SWITCHED FIBER ACCESS NETWORK

A. G. Fraser

agf@FraserResearch.org

Supported in part by The National Science Foundation.
Award # ANI 0331588: 100 Mb/sec for 100 Million Households
Tree structured access networks with automatic service restoration. Full mesh logical backbone implemented with circuit switches. Regional node provides packet switching and traffic aggregation.
SWITCHED FIBER ACCESS

- Lower fiber cost
 Greater traffic concentration, therefore less fiber required.
- Greater flexibility
 More degrees of freedom for topology of fiber plant.
- Better security
 Switched service provisioning discourages fraud.
- Automatic service restoration
 Commercial quality service, 50 msec restoration, everywhere.
- Reduced delay
 No initial delay when sending a packet.
- Mechanized maintenance
 Intelligence and means of monitoring at every network node.
ROOT is where the access network terminates in a regional node.
Edge node (E) is a community switch to which homes have direct connection.
Distribution node (D) is a switched interior node of the access network.

All user traffic passes through at least one root.
Virtual path switching provides each home with a protected path to the root.
The topology is a “fat tree” - a tree structure with extra links for redundancy.
PROTOTYPE EDGE NODE

Current Generation Access Node

1.2 Gb/sec throughput
8 ports at 155 Mb/sec
8K virtual circuits
Basis for system experiment

Next Generation Node Design

10 Gb/sec throughput
Fast restoration
Flow control
Cell grouping
Switched multicast

agf@FraserResearch.org

1 December 2004
AUTOMATIC SERVICE RESTORATION

Algorithms
Detect and classify failures
Discover available facilities
Identify additional and removed nodes
Choose a new tree
Instantiate tree in forwarding tables

Restoration time based on height of tree rather than number of nodes
A single multi-fiber cable in the street is necessary for fiber access and is sufficient for automatically restored broadband service.

Marginal cost of extra fibers in a cable is small. Networks have been designed for cities of 10,000 to 100,000 households.

Additional cost to support service restoration is less than 10% based on publicly available cost data for overlashed aerial cable.

Restoration can probably be completed in 50 msec.
Large regions are economical
- Fiber back-haul (aided by WDM) reduces transmission cost.
- Operating costs for switching centers are an increasing burden.

Backbone can be simplified
- Reduced number of regions simplifies routing.
- Substantial traffic aggregation simplifies flow control.

Reduced complexity enables competition
- Technology independence among regional operators.
- Independent evolution of regional and backbone networks.
• Telephone and cable operators have hybrid networks in operation today. Evolution to switched access is natural.

• Homes are clustered:
 80% of central office customers are within 3 miles.

• Region with 100 mile radius looks plausible.
 Distribution nodes with fiber back-haul for local communities.