Computational Complexity Handout

Adam Elga

February 18, 2003

Most of this is adapted from Papadimitriou, C. H. Computational Complexity, Chapter 2, which is on course reserve at Firestone. Some of it is reproduced directly, the rest is paraphrase.

1 Big-O notation

Let $f, g : N \rightarrow N$. Def of “f is of the order of g”:

\[f(n) = O(g(n)) \] \iff \text{there are positive integers } c \text{ and } n_0 \text{ such that for all } n \geq n_0, \]

\[f(n) \leq cg(n). \]

Informal gloss: eventually f is bounded by some constant factor of g.

Write $f(n) = \Theta(g(n))$ (“f and g are of the same order”) \iff $f(n) = O(g(n))$ and $g(n) = O(f(n))$.

Important facts (examples): $10000n$ grows slower than n^2 grows slower than n^3 grows slower than $n^{10000000}$ grows slower than 2^n.

2 Languages: sets of yes/no questions

Complexity theorists say ”language” to mean ”set of strings”. Machine M decides L \iff for any string s, $M(s) = 1$ if s is in L, and $M(s) = 0$ if s is not in L.

Intuitively: a language is a family of yes/no questions.

M decides on s in time t if M halts in t or fewer steps on s.

M decides L in time $f(n)$ if for any string s of length n, M decides s in time less than or equal to $f(n)$.

M decides L in space $f(n)$ if for any string s of length n, M decides s by writing to a zone of squares no bigger than $f(n)$.

Example: Primality testing.

\footnote{Here we assume that M has a special input tape that it can only read consecutive elements from, and a special output tape that it can only write consecutive elements to. We don’t count the space used by what’s written on the input and output tapes.}
3 Important complexity classes

Complexity class Time(f(n)): set of languages decidable in time f(n) by some multitape Turing machine.

Complexity class P: set of languages decidable in time n^k (for some k) by some Turing machine.

Nondeterministic machine: same as regular TM, except that the current state of the machine doesn’t uniquely determine what to do next. When n alternatives are given, picture the whole machine and tape splitting into n copies, each of which takes one alternative.

We say that a nondeterministic machine N accepts s if at least one of its descendents eventually outputs 1. Otherwise we say that it rejects s.

N decides L if for every s, s is in L iff N accepts s (i.e., one of its descendents outputs 1).

N decides L in time f(n) if for every s of length n, s is in L iff N accepts s (i.e., one of its descendents outputs 1), and if every branch of N on s has length less than or equal to f(n).

Complexity class NP: set of languages decidable in time n^k (for some k) by some nondeterministic Turing machine.

Example of a problem. Traveling salesman problem: given (integer-valued) distances between cities and some bound B, is there a nonrepeating route with total length less than or equal to B?

Is it in NP? Why?
Is it in P? Big question.

4 Reductions

“L1 is reducible to L2 iff there is a function R from strings to strings computable by a TM in space $O(\log n)$ such that for all x: x is in L1 iff R(x) is in L2.”