Discussion of

Liberalized Trade
and Worker-Firm Matching

Carl Davidson, Fredrik Heyman, Steven Matusz,
Fredrik Sjöholm and Susan Zhu

Oleg Itskhoki
Princeton University

AEA Meetings
Chicago 2012
Summary

<table>
<thead>
<tr>
<th></th>
<th>1995</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.26</td>
<td>0.29</td>
</tr>
<tr>
<td>L</td>
<td>0.24</td>
<td>0.21</td>
</tr>
<tr>
<td>Workers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.26</td>
<td>0.24</td>
</tr>
<tr>
<td>L</td>
<td>0.24</td>
<td>0.26</td>
</tr>
<tr>
<td>Matching</td>
<td>0.04</td>
<td>0.14</td>
</tr>
</tbody>
</table>

1. assortative matching increases over time, along with globalization
2. the pattern is stronger in comparative advantage sectors that liberalize trade
3. \(H \) workers are more likely to be reemployed in \(H \) firms
 - stronger in export-oriented sectors
 - stronger for workers from previous \(HH \) matches
Continuous measure of worker and firm effects
From longer paper (Globalization and Labor Market Sorting)
What additionally I would like to know

1. Is it a lot or a little of assortative matching?

2. How important is between-industry trade for Sweden?

3. Is assortative matching driven by observables or unobservables?
 — covariance structure for all four components

4. Is assortative matching a within or between sector phenomenon?
 — does the answer depend on component of wages
 (worker vs firm effects, observables vs unobservables)
 — HIMR: observables matter more across sectors

5. What happens to the match component?

6. Link to wage inequality?
• Why do we care about matching?
 1. inequality
 2. efficiency of allocation

• A large number of theories consistent with the findings on assortative matching:
 — can we distinguish between them? or rather
 — take this as unconditional facts on matching patterns?

• What is the evidence in favor of frictional versus competitive matching?
Theory

- Why do we care about matching?
 1. inequality
 2. efficiency of allocation

- A large number of theories consistent with the findings on assortative matching:
 - can we distinguish between them? *or rather*
 - take this as unconditional facts on matching patterns?

- What is the evidence in favor of frictional versus competitive matching?

- Transition probabilities reject random matching?

 H-worker transition probabilities:

<table>
<thead>
<tr>
<th></th>
<th>Comp. advantage</th>
<th>disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow H$-job</td>
<td>61%</td>
<td>54%</td>
</tr>
<tr>
<td>$L \rightarrow H$-job</td>
<td>40%</td>
<td>28%</td>
</tr>
</tbody>
</table>

 — consistent with on-the-job search or multidimensional matching
Identification

- Two-way fixed effects wage regression:

\[w_{ijt} = \alpha_i + \theta_j + \epsilon_{ijt} \]

- \(i \) for worker, \(j \) for firm

Identification issues:
1. Non-consistency/small sample bias
2. Not enough worker mobility (66\% never change jobs)
3. Functional form (e.g., non-monotonicity)
4. Non-random transitions of workers
Identification

- Two-way fixed effects wage regression:

\[w_{ijt} = \alpha_i + \theta_j + \epsilon_{ijt} \]

- \(i \) for worker, \(j \) for firm

- Identification issues:
 1. non-consistency/small sample bias
 2. not enough worker mobility (66% never change jobs)
 3. functional form (e.g., non-monotonicity)
 4. non-random transitions of workers
Non-random Transitions

Example

• Assume a stylized example:
 - \(a_L = a - \delta \), \(a_H = a + \delta \)
 - \(\theta_L = \theta - \lambda \), \(\theta_H = \theta + \lambda \), \(\theta = 0 \)
 - \(\pi_{LL} = \pi_{HH} = \frac{1}{4}(1 + \omega) \), \(\pi_{LH} = \pi_{HL} = \frac{1}{4}(1 - \omega) \), \(\omega \in [0, 1] \)

• Wages: \(w_{ij} = a_\tau(i) + \theta_\sigma(j) + \epsilon_{ijt} \), \(\tau, \sigma \in \{L, H\} \), \(\epsilon_{ijt} = 0 \)
Non-random Transitions

Example

- Assume a stylized example:
 - \(a_L = a - \delta, \ a_H = a + \delta \)
 - \(\theta_L = \theta - \lambda, \ \theta_H = \theta + \lambda, \ \theta = 0 \)
 - \(\pi_{LL} = \pi_{HH} = \frac{1}{4}(1 + \omega), \ \pi_{LH} = \pi_{HL} = \frac{1}{4}(1 - \omega), \ \omega \in [0, 1] \)

- Wages: \(w_{ij} = a_{\tau(i)} + \theta_{\sigma(j)} + \epsilon_{ijt}, \ \tau, \sigma \in \{L, H\}, \ \epsilon_{ijt} = 0 \)

- Then we estimate using within transformation for workers:
 \[
 \hat{a}_L = a - (\delta + \lambda \omega) < a_L, \quad \hat{a}_H = a + (\delta + \lambda \omega) > a_H, \\
 \hat{\theta}_L = -\lambda (1 - \omega^2) > \theta_L, \quad \hat{\theta}_H = \lambda (1 - \omega^2) < \theta_H.
 \]
Non-random Transitions

Example

• Assume a stylized example:
 ○ \(a_L = a - \delta, \quad a_H = a + \delta \)
 ○ \(\theta_L = \theta - \lambda, \quad \theta_H = \theta + \lambda, \quad \theta = 0 \)
 ○ \(\pi_{LL} = \pi_{HH} = \frac{1}{4}(1 + \omega), \quad \pi_{LH} = \pi_{HL} = \frac{1}{4}(1 - \omega), \quad \omega \in [0, 1] \)

• Wages: \(w_{ij} = a_{\tau(i)} + \theta_{\sigma(j)} + \epsilon_{ijt}, \quad \tau, \sigma \in \{ L, H \}, \quad \epsilon_{ijt} = 0 \)

• Then we estimate using within transformation for workers:

\[
\hat{a}_L = a - (\delta + \lambda \omega) < a_L, \quad \hat{a}_H = a + (\delta + \lambda \omega) > a_H,
\]
\[
\hat{\theta}_L = -\lambda(1 - \omega^2) > \theta_L, \quad \hat{\theta}_H = \lambda(1 - \omega^2) < \theta_H.
\]

• Good news: \(\hat{\theta}_H > \hat{\theta}_L \) in this simple example
• Bad news: bias gets worse as \(\omega \) increases
• One can test \(H_0 : \omega = 0 \)
Resolution

- What is the way out of this vicious circle?
Resolution

- What is the way out of this vicious circle?

- Structural estimation!