)

2. Trade and selection: amplification of shocks

3. Hiring costs:

\[C_h(\ell, \ell') = \gamma \left(\frac{\ell' - \ell}{\phi(\theta)\ell^{\lambda_2}} \right)^{\lambda_1}, \quad \lambda_1 \geq 1, \lambda_2 \geq 0. \]

4. No exogenous separations: firing firms pay outside option

5. Informality: large pool of unemployment with low job finding rate
Wage inequality

- Assume separation rate $s = \delta + \sigma$ and no firing costs

- Labor market:

\[
J^E - J^U = (w - rJ^U) + \frac{1 - s}{1 + r}(J^{E'} - J^{U'}),
\]

\[
J^F = \varphi'(\ell) + \frac{1 - s}{1 + r}J^{F'},
\]

\[
J^F = J^E - J^U,
\]

where $\varphi(\ell) = R(\ell) - w(\ell)\ell - f$, $R(\ell) = A(z\ell)^\beta$
Wage inequality

• Assume separation rate \(s = \delta + \sigma \) and no firing costs

• Wage schedule (Stole-Zweibel):

\[
\begin{align*}
 w(\ell) &= \frac{\beta}{1 + \beta} \frac{R(\ell)}{\ell} + \frac{1}{2} rJ^U, \\
 \varphi(\ell) &= \frac{1}{1 + \beta} R(\ell) - \frac{1}{2} rJ^U \ell
\end{align*}
\]
Wage inequality

- Assume separation rate \(s = \delta + \sigma \) and no firing costs

- Wage schedule (Stole-Zweibel):

\[
w(\ell) = \frac{\beta}{1 + \beta} \frac{R(\ell)}{\ell} + \frac{1}{2} rJU, \\
\varphi(\ell) = \frac{1}{1 + \beta} R(\ell) - \frac{1}{2} rJU \ell
\]

- Equilibrium wage (close to firm optimal size):

\[
\frac{1 + r}{r + s} \varphi'(\ell') \approx J_{\ell'}^F = \frac{\partial}{\partial \ell'} C_h(\ell, \ell') = b \frac{(\ell' - (1 - \sigma)\ell)^{\lambda_1 - 1}}{\ell^{\lambda_1 \lambda_2}}
\]
Wage schedule

\[w(\ell', \ell) \approx rJ^U + (r + s)b \frac{(\ell' - (1 - \sigma)\ell)^{\lambda_1 - 1}}{\ell^{\lambda_1 \lambda_2}} \]
Wage schedule

\[w(\ell', \ell) \approx rJ^U + (r + s)b\left(\frac{(\ell' - (1 - \sigma)\ell)^{\lambda_1 - 1}}{\ell^{\lambda_1 \lambda_2}}\right) \]

- When \(\lambda_1 = 1 \) and \(\lambda_2 = 0 \):

\[w(\ell) = rJ^U + (r + s)b \]
Wage schedule

\[w(\ell', \ell) \approx rJ^U + (r + s)b \frac{(\ell' - (1 - \sigma)\ell)^{\lambda_1-1}}{\ell^{\lambda_1\lambda_2}} \]

- When \(\lambda_1 = 1 \) and \(\lambda_2 = 0 \):
 \[w(\ell) = rJ^U + (r + s)b \]

- At optimal employment \(\ell' = \ell \):
 \[w(\ell) = rJ^U + (r + s)b\sigma^{\lambda_1-1} \ell^{\lambda_1-1-\lambda_1\lambda_2} \]
 - ‘Long-run’ (optimal employment) effect: \(\lambda_1 - 1 - \lambda_1\lambda_2 > 0 \)
 - Large firms pay more
Wage schedule

\[w(\ell', \ell) \approx rJ^U + (r + s)b\left(\frac{\ell' - (1 - \sigma)\ell}{\ell}\right)^{\lambda_1 - 1} \]

- When \(\lambda_1 = 1 \) and \(\lambda_2 = 0 \):
 \[w(\ell) = rJ^U + (r + s)b \]

- At optimal employment \(\ell' = \ell \):
 \[w(\ell) = rJ^U + (r + s)b\sigma^{\lambda_1 - 1}\ell^{\lambda_1 - 1 - \lambda_1\lambda_2} \]
 - ‘Long-run’ (optimal employment) effect: \(\lambda_1 - 1 - \lambda_1\lambda_2 > 0 \)
 - Large firms pay more

- Away from optimal employment (assume \(\lambda_1 - 1 - \lambda_1\lambda_2 = 0 \))
 \[w(\ell', \ell) \approx rJ^U + (r + s)b\left(\sigma + \frac{\ell' - \ell}{\ell}\right)^{\lambda_1 - 1} \]
 - ‘Short-run’ (convexity) effect: \(\lambda_1 > 1 \)
 - Firms that are small relative to their optimal size pay more
Wage schedule
Estimated parameters

- Parameters

\[\lambda_1 = 2.2 \quad \Rightarrow \quad \epsilon_1 = \lambda_1 - 1 = 1.2 \gg 0, \]
\[\lambda_2 = 0.35 \quad \Rightarrow \quad \epsilon_2 = \lambda_1 - 1 - \lambda_1 \lambda_2 = 0.43 \gg 0. \]

- Both short-run and long-run effects are huge:
 - \(\epsilon_1 \sim \) elasticity of wage with respect to firm growth rate
 - \(\epsilon_2 \sim \) elasticity of wage with respect to firm employment size

- Test: run a size-wage regression controlling for firm growth rate. Do large but decreasing firms pay less?

- Why such parameters:

\[\text{corr}(\ell, \ell') = 0.95 \quad \text{while} \quad \text{corr}(z, z') = 0.86 \]
Additional comments

• Distance of firms from desired size explains inequality. How long is the transition to desired size relative to the persistence of shocks?

• Welfare results are very sensitive to no worker heterogeneity: Do workers move much around firms of different size and export status?

• Informality: Do workers move much between informal and formal sectors?

• No fixed cost heterogeneity

• Evidence on misallocation. Here $w \sim MPL$. Dispersion of employment?
Conclusion

• Right focus: within industry, between firms
Conclusion

- Right focus: within industry, between firms

Figure: Wage inequality in Brazil: Within vs Between Occupations
Conclusion

- Right focus: within industry, between firms

Figure: Wage inequality in Brazil: Within vs Between Sectors
Conclusion

- Right focus: within industry, between firms

Figure: Wage inequality in Brazil: Within vs Between Firms
Conclusion

- Right focus: within industry, between firms

Figure: Wage inequality in Brazil: Within vs Between Firms

- How much does this mechanism (short-run convexities) contribute to inequality?