Paradoxes of Traffic Engineering with Partially Optimal Routing

Asu Ozdaglar

Daron Acemoglu and Ramesh Johari
Dept. of Economics, MIT and Dept. of MS&E, Stanford

March, 2006

Electrical Engineering and Computer Science Dept.

Massachusetts Institute of Technology
Motivation

• Most large-scale communication networks, such as the Internet, consist of interconnected administrative domains.

• Increasing interest to allow end users to choose routes themselves.
 – Selfish Routing

• Administrative domains control the routing of traffic within their own networks.

• Obvious conflicting interests as a result:
 – Users care about end-to-end performance.
 – Individual network providers optimize their own objectives.

• The study of routing patterns and performance requires an analysis of Partially Optimal Routing:
 – End-to-end route selection selfish
 * Transmission follows minimum latency route for each source.
 – Network providers route traffic within their own network to achieve minimum intradomain latency.
Our Work

• A model of partially optimal routing.
• Implications for equilibrium routing patterns and network performance.
• Three Main Objectives:
 1. Investigate whether partially optimal routing (i.e., the presence of traffic engineering) improves the overall network performance.
 – Relation to Braess’ Paradox
 2. Understand the choice of routing policy by a single network provider.
 3. Quantify performance losses of partially optimal routing relative to optimal routing for the overall network:
 – Price of Anarchy for partially optimal routing [Pigou], [Koutsoupias and Papadimitriou], [Roughgarden and Tardos].
Model

- A network $G = (V, A)$, with distinguished source and destination nodes $s, t \in V$.
- P denotes the set of paths from s to t.
- X units of flow are to be routed from s to t.
- Each link $j \in A$ has a latency function $l_j(x_j)$ that represents the delay as a function of the flow x_j on link j.
 - Assume $l_j(x_j)$ is strictly increasing and nonnegative.
- We call the tuple $R = (V, A, P, s, t, X, l)$ a routing instance.
Socially Optimal Routing

Given a routing instance $R = (V, A, P, s, t, X, l)$:

- We define the social optimum $x^{SO}(R)$, as the optimal solution of:

 $$\text{minimize} \sum_{j \in A} x_j l_j(x_j)$$

 $$\text{subject to} \sum_{p \in P : j \in p} y_p = x_j, \quad j \in A,$$

 $$\sum_{p \in P} y_p = X, \quad y_p \geq 0, \quad p \in P.$$

- Given a routing instance R and a feasible flow $x(R)$, we denote the total latency cost at $x(R)$ by:

 $$C(x(R)) = \sum_{j \in A} x_j(R) l_j(x_j(R)).$$
Selfish Routing

- When traffic routes “selfishly,” all paths with nonzero flow must have the same total delay.

- The Wardrop equilibrium flow, $x^{WE}(R)$, is the unique solution of:

 \[
 \begin{align*}
 \text{minimize} & \quad \sum_{j \in A} \int_{0}^{x_j} l_j(z) \, dz \\
 \text{subject to} & \quad \sum_{p \in P : j \in p} y_p = x_j, \quad j \in A, \\
 & \quad \sum_{p \in P} y_p = X, \quad y_p \geq 0, \quad p \in P.
 \end{align*}
 \]

- It is well-known that a feasible solution x^{WE} of Problem (1) is a Wardrop equilibrium if and only if

 \[
 \sum_{j \in A} l_j(x_j^{WE})(x_j^{WE} - x_j) \leq 0,
 \]

for all feasible solutions x of Problem (1).
Partially Optimal Routing

- Consider a subnetwork inside of G, denoted $G_0 = (V_0, A_0)$.
- This talk: Assume that G_0 has a unique entry and exit point, denoted by $s_0 \in V_0$ and $t_0 \in V_0$. P_0 denotes paths from s_0 to t_0.
 - In companion paper, multiple entry exit subnetworks.
- We call $R_0 = (V_0, A_0, P_0, s_0, t_0)$ a subnetwork of $G : R_0 \subset R$.
- Given an incoming amount of flow X_0, the network operator chooses the routing by:
 \[
 L(X_0) = \min \sum_{j \in A_0} x_j l_j(x_j)
 \]
 s.t. \[
 \sum_{p \in P_0 : j \in p} y_p = x_j, \quad j \in A_0, \\
 \sum_{p \in P_0} y_p = X_0, \quad y_p \geq 0, \quad p \in P_0.
 \]
- Define $l_0(X_0) = L(X_0)/X_0$ as the effective latency of POR in the subnetwork R_0.
POR Flows

• Given a routing instance $R = (V, A, P, s, t, X, l)$, and a subnetwork $R_0 = (V_0, A_0, P_0, s_0, t_0)$ defined as above, we define a new routing instance $R' = (V', A', P', s, t, X, l')$ as follows:

$$V' = (V \setminus V_0) \cup \{s_0, t_0\};$$

$$A' = (A \setminus A_0) \cup \{(s_0, t_0)\};$$

• $l' = \{l_j\}_{j \in A \setminus A_0} \cup \{l_0\}$.

• We refer to R' as the equivalent POR instance for R with respect to R_0.

• The overall network flow in R with partially optimal routing in R_0, $x^{POR}(R, R_0)$, is defined as:

$$x^{POR}(R, R_0) = x^{WE}(R').$$
Performance of Partially Optimal Routing

- **Selfish Routing:** Link flows $x_1^{WE} = 0.94$ and $X_0^{WE} = 0.92$, with a total cost of $C(x^{WE}(R)) = 4.19$.

- **Partially Optimal Routing:** Link flows $x_1^{POR} = 1$ and $X_0^{POR} = 1$, with a total cost of $C(x^{POR}(R)) = 4.25$,
Braess Paradox and POR Paradox

- **Braess’ Paradox:** Consider a routing instance $R = (V, A, P, s, t, X, l)$. We say that Braess’ paradox occurs in R if there exists another routing instance $R_m = (V, A, P, s, t, X, m)$, with a vector of strictly increasing, nonnegative latency functions, $m = (m_j, j \in A)$, such that $m_j(x_j) \leq l_j(x_j)$ for all $x_j \geq 0$ and

$$C(x^{WE}(R_m)) > C(x^{WE}(R)).$$

- **POR Paradox:** Consider a routing instance $R = (V, A, P, s, t, X, l)$, and a subnetwork $R_0 = (V_0, A_0, P_0, s_0, t_0)$. We say that the POR paradox (partially optimal routing paradox) occurs in R with respect to R_0 if

$$C(x^{POR}(R, R_0)) > C(x^{WE}(R)).$$
Main Result

- **Proposition:** Consider a routing instance $R = (V, A, P, s, t, X, l)$ and a subnetwork $R_0 = (V_0, A_0, P_0, s_0, t_0) \subset R$. Assume that the POR paradox occurs in R with respect to R_0. Then Braess’ paradox occurs in R.
 - *Proof Idea:* Uniformly lower the latency functions in the subnetwork R_0, such that the Wardrop effective latency of R_0 is given by l_0 (the effective latency of optimal routing within R_0).

- **Corollary:** Given a routing instance R, if Braess’ paradox does not occur in R, then partially optimal routing with respect to any subnetwork always improves the network performance.
 - Milchtaich has shown that Braess’ paradox does not occur in directed graphs where the underlying undirected graph has a series-parallel structure.
 - For a network with serial-parallel links, partially optimal routing always improves the overall network performance.
Subnetwork Performance: Traffic Engineering

- We consider a model where a subnetwork can choose a routing policy to achieve the minimum latency within its subnetwork.

\[
\begin{align*}
l_1(x) &= 1 \\
l_2(x) &= x^2 \\
l_3(x) &= c
\end{align*}
\]

- **Selfish Routing:** \sqrt{c} units of traffic is routed through the subnetwork, leading to a total cost of $C(x^{WE}) = c$, and a subnetwork cost of $C_{G_0}(x^{WE}) = c\sqrt{c}$.

- **POR:** Entire traffic is routed through the subnetwork, leading to $C(x^{POR}) = C_{G_0}(x^{POR}) = 1 - \frac{2}{3\sqrt{3}}$.

- For $c\sqrt{c} < 1 - \frac{2}{3\sqrt{3}}$, we have

\[
C_{G_0}(x^{POR}) > C_{G_0}(x^{WE}).
\]
Traffic Engineering for Parallel Link Topology

- Consider a network consisting of parallel links with \(d \) units of traffic.
- Suppose there are \(N + 1 \) providers each owning a subset of links.
- Consider a local ("partial equilibrium") analysis for the routing choice within subnetwork 0.
- Represent network provider \(i \), for \(i = 1, \ldots, N \), by a single link with effective latency \(l_i \) (reflecting the intradomain routing policy of \(i \))
 - \(l_0 \): effective latency of optimal routing within subnetwork 0.
 - \(\tilde{l}_0 \): effective latency of selfish routing within subnetwork 0.
- The routing policy choice of provider 0 can be parametrized by \(\delta \in [0, 1] \), leading to an effective latency of
 \[
 m_0 (x, \delta) = (1 - \delta) l_0 (x) + \delta \tilde{l}_0 (x).
 \]
Traffic Engineering for Parallel Link Topology

- $l_R(x)$: effective latency of Wardrop routing x units on links 1, \ldots, N.
- The optimization problem of subnetwork 0 then is:

$$ \min_{0 \leq x_0 \leq d, \delta \in [0, 1]} \left[(1 - \delta) l_0(x_0) + \delta \tilde{l}_0(x_0) \right] x_0 $$

subject to:

- $(1 - \delta) l_0(0) + \delta \tilde{l}_0(0) \geq l_R(d)$, if $x_0 = 0$;
- $(1 - \delta) l_0(d) + \delta \tilde{l}_0(d) \leq l_R(0)$, if $x_0 = d$;
- $(1 - \delta) l_0(x_0) + \delta \tilde{l}_0(x_0) = l_R(d - x_0)$, if $0 < x_0 < d$.

- If $\tilde{l}_0(0) \geq l_R(d)$, optimal solution is $\delta = 1, x_0 = 0$.
- If $\tilde{l}_0(d) \leq l_R(0)$, optimal solution is $\delta = 0, x_0 = d$.
- Otherwise, the optimization problem for subnetwork 0 reduces to:

$$ \min_{x_0 \in [x_0^{MIN}, x_0^{MAX}]} \min \left\{ x_0 l_R(d - x_0), dl_0(d) \right\} $$

where

$$ \tilde{l}_0(x_0^{MIN}) = l_R(d - x_0^{MIN}); \quad l_0(x_0^{MAX}) = l_R(d - x_0^{MAX}). $$
Price of Anarchy for Partially Optimal Routing

- Investigate the worst case efficiency loss of partially optimal routing with respect to socially optimal routing.

- **Immediate Observation:** Let \mathcal{R}' denote a set of routing instances. Then:
 \[
 \inf_{\substack{R \in \mathcal{R}' \ni R_0 \subseteq R}} \frac{C(x^{SO}(R))}{C(x^{POR}(R, R_0))} \leq \inf_{R \in \mathcal{R}'} \frac{C(x^{SO}(R))}{C(x^{WE}(R))}.
 \]

- **Proposition:** Consider a routing instance $R = (V, A, P, s, t, X, l)$ where l_j is a nonnegative affine function for all $j \in A$, and a subnetwork R_0. Then,
 \[
 \frac{C(x^{SO}(R))}{C(x^{POR}(R, R_0))} \geq \frac{3}{4}.
 \]
 Furthermore, the bound above is tight.
Price of Anarchy for Partially Optimal Routing

- The proof relies on the following two results:

- **Lemma**: Assume that the latency functions l_j of all the links in the subnetwork are nonnegative affine functions. Then, the effective latency of POR, $l_0(X_0)$, is a nonnegative concave function of X_0.

- **Proposition**: Consider a routing instance $R = (V, A, P, s, t, X, l)$ where l_j is a nonnegative concave function for all $j \in A$. Then,

\[
\frac{C(x^{SO}(R))}{C(x^{WE}(R))} \geq \frac{3}{4}.
\]
Price of Anarchy for Partially Optimal Routing

Proof: From the variational inequality representation of WE,

\[
C(x^{WE}) = \sum_{j \in A} x_j^{WE} l_j(x_j^{WE}) \leq \sum_{j \in A} x_j l_j(x_j^{WE})
\]

\[
= \sum_{j \in A} x_j l_j(x_j) + \sum_{j \in A} x_j (l_j(x_j^{WE}) - l_j(x_j)).
\]

Similar geometric proof as in [Correa, Schulz, and Stier-Moses]:
For all feasible \(x \), we have

\[
x_j (l_j(x_j^{WE}) - l_j(x_j)) \leq \frac{1}{4} x_j^{WE} l_j(x_j^{WE}).
\]

- Extensions to nonnegative separable polynomial latencies.
Subnetworks with Multiple Entry-Exit Points

- Even for linear latencies, efficiency loss of partially optimal routing can be arbitrarily high.

Social Optimum: \(x^{SO} = (0, \frac{1}{1+a}, \frac{1}{1+a}, z, \frac{a}{1+a}) \).

POR: \(x^{POR} = (\frac{1-bz}{1+b}, 0, 0, \frac{1+z}{1+b}, \frac{b+bz}{1+b}) \).

- For a fixed \(b > 0 \), as \(a \to 0 \) and \(z \to 0 \),

\[
C(x^{SO}) \to 0, \quad C(x^{POR}) \to \frac{b}{1+b} > 0,
\]
Conclusions

• First extension of the classical traffic routing models to capture traffic engineering.
• Interesting global and subnetwork performance results.
• Extensions to subnetworks with multiple entry-exit points.
• General equilibrium analysis for subnetwork routing policy choice.
• Other objectives for subnetworks: profit maximization.