Discussion of
“R&D Investment, Exporting, and Productivity Dynamics”
by Bee Yan Aw, Mark Roberts, and Daniel Xu

Oleg Itskhoki
Princeton University

NBER Summer Institute 2009
ITI Workshop
I. Place in the Literature

1. Empirics on exporting and productivity:
 — Bernard and Jensen (1999)
 — Bustos (2007)

2. Theoretical models with export and R&D investment:
 — Atkeson and Burstein (2008)
 — Constantini and Melitz (2008)

3. Structural estimation of industry equilibrium:
 — Olley and Pakes (1996): productivity dynamics
 — Das, Roberts and Tybout (2007): exporting with sunk and fixed costs
II. Data

- Taiwanese Electronics Industry
- Balanced panel of 1,237 plants for 2000-2004
- Data on domestic and export revenues, as well as R&D expenditure

Export and R&D transition dynamics:

<table>
<thead>
<tr>
<th></th>
<th>Neither</th>
<th>only R&D</th>
<th>only Export</th>
<th>Both</th>
<th>Uncond’l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neither</td>
<td>0.87</td>
<td>0.01</td>
<td>0.11</td>
<td>0.01</td>
<td>0.56</td>
</tr>
<tr>
<td>only R&D</td>
<td>0.37</td>
<td>0.34</td>
<td>0.06</td>
<td>0.23</td>
<td>0.04</td>
</tr>
<tr>
<td>only Export</td>
<td>0.21</td>
<td>0.01</td>
<td>0.71</td>
<td>0.07</td>
<td>0.26</td>
</tr>
<tr>
<td>Both</td>
<td>0.02</td>
<td>0.06</td>
<td>0.15</td>
<td>0.77</td>
<td>0.15</td>
</tr>
</tbody>
</table>
III. Model

- Firm’s problem:

$$\max_{\{e_t, d_t \in \{0, 1\}\}} \left\{ \mathbb{E}_0 \sum_{t=0}^{\infty} \delta^t \left\{ \pi^D(\omega_t) + e_t \left[\pi^X(\omega_t, z_t) - \gamma^X(e_{t-1}) \right] - d_t \gamma^R(d_{t-1}) \right\} \right\}$$

subject to productivity evolution:

$$\omega_t = g(\omega_{t-1}, e_{t-1}, d_{t-1})$$

- No static optimization
- High ω_t affects incentives for both e_t and d_t
- Interactions between e_t and d_t through both objective function and productivity dynamics
- Persistence through sunk versus fixed costs (both iid): option value of waiting
IV. Estimation

1. Static equations:
 - \(\{ tvc_{it}, r_{it}^D, r_{it}^X \} \) to estimate elasticity of demand
 - \(\{ r_{it}^D, k_{it}, m_{it}, n_{it} \} \) to estimate productivity \(\omega_{it} \)
 - \(\{ r_{it}^X, \omega_{it} \} \) to estimate export demand shock \(z_{it} \)

2. Productivity dynamics:
 \[\omega_{it} = g(\omega_{it-1}, e_{it-1}, d_{it-1}) \]
 Estimated by OLS using a parametric assumption about \(g(\cdot) \)

3. Dynamic exporting and investment decisions:
 - \(\{ e_{it}, d_{it} | z_{it} \} \) to estimate parameters of the model (sunk and fixed costs) using ML
V. Results

1. Productivity dynamics (estimation of $g(\cdot)$):

\[
\frac{\Delta \omega_{it}}{\Delta e_{it-1}} > 0 \quad \frac{\Delta \omega_{it}}{\Delta d_{it-1}} > 0 \quad \frac{\Delta^2 \omega_{it}}{\Delta e_{it} \Delta d_{it}} < 0
\]

2. Sunk and Fixed costs of Exporting and R&D:
 - R&D costs roughly twice as big as Export costs
 - Sunk costs are roughly twice as big as Fixed costs
 - Around 10% of revenues

3. Interdependence between exporting and investment:
 - Selection based on ω_{it} for both e_{it} and d_{it}
 - A lot of persistence due to large sunk costs relative to fixed costs
 - Probability of exporting decreasing in R&D and probability of investment decreases in export status due to the interaction in the productivity dynamics
VI. Comments

1. What is the takeaway: virtually no interaction between exporting and investment decisions?

2. What are the guidelines for calibration (fixed and sunk costs)?

3. $g(\cdot)$ is a black box: what is the source of interaction between e and d?

4. Benchmark when g is separable in e and d: interaction only through the objective function.

5. Endogeneity in $\omega_t = g(\omega_{t-1}, e_{t-1}, d_{t-1})$

6. Data on R&D expenditure is not used
VI. Comments
(continued)

• The role of k_{it} in the marginal cost? Absence of ℓ_{it} in estimation?

• Is the absence of persistence in γs crucial?

• Balanced panel: entry and exit decisions?

• e and d are not directly comparable