Discussion of
“A Theory of Optimal Capital Controls”

Arnaud Costinot, Guido Lorenzoni and Iván Werning

Oleg Itskhoki
Princeton University

Cowles Summer Conference
June 2011
Capital Controls

• Huge policy importance
 — widespread use
 — effectiveness (?)

• No theoretical framework
 — Magud, Reinhart and Rogoff (2011)

• Great complexity of the question
 — portfolio choice (incomplete markets)
 — frictions

• This paper: lays out a basic frictionless framework
 — endowment economy
 — no uncertainty: one international real bond
 — trade across periods (and across goods)
Results

• Optimal tariff argument for intertemporal trade
 — tax net exports to affect intertemporal terms of trade
 — tax net exports to affect intratemporal terms of trade
 (if there is home bias)
 — reduce intertemporal (and intratemporal) trade in periods of

• very intuitive (almost)

• Obstfeld and Rogoff Chapter 2, generalized and solved analytically. very nicely done.
1. is this the right framework?

- This model: capital controls \equiv trade protection
 - Capital controls equivalent to a tariff (Jeanne, 2011)
 - Pareto inferior (prisoner’s dilemma)
 - Why no WTO for capital controls?

- Reasons for capital controls:
 what makes intertemporal trade different?
 1. Enforcement frictions: require borrowing limits
 - Alvarez and Jermann (2000); Aoki, Kiyotaki, Benigno (2009)
 2. ‘Hot Money’; Information frictions
 3. ‘Trilemma’ and monetary policy
 - Obstfeld, Shambaugh and Taylor (2010)
 4. Real exchange rate management
 - Jeanne (2011)
 - Currency unions and pegs: China, Euro zone

- Fundamental results: general mechanism
2. net exports vs. net foreign assets?

- Conjecture: desire to manipulate terms-of-trade should depend not on net exports $nx_t = y_t - c_t$, but on net foreign assets $b_{t+1} = b_0 \frac{R_0, t+1}{R_0, t+1} + \sum_{\tau=0}^{t} \frac{y_{\tau} - c_{\tau}}{R_0, t+1}$

or

$$q_t b_{t+1} = b_t + y_t - c_t$$

- This paper says: no! Manipulate terms of trade only based on nx_t, not b_{t+1}

- Why? Consider $y_{\tau} = y$ for all $\tau \geq t$ (and $Y_t \equiv Y$). Then

$$c_{\tau} = y + (1 - \beta) b_t \quad \forall \tau \geq t$$
2. net exports vs. net foreign assets?

cont’d

• Is no policy at all optimal when $y_t \equiv y$? Not if $b_0 \neq 0$.

• How come?! we just proved for any b_t

$$c_\tau = y + (1 - \beta)b_t \quad \forall \tau \geq t$$

• Turns out this applies only for $t > 0$. Conclusion must be modified for $t = 0$, if $b_0 \neq 0$
2. net exports vs. net foreign assets?

cont’d

• Unilateral (planning) problem of a country

\[
\max_{\{c_t\}} \sum_{t=0}^{\infty} \beta^t u(c_t) \\
\text{s.t. } b_0 + \sum_{t=0}^{\infty} \beta^t \frac{u'(c_t^*)}{u'(c_0^*)} (y_t - c_t) = 0, \quad c_t + c_t^* \equiv Y.
\]

• Rewrite constraint as

\[
u'(Y - c_0)[b_0 + y_0 - c_0] + \sum_{t=1}^{\infty} \beta^t u'(Y - c_t)[y_t - c_t] = 0.
\]

Note the asymmetry of \(t = 0 \)
2. net exports vs. net foreign assets?

cont’d

• Assume \(y_t \equiv y \) and \(b_0 > 0 \)

• Optimality

\[
u'(c_0) = \mu u'(Y - c_0) \left[1 + \frac{u''(Y - c_0)}{u'(Y - c_0)} (b_0 + y - c_0) \right],
\]

\[
u'(c_t) = \mu u'(Y - c_t) \left[1 + \frac{u''(Y - c_t)}{u'(Y - c_t)} (y - c_t) \right], \quad t \geq 1.
\]

\[\Rightarrow \ c_t = c_1 \text{ for all } t \geq 1 \text{ and } c_0 \neq c_1\]

• Budget constraint

\[
u'(Y - c_0)(b_0 + y - c_0) + \frac{\beta}{1 - \beta} u'(Y - c_1)(y - c_1) = 0.
\]

• Result:
 - \(c_0 > c_1 \) and \(b_0 + y - c_0 > y - c_1 \)
 - translates into: \(\tau_0 < \tau_1 = 0 \) or \(\theta_0 > 0 = \theta_1 \)
2. net exports vs. net foreign assets?

cont’d

- Optimal policy:
 - \(\tau_0 < 0 \) and \(\theta_0 > 0 \) for \(b_0 \)
 - \(\tau_t = 0, \theta_t = 0 \) and \(b_t = b_1 \in (0, b_0) \) for all \(t \geq 1 \)

- \(\tau_0 = \tau_t \) cannot be optimal!

- \(\theta_t \) is not a function of \(b_t \): time inconsistency

- time consistent solution: \(\theta(b) \) with \(\theta'(\cdot) > 0 \) and \(\theta(0) = 0 \)

- why time inconsistency?
 - similar to Ramsey taxation with capital?
 - desire for decreasing \(|\tau_t| \) over time (constant \(|\tau_t| > 0 \) won’t do)
 - step in \(\tau_t \) is optimal, but not time consistent
 - smooth path for \(\tau_t \) is time consistent
3. additional questions

- Nothing different from trade distortions? Quantity vs price?
- Wars: prisoner’s dilemma? what’s the difference from static trade case?
- Generalizes to uncertainty?
- Absolute or relative growth? (how important $Y = \text{const}$)
- Theory of optimal RER management
- Non-linear distortion rather than counter-/pro-cyclical distortion
 - denote by τ both import tariff and export subsidy;
 by θ tax on both inflows and outflows
- Generalizes to demand shocks
Time-consistent solution

- Time-consistent program

\[V(b) = \max_{(c,b')} \left\{ u(c) + \beta V(b') \right\} \]

s.t. \[c + qb \leq y + b' \]

where \[q = \frac{\beta u'(Y - c(b'))}{u'(Y - c)} \]

- Equilibrium requirement

\[c(b) = \arg \max_{(c,b')} \left\{ u(c) + \beta V(b') \right\} \]

- Result: \(c(b) \) such that \(c'(\cdot) < 0 \) and \(c(0) = y \)